Robotics
and
Computer Integrated
Manufacturing

PERGAMON Robotics and Computer Integrated Manufacturing 17 (2001) 33-47

www.elsevier.com/locate/rcim

Automated design of sheet metal punches
for bending multiple parts in a single setup

Ujval Alva, Satyandra K. Gupta*

Mechanical Engineering Department and Institute for Systems Research, University of Maryland, College Park, MD-20742, USA

Abstract

Sheet metal bending is a process in which bends are formed using a combination of a punch and a die. A very large number of
mechanical products such as furniture panels, shelves, cabinets, housing for electro-mechanical devices, etc. are created by using the
sheet metal bending process. Bending tools need to satisfy the following two criteria: (1) tools should be able to withstand bending
forces, and (2) tool shapes should be such that there is no tool-part interference. In this paper, we describe a methodology for
automatically designing shapes of bending punches for bending multiple parts in a single setup. We create parametric geometric
models of punches. These parametric models describe the family of possible punch shapes. Using the part geometry and parametric
punch shape models, we automatically generated constraints on tool parameters that eliminate the possibility of part-tool
interference. We use mixed-integer techniques to identify parameters of punch shapes that result in the maximum punch strength.
Finally, we perform strength analysis of the designed punch shape using finite element analysis methods, to verify that the designed

punch shape is capable of withstanding the bending forces. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Process planning; Sheet metal bending; Punch design

1. Introduction

Increasing emphasis on more personalized products
and shrinking product lives is resulting in major changes
in manufacturing practices. As we move towards mass
customization, we will need ways to handle a wider
variety of product mix on the shop floors. So far, very
little attention has been paid in process planning systems
to exploit commonality in tooling and fixturing across
multiple parts. Most process planning systems currently
handle one part at a time, attempting to find the best plan
for every part. Such planners fail to identify commonality
among parts and cannot select common tooling and
shared fixtures that work for multiple parts. This results
in more frequent tool changes and reduced overall
throughput time. Most traditional process planning sys-
tems work by matching part features to existing manu-
facturing resources (i.e., tools and fixtures). We have
developed a new two-step approach that allows us to

* Corresponding author.
E-mail addresses: ujval@eng.umd.edu (U. Alva), skgupta@eng.
umd.edu (S.K. Gupta).

perform tool design for multiple parts. The idea behind
this approach is as follows. Rather than directly match-
ing part features to manufacturing process, we first ident-
ify the constraints imposed by a part feature on the
tooling that will be used to create that feature. In the
second step, we gather all the constraints imposed by
various features in various parts and perform con-
straint-driven tool design to identify the punch shape
that works for multiple parts.

For a detailed description of sheet-metal bending pro-
cesses, readers are referred to handbooks on this subject
[1-4], (Fig. 1). In a typical problem, we are given a final
part and a starting flat part. The flat part needs to be bent
along the bend lines to create the final part. In this paper,
we describe a methodology for automatically synthesiz-
ing the shapes of bending punches. Bending tools need to
satisfy the following two criteria: (1) tools should be able
to withstand bending forces, and (2) tool shapes should
be such that there is no tool-part interference. In this
paper, we describe a systematic methodology for auto-
matically designing bending punches. We create para-
metric geometric models of punches. These parametric
models describe the family of possible punch shapes.
Using the part geometry and parametric punch shape

0736-5845/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0736-5845(00)00035-1

34 U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47

\

Fig. 1. Sheet metal bending.

models, we automatically generate constraints on tool
parameters that eliminate the possibility of part-tool
interference. We use mixed-integer programming tech-
niques to identify parameters of punch shapes that result
in the maximum punch strength. Finally, we perform
strength analysis of the designed punch shape to verify
that the designed punch shape is capable of withstanding
the bending forces.

2. Punch design background

In order to perform satisfactorily, the punch shape
should satisfy the following three criteria:

1. Compatibility with bend geometry: The punch radius
should be compatible with the inside radius of the
bend. The angle of the punch should be smaller than
the bend angle.

2. Punch strength: The punch should be strong enough to
withstand the bending forces. Bending forces depend
on the part material, part thickness, and a variety of
bending-related parameters. Whether a given punch
shape will be able to withstand forces or not can be
determined by identifying the stresses in the punch.
We use the following formula to identify bending
forces [5]. The formula for per unit length bending
force (F) is given by,

(1.33)St2
L b

where L is the span of sheet metal, ¢ is the sheet metal
thickness, Sis the nominal ultimate tensile stress of the
part material. Given the bending force and the punch
shape, several different techniques can be used to
compute the stresses in the punch. Such possibilities
include use of finite element analysis (FEA), or conser-
vative analytical approximation of various portions of

punch shapes. We are primarily concerned with the
stresses in the main punch body and use FEA. Our
approach to punch strength analysis will be described
in Section 7.

3. Interference: The shape of punch should be such that
there is no part-tool interference between the punch
and any intermediate workpiece shape. Such inter-
ferences distort the workpiece and may cause damage
to the pressbrake. Fig. 2 shows potential interference
problems if the punch shape is not chosen carefully.

3. Related work
3.1. Sheet metal bending process planning

Process planning for the sheet metal bending operations
involves tasks that include the selection of the tool, blank
length calculation, calculation of force required to carry
out the bending, bending sequence determination and
other related tasks. Tool design/selection is an important
part of process planning for small batch manufacturing in
sheet metal bending. Representative work in the field of
process planning includes work by Bourne et al. [6], Gupta
et al. [7,8], de Vin et al. [9,10], Radin et al. [11], Nnaji et al.
[12], Yut et al. [13] and Uzsoy [14]. Most previous work in
sheet metal process planning has primarily focussed on
using standard strength of material formulas and using
a generate and test approach to select a punch from the
database of available punches to eliminate part-tool inter-
ference. Unfortunately, to generate and test approach is
time consuming and does not allow us to synthesize new
punch shapes that can work for multiple parts.

3.2. Parametric shape optimization

Parametric design optimization is found to be a useful
tool for the method of shape optimization. Solving the

U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47 35

Fig. 2. Part-tool interference.

shape optimization problem involves finding the ideal
shape of a body by satisfying the various constraints on
its form. The input to such problems is a continuous
function of one or more parameters. Using shape optim-
ization in the early tool development process allows the
tool designer to determine a near-optimal design without
using time-consuming “trial and error” methods. Defin-
ing the shape of an object in terms of parameters helps in
modeling the object and also the FEA of the object.
Representative work that uses parametric shape optim-
ization includes work by Braibant and Fleury [15], Ra-
jan et al. [16], Rosen and Grosse [17], Schramm and
Pilkey [18], Lindby and Santos [19], Noel et al. [20],
Salagame and Belegundu [21], Zhang et al. [22],
Salagame [23] and Vajna et al. [24]. Traditional para-
metric shape optimization techniques often utilize gradi-
ent search. Unfortunately, when we try to design punches
for multiple parts, very few feasible solutions exist. There-
fore, gradient search techniques do not work well for the
punch design problem being addressed in this paper.

4. Overview of solution methodology
4.1. Problem statement

The problem being addressed in this paper involves
identifying a common punch shape that can be used to
bend multiple sheet metal parts. Traditionally, tool en-
gineers determine a punch for each part that is to be
fabricated. In the present manufacturing scenario where
there are multiple parts in the product mix, the process
of finding a tool for each part results in frequent tool
changes. The aim of this paper is to present a punch
design methodology that will help in designing a punch
for bending multiple parts in a single setup.

We assume the following information is available
before the process of punch design:

1. Parametric model of the punch. Fig. 3 shows a paramet-
ric model of a gooseneck punch. A gooseneck punch is
being considered because of the flexibility it gives in
terms of geometry. There are restrictions imposed on
values of these parameters by the punch manufacturers.
These restrictions depend on the size of the punch
press, the vertical travel of the punch, the number of
punch holders in the press, etc. These restrictions are
the constraints that punch design should satisfy.

2. Geometric models for a set of parts. Currently our
approach is restricted only to 2.5D parts. These types
of parts are quite often referred to as sash-type parts
in the sheet metal industry. The geometric models of
the parts are defined completely by the dimensions of
their faces and the bend angle between these faces.
All the parts that are being considered in this paper
have a bend angle of 90°.

3. Operation sequences for each part in the given part set.
For each part, the operation sequence specifies the
order in which the part will be bent. The sequence
of bending operations is explicitly defined. This
bending sequence is expressed in terms of the bend
edges. Since each edge can be bent in two different
orientations, the edge that is outside the press-brake
is identified along with the bend line.

4.2. Overview of approach

The following approach is proposed to solve the prob-
lem described in the previous section. This approach has
the following steps:

1. Generate constraints on punch parameters. The first
step involves generating constraints on the punch

36 U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47

L4
$ e

0<LI<5 18 <Ld< 23
77 <12 < 82 7 <L5 <10
33 SL3< 4 pcgs<2S

82 5< LID <65

f=.)

\Y=]
IA A IA

&
IA A IA

~]

[¥'S)

C1=121,C2=91,C3=11

Fig. 3. Parametric representation of the gooseneck punch.

(x|>Y1)
(x2,72)
/(xz"yzv)

Fig. 4. Line-line intersection.

(xl" Y|')

parameters by performing interference checks be-
tween the parametric punch shape and various inter-
mediate workpiece shapes resulting during the
bending process. The approach for generating inter-
section constraints is described in detail in Section 5.

2. Find a punch shape that does not interfere with any
intermediate workpiece shape and has the maximum
strength. As a second step, the constraints on punch
parameters are used to find a punch shape that
satisfies all intersection constraints that are gener-
ated while trying to maximize the punch strength at
the same time. A formulation that combines mixed-
integer programming and enumeration technique is
used to carry out this step. The approach for this step
is described in detail in Section 6.

3. Verify that the designed punch can withstand stresses
resulting from the bending forces. It is important that
the punch that is designed is able to withstand the

bending forces. Finite element methods are used to
determine if the resulting punch will be able to with-
stand the bending forces or not. The approach for
this step is described in Section 7.

5. Punch parameter constraint generation
5.1. Generating constraints to eliminate interference

In order to eliminate the possibility of interference
between the part shape and punch shape, none of the line
segments defining the punch profile should intersect with
line segments defining the workpiece profile. Therefore,
to avoid interference between punch and part, we need to
identify conditions that eliminate the possibility of inter-
section between the two line segments. Fig. 4 shows two
different line segments that are defined by their end
points. Let 4 be the line segment defined by (x4, y;) and
(x3,y2)- Similarly, let B be the line segment defined by
(X1, 1) and (x5, 2).

Any point on the line segment A4 is given by

X = (X3 — Xq)u+ xq,
y=2—yu+yi,

where, u is a parameter. For a point to be on A4,
O<u<l

U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47 37

Similarly, any point on the line segment B is given by
x'= (x5 — xPu + xi,
V=02 = you' 41,

where u’ is a parameter. For a point to be on B,
O<u <1

For intersection to occur between 4 and B, the inter-
section point (x;, y;) must lie on both 4 and B, i.e., x = x’
and y = y'. Solving for «" and u gives

[x/zy’l —12X1 + X102 — 1) — yi(xs _xll):|
(x5 = xX1)2 —y1) — (0 = Yi)x2 — xy) i

q

B (x2 = xD)2 — y1) — (Vs = Yx2 — xq)

, |:x1y2 —V1X2 — X1(y2 — y1) + Vi(x, _xl):|

If the two line segments 4 and B are not parallel, then the
two line segments will not intersect if and only if

u<0, oru>1, oru <0 oru >1.

Let D = (x; — x1)(y2 — y1) — (V2 — Yi)lx2 — x1).
This can be interpreted as given below:

1. Constraint corresponding to u < 0:

IfD > 0,then

X2V — X1YVa + X1)2 — XY — yixs + yix; <O0.

If D < 0, then

—X2)1 +X1V2 =x1)2 + x1)1 +yixs — yixi <0
2. Constraint corresponding tou > 1 (i.e. —u + 1 <O).

IfD > 0,then

X2y — XaY1 + X152 — X1y2 — y2Xs + Yixz <O0.

If D < 0, then

—X2y2 +X2)1 —X1V2 + X1y2 +2x2 —Yix, <0
3. Constraint corresponding to u’ < 0:

IfD > 0,then

X1Y2 — Y1X2 — X1y + X1y1 + Vixa — yixg <O.

If D < 0, then

—X1y2 +Y1X2 +X1Y2 — X1y1 — VixX; + yixg <O0.
4. Constraint corresponding to v’ >1 (ie, —u' + 1 <O):

IfD > 0,then

XaY1 — X1z + X5y — X3)1 — VaXa + yaxg <O

If D < 0, then

—XoV1 FX1V2 —X2Ys + X5y + Vaxs — Voxy <O

Fig. 5 shows punch profile-coordinates in terms of
punch parameters. For every pair of lines on punch
profile and part profile, we can write a set of constraints
that eliminates the possibility of intersection between
these two lines using the above described conditions.
Therefore, if we consider all pairs of lines on punch
profiles and part profiles, then we can generate a compre-
hensive set of constraints that eliminate the possibility of
intersection between punch and workpiece shapes.

For the case shown in Fig. 6, taking into consideration
the part line having end points (— 22.62, 22.62) and (6.36,
38.89) and the punch line having end points (L4, L8) and

(L4-C3, CI

(L4, Cl)

Fig. 5. Punch coordinates in terms of punch parameters.

(6.36, 38.89)

(-22.62, 22.62)

Fig. 6. An example of constraint generation.

(L4, L9), the value of D is less than zero with the range of
given punch parameters, which gives the following set of
disjunctive constraints:

28.98L8 — 16.27L6 — 1023.55 < 0,
16.27L6 — 28.98L9 + 1022.87 < 0,
22.62(L8 — L9) + L6L8 — L6L9 < O,
6.36(L8 — L9) + L6L9 — L6L8 < 0.

Since these constraints are disjunctive in nature, in order
to eliminate the possibility of intersection, atleast one of
these constraints should be satisfied.

38 U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47

5.2. Heuristics to eliminate unnecessary constraints

The punch parameter constraint generation method
discussed in Section 5.1 involves automatically generating
constraints for eliminating intersection between every line
of the part with every line of the punch. This process may
result in a very large number of constraints. This results in
a time-consuming optimization process. In order to reduce
the number of constraints, two heuristics can be applied
to remove those constraints that are redundant.

® Profile partitioning heuristics. The first heuristic that
eliminates redundant constraints involves dividing the
punch and part profiles into two segments. The ex-
treme points on a punch divide the punch profile into
two profile segments as shown in Fig. 7. Similarly the
part profile can also be divided into two profile seg-
ments at the bend. The division of the profiles of the
punch and part into segments helps in reducing the
number of constraints in the following manner. The
part-profile segments on side 4 need to be checked for
interference with only the punch-profile segments on
side 4 as can be seen in Fig. 7. Similarly, the part-
profile segments on side B need to be checked for
interference with only the punch-profile segments on
side B. This heuristic is based on the following obser-
vation. Any part-profile line segment on side 4 will
intersect with the punch-profile line segment on side
A before intersecting with the punch-profile line seg-
ment on side B. Therefore, if there is an intersection
between the part-profile segment and punch-profile
segment on side 4, then intersection check between the
part-profile segment on side 4 and the punch-profile
segment on side B need not be carried out. This
method reduces the total number of constraints that
need to be included in the optimization process. If the
punch and the part profiles are divided equally into
two profile segments, then the reduction in the number
of constraints is 50%.

® Heuristics for identifying redundant constraints. The
second heuristic is to eliminate constraints that

Side A Side B

Punch Profile

Punch Profile Segment on Side

Segment on Side A

Part Profile Segment
on Side A

Part Profile

|
i
|
i
i
i
i
i
i
|
|
|
[
: Segment on
i

X X

Fig. 7. Partitioning punch and part profiles into segments.

> yr)

(20, 30) (30, 30)

*x, y2)

Fig. 8. Heuristic for identifying redundant constraints.

correspond to those pairs of line segments that will
never intersect. This is done to ensure that all con-
straints that play no role in determining the punch
parameters are eliminated. From the conditions de-
scribed in Section 5.1, two line segments will intersect if
the values of u and u’ lie within the range of (0,1).
Similar to the non-intersection conditions described in
the Section 5.1, intersection conditions can also be
written, that must be satisfied by the two line segments
in order for them to intersect. Such intersection condi-
tions are then used to eliminate redundant constraints.
If a line segment on the workpiece and a line segment
on a punch does not satisfy intersection condition for
all values in the given punch parameters’ range, then it
can be safely assumed that these two line segments will
never intersect in that range. Hence, all constraints
that would otherwise have been generated can now be
safely eliminated. The parameters that define the
punch only have a certain range of values based on
manufacturer specifications. For example, consider two
line segments as shown in Fig. 8. The first line segment
is defined by end points (20, 30) and (30, 30). Similarly,
let the second line segment be defined by end points
(x,y1) and (x,y,). If the parameter range of x is
40 < x < 50, then it can be concluded that the two line
segments will never intersect. This heuristic when used
in tandem with the profile partitioning heuristic helps
eliminate a very large percentage of the redundant dis-
junctive constraints that were originally generated.
From the implementation of this heuristic, it was ob-
served that there was approximately 75% reduction in
the number of constraints by using these two heuristics.
This reduction in constraints helps in making the
punch-design process more tractable and easier to solve.

6. Synthesizing tool shape using tool parameter
constraints

Section 5.1 describes the mathematical condition that
ensures that two line segments do not intersect. These
conditions result in constraints containing the para-
meters that define the two line segments. From the con-
straint equations, it is clear that for any two line segments
to satisfy the non-intersection criteria, atleast one of
the four constraints has to be satisfied. Intersection
constraints are, therefore, (1) conditional as the

U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47 39

constraint to be chosen depends on the sign of the de-
nominator, D and (2) disjunctive in nature. Standard
linear formulation based on conjunctive constraints does
not work in this case, where the constraints are disjunc-
tive [25]. Moreover, no commercial optimization pack-
ages are available that solve disjunctive constraints.
Therefore, it is necessary to convert these OR-type of
conditional disjunctive constraints to AND-type of con-
junctive constraints. For converting the disjunctive con-
straints to a form that can be used in optimization
formulation, we use additional constraint control vari-
ables be used to selectively include or exclude constraints.

6.1. Constraint control variables for handling disjunctive
constraints

This section describes the method used to convert
disjunctive constraints to conjunctive constraints. In or-
der to handle disjunctive constraints, integer constraint
control variables are introduced. The following example
shows how the disjunctive constraints generated for the
intermediate parts are handled using constraint control
variables. Constraint control variables I, I,, I5, I, are
introduced. These variables are integers and must satisfy
the following conditions:

L+, +1; +1, =3,
0</ <1,
0<L <1,
0</; <1,
o<, <1

Since Iy, I», I5, I, are integers and are in the range of
(0,1), the above five conditions ensure that only one of
the constraint control variable takes the value 0. All the
other constraint control variables should take the value
1. Consider the example shown in Fig. 6. The constraint
control variables are added to these disjunctive con-
straints in the following manner:

28.98L8 — 16.27L6 — 1023.55 — 7yI; <0,
16.27L6 — 28.98L9 + 1022.87 — yI, <O,
22.62(L8 — L9) + L6L8 — L6LY — yI5 <O,
6.36(L8 — L9) + L6L9 — L6L8 — yI, <0,
where y is a very large number, significantly greater than
the possible numerical value of the left sides of the above
described constraints (i.e., of the order of 10°). The dis-
junctive constraints are converted to conjunctive con-
straints in the following manner. When /; =0 and
[2 = 13 = 14 = 1,
28.98L8 — 16.27L6 — 1023.55 <0,
16.27L6 — 28.98L9 + 1022.87 —y < 0,
22.62(L8 — L9) + L6L8 — L6L9 —y <0,
6.36(L8 — L9) + L6L9 — L6L8 —y < 0.

The above equations show that one of the four
initial conditions is retained while the rest of the condi-
tions become trivially true because of the very large value
of y. If this condition is satisfied then the two line seg-
ments will not intersect. However, if the condition is not
satisfied, the iteration continues where the constraint
control variables I,, I3, I, will successively take the
value of zero. Whenever a constraint control variable is
set to 1, the constraint to which it has been applied
becomes trivially true due to a very large negative num-
ber being added to its value. Whenever, a constraint
control variable is set to 0, it reverts back to its original
form. These constraint control variables allow these dis-
junctive (OR type) constraints to be handled as conjunc-
tive (AND type) constraints. The integer programming
engine used automatically tries various appropriate com-
binations of constraint control variables to select the
right constraint.

6.2. Constraint control variable for handling conditional
constraints based on the sign of D

As described in Section 5.1, some of the constraints
generated depend upon the sign of D. Many times it is
not possible to know the sign of D, upfront. It is impor-
tant that the sign of D be determined correctly to ensure
that the right constraints are generated. Whenever, the
sign of D can be established, it is not necessary to use the
constraint control variables that are being defined here.
However, there are cases in which sign of D cannot be
established and it can either become positive or negative
depending on the value of parameters. In such cases, it
becomes imperative that constraint control variables are
used to handle these conditional constraints.

From Section 5.1, we know that

D = (x5 = x1)(y2 —y1) — (0% — Vi)x2 — xq).

When the two line segments are parallel (i.e., D = 0), it is
important that no constraints are added. To ensure this,
constraint control variables 7y, 7, and T are intro-
duced. These constraint control variables are integers
and must satisfy the following conditions:

o T +T,+T5 =2,
e 0T, <1,
e 0T, <1,
e 0<T7T; <1

These conditions ensure that only one of the constraint
control variable can take the value of 0. All other con-
straint control variables should take the value of 1. Now,
these constraint control variables are added to the condi-
tional constraints in the following manner. Let us assume
that the equations are of the format C/D. Then the
conditional constraints can be seen to clearly satisfy the

40 U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47

following rules:

e if D> 0 then C <0,
e if D <0then — C <0,
e if D = 0 then no constraint.

Now the constraint control variables are introduced in
the following manner:

C—yT{ <0,
—C—9yT, <0,
—D—9yT, <0,
D—vyT, <0,
D—7yT3; <0,
—D —yT5 <0.

where y is a very large number significantly greater in
magnitude than C and D (e.g., of the order of 10°).
From the above formulation, it is clear that

e When 71 =0, only C < 0 and — D < 0 apply. Others
are trivially true.

e When 72 =0, only — C <0 and D < 0 apply. Others
are trivially true.

e When 73 =0, only D < 0and — D < 0 apply. Others
are trivially true.

Therefore, the formulation only allows the right combi-
nation of constraints. These constraints are those that
determine the shape of the punch.

6.3. Combined mixed-integer/enumeration formulation

Techniques described in Sections 6.1 and 6.2 convert
the conditional and disjunctive constraint formulations
to non-linear mixed-integer formulations using integer
constraint control variables. The convenient method to
solve this optimization formulation would be to use
mixed-integer optimization solvers. However, the cur-
rently available commercial solvers do not have the capa-
bility to solve optimization formulation that includes
integer constraint control variables and non-linear con-
straints. However, there are solvers that can solve
mixed-integer formulation with linear constraints. These
solvers take only a few seconds to solve even large
mixed-integer formulations. In order to use these solvers,
the constraints need to be converted into a linear format.

Consider the parametric shape of the gooseneck punch
as shown in Fig. 5. The intermediate shape of the sheet
metal part is already defined in terms of co-ordinate
points, which are numerical in nature. From the para-
metric form of the punch, it can be perceived that giving
numerical values to the parameter set (L1, L3, L4, LS5, L6,
L10) or the parameter set (L2, L7, L8, L9) will ensure that
the constraints generated will be linear in nature. In this
particular problem, since the number of parameters in
the set (L2, L7, L8, L9) are lesser in number, they shall be

given numerical values. The parameters are given a nu-
merical value by an iteration method, where these para-
meters are introduced in a loop, starting from the lowest
value and ending with the highest value of their respect-
ive parameter range. This results in all the constraints
being converted from a non-linear format to a linear
format.

Consider the example as shown in Fig. 6. The con-
straints that are generated are

28.98L8 — 16.27L6 — 1023.55 < 0,
162706 — 28.98L9 + 1022.87 <0,
22.62(L8 — L9) + L6L8 — L6L9 < 0,
6.36(L8 — L9) + L6L9 — L6L8 < 0.

The parameters L8 and L9 are in the range of (70, 73) and
(43,46), respectively. Iterating the above equations over
the parameter range of L8 and L9 reduces the above
constraints into a linear form. During the first iteration,
the value of L8 =70 and L9 =43. This changes the
constraints as given below:

— 16.27L6 + 1005.05 < 0,
16.27L6 — 223.27 < 0,
610.74 4+ 70L6 — 43L6 < 0,
171.72 +43L6 — 70L6 < 0.

The solution methodology presented here utilizes a com-
bination of mixed-integer optimization techniques with
enumeration techniques. Fig. 9 shows the combined
mixed integer and enumeration formulation used to de-
sign a punch that will be able to bend multiple parts. The
steps for the combined formulation are as follows:

Step 1: During this step the disjunctive nature of the
constraints is removed by using constraint control vari-
ables. Section 6.1 gives a complete description of this
process.

Step 2: The conjunctive constraints resulting from step
1 are still conditional in nature. To remove this condi-
tional nature, integer constraint control variables are
introduced. Section 6.2 gives a complete description of
this process.

Step 3: Mixed-integer non-linear constraints result
from step 2. Parameters are identified that will convert
the constraints into a linear format. These parameters are
then iterated over their respective parameter ranges. This
results in linear mixed-integer constraints.

Step 4: The linear mixed-integer constraint formula-
tion is solved using the CPLEX solver of AMPL. The
result of this optimization gives the values of the punch
parameters that will ensure that there is no interference
between the various sheet metal parts and the resulting
punch. The punch parameter value of each cycle is
checked with the solution of the previous iteration. If the
present solution results in a more optimal solution, then
the present parameter solution set replaces the previously

U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47 41

Convert the disjunctive constraints (OR -type) to conjunctive constraints
(AND - type)

v

Convert the conditional constraints unconditional constraints

v

Mixed integer non-linear constraints

v

Identify those parameters that make the constraints linear

v

Iterator

Save solution if it is better than the
solution in the previous iteration

A4

Mixed integer linear constraints

Solve the constraints using an

optimizer

Fig. 9. Combined mixed-integer/enumeration formulation.

obtained values. At the end of the iterative cycle, the best
solution of punch parameter values determines a punch
shape that will not interfere with any of the sheet metal
parts.

The advantage of using such a combination method is
the time saved in using fast mixed-integer solvers. Con-
sider the parametric punch profile shown in Fig. 5. In this
case, the punch shape is defined by 10 different para-
meters. If purely enumeration techniques were used to
determine a punch shape that will not interfere with the
sheet metal parts, the time taken to solve such a problem
would have been very large. By using the mixed-integer
solver, the enumeration is reduced to just four para-
meters. An optimization process that takes a few seconds
now replaces the large amount of time required to enu-
merate the six parameters over their respective parameter
range. This exponential reduction in time saved makes
this combination of mixed-integer/enumeration formula-
tion very beneficial.

The strength of the punch depends on many factors
like the material of the punch and the cross section of the
punch. For the mixed-integer formulation discussed in
this chapter, the cross section of the punch is used as the
objective function for strength. Therefore, we use L1-L6
as an approximation for the punch strength. The value
L1-L6 increases the width of the main punch body and,
therefore, increases the punch strength. This objective
function is only a surrogate objective function. The
actual strength of the punch is checked using FEA
methods.

7. Implementation details

This section discusses the implementation of the algo-
rithm explained in Section 5. Section 7.1 explains the
system architecture of the implementation of these algo-
rithms. Fig. 10 shows the various modules of the imple-
mentation system. Section 7.2 presents an example run of
the implementation system.

7.1. System architecture

The implementation system architecture consists of
four main components. These components are:

® Geometric reasoning component:. The geometric rea-
soning is carried out using C + + and ACIS. ACIS is
a 3D geometric modeler developed by spatial tech-
nologies. ACIS is delivered as a library of classes
written in C + +.

e Optimization component. The optimization is carried
out using AMPL. AMPL is a modeling language
for linear, non-linear, and integer programming
problems. AMPL has been chosen because of its abil-
ity to solve large mixed-integer optimization problems.
Additionally, AMPL can be called using C + + and
the results of AMPL can be retrieved into other file
formats.

o Graphical user interface (GUI): The graphical user in-
terface is developed using Java. The rendering of the
parts, punch and the interaction between these two is

42 U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47

CAD Models of a Set of Parts Punch

Parametric Form of Punch

v

v

@+ Program Generates Intermediate Part S@

Intermediate Part Files

@sttaint Generation to Avoid Tool-Part Interfe@

Constraints

@ve Constraints using AMPL in a iterative 1@

Tool Parameters

¢_J

—

Visualization for Graphical Verification

FEA for Punch Strength Verification

Fig. 10. Implementation procedure.

carried out using Java 3D, a package in Java 2. Java
3D provides the ability to create and maneuver solid
models.

® Finite element analysis component. ANSYS is a finite
element modeling and analysis package for numer-
ically solving a wide variety of mechanical problems.
In the present system architecture, ANSYS is being
used to carry out structural analysis. ANSYS is used to
carry out stress calculations to analyze the effects of
the bending forces on the punch strength.

The implementation procedure involves the following
steps:

1. Given the dimensions of the part and its final shape,
intermediate part shapes are generated using C + +
programs. The co-ordinates of the end points of the
intermediate part shape are stored to a file.

2. Using the co-ordinates of the intermediate part and
the co-ordinates of the punch and substituting them
in the equations shown in Section 5.1, the constraints
are generated for each pair of lines, one of the punch
and the other of the part. The heuristics described in
Section 5.2 are applied to eliminate the redundant
constraints. The constraints that remain are then
saved to another file.

3. We have then implemented our constraint solver
using AMPL, which takes the above constraint file
as the input and optimizes to give the values of the
parameters that satisfy the constraints.

7.2. Example run of the implementation system

This section gives an example run of the system. Con-
sider the 10 parts shown in Fig. 11. The material chosen
for the parts was low-carbon steel having a thickness of
1.5mm. The punch material is tool grade steel having
a HRC of 43-48. The main frame of the GUI has four
buttons:

1. Part selection button.
2. Tool specifications button.
3. Optimization button.
4. Result verification button.

7.2.1. Part selection

When the part selection button is clicked, the frame
shown in Fig. 12 is displayed. The main features of this
frame are:

1. Workspace selection: The user can create a new work-
space or open an existing workspace. This work-
space denotes the directory that the user will be using
during the process of designing the punch.

2. Part selection: By clicking on the “BROWSE” but-
ton, the user chooses the file denoting the dimensions
of a part. This file having the “.part” extension con-
tains the dimensions as well as the bend angles for
the part chosen. The part that is chosen is then
displayed on the screen.

3. Bend sequence: When the “enter the bend sequence”
button (Fig. 12) is clicked, the frame shown in Fig. 13

U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47

43

115, _
f s 15 23,
! Ed
41 45 y 32
; 3 33 a
Yi
S T T 140 '20
vl 23 / 35
40 4
— i« >
60 ' 150 '
&
b
40 4] -
e I”
r
M »< ¢ > 2
'10 116 60 11 0 250
15 —Mlsr-
. /li i
20
- { 30 30
20;
a0 50 -
50
% P 110
40, 220
- 70 /
25 I15
4
201 | K
> 10 -
60

Fig. 11. Ten example sheet-metal parts.

appears on the screen. In this frame, the user can
choose the bend sequence for the part that was
chosen. The user clicks on the faces of the part
displayed on the screen to choose the edge that needs
to be bent and the orientation of the part during this
process of bending. Thus, the user clicks on two
adjacent faces of the part to denote the edge that
needs to be bent. The second face clicked denotes
that face of the part that needs to be outside the
punch press. The status box helps the user determine
if the bend edge chosen has already been chosen in
the bend sequence. It also tells the user when all the
bend edges have been chosen. When all the bend
edges of the part are chosen, the “SUBMIT DATA”

button is clicked. This causes the creation of the
“.seq” file for the part.

The user can go back to the part selection frame and
choose multiple parts. For the example considered, the
user chooses the ten parts and determines the sequence of
bending operations for each of the parts.

7.2.2. Tool specifications

When the “tool specifications” button is clicked, the
frame shown in Fig. 14 is displayed on screen. This frame
helps to determine the range for the parameters that
define the gooseneck punch. When the user clicks on the
“tool figure” button, a parametric figure of the punch

44 U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47

| bemot Create New Workspace

Onen Existing Workspace
Chopee Par(s) FILE WITH EXTENSION ' art” HAS TO BE CHOSEN s
Enter the Beng Seguence | Status of chosen workspace BACH

Fig. 12. Workspace and input file(s) selection.

lBend o -3

[Bend No. : 3 vaid

SUBMIT DATA BACK TOPRART PAMEL

Fig. 13. Bend sequence generation.

that is being designed is displayed on screen as shown in
Fig. 14. The user is given the flexibility to determine the
range for the parameters of the punch. The user enters
the upper and lower values for each of the parameters.
Clicking the “submit” button will create a new child
process, which runs a C + + program that automatically
creates the constraints file. This C + + program takes the
“part” and “.seq” files for all the parts chosen and the
parametric form of the punch, as input. It then automati-

(min) Length L1 (maw) || 5 fmin) Length 12 rma)|

(min) Length L2 (max) |12 (rin) mnmhm {ax) |

‘ Tool Figure SUBMIT | BACK

Fig. 14. Tool specifications.

(min) Length LS (ma | B4

cally creates the constraints using the algorithm and
heuristics explained in Sections 5.1 and 5.2. The user then
returns to the main frame of the GUI. For the example
considered, the parameters for the punch have lower and
upper values as given below:

40 < L1 <55, 35<L3<42, 7T<L5<10,
79 < L7 <82, 40 < L9 <43,
TT<L2<82, 18<L4<23, 12<L6<25,
69 <L8<T73, 5<L10<6.S.

Other restrictions on the size of the punch were deter-
mined as follows:

L1 — L4 > 30,
S<KL1—L2<15,
45 < L2 + L3 < 50.

Apart from these constraints on the punch parameters,
the other constraints are the ones that are generated as
a result of the check for interference between the punch
and the part.

7.2.3. Optimization

When the user clicks on the “optimization” button in
the main frame, the optimization process is carried out
using the AMPL software package. Clicking the “opti-
mize” button causes a child AMPL process that involves
the following steps:

1. The constraints file is taken as input by the optimizer.
2. AMPL uses its mixed-integer optimizer to carry out
the optimization.

U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47 45

3. The output of the optimization process contains the
values of the parameters of the punch. These values
are saved to a “.sol” file.

4. The status box in the frame changes the status from
“Optimization is being carried out ... Please wait” to
“Optimization has been completed ... return to main
menu”.

7.2.4. Result verification

When the user clicks on the “result verification” button
on the main frame, a frame containing the following
features appears on the screen:

1. Parameter values: Clicking the “get results” button
on this frame displays the results of the optimization
process. The “.sol” file contains the values of the
punch parameters and these are displayed in this
frame.

2. Graphical verification: Clicking the “graphical verifi-
cation” button on this frame opens a display window
as shown in Fig. 15. This window displays the inter-
action of the punch with every intermediate part
shape. The “previous” and “next” buttons help the
user to see the interaction between the punch and the
intermediate part shape, as determined by the bend
sequence. The display on the screen can be rotated
and enlarged by the user, thus helping the user verify
that the designed punch does not interfere with any
of the intermediate part shapes.

3. FEA: Clicking on the “get results” button automati-
cally creates the “.iges” file. This IGES file contains
all the information regarding keypoints and line

Previous ||[Part 2 Bend Mumber, 3 | Next

Fig. 15. Graphical verification of part-tool interaction.

segments that define the shape of the resulting punch
the material properties of the punch and the forces
acting on the punch. A separate process is used to set
the ANSYS environment. When the IGES file is
imported in ANSYS, it automatically generates
a finely meshed representation of the punch. This
finite element representation of the punch can then
be used to analyze the various stresses acting on the
punch during the process of bending. This FEA
procedure helps to analyze the strength of the punch.
If the strength of the punch is able to withstand the
forces of bending, then it can be assumed that
the designed punch is safe to be used to bend all the
parts.

The satisfaction of the complete constraint file results
in a punch having the following set of parameters:

e L1=53, L2=79, L3=38, L4=20, L5=7.0,
L6 =12, L7=2815, L8 =70, L9 =455,
L10 = 6.5.

This punch is then visually verified to ensure that there is
no interference between the part and the tool. FEA is
carried out to check for punch strength. The punch
satisfies all strength considerations. The system took 1h
and 48 min using a Sun Solaris Ultra 10 machine to
determine a single punch that will bend all the 10 parts.
This is compared to years of computing if purely enu-
merative methods were used to determine a single punch
for bending these 10 parts. This punch shape passes the
strength test using FEA software ANSYS.

8. Conclusions

This paper describes an algorithm for designing punch
shapes that do not intersect with a given set of parts and
at the same time have enough strength to withstand the
forces of bending. This paper makes contributions in the
following areas:

1. Algorithm to design a single tool for bending multiple
parts. A new algorithm was developed for designing
a punching tool for multiple sheet metal parts. Tradi-
tionally, tool engineers used to determine a single
punch for each type of part. The algorithm detailed
in this paper helps a tool engineer synthesize a single
punch for multiple different kinds of parts. The pro-
cess of designing the punch involved creating a para-
metric form of the tool, checking this parametric
shape for interference with the various intermediate
part shapes and then optimizing the punch for
strength while constrained by the interference formu-
lations developed in this paper.

2. Ability to handle disjunctive and conditional con-
straints. This paper developed an approach to con-
vert conditional and disjunctive type of constraints

46 U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47

to continuous “AND” type of constraints using con-
straint control variables that take only values of zero
and one. This approach helps to convert a set of
disjunctive constraints to a set of easily solvable
constraints.

3. A prototype implementation. Based on the approach
described in this paper, we have developed a proto-
type system that helps to synthesize a tool for mul-
tiple sheet-metal parts. Details on this system have
been provided in Section 6. This system automati-
cally synthesizes the shape of a tool that does not
interfere with multiple sheet metal parts and then
analyzes the tool for strength using FEA methods.

8.1. Benefits

The benefits in designing a single punch for multiple
sheet metal parts are:

1. Setup time reduction. This approach will help process
planners in selecting a single punch shape that will
work for multiple types of parts. This will help in
reducing the setup times and setup costs for the small
batch manufacturing environment. For the example
of 10 parts, a single-part planning approach would
have resulted in 10 setup changes while multi-part
planning reduces the number of setups to one.

2. Tool cost savings. A single tool is used to bend mul-
tiple parts. This leads to a reduction in the cost of
tools. For the example of 10 parts, a single tool for
each part would have resulted in 10 different tools
while this approach results in one tool for all the 10
parts.

3. Automated process planning. The system proposed in
this paper automatically generates the shape of
punch that can bend multiple parts. As a result, this
system can be integrated with computer-aided pro-
cess planning systems. This will help process plan-
ners to develop process plans quickly.

8.2. Directions for future work

The approach described in this paper has its limita-
tions. These limitations can be future research issues in
the field of tool design for multi-part tool selection. Some
of the current limitations and areas for future research
are:

1. Failure to design a punch. The present algorithm
returns a failure when there is no single punch that
can be used to bend all the parts. In such a case of
failure to design a punch, it will prove useful if the
family of parts can be sub-divided into smaller part
families so that a single punch can be designed to
bend parts in each sub-family of parts. This will
require backtracking capabilities along with much
superior optimization techniques.

2. Incorporating alternative operation sequences in gen-
eration of constraints. Currently only a given opera-
tion sequence is considered for each part in the part
family. Alternative operation sequences need to be
considered. Therefore, it becomes necessary to inte-
grate the operations sequence generation techniques
with the techniques developed as a part of this re-
search.

3. Three dimensional part shapes. The current work is
applicable only to 2.5D parts. Future research will
have to extend it to 3D part shapes. The interaction
of the part and the tool also needs to be extended to
the 3D domain.

Acknowledgements

This research has been supported by the NSF Grant
DM19896255. Opinions expressed in this paper are those
of authors and do not necessarily reflect opinion of the
National Science Foundation.

References

[1] Amada Sheet Metal Working Research Association. Bending
technique, 1st ed. Machinist Publishing Company Limited, 1981.

[2] Benson SD. Press Brake technology: a guide to precision sheet
metal bending. Society of Manufacturing Engineers, 1997.

[3] Pollak HW, Tool design, 2nd ed. Prentice Hall, Englewood Cliffs,
NJ, 1988.

[4] Wilson FW, editor-in-chief. Fundamentals of tool design. Society
of Manufacturing Engineers, Academic Press, New York, 1962.

[5] Eary DF, Reed EA. Techniques of pressworking sheet metal — an
engineering approach to die design, 1974.

[6] Bourne DA. Intelligent manufacturing workstations. Knowl-
edge-based automation of processes. ASME Winter Annual
Meeting, Anaheim, CA, 1992, pp. 77-84.

[7] Gupta SK, Bourne DA, Kim K, Krishanan SS. Automated
process planning for sheet metal bending operations. J Manuf
Systems 1998;17(5):338-60.

[8] Gupta SK, Bourne DA. Sheet metal bending: generating shared
setups. ASME J Manuf Sci Eng 1999;121:689-94.

[9] deVin LJ, deVries J, Streppel AH, Kals HJJ. A CAPP system for
small batch manufacturing of sheet metal components. In: Pro-
ceedings of the 24th CIRP International Seminar on Manufactur-
ing Systems, Copenhagen, 1992. p. 171-82.

[10] deVin LJ, deVries J, Streppel AH, Klaassen EJW, Kals HJJ. The
generation of bending sequences in a CAPP system for sheet
metal components. J Mater Process Technol 1994;41:331-9.

[11] Radin B, Shpitalni M, Hartman 1. Two stage algorithm for rapid
determination of the bending sequence in sheet metal products.
ASME Design Automation Conference, Irvine, CA 1996.

[12] Nnaji BO, Kang TS, Yeh SC, Chen JP. Feature reasoning for
sheet metal components. Int J Prod Res 1991;29(9):1867-78.

[13] Yut G, Chang TC. A study of automated process planning for
sheet metal products. NSF Design and Manufacturing Systems
Conference, January 1993.

[14] Uzsoy R. An experimental expert system for process planning of
sheet metal parts. Comput Ind Eng 1991;20(1):59.

[15] Braibant V, Fleury C. Shape optimal design using B-Splines.
Comput Methods Appl Mech Eng 1984;44:247-67.

[16]

[17]

(18]

[19]

[20]

U. Alva, S.K. Gupta | Robotics and Computer Integrated Manufacturing 17 (2001) 33-47 47

Rajan SD, Budhiman J. Gani L, Topologically-based adaptive
mesh generator for shape optimal design. 32nd Structures, Struc-
tural and Dynamics and Material Conference, 1991. p. 653-63.
Rossen DW, Grosse IR. A feature based shape optimization
technique for the configuration and parametric design of flat
plates. Eng Comput 1992;8:81.

Schramm U, Pilkey WD. The coupling of geometric dimensions,
finite elements using NURBS - A study in shape optimization.
Finite Elements Anal Des 1993;15:11-34.

Lindby T, Santos JLT. Shape design sensitivity analysis and
optimization with an existing associative CAD system. Sympo-
sium on Multidisciplinary Analysis and Optimization, Panama
City, FL, 1994.

Noel F, Leon JC, Trompette P. Shape optimization of
three-dimensional parts based on a closed loop between

[21]

[22]

[23]

[24]

[25]

structural analysis and geometric modeling. Eng Comput 1995;11:
114-21.

Salagame R, Belegundu AD. Shape optimization with p-adaptiv-
ity. Symposium on Multidisciplinary Analysis and Optimization,
Panama City, FL.

Zhang WH, Beckers P, Fleury C. A unified parametric design
approach to structural shape optimization. Int] Numer Methods
1995;38:283-91.

Salagame R. Automated shape optimization using parametric
solid models and p-adaptive finite element analysis. ASME De-
sign Engineering Technical Conference, Sacramento, CA, 1997.
Vajna IS, Schabacker mM, Schmidt IR. General procedure for
parameterisation with 3-D CAD systems. ASME Design Engin-
eering Technical Conferences, Las Vegas, September 12-15, 1999.
Greenberg H. Integer Programming, 1971.

