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Feature Recognition (FR) plays a crucial role in modern digital manufacturing, serving as a 
key technology for integrating Computer-Aided Design (CAD), Computer-Aided Process Planning 
(CAPP) and Computer-Aided Manufacturing (CAM) systems. The emergence of deep learning 
methods in recent years offers a new approach to address challenges in recognizing highly 
intersecting features with complex geometric shapes. However, due to the high cost of labeling 
real CAD models, neural networks are usually trained on computer-synthesized datasets, resulting 
in noticeable performance degradation when applied to real-world CAD models. Therefore, we 
propose a novel deep learning network, BrepMFR, designed for Machining Feature Recognition 
(MFR) from Boundary Representation (B-rep) models. We transform the original B-rep model 
into a graph representation as network-friendly input, incorporating local geometric shape 
and global topological relationships. Leveraging a graph neural network based on Transformer 
architecture and graph attention mechanism, we extract the feature representation of high-

level semantic information to achieve machining feature recognition. Additionally, employing 
a two-step training strategy under a transfer learning framework, we enhance BrepMFR’s 
generalization ability by adapting synthetic training data to real CAD data. Furthermore, 
we establish a large-scale synthetic CAD model dataset inclusive of 24 typical machining 
features, showcasing diversity in geometry that closely mirrors real-world mechanical engineering 
scenarios. Extensive experiments across various datasets demonstrate that BrepMFR achieves 
state-of-the-art machining feature recognition accuracy and performs effectively on CAD models 
of real-world mechanical parts.

1. Introduction

Since the early 1950s, the emerging of Computer Numerical Control (CNC) technology spurred the research and development 
of Computer-Aided Manufacturing (CAM) and Computer-Aided Design (CAD). These modern digital technologies have greatly im-

proved the efficiency of product development. In digital design and manufacturing, the design department utilizes three-dimensional 
design software to create CAD models that incorporates both lower-level geometric information and higher-level design intent. 
Subsequently, the manufacturing department, leveraging Computer-Aided Process Planning (CAPP) systems, generates a series of 
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machining instructions for the production of components. During the machining processes, specific shapes are machined on the 
workpiece by machine tools. These shapes, imbued with manufacturing semantics, are referred to as machining features.

However, due to the constraints of heterogeneous software systems, CAD models in the three main stages of digital production -
CAD, CAPP, and CAM - often only convey low-level information such as geometric surfaces and curves. Crucial high-level semantic in-

formation, including design features and machining features, is frequently lost. These features are typically represented as collections 
of specific geometric and topological elements (such as surfaces, curves, points, B-rep faces and edges), in Boundary Representation 
(B-rep). To enhance process planning and manufacturing efficiency, CAPP systems employ automatic Machining Feature Recognition 
(MFR) to reanalyze CAD models from a manufacturing perspective. This involves grouping geometric and topological elements to 
identify machining features, such as holes, slots, steps, and chamfers. Subsequently, based on specific parameters of these machining 
features, such as radius, depth, and axial dimensions, suitable manufacturing processes for CAM can be intelligently generated. This 
includes defining machining steps, selecting machining tools, and planning CNC paths. Therefore, machining feature recognition 
is considered a crucial step in manufacturing automation, effectively bridging the gap between design and manufacturing in the 
integration of CAD, CAPP, and CAM (Brousseau et al., 2008).

Over the past few decades, feature recognition has emerged as a dynamic research area within the CAD/CAM field. Scholars 
have proposed a variety of geometric reasoning-based feature recognition methods: Semantics-based approach (Vandenbrande and 
Requicha, 1993; Zhang et al., 2017), Rule-based approach (Zehtaban and Roller, 2016), Graphs-based approach (Joshi and Chang, 
1988; Huang and Yip-Hoi, 2002; Fu et al., 2003), Volume decomposition approach (Woo and Sakurai, 2002; Geng et al., 2016), 
and Hint-based approach (Vandenbrande and Requicha, 1993; Han et al., 1997). These traditional methods leverage geometric 
and topological information for the identification of machining features. In recent years, the advent of deep learning methods has 
introduced a novel approach to tackle this challenge. Depending on the representation of the three-dimensional shape, learning-based 
machining feature recognition methods can be classified into point clouds (Lei et al., 2022), voxels (Ning et al., 2023; Peddireddy et 
al., 2021; Lee et al., 2021), polygon meshes (Shi et al., 2020; Jia et al., 2023), multiple views (Shi et al., 2022), and B-rep (Cao et al., 
2020; Colligan et al., 2022; Wu et al., 2024). These data-driven methods showcase robust recognition and classification capabilities, 
possessing considerable potential for substantial advancement in the field of CAD model feature recognition.

Existing machining feature recognition methods have undergone extensive research and application, yet they still encounter chal-

lenges in several aspects. Firstly, algorithms tailored for specific predefined features lack generality, as the diverse nature of features. 
Secondly, the time cost of feature recognition is relatively high, particularly when handling multiple types of features in complex, in-

tersecting, or large structural components. Thirdly, learning-based methods often require the conversion of the original CAD models 
into representations such as point clouds, voxels, or images, leading to a decrease in the accuracy of geometric shape representation. 
Furthermore, neural networks trained on artificially synthesized datasets demonstrate significant performance degradation when 
applied to real-world CAD models. This is attributed to the inconsistency in the distribution of training and testing data.

To address aforementioned challenges, we propose a novel deep learning network named BrepMFR. This network is specifically 
designed to directly execute machining feature recognition on B-rep models within the CAD/CAM domain. The original B-rep model is 
converted into a graph representation for network-friendly input, where graph nodes and edges respectively correspond to B-rep faces 
and edges. Subsequently, we leverage a graph neural network based on the Transformer architecture and graph attention mechanism 
to encode both local geometric shape and global topological relationships, achieving high-level semantic extraction and prediction 
of machining feature categories. Furthermore, to enhance the performance of neural networks on real-world CAD models, we adopt 
a two-step training strategy within a novel transfer learning framework. This achieved cross-domains adaptation, thereby further 
strengthening the generalization capabilities of BrepMFR. For network training, we establish a large-scale synthetic CAD dataset, 
CADSynth, comprising 24 typical machining features. This dataset exhibits greater geometric diversity and is more representative 
of mechanical engineering than the existing synthetic datasets MFCAD (Cao et al., 2020) and MFCAD++ (Colligan et al., 2022). 
Testing results across multiple datasets demonstrate that BrepMFR achieves state-of-the-art machining feature recognition accuracy, 
showcasing excellent performance on CAD models of mechanical components from the real world. Codes and datasets related to this 
study could be found in https://github .com /zhangshuming0668 /BrepMFR.

2. Related work

2.1. Conventional feature recognition

Traditional feature recognition algorithms rely on the geometric and topological information of models. Henderson (1984), 
Donaldson and Corney (1993), Vosniakos and Davies (1993) and Chan and Case (1994) proposed a series of rule-based methods 
based on defined boundary patterns and expert systems. Although this approach is straightforward and easy to implement, the 
non-uniqueness and incompleteness of rule definitions make it less flexible and pose challenges in dealing with intersecting features.

The topological structure of B-rep models shares inherent similarity with graphs, allowing the issue of feature recognition to be 
viewed as a sub-graph recognition problem within the B-rep face-edge graph. Joshi and Chang (1988) was the first to utilize an 
attributed adjacency graph (AAG) for feature recognition. Building on this, Gao and Shah (1998) and Yuen and Venuvinod (1999)

attempted two aspects of improvement: completing extensive attribute information to enhance the expressiveness of graphs; and 
employing various matching strategies.

Vandenbrande and Requicha (1993) proposed the hint-based method to address the issue of recognizing intersecting features. This 
2

method extracts all feature hints from a B-rep model and infers possible true features through geometric reasoning. Subsequently, it 
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utilizes solid modeling operations to construct the complete features corresponding to the extracted feature hints. Further improve-

ments have been made by Huang and Yip-Hoi (2002) and Fu et al. (2003) in terms of reasoning methods, feature classification, and 
feature probability ordering.

Woo (1982) proposed the Alternating Sum of Volumes (ASV) Decomposition method, which represents the solid as the difference 
and union of convex bodies in a tree structure. Feature recognition can be achieved by examining leaf nodes or their combina-

tions. Subsequently, Tang and Woo (1991), Kim and Wilde (1992) and Dong and Vijayan (1997) addressed the convergence of the 
decomposition and expanded the applicability of the method.

2.2. Deep learning-based feature recognition

Prabhakar and Henderson (1992) first demonstrated the application of artificial neural networks in 3D solid models feature 
recognition. In recent years, more and more scholars have introduced deep learning methods into feature recognition research, 
proposing various deep neural network models for different 3D shape representations. Point clouds represent 3D geometric shapes as 
a set of points. MFPointNet (Lei et al., 2022) is a machining feature recognition method based on down sampling point cloud neural 
networks, enhancing recognition efficiency while reducing the complexity of the neural network. 3D voxels present a structured and 
regular form of data, naturally suitable for encoding with convolutional neural networks (CNNs). Zhang et al. (2018) introduced 
FeatureNet, a voxel-based 3D CNN for processing feature recognition, and established a dataset with 24 typical machining features. 
Ning et al. (2023) combined voxel-based 3D CNN with graph-based methods to achieve improved processing feature recognition. For 
3D shapes represented as polygon meshes, Takaishi et al. (2020) employed the k-means method and KNN algorithm to cluster mesh 
vertexes, achieving the recognition of geometric shape features. Shi et al. (2020) proposed a method based on heat kernel features. 
According to the heat kernel eigenvalues of mesh nodes, the surface mesh is divided into a finite number of regions, and an adjacency 
graph is generated. Subsequently, 2D CNN is employed to classify these graph embeddings for feature recognition.

B-rep is the most commonly used data format in the CAD field. Cao et al. (2020) first converted B-rep model into graph rep-

resentation, and then use graph neural networks (GNNs) to conduct representation learning. Subsequently, Colligan et al. (2022)

introduced a hierarchical structure graph convolutional model as an improvement. Jayaraman et al. (2021) presented the UV-Net 
model, utilizing CNNs to encode the surfaces and curves in B-rep models. They then employed graph convolutional networks (GCN) 
with information propagation to learn graph feature representations. To comprehensively capture the geometric and topological 
information in B-rep representation, Lambourne et al. (2021) introduced a novel graph convolution method, BRepNet, tailored to 
the B-rep data structure. This method performs convolution centered around coedges, enabling the learning of both global and local 
topological relationships in B-rep models. Lee et al. (2023) proposed BRepGAT to segment machining feature in B-rep models based 
on Graph Attention Networks (GAT). Wu et al. (2024) proposed a multi-task network, AAGNet, capable of simultaneously performing 
semantic segmentation, instance segmentation, and bottom face segmentation.

2.3. Domain adaptation

Traditional deep learning methods assume that training and testing data adhere to the independent and identically distribution. 
However, real-world environments are complex and dynamic, limiting the application of deep learning methods in practical scenarios. 
To address this issue, Transfer Learning has been proposed to handle differences in data domains, tasks, or distributions between the 
training and testing phases (Pan and Yang, 2009; Zhuang et al., 2020). Domain Adaptation, a branch of transfer learning (Wang and 
Deng, 2018), focuses on knowledge transfer between source and target domains with inconsistent data distributions, while the tasks 
in both domains remain the same.

Existing domain adaptation methods encompass those utilizing statistical metrics and those employing adversarial learning. Sta-

tistical methods minimize the distribution difference between source and target domains, enabling neural networks to generate 
features with similar distributions under the chosen statistical metric. Zhuang et al. (2015) proposed a feature encoding method 
capable of generating domain-shared features by minimizing the KL divergence. Long et al. (2017) introduced Joint Adaptation 
Networks, applying Maximum Mean Discrepancy (MMD) to achieve joint distribution matching. Lee et al. (2019) used Wasserstein 
distance to achieve distribution matching between domains from a geometric perspective. Inspired by Generative Adversarial Net-

works (GAN), adversarial learning-based domain adaptation methods employ adversarial training of feature extractors to extract 
domain-shared features. Ganin and Lempitsky (2015) proposed Domain Adversarial Neural Networks (DANN), implementing adver-

sarial training through a gradient reversal layer inserted into the neural network. Tzeng et al. (2017) proposed a multi-adversarial 
domain adaptation method, designing a separate domain discriminator for each category. Adversarial training of the feature extractor 
and multiple domain discriminators achieved class-level conditional probability distribution matching. Zhang et al. (2020) applied 
an attention mechanism for feature weighting considering varying transferability of different features, with both the classifier and 
domain discriminator taking the weighted features as input.

3. Methodology

3.1. B-rep model graph representation

Due to neural networks operate on numerical inputs, the first concern in learning-based feature recognition is how to transform 
3
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Fig. 1. (a) Boundary representation and (b) face adjacency graph for a 3D solid model.

3.1.1. Boundary representation

Boundary representation is a method employed for representing and editing solid models. Constructed from bottom to top, it 
utilizes topological entities such as Vertex, Edge, Face, Coedge, Loop, Shell, and Body, forming the topological data structure of a 3D 
solid model. This structure meticulously records the topological relationships of elements at various hierarchical levels, constituting 
the “skeleton” of the model.

To represent the geometric shape of solid models, B-rep relies on parameterized curves and surfaces. It forms a closed, single 
connected space by combining a set of consistently oriented trimming surfaces, creating the boundaries of geometric shapes. Faces 
in B-rep are bounded by sets of edges, which are portions of curves located on the surface. Therefore, our work focuses on the two 
most crucial B-rep elements, faces, and edges, transforming the B-rep model into the form of a face adjacency graph as input to 
neural networks. As shown in Fig. 1, a CAD model contains a set of B-rep faces 𝐹 = {𝑓1, 𝑓2, … , 𝑓|𝐹 |} and a set of B-rep edges 𝐸 =
{𝑒1, 𝑒2, … , 𝑒|𝐸|}. The topological relationships between B-rep faces and edges can be represented in the form of a graph 𝐺 = (𝐹 , 𝐸), 
where graph nodes F represent B-rep faces, and graph edges E represent B-rep edges.

3.1.2. Network-friendly representation of geometric

B-rep models typically employ parametric or elementary analytic curves/surfaces to represent geometric shapes. Parametric 
curves/surfaces (such as Bézier surfaces, NURBS surfaces, B-spline curves, NURBS curves) are defined by varying numbers of control 
points and knot vectors. Analytic curves/surfaces (such as spheres, cylinders, tori, straight lines, arcs) are defined by mathematical 
expressions and parameters. To ensure compatibility and generality, we adopt a unified representation for these diverse curve and 
surface geometric shapes, following UV-Net (Jayaraman et al., 2021), as illustrated in Fig. 2. Initially, we transform the base surface 
of B-rep faces into NURBS surfaces. Subsequently, we evenly sample points on their two-dimensional parameter domains along both 
u and v directions. Each sample point is represented by a 7D vector [𝑋, 𝑌 , 𝑍, 𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 𝑇 ], recording three-dimensional coordinates 
(𝑋, 𝑌 , 𝑍), surface normals (𝑁𝑥, 𝑁𝑦, 𝑁𝑧), and the relationship between points and trimming surfaces (𝑇 ). This process results in a 
discrete representation 𝑓geom ∈ ℝ𝑛×𝑛×7, where 𝑛 represents the number of discrete points in the u or v direction. In our work, 𝑛 is 
set to 5. Similarly, we evenly sample points on the parameter domain of curves, with each sample point represented by a 6D vector 
[𝑋, 𝑌 , 𝑍, 𝑇𝑥, 𝑇𝑦, 𝑇𝑧] recording three-dimensional coordinates (𝑋, 𝑌 , 𝑍) and curve tangents (𝑇𝑥, 𝑇𝑦, 𝑇𝑧). This approach yields a discrete 
representation of the curve 𝑒geom ∈ℝ𝑛×6.

Furthermore, the description of B-rep faces and edges includes other fundamental attributes. For B-rep faces, these attributes 
are surface type (𝑓type), area (𝑓area), the number of boundary loops (𝑓loop) and the number of adjacent faces (𝑓adj). As for edges, the 
fundamental attributes encompass curve type (𝑒type), length (𝑒len), convexity (𝑒conv), and dihedral angle (𝑒ang). The convexity of edges 
is determined through a connectivity test adapted and modified from (Joshi and Chang, 1988; Liu et al., 1996). This test involves 
assessing whether the faces sharing the edge form a concave or convex angle, or tangential continuity (G1 continuity).

3.1.3. Network-friendly representation of proximity

In addition to the local geometric shapes of B-rep faces and edges mentioned in the previous section, the global topological 
relationships between these geometric elements are crucial for the representation learning of B-rep models. We express the proximity 
between geometric elements in the following three aspects:

Extended adjacency relations. Traditional graph-based methods (Joshi and Chang, 1988) use an adjacency matrix to represent 
the adjacency relationship between any two B-rep faces. If two faces are directly adjacent, the corresponding element value in the 
adjacency matrix is 1; otherwise, it is 0. However, this approach has limitations as it cannot represent the proximity between faces 
that are not directly adjacent. Therefore, we employ the Floyd-Warshall algorithm (Roy et al., 1959; Warshall, 1962) to compute the 
shortest paths between any pair of B-rep faces on the face adjacency graph presented in Sec. 3.1.1, and take the number of edges on 
this path as the shortest distance. For instance, the shortest distance between directly adjacent faces 𝐹1 and 𝐹7 in Fig. 1 is 1; while 
the shortest distance between non-adjacent faces 𝐹1 and 𝐹3 is 2. Consequently, we use the shortest distances between face pairs as 
the element values in the adjacency matrix, obtaining an extended adjacency matrix 𝐷g ∈ℤ|𝐹 |×|𝐹 |.

Spatial positional relations. The relative spatial positions of B-rep faces in three-dimensional space also reflect important 
4
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Fig. 2. Geometric and attributes of B-rep faces and edges.

Fig. 3. (a) 3D spatial position of face F1 and F2 in a B-rep model; (b) (c) frequency distribution histograms of normalized D2 and A3 distance between F1 and F2.

to express these relations. Specifically, for two pairwise faces, 512 point pairs are randomly selected, and the ratio of the Euclidean 
distance of each point pair to the diagonal length of the whole solid model bounding box is calculated. Then we take the marginal 
distributions of the above ratio as the D2 distance between two faces, approximated by dividing the [0,1] interval into 64 sub-

intervals and calculating the frequency of each distance ratio among them, 𝑑D2(𝑓𝑖, 𝑓𝑗 ) ∈ ℤ64. Likewise, we obtain the approximate 
marginal distribution 𝑑A3(𝑓𝑖, 𝑓𝑗 ) ∈ 64 for the A3 distance. Fig. 3 shows the three-dimensional spatial position of face 𝐹1 and 𝐹2 in 
a B-rep model, along with the frequency distribution histograms corresponding to D2 and A3 distances. By calculating D2 and A3 
distances between every pair of faces in the B-rep model, we can obtain the spatial positional relations matrices 𝐷d2 ∈ ℤ|𝐹 |×|𝐹 |×64
and 𝐷a3 ∈ℤ|𝐹 |×|𝐹 |×64.

Face-edge relations. Faces in the B-rep model are represented as trimming surfaces, with loops composed of multiple edges 
defining the boundary. Moreover, any two adjacent faces are connected by common edges, namely, coedges. Therefore, edges play 
a pivotal role in the topological construction. In the B-rep graph described in Sec. 3.1.1, for any two ordered faces pairs (𝑓𝑖, 𝑓𝑗 ), we 
can find the shortest path between them and record the edges chain on this shortest path {𝑒𝑖𝑗,1, 𝑒𝑖𝑗,2, … , 𝑒𝑖𝑗,𝑁}.

3.2. Network architecture

Existing methods for recognizing machining features in B-rep models based on graph neural networks predominantly rely on 
Message Passing Neural Networks (MPNNs). While effective in specific tasks, these approaches face inherent limitations such as 
restricted receptive fields and network depth. Inspired by recent advancements in graph transformers (Ying et al., 2021; Zhao et al., 
2021), we incorporate the transformer framework (Vaswani et al., 2017) into the representation learning of B-rep models, aiming 
to enhance the neural network’s feature extraction capabilities for complex CAD models. The architecture of our proposed BrepMFR 
5

deep learning network is illustrated in Fig. 4.
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Fig. 4. The network architecture of BrepMFR.

Table 1

The detail of encoding layers for face attributes and edge attributes.

Face Attributes Edge Attributes

Inputs Encoding layers Outputs Inputs Encoding layers Outputs

𝑓type,i ∈ℤ1 Embedding(8, 32) ℎtype,i ∈ℝ32 𝑒type,i ∈ℤ1 Embedding(8, 32) 𝑙type,i ∈ℝ32

𝑓area,i ∈ℝ1 Linear(1, 32) ℎarea,i ∈ℝ32 𝑒len,i ∈ℝ1 Linear(1, 32) 𝑙len,i ∈ℝ32

𝑓loop,i ∈ℤ1 Embedding(256, 32) ℎloop,i ∈ℝ32 𝑒conv,i ∈ℤ1 Embedding(3, 32) 𝑙conv,i ∈ℝ32

𝑓adj,i ∈ℤ1 Embedding(256, 32) ℎadj,i ∈ℝ32 𝑒ang,i ∈ℝ1 Linear (1, 32) 𝑙ang,i ∈ℝ32

3.2.1. Input feature encoder

The network-friendly representation of geometry and proximity introduced in Sec. 3.1.1 serves as the input to our neural network. 
Initially, following UV-Net, a 2D CNN with seven channels (three for XYZ coordinates, three for normals, and one for trimming 
mask) processes the discrete representation of surfaces, 𝑓gome,i ∈ ℝ𝑛×𝑛×7, to yield the feature representation, ℎgeom,i ∈ ℝ128. The 
configuration of 2D CNN consists of sequential layers: Conv(7, 64, 3)→Conv(64, 128, 3)→Conv(128, 256, 3)→Pool(1, 1)→FC(256, 
128), where Conv(𝑖, 𝑜, 𝑘) is a 2D convolutional layer with 𝑖 input channels, 𝑜 output channels, and kernel size 𝑘, Pool(𝑛, 𝑛) 
is an adaptive average pooling layer that outputs an 𝑛 × 𝑛 feature map, and FC(𝑖, 𝑜) is a fully connected layer that maps an 𝑖-
dimensional vector to an 𝑜-dimensional vector. Similarly, a 1D CNN with six channels (three for XYZ coordinates and three for 
tangents) processes the discrete representation of curves, 𝑒geom,i ∈ ℝ𝑛×6, to generate the edge geometry’s feature representation, 
𝑙geom,i ∈ℝ128. The 1D CNN employs convolutional and pooling layers: Conv-1d(6, 64, 3)→Conv-1d(64, 128, 3) →Conv-1d(128, 256, 
3)→Pool(1, 1)→FC(256, 128).

Next, we encode the fundamental attributes of faces and edges through learnable linear layers or embedding layers. These 
attributes include 1D vectors: 𝑓type,i ∈ℤ1 for surface types (plane, cylinder, cone, sphere, torus, Bézier, B-Spline, Nurbs), 𝑒type,i ∈ℤ1

for curve types (line, circle, ellipse, parabola, hyperbola, Bézier, B-Spline, Nurbs), 𝑒conv,i ∈ ℤ1 for edge convexity (concave, convex, 
smooth), and 𝑓loop,i ∈ ℤ1, 𝑓adj,i ∈ ℤ1 for the number of loops and adjacent faces for faces, with values ranging from 1 to 256. 
These vectors are encoded into 32D feature vectors via learnable embedding layers. For the remaining attributes, 𝑓area,i, 𝑒len,i, 𝑒ang,i, 
we apply linear layers without biases for mapping to 32D feature vectors. The configurations of these layers within the neural 
network are detailed in Table 1. Finally, we concatenate all feature vectors of each geometric element to form a 256D feature vector, 
representing a B-rep face or edge:

ℎ𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎgeom,i, ℎtype,i, ℎarea,i, ℎloop,i, ℎadj,i) ∈ℝ256 (1)

𝑙𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑙geom,i, 𝑙type,i, 𝑙len,i, 𝑙conv,i, 𝑙ang,i) ∈ℝ256 (2)

For the extended adjacency matrix 𝐷g ∈ℤ|𝐹 |×|𝐹 |, each element 𝑑g(i,j) denotes the minimum distance between B-rep faces 𝑓1 and 
𝑓2 in the adjacency graph, constrained to a value range of 1 to 256. We obtain a feature representation for this minimum distance 
6

between B-rep faces using a learnable embedding layer (256,64):



Computer Aided Geometric Design 111 (2024) 102318S. Zhang, Z. Guan, H. Jiang et al.

𝐴1 ∈ℝ|𝐹 |×|𝐹 |×64 (3)

For the matrices 𝐷d2 ∈ ℤ|𝐹 |×|𝐹 |×64 and 𝐷a3 ∈ ℤ|𝐹 |×|𝐹 |×64, which represent the D2 and A3 distances between faces, we combine 
them together to obtain the feature representation of spatial position relationships:

𝐴2 ∈ℝ|𝐹 |×|𝐹 |×64, 𝐴2(𝑖,𝑗) = 𝑑D2(𝑓𝑖, 𝑓𝑗 ) + 𝑑A3(𝑓𝑖, 𝑓𝑗 ) (4)

For the shortest path of edge chains {𝑒𝑖𝑗,1, 𝑒𝑖𝑗,2, … , 𝑒𝑖𝑗,𝑁} between any ordered pair of faces (𝑓𝑖, 𝑓𝑗 ), we summarize the feature 
encoding of these B-rep edges:

𝐴3 ∈ |𝐹 |×|𝐹 |×64, 𝐴3(𝑖,𝑗) = 1
𝑁

𝑁∑
𝑛=1

(𝑙𝑖𝑗,𝑛 ⊙𝑤𝑖) (5)

where 𝑤𝑖 ∈ℝ64 is a learnable weight coefficient that depends on the positional order. For example, it can be learned to decrease as 
the position advances along the path. Consequently, in the path from B-Rep face 𝐹𝑖 to 𝐹𝑗 , the edges closer to the starting face 𝐹𝑖 are 
considered more important.

3.2.2. Graph transformer

We developed a B-rep graph transformer to encode the B-rep models’ graph representation by adopting the standard Transformer 
architecture and its adaptation for graphs, known as Graphormer (Ying et al., 2021). The graph transformer consists of six layers 
of Transformer blocks. Each block includes sixteen attention heads and pre-layer normalization. Firstly, the feature representations 
𝐻 (0) = [ℎT1 , ℎ

T
2 ,… , ℎ

T|𝐹 |]T ∈ ℝ|𝐹 |×256 of all graph nodes are sequentially fed into the network. From the hidden state 𝐻 (𝑖−1) of layer 
𝑖 − 1, the hidden state 𝐻 (𝑖) of layer 𝑖 can be obtained through a multi-head self-attention module and a fully connected feedforward 
network (FFN), with subsequent layer normalization.

𝐻 ′ (𝑖) = MultiHead(norm(H(i−1))) + H(i−1)

𝐻 (𝑖) = FFN(norm(H′ (i))) + H′ (i)
(6)

Each layer consists of 𝑀 self-attention modules:

MultiHead(H) = Concat(head1,…,headM)WO

head𝑚 = self − att
(
𝐻,𝐴1,𝐴2,𝐴3

)
= sof tmax

(
𝑄𝑚𝐾

T
𝑚√
𝑑𝑘

+𝐴1
(
𝑊 𝑚
𝑎1
)T +𝐴2(𝑊 𝑚𝑎2)T +𝐴3

(
𝑊 𝑚
𝑎3
)T)
𝑉𝑚,

∀𝑚 ∈ {1,… ,𝑀}, 𝑄𝑚 =𝐻𝑊 𝑚𝑞 , 𝐾𝑚 =𝐻𝑊
𝑚
𝑘
, 𝑉𝑚 =𝐻𝑊 𝑚𝑣

(7)

Here, 𝑊 𝑂 ∈ℝ𝑀𝑑𝑣×256 is the output projection matrix, 𝑊 𝑚
𝑞

∈ℝ256×𝑑𝑘 , 𝑊 𝑚
𝑘

∈ℝ256×𝑑𝑘 and 𝑊 𝑚
𝑣

∈ℝ256×𝑑𝑣 are projection matrices, 
while 𝑊 𝑚

𝑎1 ∈ℝ64, 𝑊 𝑚
𝑎2 ∈ℝ64 and 𝑊 𝑚

𝑎3 ∈ℝ64 are weight embedding matrices.

To obtain the graph feature of the entire B-Rep graph, our network utilizes the same graph pooling method as Graphformer. A 
virtual node, denoted as Vnode, is introduced, connecting to all nodes, thereby extending the sequence lengths of input and output 
to (|𝐹 | +1). The output of the final layer encompasses the feature representations of all graph nodes 𝑍𝑛 = [𝑧T1 , 𝑧

T
2 , ⋯ 𝑧T|𝐹 |] ∈ℝ|𝐹 |×256, 

and the feature representation 𝑍𝑔 ∈ℝ256 corresponding to the entire B-Rep model.

3.2.3. Inter-graph attention

The feature representations 𝑍𝑛 of B-Rep faces and the feature representation 𝑍𝑔 of the entire B-Rep model capture local and 
global information respectively. Simply aggregating 𝑍𝑛 and 𝑍𝑔 as the input for machining feature label classifier may not be the 
optimal strategy, as the potentially unequal importance of 𝑍𝑛 and 𝑍𝑔 . Therefore, we implement an inter-graph attention mechanism 
to effectively integrate 𝑍𝑔 into 𝑍𝑛, resulting in a refined feature representation for each B-Rep face. Specifically, we compute two 
attention weights, 𝑎𝑡𝑡n and 𝑎𝑡𝑡g, through a linear transformation layer serving as the attention function 𝑓𝑎𝑡𝑡.[

𝑎𝑡𝑡n, 𝑎𝑡𝑡g
]
= 𝑓𝑎𝑡𝑡(

[
𝑍n,𝑍g

]
) (8)

Next, we normalize the attention weights using a softmax layer:

𝑎𝑡𝑡n =
exp(𝑎𝑡𝑡n)

exp(𝑎𝑡𝑡n + 𝑎𝑡𝑡g)

𝑎𝑡𝑡g =
exp(𝑎𝑡𝑡g)

exp(𝑎𝑡𝑡n + 𝑎𝑡𝑡g)

(9)

Finally, based on the attention weights, we aggregate the local feature 𝑍𝑛 and the global feature 𝑍𝑔 to obtain the final represen-
7

tation of B-rep faces:
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Fig. 5. The framework of adversarial domain adaptation.

𝑍 = 𝑎𝑡𝑡n𝑍𝑛 + 𝑎𝑡𝑡g𝑍𝑔 (10)

3.2.4. Node classifier

Machining feature recognition of B-rep models can be considered as a multi-class node classification problem. We employ a multi-

layer perceptron (MLP) as the graph node classifier 𝑓𝑐(𝑧; 𝜃𝑐 ) to predict the specific machining feature category for each B-rep face. 
The node classifier consists of three fully connected layers: FC(256, 1024)→FC(1024, 256)→FC(256, 𝐾), where 𝐾 is the number of 
feature categories in the dataset. Both fully connected layers do not have biases and include batch normalization and the LeakyReLU 
activation function. The input to the node classifier is denoted as 𝑍 = [𝑧T1 , 𝑧

T
2 , ⋯ 𝑧T|𝐹 |], and the output is 𝑃 = [𝑝T1 , 𝑝

T
2 , ⋯ 𝑝T|𝐹 |], where 

𝑝𝑖 ∈ ℝ𝐾 represents the likelihood of B-rep face 𝑓𝑖 belonging to each machining feature category. Finally, the argmax function is 
applied to calculate the predicted machining feature category 𝑌 = [𝑦̂1, 𝑦̂2, ⋯ 𝑦̂|𝐹 |] for B-rep faces.

The loss function of the graph node classifier is the cross-entropy between the predicted values and the ground truth labels:

𝑙𝑎𝑏𝑒𝑙 = − 1|𝐹 |
|𝐹 |∑
𝑖=1
𝑦𝑖 log(𝑦̂𝑖) (11)

3.3. Adversarial domain adaptation

Domain adaptation theory suggests that reducing the feature representation distribution gap between source and target domains 
can enhance the transferability of knowledge learned by neural networks from the source to the target domain (Ben-David et al., 
2006, 2010). In our work, we define the B-rep graph of labeled CAD models as the source domain graph, 𝑠 = (𝐹 𝑠, 𝐸𝑠), which 
includes a set of B-rep faces 𝐹 𝑠, an edge set 𝐸𝑠, and the corresponding label matrix 𝑌 𝑠 ∈ℝ𝑁𝑠×𝐾 with 𝑁𝑠 representing the number 
of B-rep faces in the graph 𝑠, and 𝐾 denoting the number of machining feature categories. Likewise, the B-rep graph of unlabeled 
CAD models is regarded as the target domain graph, 𝑡 = (𝐹 𝑡, 𝐸𝑡). Both the source (𝑠) and target (𝑡) domain graph are input to 
the B-rep encoder 𝑓𝑔(; 𝜃g), which is composed of the input feature encoder, graph transformer, and inter-graph attention module as 
described in Sec. 3.2. This process results in the feature representations of graph nodes 𝑍𝑠 ∈ℝ𝑁𝑠×𝑑𝐸 and 𝑍𝑡 ∈ 𝑁𝑡×𝑑𝐸 .

We employ an adversarial training strategy, as illustrated in Fig. 5, to perform domain adaptation and achieve alignment of 𝑍𝑠
and 𝑍𝑡 in the feature space. This involves training a Domain Discriminator 𝑓𝑑 (𝑧; 𝜃𝑑 ) to distinguish whether a B-rep face feature 𝑧
comes from the source or target domain. It implies that the B-rep encoder 𝑓𝑔 has successfully learned cross-domain invariant feature 
representations when 𝑓𝑑 (𝑧; 𝜃𝑑 ) is unable to differentiate between the feature distributions of 𝑍𝑠 and 𝑍𝑡. Such common features 
across domains can enhance the neural network’s performance in node classification task within the target domain. The adversarial 
domain discrimination loss is defined as follows:

𝑎𝑑𝑣 =
𝑁𝑠∑
𝑖=0

(
log[𝑓𝑑 (𝑧𝑠𝑖 )]

)
+
𝑁𝑡∑
𝑖=0

(
log[1 − 𝑓𝑑 (𝑧𝑡𝑖)]

)
(12)

where 𝑓𝑑 (𝑧𝑠𝑖 ) ∈ {0, 1} and 𝑓𝑑 (𝑧𝑡𝑖) ∈ {0, 1} are the domain labels predicted by the domain discriminator, indicating whether the 
example comes from the source domain or the target domain.

As the adversarial training process is a min-max game, the objective of domain discriminator 𝑓𝑑 is to minimize the domain 
discrimination loss 𝑎𝑑𝑣, while the objective of B-rep encoder 𝑓𝑔 is to maximize the same loss 𝑎𝑑𝑣. To facilitate this min-max game, 
we introduce a Gradient Reversal Layer (GRL) acting on 𝑍𝑠 and 𝑍𝑡. The gradient reversal layer is defined as (𝑧) = 𝑧, with the 
reversed gradient being 𝜕(𝑧)

𝜕𝑧
= −I, where I represents the identity matrix. Thus, the adversarial domain discrimination loss can be 

rewritten as:

𝑁𝑠∑(
𝑠

) 𝑁𝑡∑(
𝑡

)

8

𝑎𝑑𝑣 =
𝑖=0

log[𝑓𝑑 ((𝑧𝑖 ))] +
𝑖=0

log[1 − 𝑓𝑑 ((𝑧𝑖))] (13)
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Fig. 6. The pipeline of the two-step training strategy under a transfer learning framework.

The overall optimization objective is to:

𝑚𝑖𝑛
𝜃𝑔 ,𝜃𝑑

𝑎𝑑𝑣 (14)

According to the prediction results of the Node Classifier 𝑓𝑐 (𝑧; 𝜃𝑐), the Cross-entropy loss 𝑙𝑎𝑏𝑒𝑙 for source domain data can be 
computed according to Equation (11). Since the target domain data lacks real labels, we employ entropy loss:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − 1
𝑁𝑡

𝑁𝑡∑
𝑖=1
𝑦̂𝑖 log(𝑦̂𝑖) (15)

where 𝑦̂𝑖 is the predicted probability distribution of the 𝑖-th graph node in the target domain graph.

3.4. Overall algorithm

We implement and utilize the neural network BrepMFR following the pipeline illustrated in Fig. 6. The training process for 
BrepMFR is outlined in Algorithm 1, adopting a two-step training strategy under a transfer learning framework. In the supervised 
learning stage, a large amount of labeled synthetic CAD model data is used to train the B-rep Encoder 𝑓𝑔 (; 𝜃g) and Node Classifier 
𝑓𝑐(𝑧; 𝜃𝑐 ). The optimization goal is defined as follows:

𝑚𝑖𝑛
𝜃𝑔 ,𝜃𝑐

𝑙𝑎𝑏𝑒𝑙 (16)

In the domain adaptation stage, we incorporate the domain discriminator 𝑓𝑑 (𝑧; 𝜃𝑑 ) into the pre-trained B-rep Encoder 𝑓𝑔(; 𝜃𝑔)
and Node Classifier 𝑓𝑐 (𝑧; 𝜃𝑐 ). The network is jointly trained using labeled synthetic CAD models as the source data and unlabeled 
real-world CAD models as the target data. The optimization objective is as follows:

𝑚𝑖𝑛
𝜃𝑔 ,𝜃𝑐 ,𝜃𝑑

𝑙𝑎𝑏𝑒𝑙 + 𝛼𝑒𝑛𝑡𝑟𝑜𝑝𝑦 + 𝛽𝑎𝑑𝑣 (17)

where 𝛼 and 𝛽 are trade-off parameters used to balance the two loss functions. In our work, 𝛼 = 0.1 and 𝛽 = 0.3.

After two stages of training, in the inference stage, the parameters of the entire network are frozen in preparation for deployment. 
By inputting CAD models from the test set into the network, we obtain the predicted probability distribution across machining feature 
categories. This allows for identifying the machining feature category to which each face in the B-rep model belongs.

4. Synthetic dataset CADSynth

For deep neural network training, a large-scale datasets with appropriate labels is essential. To our knowledge, existing CAD 
model datasets such as DMU-Net (Dekhtiar et al., 2018), ABC (Koch et al., 2019), FabWave-3D (Angrish et al., 2019), and Fusion 
9

360 Gallery (Willis et al., 2021) offer extensive collections of manually designed CAD models. However, these datasets lack labels 
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Algorithm 1: Training Algorithm of BrepMFR.

Input: Labeled samples batches 𝐵𝑠 = {
𝑠
𝑖
= (𝑉 𝑠

𝑖
,𝐸𝑠
𝑖
), 𝑌 𝑠
𝑖

}𝑛𝑠
𝑖=1 from source domain, unlabeled samples batches 𝐵𝑡 = {

𝑡
𝑖
= (𝑉 𝑡

𝑖
,𝐸𝑡
𝑖
)
}𝑛𝑡
𝑖=1 from target domain.

1 Initialize parameters 𝜃𝑔 for B-rep Encoder 𝑓𝑔 , 𝜃𝑐 for node classifier 𝑓𝑐 , 𝜃𝑑 for domain discriminator 𝑓𝑑 ;
2 Stage-1

3 Pretrain 𝑓𝑔 and 𝑓𝑐 based on {𝑠
𝑖
= (𝑉 𝑠

𝑖
,𝐸𝑠
𝑖
), 𝑌 𝑠
𝑖

}𝑛𝑠
𝑖=1 , update 𝜃𝑔 and 𝜃𝑐 ;

4 Stage-2

5 while not converge do

6 for 𝑖 = 1 to max iter do

7 𝑍𝑠
𝑖
← 𝑓𝑔 (𝑠𝑖 , 𝜃𝑔 ), 𝑍𝑡𝑖 ← 𝑓𝑔 (𝑡𝑖 , 𝜃𝑔 );

8 𝑌 𝑠
𝑖
← 𝑓𝑐 (𝑍𝑠𝑖 ), 𝑌 𝑡𝑖 ← 𝑓𝑐 (𝑍𝑡𝑖 );

9 𝐷̂𝑠
𝑖
← 𝑓𝑑 (𝑍𝑠𝑖 ), 𝐷̂𝑡𝑖 ← 𝑓𝑑 (𝑍𝑡𝑖 );

10 𝜃←
{
𝜃𝑔 , 𝜃𝑐 , 𝜃𝑑

}
;

11 𝜃← 𝜃 − 𝑙𝑟 ⋅∇ {𝑙𝑎𝑏𝑒𝑙(𝑌 𝑠𝑖 , 𝑌 𝑠𝑖 ) + 𝛼 ⋅𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑌 𝑡𝑖 ) + 𝛽 ⋅𝑎𝑑𝑣(𝐷̂𝑠𝑖 , 𝐷̂𝑡𝑖)};

12 end

13 end

Fig. 7. Machining feature classes.

for machining feature recognition. Zhang et al. (2018) initially introduced the FeatureNet dataset, which incorporates 16 typical 
machining features. Subsequently, MFCAD (Cao et al., 2020) and MFCAD++ (Colligan et al., 2022) were established, which cover 
various machining features and cases with intersecting features. Nevertheless, it is noteworthy that the features in these datasets are 
attached to a single cubic entity, which does not accurately reflect the complexity of real-world mechanical parts. Building on this 
foundation, we establish a large-scale CAD dataset, CADSynth.

4.1. Machining feature type and label

The CADSynth dataset encompasses 24 machining features that are the same as those in MFCAD and MFAD++. The geometric 
shapes and indexes for each machining feature are illustrated in Fig. 7.

4.2. Dataset generation

CADSynth employs a random synthesis algorithm to combine various primitive elements (cuboid, prism, cylinder, cone, and 
sphere) to form the primary shape of a CAD model. This process is viewed as a state update, with the current geometric shape 
denoted by a global variable 𝐺, initially 𝐺 = ∅. The first primitive is placed at the origin of the global coordinate system, with its size 
and orientation position randomly selected. Subsequently, a surface is selected from the current geometric shape based on certain 
rules (surface area as the selection weight) to serve as the reference plane. The placement and dimensions of subsequent primitives 
are guided by general spatial geometric constraints and rules, including coplanarity, concentricity, tangency, coplane, coedge and 
equal height. This approach imparts certain engineering characteristics and standardization to the final generated CAD model.

Regarding the incorporation of machining features into the primary shape, we adopted the methodology outlined by MFCAD++. 
10

This involves a three-step process: sketch plane selection, sketch outline definition, and extrusion depth determination. Following 
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Fig. 8. General spatial geometric constraints.

these steps, a variety of machining features are methodically integrated into the CAD model’s primary shape. To preserve the 
attributes of existing machining features, a specific order for adding features is essential. For example, a “through” feature should 
not cut a “blind” feature into a “non-blind” feature. We categorize the 24 machining features into the following five groups, adding 
features in the order: step→slot→hole→blind-slot→blind-hole→fillet.

In the end, we synthesized a dataset containing over 100,000 CAD designs. Fig. 8 displays samples of CAD models from our 
dataset.

5. Experimental results and discussion

In this section, we will experimentally evaluate the performance of our proposed BrepMFR in the following aspects:

1. Comparison with Existing Methods: How does the BrepMFR perform in comparison to existing methods?

2. Cross-Domain Performance and Domain Adaptation Impact: How does BrepMFR perform across different datasets, and how 
much performance improvement can domain adaptation bring?

3. Application to Real CAD Models: What is the performance of BrepMFR when applied to real-world CAD models?

5.1. Implementation detail

5.1.1. Network setting

The BrepMFR network is implemented in PyTorch and trained for max 200 epochs with a batch size of 64 on a NVIDIA RTX 3090 
GPU. The AdamW optimizer with parameters 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜀 = 10−8 and weight decay coefficient=0.01 is employed during 
training. The initial learning rate is set to 0.001, and a warm-up stage of 50,00 steps is used. We incorporate the ReduceLROnPlateau 
scheduler to vary the learning rate when the loss function value no longer decreases.

5.1.2. Dataset

We conducted training and testing of BrepMFR on three different datasets: MFCAD, MFCAD++, and our CADSynth dataset. The 
CAD models in these datasets are represented in B-rep format, with machining feature labels for each face.

The MFCAD dataset consists of 15,488 CAD models, covering 16 machining feature types formed by planes. The dataset is split 
into training, validation, and testing sets by a 60/20/20% ratio.

MFCAD++ is an enhanced version of MFCAD, with an increased number of machining feature types to 24 and the introduction 
of more complex intersecting features. This dataset contains 59,655 CAD models split into training, validation, and testing sets by a 
70/15/15% ratio.

The CADSynth dataset, generated using the automatic synthesis algorithm described in Sec. 4, includes 100,000 CAD designs 
across 24 machining feature categories. The dataset is randomly divided into training (80%), validation (10%), and test (10%) sets. 
To enhance training efficiency, the data is normalized, and the bounding box range of each CAD model along the x, y, and z axes is 
11

scaled to [-1,1].
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Table 2

Machining feature recognition accuracy.

Dataset Network Accuracy Per-class accuracy mIoU

MFCAD BrepMFR 99.99 99.99 99.99

UV-Net 99.99 99.98 99.97

BRepNet 99.99 99.98 99.98

AGGNet 99.99 99.98 99.99

Hierarchical CADNet 99.98 99.94 99.89

MFCAD++ BrepMFR 99.76 99.64 99.30

UV-Net 99.49 99.10 98.35

BRepNet 99.43 98.99 98.31

AGGNet 99.57 99.21 99.08

Hierarchical CADNet 98.78 97.55 95.56

CADSynth BrepMFR 99.96 99.92 99.83

UV-Net 99.74 99.54 99.02

BRepNet 99.67 99.27 98.77

AGGNet 99.80 99.67 99.25

Hierarchical CADNet 99.53 98.72 97.96

5.1.3. Evaluation metrics

To evaluate the performance of the BrepMFR network, we refer to related work and adopt the following three evaluation metrics. 
The primary metric evaluates the accuracy of machining feature classification on individual faces in B-rep models. This accuracy is 
calculated as the proportion of correctly classified B-rep faces out of the total B-rep faces within the CAD models:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = |𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐹𝑎𝑐𝑒𝑠||𝑇 𝑜𝑡𝑎𝑙 𝐹𝑎𝑐𝑒𝑠| (18)

The second metric is per-class accuracy, which represents the average accuracy across all machining feature classes:

𝑃𝑒𝑟− 𝑐𝑙𝑎𝑠𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1
𝐾

𝐾∑
𝑖=1

|𝑦 ∶ 𝑦 = 𝑖 ∩ 𝑦̂ ∶ 𝑦̂ = 𝑖||𝑦 ∶ 𝑦 = 𝑖| (19)

The third metric is the mean Intersection Over Union (mIoU), commonly used to evaluate the similarity and diversity between 
two sample sets. In our machining feature recognition task, mIoU is determined as the average proportion of correctly classified 
B-rep faces over the union of B-rep faces that have either the actual or predicted labels within the same category:

𝑚𝐼𝑜𝑈 = 1
𝐾

𝐾∑
𝑖=1

|𝑦 ∶ 𝑦 = 𝑖 ∩ 𝑦̂ ∶ 𝑦̂ = 𝑖||𝑦 ∶ 𝑦 = 𝑖 ∪ 𝑦̂ ∶ 𝑦̂ = 𝑖| (20)

5.2. Comparative results

We evaluated the BrepMFR network on MFCAD, MFCAD++, and CADSynth datasets, comparing its performance with existing 
deep learning methods for machining feature recognition, including UV-Net (Jayaraman et al., 2021), BRepNet (Lambourne et al., 
2021), AAGNet (Wu et al., 2024) and Hierarchical CADNet (Colligan et al., 2022). The experimental results are presented in Table 2, 
showcasing that our proposed BrepMFR network demonstrates superior or comparable performance across all three datasets. On the 
MFCAD dataset, BrepMFR achieves near-perfect performance with Accuracy, Per-class accuracy, and mIoU all reaching 99.99%. On 
the MFCAD++ and CADSynth datasets, where the geometric complexity of CAD models increases, the performance slightly decreases 
but maintains above 99% across the evaluation metrics. Fig. 9 presents the accuracy per feature class, where the x-axis denotes the 
predicted feature type index, the y-axis denotes the ground truth feature type index. The diagonal of the confusion matrix represents 
accurate predictions, and it can be seen that more than 99% accuracy is achieved for most categories. Fig. 10 displays randomly 
selected examples from the test set, highlighting the predicted machining features through different colors of faces.

5.3. Domain adaptation results

To quantitatively validate the effectiveness of domain adaptation methods in enhancing the cross-datasets generalization capabil-

ities for machining feature recognition tasks, we trained the BrepMFR network on a source dataset and tested it on different target 
domain datasets. Specifically, we conducted machining feature recognition across three domains through four transfer learning tasks, 
including MFCAD→CADSynth, MFCAD→MFCAD++, MFCAD++→CADSynth, and CADSynth→MFCAD++, with results presented in 
Table 3. The results reveal a notable performance decline when the pre-trained network is directly applied to the target domain 
datasets without any domain adaptation. Notably, networks trained on the MFCAD dataset exhibited lower cross-datasets feature 
recognition accuracy, achieving only 22.91% for CADSynth and 54.80% for MFCAD++. Similarly, networks trained on the MF-
12

CAD++ dataset and directly applied to the CADSynth dataset saw a decrease in feature recognition accuracy to 61.82%. However, 
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Fig. 9. Confusion matrix for MFCAD, MFCAD++ and CADSynth datasets.

Fig. 10. Examples for machining feature recognition results on test set.

Table 3

Machining feature recognition accuracy of BrepMFR on target domains. The first row corresponds to the accu-

racy when trained on the source domain dataset, and the last row corresponds to the accuracy when trained on 
the target domain dataset with known class labels. The middle row indicates the accuracy following domain 
adaptation, with the extent of the gap covered between the lower and upper bounds presented in brackets.

Method
Source MFCAD MFCAD MFCAD++ CADSynth

Target CADSynth MFCAD++ CADSynth MFCAD++

Source Only (baseline) 22.91 54.80 61.82 81.50

Domain Adaptation 85.71 (81.5%) 87.08 (71.8%) 92.74 (81.1%) 90.32 (48.3%)

Train on Target 99.96 99.76 99.96 99.76

networks trained on our large-scale synthesized dataset CADSynth, and tested on the MFCAD++ dataset, while experiencing a per-

formance drop, still maintained a high accuracy rate of 81.50%. This suggests that the CADSynth dataset, reflecting a richer variety 
of geometric shapes and complex combinations of machining features, enhances the network’s generalization capabilities.

Next, we employed adversarial domain adaptation methods to align features between the source domain dataset and target 
domain dataset. It can be observed that after domain adaptation, the performance of the BrepMFR on target domain datasets has 
significantly improved. This indicates that our proposed domain adaptation approach enhances the network’s generalization ability, 
supporting machining feature recognition in CAD models across different domain datasets.

5.4. Ablation study

Ablation studies explore the impact of removing or replacing a specific component in the neural network on the overall system 
performance. In this section, we designed the following ablation experiments to evaluate the impact of different factors on the 
machining feature recognition and domain adaptation performance. These ablation studies were conducted on the CADSynth dataset.

5.4.1. Ablation study on input features of geometric

The geometric features inputted into BrepMFR network consist of the fundamental attributes, as well as UV-grid points parameters 
of B-rep faces and edges, which respectively describe the overall geometric properties and precise geometric shapes of the B-rep 
model. In this ablation study, we established the model with full input features as the baseline and then removed each of these three 
types of input features to create ablated models. Results presented in Table 4 indicate that the removal of any input features leads to 
a decrease in feature recognition accuracy. Among them, the exclusion of face attributes results in the greatest performance decline, 
13

implying its greater importance compared to other input features. It is worth noting that, compared to the baseline, all ablated models 
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Table 4

Ablation study on input features of geometric. The bold numbers are the 
best results for each evaluation metrics, and the values in brackets are the 
changes relative to baseline.

Input Accuracy Per-class accuracy mIoU

Full (baseline) 99.96 99.92 99.83

No Face Attr. 99.85 (-0.11) 99.65 (-0.27) 99.08 (-0.75)

No Edge Attr. 99.91 (-0.05) 99.82 (-0.10) 99.62 (-0.21)

No UV-grid 99.89 (-0.07) 99.75 (-0.17) 99.55 (-0.28)

Table 5

Ablation study on input features of proximity. The bold numbers are the best results for 
each evaluation metrics, and the values in brackets are the changes relative to baseline.

Input Accuracy Per-class accuracy mIoU

No A1/2/3 (baseline) 97.33 95.67 91.50

A1 99.24 (+1.91) 98.07 (+2.40) 96.24 (+4.74)

A1 + A2 99.60 (+2.27) 99.39 (+3.72) 98.39 (+6.89)

A1 + A2 + A3 99.96 (+2.63) 99.92 (+4.25) 99.83 (+8.33)

Table 6

Ablation study on domain adaptation. The bold numbers are the best results for each 
evaluation metrics, and the values in brackets are the changes relative to baseline.

Method Accuracy Per-class accuracy mIoU

𝑙𝑎𝑏𝑒𝑙 (baseline) 61.82 85.53 61.64

𝑙𝑎𝑏𝑒𝑙 +𝑒𝑛𝑡𝑟𝑜𝑝𝑦 64.69 (+2.87) 90.68 (+5.15) 75.44 (+13.80)

𝑙𝑎𝑏𝑒𝑙 +𝑎𝑑𝑣 91.75 (+29.93) 95.16 (+9.63) 81.23 (+19.59)

𝑙𝑎𝑏𝑒𝑙 +𝑎𝑑𝑣 +𝑒𝑛𝑡𝑟𝑜𝑝𝑦 92.74 (+30.92) 95.70 (+10.17) 83.53 (+21.89)

show relatively minor performance decreases (approximately 0.1% decrease in Accuracy), indicating the insensitivity of the feature 
recognition task to input geometric information. We believe that this comprehensive, even “redundant” input geometric information 
is beneficial for enhancing the robustness and generality of neural network, thereby enabling its application in more complex tasks 
such as model classification, model retrieval, and 3D reconstruction.

5.4.2. Ablation study on input features of proximity

In the BrepMFR network, we integrated three matrices, A1, A2, and A3, to characterize the adjacency relationships between 
B-rep faces, their spatial positions, and the faces-edges connections. To evaluate the effectiveness of this design, we utilized a model 
without the proximity matrices A1, A2, and A3 as the baseline (consistent with the standard Transformer architecture), and observe 
substantial performance gaps compared to the state-of-the-art (SOTA), as indicated in Table 5. The gradual incorporation of the 
proximity matrices A1, A2, and A3 led to a stepwise enhancement in the network’s performance, with increases of 2.63%, 4.25%, 
and 8.33% in the evaluation metrics. This demonstrates that matrices A1, A2, and A3 are crucial in the BrepMFR, facilitating the 
neural network model’s accurate understanding of complex 3D solid models.

5.4.3. Ablation study on domain adaptation

To implement adversarial domain adaptation, we integrated two terms into the joint training loss function: the en-

tropy loss 𝑒𝑛𝑡𝑟𝑜𝑝𝑦, and the adversarial domain discrimination loss 𝑎𝑑𝑣. Ablation experiments on the transfer learning task 
MFCAD++→CADSynth were conducted to evaluated the contributions of these losses. We used the model trained only with 𝑙𝑎𝑏𝑒𝑙
as the baseline, then incrementally added 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 and 𝑎𝑑𝑣 for domain adaptation, with results shown in Table 6. We observed that 
solely incorporating the 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 to the loss function results in a mere 2.87% accuracy improvement on the target domain data over 
the baseline. Incorporating 𝑎𝑑𝑣 significantly improved BrepMFR’s performance on the target domain dataset. Finally, combining 
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 and 𝑎𝑑𝑣 yielded optimal cross-domain machining feature recognition, achieving increases of 30.92%, 10.17%, and 21.89% 
in accuracy, per-class accuracy, and mIoU.

5.5. Case study and discussion

Existing methods such as Hierarchical CADNet (Colligan et al., 2022) can also achieve feature recognition. Therefore, we compare 
BrepMFR with them through several test cases to demonstrate the advantages of our proposed approach. The comparative case study 
with Hierarchical CADNet is shown in Fig. 11, utilizing test cases from the public dataset associated with the Hierarchical CADNet 
research. In test cases (a)-(c), with a larger number of fillet and chamfer features, BrepMFR failed to detect several chamfer features 
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in the latter two cases. For test cases (d) and (e), with large aspect ratios and thin sheet shapes, and test case (f), which exhibits 



Computer Aided Geometric Design 111 (2024) 102318S. Zhang, Z. Guan, H. Jiang et al.

Fig. 11. The comparative case study with Hierarchical CADNet.

highly intersecting features, BrepMFR outperforms Hierarchical CADNet. These results indicate that the BrepMFR network trained 
on the CADSynth dataset demonstrates superior generalization to new CAD models not seen in the training set.

To better integrate with downstream applications such as CAPP and CAM, post-processing of BrepMFR recognition results is 
necessary. The objective is to extract individual machining features’ components (B-rep faces and edges) along with their design 
and manufacturing parameters (e.g., radius, axis, length, width). We design a rule-based post-processing algorithm following the 
boundary patterns for machining features proposed by Sunil and Pande (2009), along with B-rep topology query interfaces provided 
by Open CASCADE Technology (OCCT). This algorithm groups faces belonging to the same machining feature instance into sets; in 
cases of intersection, sets are further split or merged based on predefined rules.

To evaluate the performance of BrepMFR on real-world CAD models, we chose several CAD models from the ABC dataset for 
machining feature recognition. The predicted results of BrepMFR and the separated machining features through post-processing 
method are illustrated in Fig. 12. For example, in case (b), BrepMFR accurately identified the faces belonging to rectangular through 
slots (highlighted in yellow). In post-processing, we grouped these 27 faces into 6 machining feature instances: typically, each 
through slot comprises 3 connected faces, including a bottom face and two parallel side faces; specifically, there is one through slot 
segmented into 4 parts by three other slots. By testing the parallelism and coplanarity between faces, we classified these 4 parts into 
the same through slot instance. Similarly, in case (a), the pocket is defined as a set of faces, where a base face (fully accessible for 
machining) is concavely attached to a number of side faces. These results demonstrate that BrepMFR accurately identifies all isolated 
and intersecting features, indicating its capability to handle typical machining features in engineering parts.

6. Conclusion

In this paper, we introduced BrepMFR, a novel deep neural network designed for machining feature recognition in B-rep models. 
BrepMFR leverages the structural characteristics of B-rep data, incorporating improvements of both Transformer and Graphormer to 
effectively utilize local geometric shape information and topological relationships in 3D B-rep models. In summary, the novelty and 
contribution of this paper are as follows:

1. We proposed a novel deep learning method, BrepMFR, specifically designed for B-rep models, capable of performing machining 
feature recognition tasks. BrepMFR outperforms existing learning-based methods.

2. We established a synthetic dataset, CADSynth, comprising 100,000 CAD designs. This dataset is more representative of engi-
15

neering realities compared to existing synthetic CAD datasets.
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Fig. 12. Machining feature recognition results for real-world CAD models from ABC dataset. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

3. We implemented a domain adaptation framework capable of effectively enhancing the cross-domain adaptability of deep neural 
networks. This framework enhances the application capabilities of BrepMFR in engineering scenarios.

However, there are still limitations and challenges that need to be addressed in future work. Our current work is limited to 
24 types of basic machining features. Subsequent efforts should focus on diversifying the range of features and handling complex, 
intersection scenarios. Additionally, constructing a large-scale open-source real CAD dataset comprising labeled machining features is 
an important future endeavor. This will enhance the generalization capabilities of our approach and drive advancements in associated 
research domains.
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