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Preface 

In the history of technology, many fields have passed from an initial stage of 
empirical recipes to a mature stage where work is based on formal theories and 
procedures. This transition is made possible through a process called "modeling". 

Also Computer Graphics as a separate field of Computer Science makes extensive 

use of formal theories and procedures of modeling, often derived from related 
disciplines such as mathematics and physics. Modeling makes different 
application results consistent, unifying varieties of techniques and formal 
approaches into a smaller number of models by generalizing and abstracting the 
knowledge in Computer Graphics. 

This volume presents a selection of research papers submitted to the conference 
"Modeling in Computer Graphics: Methods and Applications" held at the 
Research Area of the National Research Council in Genoa, Italy, on June 28 - July 
1, 1993. This meeting was the ideal continuation of a previous conference 

organized in Tokyo, Japan, in April 1991. The success and the variety of research 

themes discussed at that meeting suggested to promote a new working 
conference on methods and applications of modeling to be held in Italy two years 
later. 

In response to the call for papers, 45 high-quality original research papers were 
submitted from 16 different countries, 1 from Australia, 1 from Canada, 3 from 

China,5 from France, 3 from Germany, 3 from Israel, 5 from Italy, 6 from Japan, 1 
from Macedonia, 1 from the Netherlands, 2 from Portugal, 1 from Romania, 2 

from Spain, 1 from Switzerland, 2 from the UK and 8 from the USA. The 

amount and distribution of the proposals shows the wide international coverage 
of research in this area. 

After extensive and thorough review, 27 papers were selected for presentation at 
the conference and also for printing in this book. To highlight areas of particular 
importance, 3 additional papers were invited. 



VI 

This volume is divided in two parts: Methods of Modeling and Modeling for 

Applications. The first part includes new advances in modeling tools derived 
from closely related disciplines. It contains the first 6 chapters: Mathematical 

Modeling for Vision and Graphics (Chapter 1), Modeling with Constraints 

(Chapter 2), Modeling of Dynamic Objects (Chapter 3), Geometric Modeling 

(Chapter 4), Surface Modeling as a Creative Tool (Chapter 5), Curve and Surface 

Modeling (Chapter 6). 

Part 2 on Modeling for Applications presents modeling techniques devised for 

specific applications. It includes three chapters: Modeling for Animation (Chapter 
7), Modeling for CIM Applications (Chapter 8) and Modeling for Rendering 
Complex Objects (Chapter 9). 

The conference was promoted by IFIP WG 5.10, under the auspices of TC5 and 

organized by the Institute for Applied Mathematics of the C.N.R. with the 

cooperation of the Research Area of Genova. 

Many people have contributed to the preparation of the conference. First of all we 

would like to thank the authors who submitted papers and the invited speakers, 

secondly we want to thank the members of the conference committees and the 

external reviewers for their efforts in setting the standard for the quality of papers 

in this volume. Our special thanks are due to Marinella Pescaglia and Sandra 

Burlando for running the conference secretariat so effectively and to all assistants 

and students of the I.M.A. Computer Graphics group for their collaboration to 

the conference organization. 

Bianca Falcidieno Tosiyasu L. Kunii 
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Area Guide Map Modeling by Manifolds and 
CW -Complexes 

TOSIYASU L. KUNII and SHIGEO TAKAHASHI 
Department of Information Science, Faculty of Science 
The University of Tokyo, Tokyo, 113 Japan 

ABSTRACT 

From ancient times, area guide maps have been drawn intuitively without appropriate 
modeling. Understanding such maps and developing guide map CAD require clear mod­
eling. This paper presents the model of area guide maps using manifolds and CW­
complexes. The process of drawing an area guide map is modeled as that of creating 
a manifold. First, we represent the surface shape of an area as a CW-complex. Then, 
we glue the CW-complexes representing the areas into a manifold. Surface shapes in the 
overlaps are blended by a partition of unity. The mechanism to project a surface shape 
from multiple views is installed. Finally, the area guide map is generated automatically. 

Keywords: area guide map modeling, CW-complexes, manifolds, partition of unity 

1. INTRODUCTION 

In drawing the area guide maps, what features are extracted to characterize the land un­
dulations? We will first extract the characteristic points such as mountain tops, mountain 
passes, and lakes. These characteristic points can be regarded as peaks, passes, and pits, 
which are called singular points. With singular points, the land surface can be described 
as a CW-complex (Shinagawa, Kergosien and Kunii 1991) . The guide maps feature these 
characteristic points. 

Further, the area guide maps are not described by the projection from only one view 
point, but by the projections from multiple view points. For example, a mountain is 

usually described as seen from the foot to show the mountain skyline clearly. Lakes are 
described as seen from heights not to get the scene barred by the surrounding mountains. 
In this way, the areas are described separately with the different views, and then put 
together into a guide map in a way similar to gluing charts together to obtain a manifold. 
Each area can be considered as an open neighborhood, and the gluing process can be 
considered as a coordinate map. In the following, this paper assumes that area guide 
maps are constructed by these processes. 
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When,we model area guide maps by CW-complexes and manifolds, first, we code the 
surface shapes of the individual areas separately. In this part, we use the Morse the­
ory (Milnor 1963) and the Reeb graph (Reeb 1946) to code each surface shape as a 
CW-complex. Then, we glue these surface shapes together to construct the whole map. 
In the overlapping areas, the surface shapes are blended in an appropriate way with a 
partition of unity. The projection from multiple views are also realized for both the 
perspective projection and the parallel projection. Finally, the area guide maps are auto­
matically generated. 

2. IMPLEMENTION OF MANIFOLDS IN COMPUTERS 

In this section, we explain how to implement the concept of manifolds in computers. 

2.1 Concept of Manifolds 

Let's have'a review on the definition of manifolds(See Fig. 1). Readers can also refer to 
some books (Wasserman 1992) . A manifold consists of an atlas that is a set of charts. 
A chart is a pair of an open neighborhood and a coordinate map. These notations are 
indicated in Fig. 1. We denote the open neighborhood and the coordinate map as Ui 

and 'Pi respectively, where i is the index number. The charts are represented as (Ui , 'Pi), 
and the atlas is the set {( Ui , 'Pi) liE I} where I is a set of integer numbers. Each 
open neighborhood Ui is mapped from the global coordinate system to the local by the 
coordinate map 'Pi. 

2.2 Implementation of Manifolds 

We explain how to implement the manifolds in computers. Since manifolds are constructed 
from open neighborhoods and coordinate maps, we first consider how to implement these 
two elements. 

The open neighborhood Ui is represented as an inverse image of a 3-D local coordinate 
system. The surface sh~pe in the local coordinate system 'Pi(Ui ) is expressed by the 
surface equation Zi = fi(Xi, Vi)' The sUliace equation is assumed to be continuous and 
differentiable. There exists a mapping from a point Pi on the local (Xi, y;)-plane to a 
height value /;. 

The coordinate map 'Pi is represented as a 4 x 4 matrix Mi in the homogeneous coordinate 
system. A 4 x 4 matrix includes a translation with a scale transformation and a rotation. 
We also assume that we can change the charts smoothly over the global coordinate system. 
Later, this is defined as cr-compatibility formally. This assumption enables us to define 
an atlas as a collection of charts. 
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global coordinate' system 

VI . 
..............•......... 

...... y 
.... qJi .. 

\ ZI 

x 

*" local coordinate system 

Fig. 1. The concept of a manifold 

Atlas 

index surfaces in nei'ghborhood coordinate maps 
0 '::0 = fo(1:0, Yo) <Po (lv10) 
1 '::1 = !J(.rl, yll <PI (MIl 
2 '::2 = 12(,1;2. Y2) <P2 (J1h) 

: : 

Table 1. An atlas represented as the array of charts in computers 

Now we are ready to define the data structure of a chart and an atlas. An atlas, a set of 
charts, is stored as an array in computers. Table 1 illustrates an atlas in array structure. 
The elements of the atlas as the array correspond to the charts. Each array has the surface 
equations of individual local coordinate systems, and the coordinate maps represented as 
4 x 4 matrices. 

2.3 Coordinate Transformations 

First, we define the Cr-compatibility as follows (Wasserman 1992) . 

Definition 1 (Cr-Compatibility) A pair of charts (Ui , <Pi) and (Ui , <Pi) are said to be 
cr -compatible -if the following conditions are satisfied. 
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Fig. 2. The coordinate transformation in Ui n Uj 

1. Ui n Uj ¥= 0. 

2. The coordinate transformations 'Pj 0 'Pi1 and 'Pi 0 'Pj1 is Cr on Ui n Uj . 

Thus, to realize the compatibility among charts is equivalent to implementing the coordi­
nate transformations. In our system, the product of two corresponding matrices represents 
the coordinate transformation. Fig. 2 illustrates the coordinate transformation in Ui n Uj • 

The coordinate transformation 'Pj 0 'Pi1 is represented as MiMT1. The same is true for 
the reverse transformation. In this way, the coordinate transformation in the overlapping 
area of two open neighborhoods is implemented. 

3. SHAPE DESCRIPTION IN THE CHARTS 

In describing the land undulations in each area, we pay attention to the characteristic 
points such as peaks, passes, and pits. These points are called the singular points. This 
section describes the surface codings by singular points. From the Morse theory, we can 
regard the surface of the area under consideration as a CW-complex. 

3.1 Morse Theory 

First, we introduce the Morse theory as a tool of surface coding with singular points. 
Readers can refer to the book (Milnor 1963) for more details. 
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Morse function 

I 
........................................... 2............... apeak 

I · ... ········ ...... 2.·· .. ······· •..... · ......... apeak 
I 1-........... _ ........ . 

a pass 

a virtual pit 

(a) (b) 

Fig. 3. (a) The example of a mountain shape and (b) its Reeb graph 

Theorem 2 (Morse Theory) Let M be a compact, smooth, and closed manifold, and 
f be a Morse function of M. If the indices of singular points are rl, r2, "', and rk 
respectively, M is homotopy equivalent to the finite CW-complex that is decomposed into 
a rl-cell, a r2.-cell, "', and a rk-cell. In other words, the following is satisfied; 

!vI ~ er1 U erz U ... U ero . 

Consider a mountain shape with a virtual pit and put the Morse function as illustrated 
in Fig. 3(a). Along the direction of the Morse function, we can scan the singular points 
whose indices are 2, 2, 1, and O. Hence, the surface can be decomposed into two 2-cells, 
one I-cell, and one O-cell according to the Morse theory. Based on the Morse theory, the 
compact smooth surface can be regarded as a CW-complex. 

3.2 Reeb Graph 

The Morse theory tells us the number of decomposed cells and their dimensions, but 
cannot tell us how to glue the cells. To fill the lack of this information, we use the Reeb 
graph. The definition of the Reeb graph is as follows (Reeb 1946) . 

Definition 3 (Reeb Graph) Let f : M -> R be a function on a compact manifold M. 
The Reeb graph is the quotient space of the graph of f in M x R by the equivalence relation 
given below : 

(Xl, f(XI)) ~ (X2' f(X2)), 

which holds if and only if f(Xr) = f(X2 ) and Xl, X2 are in the same connected component 
of f-I(f(XI)). 

Fig. 3(b) presents the Reeb graph of the mountain shape. With the Reeb graph, the 
structure of the cells is determined. 
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3.3 Morse Theoretical Coding 

The Morse theoretical coding is presented by (Shinagawa, Kergosien and Kunii 1991) 
In this coding, a simple height function is used as a Morse function. Along the height 
function from the top to the bottom, we can describe the dimensions of cells and a way to 
glue them to the existing surface. Since the cross sectional structure of the surface changes 
at the singular points, the Morse theoretical coding is sufficient to describe the changes 
of cross sectional contours. The Morse theoretical coding represents also the inclusion 
relations of the contours by tree struetures. To visualize the topological structure of 
surfaces, the Morse theoretical coding uses the icon representation of the Reeb graph. In 
this way, cells are glued along the height funetian to construct the whole surface. This 
paper uses this sUlface coding to describe the surface shapes of the charts. 

4. HOW TO OVERLAP THE CHARTS 

As mentioned earlier, the process of drawing area guide maps amounts to creating an 
atlas from the charts. Since the surface shapes are described individually in the charts, 
different surface shapes can exist in the owrlapping areas. Hence, our next problem is 
how to overlap the surface shapes in the charts. 

4.1 The Partition of Unity 

To solve this problem, we blend the surface shapes in the overlapping areas. Here, surface 
shapes must change smoothly over the whole global area. For this blending, we use the 
partition of unity. 

The definition of the partition of unity is as follows (Hirseh 1976) . 

Definition 4 (Partition of Unity) We define the support Supp f of a continuo'us real 
valued function f to be the clOSU1'e of f- 1(R - 0). Let AI be a C manifold, 0 ::; r ::; 00, 

and U = {Ui hEA be an open cover. A C r pal·tition of unUy subord'inate to U is a fam-ily 
of cr maps Ai : 111 -> [0, 1], i E A such that the following conditions hold: 

Supp Ai CUi (i E A), 

{Supp Ai }iE'\ ,is locally finUe, 

and 

L Aj(.r) = 1 (x E AI). 
iEA 

The following functions are examples of the partition of unity. 
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Zi"' hi(Pi) 

G§b === 
A(t) B(t) 

1 ...................................... . 

o ". ..WI 
.............................. 

(a) (b) (c) 

Fig. 4: The blending functions for the partition of unity: (a) the shape of the blending 
function A(t), (b) the shape of the blending function B(t), and (c) the shape of the 
blending function hi(Pi) 

• Bernstein basis function 

• B-spline basis function 

• Gaussian basis function 

The next step is to construct the partition of unity in our case. 

4.2 Blending of Surface Shapes 

The approximations for blending of sUlface shapes are explained in (Hirsch 1976) . First, 
we define the exponential function A(t) indicated below . 

. 4(t) = { .~l e f 

t:SO 
O<t 

The shape of this function is shown in Fig. 4(a). You can see that this function is Goo. 

We define the second function B(t) from the first as follows. 

A(I) { 
0 t :S 0 

O<t<1 
1 :S t 

The shape of this function is shown in Fig. 4(b). After simple calculations, we can see 
that this function is Goo. 

Then, we define the function Gi(t) in each local coordinate system 'Pi(Ui), 

Gi(t) = B( bi -t) 
bi -ai 
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where the real numbers aj and bj are defined in each local coordinate system and satisfy 
the condition 0 < ai < bj < 1. We also define the areas V; and Wi as 

V; {(Xi, Yj, zJ E Udvxr + y'f ::; ad 
Wi {(Xi, Yi, z;) E udlcr + yl < bi} 

Let Pi be a point on the (Xi, Yj )-plane in the local coordinate system. The function hi is 
defined as 

Pi E vi 
Pi EWj-V; 
otherwise 

in each local coordinate system. The shape of hi is shown in Fig. 4( c). With this definition, 
each point Pi on .the local coordinate system has the weight hit]);) for surface blending. 

We are now ready to consider how to blend the surface shapes in the charts. Let P be a 
point on the (x, y)-plane in the global coordinate system, and let Ip be a set of indices 
{i I]) E Ui}' If the open neighborhood Uj includes the point p, the set Ip includes the 
index i. The equation of the surface in the global coordinate system can be defined as, 

f(x,y) = L:iElp hj(Xi,Y()' M;i,YJ, 
L:iEip hi Xi, Yi 

where Xi = tpi(X), Yi = tpi(Y). Fig. 5(a) helps us to comprehend this overlapping. As you 
see, the equation of this surface is Coo. In this way, the surface shapes can be blended 
with the partition of unity. 

Actually, the blending defined above is homotopic. The homotopy of the blending is 
defined in Fig. 5(b). Thus, the partition of unity among the charts is defined as the 
homotopy among the charts. 

4.3 Weight Assignment 

Our method still gives the same weights to all of the charts. We can assign different 
weights to the charts for the control of the height values. Let Wi be the weight parameter 
of the chart (Uj, tpi). The equation of the surface in the global coordinate system can be 
modified as follows. 

where Xi = tpi(X), Yi = tpi(Y)· 

The weight parameters give us flexibility to blend smfaee shapes. For example, we suppose 
that each chart has the different reliability in the exactness of the parts of the chart. We 
can assign the larger weights to the more reliable parts of the chart for more accurate 
blending. 



f(t) f(l) 

f(~ 

iii 

g(~l) 
g(t) 

=F(t, 1) 

(b) 

Fig. 5. (a)The blending of the surface shapes, and (b) the homotopy of blending 

4.4 Restrictions in the Overlapping Areas 
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In blending the surface shape in the overlapping areas, it is possible that new singular 
points appear or existing singular points disappear. Since we code the topological struc­
ture with singular points, we need to maintain the singular points in any glued surface. 
For this purpose, we show that it is sufficient to keep the sign of the gradient in the fixed 
direction in the overlapping areas. If this condition is satisfied, no singular points appear 
in the overlapping areas because the sign of the partial derivative in this direction does 
not become o. 

To satisfy this restriction, we define rules as followings. 

1. Any point on the (x, y)-plane in the global coordinate system is covered with three 
or less open neighborhoods(See Fig. 6(a)). 

2. There exists a partial order between the two charts that have the overlapping area 
with each other. This paper denotes the partial order between the two charts 

as (Ui ,9i) >- (Uj ,9j). Fig. 6(b) represents the example. In this case, the par­
tial order relations are (U1 , 91) >- (U2 , 92), (U1 , 91) >- (U3 , 93), (U1 , 9d >­
(U4 , 94), (U2 , 92) >- (U4 , 94), and (U3 , 93) >- (U4 , 94). 

3. Let Ui and Uj have the partial order (Ui , 9i) >- (Uj , 9 j). We define one direction in 
the overlapping area Uj n Uj . The following rules are satisfied in this overlapping 
areas . 

• (Ui ,9i) and (Uj , 9j) have the sanle sign "-" of the gradient. 
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possible impossible 

(a) 

(b) 

blended sul1'ace 

ove rlapping area 

(c) 

(U4, ({>4) 

Hasse diagram 

Fig. 6. The rules for restrictions in the overlapping areas . 

• Let p = (.r, y) be a point of the (x, y)-plane in the global coordinate system. 
Here, fi(P) > fj(p) is satisfied where f;(p) and h(p) is the height values in the 
open neighborhoods Ui and Uj respectively. Fig. 6(c) indicates this rule. 

These rules satisfy the initial restriction in the overlapping areas. Our system supports the 
interface to satisfy these rules for gluing the charts with fixed gradient in the overlapping 
areas. 

5. PROJECTIONS FROM MULTIPLE VIEWS 

Area guide maps are generally drawn based on the projections from multiple views. Moun­
tains are seen from the oblique views. Lakes are seen from the top. From such consider­
ations, each chart has its own view point or direction. Hence, our next problem is how 
to define the continuous and differentiable views between the charts. In the following, we 
will discuss this problem in the following two cases. One is the perspective projection and 
the other is the parallel projection. 



/ 

/ 

E7 q 7 

~c:~ £'3>7.:-
Fig. 7. View blending in perspectiye projection 

5.1 Perspective Projection 
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In the case of perspective projection, the view point and the reference point are crucial 
because these two points determine the view line. First, we make some assumptions. 

• The reference point is on the blended surface in the global coordinate system. 

• Each chart (Ui, 'Pi) has its own view point t'i. 

• The view plane is parallel to a plane :: = 0 and has an intersection point with the 
view line. 

Then, we can find the desired view point in the same way a<; blending the surface shapes 
of the charts. In Fig. 7, given a reference point q, let p be the vertically projected point 
on a plane z = 0 from the reference point q. By the partition of unity, the view point v 

of the reference point q is defined as 

where Ip = {i I p E Lq, Xi = 'PiCr), and Yi = 'Pi(Y)' 

Fig. 7 represents this blending of view points in perspective projection. Since edge points 
are continuous and differentiable, we can find the desired view point through this equation. 

We can also assign the weight parameters to the view points. Let the chart (Ui , 'P;) have 
the weight parameter 10: of perspective projection. The view point is modified as 

". I 10', h·(x· y.) . v· 
( . ) _ utE p t t t, 1 t 

V.'C,y - ,.) , 
EiElp Wi . hj(Xi, Yi 

where Ip = {ilp E U;}, Xi = 'PiCr), and Yi = 'Pi(Y)· 
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Fig. 8. The angle with two parameters in parallel projection 

5.2 The Parallel Projection 

Once the view direction is fixed, the way of parallel projection is determined. Hence, 
our concern is only the direction of the view line. In order to determine the direction of 
parallel projection, the unit vector from the origin to the unit sphere is considered. We 
make some assumptions as followings . 

• Each chart (Ui, Ifi) has its own direction Ui, which is the above unit vector. 

• The unit vector Ui has the form 

Ui = (cos0i cos <Pi, sin0icos<Pi, sin <Pi), 

with two parameters 0 i and <Pi(See Fig 8). 

The problem left is how to find the continuous and differentiable functions of these two 
parameters 0 i and <Pi. We can also use the partition of unity to find the desired angles. 
The view direction U is defined as 

where 

U = (cos0 cos <P, sin0cos<p, sin<p), 

o LiEf, hi(Xi, Yi) . 0 i 
LiEf. hi(Xi, Yi) 

<P = LiEf. hi(Xi, Yi) . <Pi 
LiEf, hi(Xi, Yi) . 

Let w" be the weight paranleter of the chart (Ui, Ifi) of parallel projection. 
parameter, the angles 0 and <P are represented as 

o LEf, w;' . hi(Xi, Yi) ·0i 

LiEf, w:' . hi(Xi, Yi) 
LiEf. w:' . hi(Xi, Yi) . <Pi 

LiEf. w;' . hi(Xi, Yi) 

With this 
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Fig. 9. The map around the Lake Ashinoko 

As we have seen, we can find the desired view, and surface shapes are projected from 

multiple views. 

6. EXAMPLES 

We apply our model to the automatic generation of area guide maps. Fig. 9 shows the 
map around the Lake Ashinoko, which is a famous tourist area having a scenic crater lake. 
Fig. 10 and Fig. 11 are the results of the generation as the candidates of the basic image 
to draw the aJ'ea guide maps around the lake. Fig. 10 shows the images of perspective 
projection with one view point and with multiple view points. Fig. 11 shows the images 
of parallel projection with one direction and with multiple directions. In Fig. 10(a) and 
Fig. l1(a), the mountain obstructs the lake because the land shape is projected from one 
view point or direction. In Fig. lO(b) and Fig. l1(b), on the contrary, the whole lake can 
be seen because the area including the lake has a different view point or direction. 

7. CONCLUSIONS 

This paper presents the model of area guide maps based on the concept of manifolds. 
The shape description of the charts with CW-complexes and manifold is explained. The 
blending method of surface shapes and views is represented. Automatic generation of 
area guide maps is also implemented. 
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(a) 

(b) 

Fig. 10: The image of the perspective projection with (a) one view point and (b) multiple 
view points 



19 

(a) 

(b) 

Fig. 11: The image of the parallel projection with (a) one view direction and (b) multiple 
view directions 
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Our ,esearch directions are as follows: 

• Reconstruction of the global Reeb graph from the local 
In gluing the charts, we set the restrictions of fixed gradients. Under this condition, 
it is possible to reconstruct the global Reeb graph from the local. 

• Application of this model to the non-Cartesian coordinate system 
In area guide map modeling, the global coordinate system is a simple Cartesian 
coordinate system. For example, the modeling offacial expressions needs the curved 
coordinate system to represent a human face properly. 

• Animation with blended views 
The view blending enables us to animate the change of the vision. Projections of 
teeth from multiple views are good examples, because front teeth and back teeth 
have the different views. 
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The Elementary Equation of the Conjugate 
Transformation for the Hexagonal Grid 
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ABSTRACT: In this paper the conjugate transformation of the hexagonal grid is described 

and its elementary equation is defined. Two strategies are used to extend a matrix morphology 

into the conjugate transformation. First, the conjugate classification represents 128 structuring 

elements of the kernel form of the hexagonal grid to a tree of six levels. Each node of a given 

level is a class of structuring elements with a calculable index. Two conjugate nodes of the same 

level with the same index can be distinguished by two conjugate sets of 2 * n classes respectively. 

Second, by considering each element which has six neighbours as a state for any Boolean matrix 

of the hexagofral grid, it can be transformed into an index matrix relevant to a specific level of 

the classification. From the index matrix, two sets of Boolean matrices (feature matrices) can 

be constructed with the same number of classes on the level. Depending on simpler algebraic 

properties of feature matrices, dilation and erosion can be unified to one operation, reversion, 

in the elementary equation. The reversion has a self-duality property with a space of 22• n 

functions in which only a total of 2nH functions are dilation and erosion. In addition, several 

images generated by applying morphological operations using an implemented prototype of the 

conjugate transformation and their running complexities compared with a matrix morphology, 

are illustrated. Owing to the class representation, the new scheme has more than a 4-8 speed-up 

ratio for the general applications. 

Key words: cellular automata, matrix mathematical morphology, matrix Boolean algebra, 

image analysis, structuring elements, elementary equation, conjugate classification, conjugate 

transformation 

Introduction 

In the past three decades, mathematical morphology has been developed and a number of basic 

theorems have been proved by Hadwiger (1957), Matheron (1975) and Serra (1982). A con­

cise treatment of the algebraic properties of erosion, dilation, opening and closing for binary 

and gray-scale N-dimensional sets, has been taken placement by Haralick et al.(1988) and more 

recently, a matrix morphology has been defined and developed by Wilson (1992). From the 
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algeb~aic point of view, a matrix morphology is an extensive Boolean matrix algebra relative to 

a state set of structuring elements. 

It is well-known that dilation and erosion are two elementary equations of the mathematical 

morphology. Depending on the two elementary equations and structuring elements, other func­

tions of mathematical morphology can be constructed, for example opening and closing. There 

is a duality relationship between dilation and erosion in the form of the complementary and 

transpose operations. Under traditional schemes of mathematical morphology, if we decompose 

a complex operation, then it can be reduced to a sequence of dilations and erosions and a state 

set of structuring elements. In such schemes, dilation or erosion will increase or decrease the 

number of I-elements in the matrix monotonicly for any Boolean matrix and a given structuring 

element. If we let X be a matrix of a binary image, 0 be a 0 matrix and 1 be a 1 matrix, then 

the convergent ranges of dilations and erosions can be shown in Figure 1. 

Figure 1: Convergent Ranges of Dilations and Erosions 

From the linguistic point of view, dilation and erosion are preferable for describing the oper­

ations related to I-elements rather than O-elements which are usually regarded as background. 

In this paper, a new scheme for describing matrix morphology, the conjugate transformation, 

and its elementary equation are defined and investigated on the hexagonal grid. The conjugate 

transformation is an extended structure of a matrix morphology. It manages a state set of 

structuring elements as two conjugate class sets, each set containing the same number of classes. 

If a state of structuring elements is in the k-th class, then its conjugate state (reversing all 

elements of the state from 1 to 0 or 0 to 1) must be in the k-th conjugate class of structuring 

elements. Using Boolean matrix operations, for any matrix, each class of structuring elements 

can decompose the matrix to be a feature matrix. Two class sets of structuring elements are 

represented to two sets of feature matrices. Depending on the feature matrices and the original 

image, Boolean matrix operations can be carried out. 

For the conjugate transformation, we would like to restrict our representation to the hexag­

onal grid since we have already established the conjugate classification of the kernel form of the 

hexagonal grid (Zheng and Maeder 1992). Comparable representations for other regular plane 

lattices also exist (Zheng 1993 thesis). 
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We use two strategies to extend the Boolean matrix scheme of mathematical morphology to 

the conjugate transformation. Firstly, for any Boolean matrix X of the hexagonal grid, an el· 

ement of X has the kernel form composed of the given element and six neighbouring elements 

around it. The kernel form is a structuring form, the given seven elements are a state of the 

kernel form, and the state is a structuring element (a total of 128 states in the kernel form). 

Because each element and six neighbouring elements of X can correspond to the centre element 

and six neighbourings of the kernel form, each element of the matrix has a state and the matrix 

is extended to a state ·matrix. The state matrix can be organised by a classification. Then, 

each class of the state matrix can be transformed to a Boolean matrix (or a feature matrix) 

with the same domain as X. Since centre elements of the kernel form of X can be assigned to 

o or 1, there are two fundamental groups of feature matrices: a matrix (or a conjugate matrix) 

corresponds to a feature matrix of a class of the state matrix in which their centre elements are 

equal to 1 (or 0). Using matrix representation, one class of structuring elements on X maps 

correspond to one feature matrix. Therefore, whole classes of the conjugate classification on X 

correspond to two feature matrix sets. Secondly, we combine dilation and erosion to be a unique 

operation: reversion. In order to reverse a class (or classes) of structuring elements from X, it 

is convenient to use the elementary equation to reverse each element of X corresponding to a 

matrix (or matrices) of two feature matrix sets on X. 

The elementary equation has self-duality and balanced representation for both 1 and 0 structur­

ing elements. Since the elementary equation can increase and decrease both 0 and 1 elements of 

X, besides typical monotonic functions of dilation and erosion, other functions of the elementary 

equation have recursive or cyclic properties. 

This paper is composed of five sections. In section one, the essential relations between the 

conjugate classification and respected matrix representation for each class are explained and 

defined. In section two, the basic algebraic properties of feature matrices are investigated. In 

section three, the elementary equation of the conjugate transformation is defined and analyzed. 

In section four, several sample cases of applications, their timing measurements and speed-up 

ratios (such as the edge detections, noise filters and dynamic patterns generated by an im­

plemented prototype of the conjugate transformation based on the elementary equation and a 

matrix morphology), are illustrated; and in section five the main contributions of the paper are 

summarised. 
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1 Matrix Representations of the Conjugate Transformation 

The hexagonal grid plays a significant role in two dimensional image domains. How to represent 

the fundamental grouping of seven adjacent grid points (the kernel form) for the hexagonal grid 

is a key issue of any descriptive and analytic task on such images. In order to satisfy differ­

ent circumstances (such as cellular automata, mathematical morphology and parallel Boolean 

logic computation), several representations for the kernel form of the hexagonal grid applica­

ble to the binary images, have been developed. Examples are Boolean logic (look-up table), 

symmetric function (Gardner 1971), crossing number (Preston and Duff 1984, pp43-44), Golay 

transformation [Golay 1969] and conjugate classification (Zheng and Maeder 1992). 

1.1 The Conjugate Classification of the Kernel Form 

The kernel form of the hexagonal grid is a point with six neighbouring points around it. When 

each point is allowed to assume values of only 0 or 1, there is a total of 128 states corresponding 

to unique instances of the kernel form. From the state set of 128 states and the inclusion relation 

of set theory, we can use a tree of six levels to represent the conjugate classification. Each level 

contains the same of the 128 states and each node is a subset of states. Any two nodes in the 

same level do not contain the same state. If we let the 128 state set be the root, then the first 

level can be divided into one state set G and one conjugate state set G dependent on the value 

of the centre point (lor 0). The second level of 14 nodes {pG,p G} can be distinguished by p, 

the number of connections, 0 ~ p ~ 6, that is, the number of six neighbouring points with the 

same value of the centre point. The third level of 22 nodes {~G} and UG} is related to q which 

is the number of branches, 0 ~ q ~ 3 (the number of runs of the six neighbouring points with 

the same value of the centre point in each state). The fourth level of 28 nodes UGS } and HGS } 

has the property of rotational invariant in which any two states in a node can be congruent by 

rotation, s denotes the number of spins, s E {O, 1}. The fifth level of 128 leaves {~Gn and {~Gn 

has the simple relation to the respected state, and r denotes the number of rotations 0 ~ r ~ 6. 

In short, the conjugate classification is a tree of six levels: one root, 2 nodes, 14 nodes, 22 nodes, 

28 nodes and 128 leaves. Each node of the tree is a class of states with 1-5 calculable parameters. 

We would like to restrict our investigation to what we term the fundamental structure of the 

conjugate classification: that is, the substructure of the tree from root to the third level of 22 

nodes {~G} and {~G}. We would expect the entire tree structure would have similar algebraic 

properties to the fundamental structure. The fundamental structure of the conjugate classifica­

tion is shown in Figures 2 and 3, where each node contains one state from a rotation invariant 

class as a representative. 
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~G= 0 

~G = 0 

~G= ~G= 0 

~G= 1 

Figure 2: The 11 classes of the Fundamental Structure of the Kernel Form 

1.2 The Feature Matrix of the Conjugate Classification 

Since the conjugate classification is only a representation for the kernel form of seven points, it 

is necessary to extend the relations from the kernel form to provide two sets of feature matrices. 

This is done by following the two steps discussed below. 

First, let X be a Boolean matrix on the hexagonal grid, X[i,j] E {O, I} be an element at 

position [i,j] of X, and X;,j be a state in which X[i,j] is the centre element of the kernel form. 

If all seven elements of X;,j have defined positions in X and fixed values (they are well-defined 

in X) then X;,i is a regular kernel form. However, if X[i,j] is well-defined and one of its neigh­

bouring elements is not well-defined (Le. does not have a defined position in X and a fixed 

value), then it is a border element of X and Xi,i is an irregular kernel form. 
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Figure 3: The 11 conjugate classes of the Fundamental Structure of the Kernel Form 

Definition 1.2.1 For any irregular Xi,j, if X[k, I] E Xi,j and X[k, I] is not a well-defined 

element of X then for 'IX[k, I], let 

XI','] ~ { o ifX[i,j] = Ii 
ifX[i,j] = o. 

From the above extension, each Xi,j E X becomes the regular kernel form. 

Second, let {G;}~l~ and {Gj}ji1 be two node sets in a v-th level of the conjugate classifi­

cation and let a node Gi have a conjugate node Gi and vice versa. Having selected an element 

(a node) from {Gd or {Gj } as a class of structuring elements, it is natural to establish a Boolean 

feature matrix to represent a class of structuring elements as follows. 

For any X, let Gk(X) (or Gk(X» be a feature matrix of Gk (or Gk) and Gk(X)[i,j] (or 

Gk(X)[i,j]) be the [i,j]-th entry (element) of the feature matrix. (Definition 1.2.2) 



Definition 1.2.2 For any [i,j] entry of Gk(X) or Gk(X), let 

or 

{ 
1 ifXi,iEGk; 

Gk(X)[i,j] = 0 
otherwise; 

_ { 0 
Gk(X)[i,j] = 1 

ifXi,i E Gk; 

otherwise. 
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Given the definition of a feature matrix, all elements of the hexagonal grid are assumed to have 

proper values even for any entry of an uncertain element beyond the border of X. It is convenient 

to describe two constant matrices to be Go(X) = 0 and Go(X) = 1 respectively. 

Proposition 1.2.3 For any X on the hexagonal grid, there are two feature matrix sets for each 

level in which one matrix set is composed of 2, 8, 12, 15 or 65 feature matrices corresponding to 

1 through 5 levels of the conjugate classification respectively. 

Proof: By the classification, there are two n( v) classes on the v-th level, n( v) = {I, 7, 11,14,64}, 

1 ::; v ::; 5 corresponding to the same number of non-constant matrices that is, 

{Gi(X)}?l~) or {Gi(X)}?l~),n(v) E {I, 7, 11, 14,64} respectively and only one constant matrix 

can be put in a feature matrix set. 0 

2 Algebraic Properties of the Feature Matrices 

2.1 Operations of the Feature Matrices 

In order to carry out Boolean matrix operations, it is necessary to extend three elementary 

Boolean operations ( -, ,n, U or NOT, AND, OR) to matrix descriptions. 

Definition 2.1.1 For three Boolean matrices X, Y and Z, 

X -,Y, ifV[i,j],X[i,j] = -,Y[i,j]i 

X Y n Z, ifV[i,j], X[i,j] = Y[i,j] n Z[i,j]i 

X YUZ, ifV[i,j],X[i,j]=Y[i,j]UZ[i,j]. 

For a given level, the number of the feature matrices, n( v), is constant so this is simply denoted 

by n. 

Proposition 2.1.2 For any matrix X, suppose G(X) = Ui'=oGi(X) and G(X) = n~OGi(X), 
then 

G(X)[i,j] = { :[i,j] 
if X[ i, j] ca.n be well-defined; 

otherwisei 
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_ .. {X[i,i) ifX[i,i) can be well-defined; 
G(X)[l,J) = 

1 otherwise. 

Proof: {Gk(X)}~=l (or {Gk(X)}~=l) is made of a complete set of feature matrices for all 1-

elements (or O-elements) of X. For any element X[i,i), if the state of Xi,j E Gk (or Gk), then 

there is one I-element (or O-element) on Gk(X)[i,i) (or Gk(X)[i,i)), since all 1 elements (or 0 

elements) of X have this property and so they can be regenerated by applying the 0 R operation 

(or AND operation) on feature matrices of Gk(X) (or Gk(X», 1 ~ k ~ n. For any entry of a 

non-well-defined element, it has been assumed to be 0 in each entry of G,,(X) or to be 1 in each 

entry of Gk(X). 0 

Corollary 2.1.3 For any X, G(X) and G(X), 0 C G(X) C X c G(X) c 1. i.e. 

G(X) G(X) n G(X)j 

X XUG(X) 

XnG(X)j 

G(X) G(X) U G(X). 

Corollary 2.1.4 For any X, if we ignore all elements beyond the border of X, or all elements 

of X each element can have the regular kernel form, and so 

X = G(X) = G(X). 

Corollary 2.1.5 For a general condition, if we have to determine an element beyond X on the 

grid or X, there is an irregular kernel form then 

X f:. G(X) f:. G(X). 

To generate any Boolean matrix from its feature matrices is a useful property. It makes it pos­

sible to use two conjugate sets of feature matrices to represent a Boolean matrix equation in a 

more convenient form to satisfy multi-requirements of applications. 

Using three operations of Boolean matrix, the conjugate operation - can be investigated in 

detail. 

Proposition 2.1.6 For two forms 01 feature matrices Gi(X) and Gi(X), the conjugate symbol 

- reverses both a feature matrix and the original matrix, 

Gi(X) 

Gi(X) 

..,Gi(",X)j 

..,Gi("'X). 

(1) 

(2) 
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Proof: Because each 0 element of G\(X) describes the i-th class of a 0 element in X, the 

operation of ..,X changes all 0 elements of X to be 1 elements on which the feature matrix of 

the i-th class of 1 elements, can be calculated. Since each 1 element of Gi ( ..,X) describes a 

corresponding 0 element of Gi(X), another.., operation has to be performed. The conjugate 

operation reverses both a feature matrix and the original matrix and so it is a double reversing 

operation. 0 

2.2 The Properties of the Feature Matrices 

Using the elementary operations on Boolean matrices, more detailed operations of feature ma­

trices can be investigated. To illustrate the operations on two feature matrices, we have four 

groups of equations. 

Proposition 2.2.1 For any Gi(X) and Gj(X), 

Gi(X) n Gj{X) { 0, i =F jj 

Gi(X), i = j; 
(3) 

Gi(X) n ..,Gj(X) { Gi(X), i =F j; 

0, i = j; 
(4) 

..,Gi(X) n Gj{X) { Gj(X), i =F j; 

0, i = j; 
(5) 

{ ? i =F j; 
..,Gi(X) n ..,Gj(X) 

., 

..,Gi(X), i = j; 
(6) 

{ ? i =F j; 
Gi(X) U Gj(X) 

., 
Gi(X), i = j; 

(7) 

Gi(X) U ..,Gj(X) { ..,Gj(X), i =F jj 

1, i = j; 
(8) 

..,Gi(X) U Gj(X) { ..,Gi(X), i =F j; 

1, i = j; 
(9) 

..,Gi(X) U ..,Gj(X) { 1, i =F j; 

..,Gi(X), i = j. 
(10) 

Proposition 2.2.2 For any Gi(X) and Gj(X), 

Gi(X) U Gj(X) { 1, i =F jj 

Gi(X), i = j; 
(ll) 
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Gi(X) U -,Gj(X) 
{ G;(X), i =I jj 

(12) 
1, i = jj 

-,Gi(X) U Gj(X) { Gj(X), i =I jj 
(13) 

1, i = jj 

-,Gi(X) U -,Gj(X) 
{ ~Gi(X), i =I jj 

(14) 
i = j. 

Gi(X) n Gj(X) 
{ ~i(X)' i =I jj 

(15) 
i = jj 

Gi(X) n -,Gj(X) 
{ -,Gj(X), i =I jj 

(16) 
0, i = jj 

-,Gi(X) n Gj(X) 
{ -,Gi(X), i =I jj 

(17) 
0, i = jj 

-,Gi(X) n -,Gj(X) { 0, i =I jj 
(18) 

-,Gi(X), i = j. 

Proposition 2.2.3 For any Gi(X) and Gj{X), 

Gi(X) n Gj(X) Gi(X)j (19) 

Gi(X) n -,Gj(X) o· , (20) 

-,Gi(X) n Gj(X) 7; (21 ) 

-,Gi(X) n -,Gj(X) -,Gj(X)j (22) 

Gi(X) U Gj(X) Gj(X)j (23) 

Gi(X) U -,Gj(X) 7· (24) ., 

-,Gi(X) U Gj(X) 1· , (25) 

-,Gi(X) U -,Gj(X) -,Gi(X). (26) 

Proposition 2.2.4 For any Gi(X) and Gj(X), 

Gi(X) n Gj(X) Gj(X)j (27) 

-,Gi(X) n Gj(X) o· , (28) 

Gi(X) n -,Gj(X) 7· (29) ., 

-,Gi(X) n -,Gj(X) -,Gi(X)j (30) 

Gi(X) U Gj(X) Gj(X)j (31) 

-,Gi(X) U Gj(X) 7· (32) ., 



Gi(X) U -,Gj(X) 

-,Gi(X) U -,Gj(X) 

1; 
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(33) 

(34) 

There is a total of 32 equations(3-34) and two groups of equations-(3-10 and 11-18) and (19-26 

and 27-34)-have the duality property. If we simply exchange each item of < Gk(X), n, u, 0> to 

< Gk(X), U, n, 1 > respectively, then one group of equations can be directly changed to another 

group of equations. 

We call an equation of two matrices an independent equation, if it cannot be reduced to one of 

two constant matrices or one of two selected matrices. Otherwise, it is a dependent equation. 

Corollary 2.2.5 For any two feature matrices, only eight independent equations under {-', n, U} 

operations can be established. They are 

-,Gi(X) n -,Gj(X) 

Gi(X) U Gj(X) 

-,Gi(X) U -,Gj(X) 

Gi(X) n Gj(X) 

-,Gi(X) n Gj(X) 

Gi(X) U -,Gj(X) 

Gi(X) n -,G;(X) 

-,Gi(X) U Gj(X) 

Gi( -,X) n Gj( -,X); 

-,Gi( -,X) U -,Gj( -,X); 

Gi( -,X) U Gj( -,X); 

-,Gi( -,X) n -,Gj( -,X); 

-,Gi(X) n -,Gj( -,X); 

Gi(X) U Gj( -,X); 

-,Gi( -,X) n -,Gj(X); 

Gi( -,X) U Gj(X). 

It is interesting that only 8 equations are independent, while other equations are dependent. 

Considering the number of equations in a general condition for four groups of two Boolean 

matrices under {-', n, U} operations, there must be 32 independent equations. It is obvious that 

the conjugate structure has a simpler organization than a general structure of Boolean matrices. 

3 The Elementary Equation of the Conjugate Transformation 

Since two feature matrix sets are generated from the original matrix, each feature matrix keeps 

the site information for a class of structuring elements being a Boolean matrix and three Boolean 

matrix operations can be performed. 

Let the conjugate transformation be an extensive Boolean matrix structure in which, for any X 

on a given domain, it uses X as an original matrix, {Gdi=o, {Gi}i=o as two class sets of struc­

turing elements to represent two sets of feature matrices. Using algebraic language, a conjugate 
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transformation CT can be defined as: 

CT = (X,c,.,n,u). 

Where X is a fixed domain of Boolean matrices on a specific grid, C is a conjugate classification 

of structuring elements and {., n, U} are the elementary operations of Boolean matrices. 

The simpler algebraic properties of feature matrices make it possible to establish a more efficient 

scheme for changing the relevant parts of the original image. For convenience of descriptions to 

the conjugate transformation, we use the following notations: 

Let I = {O, 1,···, n} be the index set of the feature matrices, A, B <:::: I be two index sets. 

For any given < A, B >, 

The first parameter of < A, B > is an index set of feature classes for 1 elements and the second 

one is an index set of feature classes for ° elements. 

For example, if A = {O,2,4} and B = {1,6}, then 

For any matrix X, < A, B > (X) is a feature matrix set 

< A,B > (X) = {Gi(X)};eA U {Gj(X)heB. 

From the notations above, it is possible to define a new operation called revel·sion (denoted by 

Q) to reverse selected parts from the original image on a Boolean matrix structure. 

Definition 3.0.6 For a Boolean matrix X and a feature matrix set of < A, B > (X), F( < 

A, B > IX), the elementary equation of the conjugate transformation is defined as: 

F« A,B > IX) XQ < A,B > (X) (35) 

Proposition 3.0.7 The elementary equation is a Boolean matrix equation. It reverses the 

selected parts of < A, B > (X) and keeps other elements of X invariant. 

Proof: The equation (36) is a Boolean matrix equation. It is composed of Boolean matrices 

and connected by three Boolean operations. Let Y = F( < A, B > IX) be an output matrix, if 

X[k, I] is an element of the i-th class and i E A, then only the operation of n.Gi(X) makes the 
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[k,l] element of Y from 1 to O. However, if X[k, 1] is an element of the j-th class and j E B, 

then the operation of u~Gj(X) changes the [k,/] element of Y from 0 to 1. For an element 

X[k, I] not in selected classes, ~Gi(X)[k, I] = 1 and ~Gj(X)[k, I] = 0 the value of Y[k, I] is equal 

to X[k, 1].0 

Proposition 3.0.8 The elementary equation is a self-duality equation. It can keep the invariant 

form under ~ opemtion. For any X and < A, B >, the duality variables are ~X and < B, A >. 

~F« A,B > IX) = F« B,A > I~X). (37) 

Proof: From the definition of the elementary equation and basic operations of Boolean matrices, 

we have the following: (the rule of the deduction is indicated by ** ... **) 

~F« A,B > IX) ~(Xq < A, B > (X)) 

~(X n (niEA~Gi(X») u (UjEB~Gj(X))) 

** de Morgan's law ** 

** Distributive law ** 

** Equation (19) ** 

** Equations (1) and (2) ** 

~X n (njEB~Gj( ~X)) U (UiEA~Gi( ~X)) 

~Xq < B,A > (~X) 

F( < B, A > I~X).o 

Proposition 3.0.9 For a given < A, B >, if A = {OJ (or B = {OJ) then F( < A, B > IX) is a 

dilation equation (or an erosion equation) for < A, B > (X). 

Proof: 

F« {O},B > IX) 

F« A,{O} > IX) 

X n ~Go(X) U (UjEB~Gj(X» 

X U (UjEB~Gj(X»); 

X n (niEA~Gi(X» U ~Go(X) 

X n (niEA~Gi(X)).O 

Proposition 3.0.10 For any X in the same conditions of Corollary 2.1.4, then four extreme 

matrices, {X, 1, 0, ~X}, can be genemted from the elementary equation. These correspond to 

< A, B >=< {OJ, {OJ >, < {OJ, I>, < I, {OJ > or < I, I> conditions respectively. 
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Proof: Under the condition of the corollary, we have the following: 

F( < {OJ, {OJ > IX) 

F( < {OJ, I> IX) 

F« I,{O} > IX) 

F« I,I> IX) 

X n -.Go(X) U -,Co(X) 

Xn1 UO 

X· , 

X n -.Go(X) U -.C(X) 

xn 1 UG(-.X) 

XU-.X 

1· , 

X n -.G(X) U -,CO(X) 

xn-.xuo 

o· , 

X n -.G(X) U -.C(X) 

xn-.xuG(-.X) 

OU-.X 

-.X.D 

Proposition 3.0.11 For any X and a given n, we can generate a set of 22m functions from 

the elementary equation of the conjugate transformation. 

Proof: For a total of 2*( n+ 1) feature matrices, two constant matrices with dependent properties 

cannot be selected independently. For the other 2 * n matrices, there are two possibilities, they 

can either be selected or not selected. Each selected condition corresponds to a function. 0 

4 Sample Pictures and Measurements 

Using the feature matrices and the elementary equation, different operations can be constructed. 

We have implemented a prototype of the conjugate transformation and a matrix morphology for 

binary images on the hexagonal grid in an X-windows environment. In order to illustrate some 

operations based on using the conjugate transformation, we use four sets of sample pictures of 

binary images (Appendix A). It is more convenient to see the effects of the operations directly 

from these pictures than from an abstract algebraic equation. Three kinds of applications of the 

four sets of sample pictures are: 

1. Two sets of pictures for edge detections (Figure 4 and Figure 5); 

2. One set of pictures for smoothings (Figure 6); 
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3. One· set of pictures for dynamic patterns (Figure 7). 

Let ~ =<g,~,t ,LLLL~ ,LL~ >=< 1,2,3,4,5,6,7,8,9,10,11 >, then three groups of processed 

functions can be described by the form of the elementary equation as: 

Figure 4 = 

Figure. 5 

A = {I, 2,3,5,6, 7,8, 9,10, ll}, B = {OJ; Picture (b) 

A = {I, 2, 3,4,6, 7,8,9, 10, ll}, B = {OJ; Picture (c) 

A = {I, 2, 3,4,5,8,9, 10, ll},B = {OJ; Picture (d) 

A = {l:,2,3,8,9,IO,1l},B= {OJ; Picture (e) 

A = {2}, B = {OJ; Picture (f) 

A = {4,5,6, 7},B = {OJ; Picture (g) 

A = to}, B = {I, 2,3,5,6, 7,8, 9,10, ll}; Picture (b) 

A = {OJ, B = {I, 2, 3,4,6, 7,8, 9,10, ll}; Picture (c) 

A = {O},B = {1,2,3,4,5,8,9,1O,1l}; 

. A = {O},B = {I,2,3,8,9,IO,1l}; 

A = {O},B = {2}; 

A = {O},B = {4,5,6, 7}; 

Picture (d) 

Picture (e) 

Picture (f) 

Picture (g) 

Figure 6 (b)-(e) A = {I,3,4},B = {I,3}; 

Figure 7 (b)-(g) A = {I, 2,3, 7},B = {5, 8, 9,10, 11}. 

As a basis for comparison, it is helpful to use the language of 'the game of life' to describe the 

function of Figure 7(b )-(g) as follows: 

Death conditions: For I-elements, 

1. Less than two I-neighbour; (A = {I,3}) 

2. More than four I-neighbours. (A = {2, 7}) 

Birth conditions: For O-elements, 

1. Three O-elements; (B = {5,9,1l}) 

2. Two branch states. (B = {8, 9, 1O}) 

A comparison of Figure 7 (f) and (g) reveals that a colony of pictures does not grow infinitely 

to the outside, their borders of the colony are restricted by envelopes and its inner structure 

keeps changing dynamicly. The function has more invariant properties than the original game of 

life [Kunii and Takai (1989)]. Depending on the elementary equations, more detailed dynamic 

patterns of the cellular automata, can be constructed. 
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Table 1: Time Measurements of Two Schemes 

Function Class State CT(unit) Morph( unit) Speed-up Figure 

Full Edges 1 1 86 38 0044 Figo4 & 5(f) 

One Feature 1 6 86 230 2.6 Figo4 & 5(b)(c) 

Two Features 2 12 105 470 404 Figo4 & 5( d) 

Block Edges 4 24 142 968 6.8 Figo4 & 5( e )(g) 

Smoothing 5 20 167 805 4.8 Fig.6(b) 

Dynamic Pattern 9 52 256 2269 8.8 Fig.7(b) 

Note: Where Class is the minimized number of relevant classes for the function; State is the 

minimized number of involved states; CT is the average number of time units by the Conjugate 

Transformation; Morph is the average number of the time units by the Mathematical Morphology 

and Speed-up is equal to Morph/CT. The unit of the measurement time is 1/60 second and the 

number is the sum of CPU and system CPU units measured by the standard function 'times'. 

Figure declares the processed pictures. 

In the mentioned functions, each function can be described as a unique < A, B > scheme 

or a form of feature matrices corresponding to a specific operation. From the computational 

viewpoint, it is more economical for some applications to use feature matrices themselves 

representing the functions directly. Figures 4 and 5 are good examples. Figure 4(b), F( < 

{I, 2, 3, 5, 6, 7,8, 9,10, Il}, {O} > IX) = ~G(X), is equivalent to a single feature matrix. 

Because of the capability of the class representation to states, the conjugate transformation of 

the hexagonal grid has significant speed-up ratios compared with the same function performed 

by the standard implementation of mathematical morphology. The measuring results are listed 

in Table 1 which illustrates the numerical measurements of the speed-up ratio of running times 

of two compared schemes on IRIX 4.0.5 System V, Silicon Graphics. 

5 Conclusion 

In order to overcome two weaknesses of mathematical morphology, a new scheme of matrix 

mathematical morphology, the conjugate transformation and its elementary equation, are de­

fined and investigated on the hexagonal grid. The conjugate transformation manages a state 

set of structuring elements as two conjugate class sets (each set contains the same number of 

classes). Since the conjugate classification is a hierarchical structure, it is possible to establish 
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a connection from a class of structuring elements on a certain level of the classification to a 

calculable index of the class. Related to the index set, for any matrix, each class of struc­

turing elements can decompose the matrix into a feature matrix. Two conjugate class sets of 

structuring elements are transformed to two sets of feature matrices. Depending on the feature 

matrices and the original matrix, Boolean matrix operations can be constructed. The greatest 

advantage of the conjugate transformation is that it can process all I-elements and O-elements 

equivalently and the elementary equation has the self-duality properties. Another advantage is 

that the transformation can be divided into different levels from one class contained in half of 

the structuring elements to a class contained in only one of the structuring elements. Since the 

index function is not a Boolean function, our structure has a more extensive framework than 

previous structures. The universal form of the elementary equation provides a space of 22• n 

functions to support different applications. As shown in various examples, each function for an 

application can be expressed in a simple and concise form with clearly geometric and topolog­

ical meanings. The class representation guarantees a higher efficiency for common conditions 

involving multi-structuring elements. Furthermore, it is a general structure for image analysis 

operations on binary images. 
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Appendix A. 
SET ONE: Figures 4. 

(a) The Original Image X 

(b) W(X) 

". 
j " I I 
! I .J.: . 

( 'l't' I: 
,i,\ t' 

V· 
,. 
,-

" 
" , ............. .. 

., 

(c) AG(X) 

I 

Figure 4: Edge Detections for 

Black Elements(l-elements) (a)-(g). (a) orig­

inal images (256 X 256)j (b )-(g) sample images 

and (e) = (b) U (c) U (d)j (g) = (a) n.., (e). 
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(d) ~G(X) U AG(X) 

(e) Block Edges of (a) 

(f) FulJ Edges of (a) 

(g) Erosion of Block Edges to (a) 
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SET. TWO: Figure 5. 

(a) The Original lma.ge X 

(b) ~G(X) 

(c) ~G(X) 

Figure 5: Edge Detections of 

White Elements(O-elements) (a)-(g). (a) origi­

nal images (256 x 256); (b)-(g) sample images 

and (e) = (b) n (c) n (d); (g) = (a) U.., (e). 

(d) iG(X) n ~G(X) 

(e) Block Edges of (a) 

(f) Full Edges of (a) 

(g) Dilation of Block Edges of (a) 



SET THREE: Figure 6. 

(a) The Original lmage X 

(b) The first smoothing to (a) 

Figure 6: Smoothing Operations (a)-(e). (a) 

original image 256 x 256; (b) once, (c) twice, 

(d) five and (e) ten recursions. 
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(c) The second smoothing to (a) 

(d) The fifth smoothing to (a) 

(e) The tenth smoothing to (a) 
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SET FOUR: Figure 7. 

(a) The Original Image X 

~ 
L----

(b) The Dynamic Pattern of (a) 

(c) The second recursion of (a) 

Figure 7: Dynamic Patterns (a)-(g). (a) origi­

nal image 256 x 256; (b) 1, (c) 2, (d) 5, (e) 20, 

(f) 100 and (g) 180 recursions to (a). 

(d) The fifth recursion of (a) 

(e) The 20-th recursion of (a) 

(f) The 100·th recursion of (a) 

(g) The 180·til recursion of (a) 
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Abstract 

Comp~ter vision and graphics applications involve generating views of 3D ob­

jects. We present a scheme for generating views of objects from viewer-centered 

representations. In this scheme an object is modeled by a small number of views 

with the correspondence between the views. Novel views of the object are generated 

by linearly combining the model views. The scheme handles rigid objects accurately 

and was extended to handle objects with smooth bounding surfaces and articulated 

objects. To construct models for this scheme, the correspondence between the model 

views should be recovered. The paper concludes with an algorithm to achieve such 

correspondence. 

1 Introduction 

Computer vision and graphics applications involve generating views of 3D objects. Com­

puter vision applications often are required to recognize objects seen at some previously 

unseen view. A common approach to recognition identifies an object if a view of the 

°This report describes research done in part at the Massachusetts Institute of Technology within the 

Artificial Intelligence Laboratory and the McDonnell-Pew Center for Cognitive Neuroscience. Support 

for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects 

Agency of the Department of Defense under Office of Naval Research contract NOOOl4-91-J-4038. 
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object that matches the observed image can be generated (e.g., Basri and Ullman, 1988; 

Chien and Aggarwal, 1987; Faugeras and Hebert, 1986; Fischler and Bolles, 1981; Hutten­

locher and Ullman, 1990; Lamdan et al., 1987; Lowe, 1985; Thompson and Mundy, 1987; 

Ullman, 1989). In graphics applications, views of objects are generated to illustrate the 

appearance of the objects from different perspectives or to create a sense of continuous 

motion between isolated frames (e.g., Poggio and Brunelli, 1992). This paper presents an 

efficient and simple scheme for generating views of 3D objects from small sets of their 

images. 

Existing approaches for generating views of 3D objects handle the problem by storing 

and manipulating detailed 3D descriptions of the objects. A COll1ll1on approach represents 

an object by a set of volumetric (Bajcsy and Solin a, 1987; Binford, 1971; Brown, 1981; 

Nevatia and Binford, 1977; Requicha and Voelcker, 1977; Marr and Nishihara, 1978), 

surface (Brady d aL, 1985; Sederberg et a/., 1984), or wire (Baker, 1977) primitives. To 

generate a view, the primitives are translated and rotated in 3D and then projected to 

the image plane. Recognition systems often store only the identifiable features (snch as 

corners and line segments) of the object (e.g., Fischler and Bolles, 1981; Huttenlocher and 

Ullman, 1990; Lamdan et al., 1987; Lowe, 1985). The assumption in these systems is that 

objects in the world are sufficiently different, and therefore such compact representations 

would suffice to identify the objects uniquely. These representations are all called object­

centcrcd since they model an object independent of view. 

Viewer-centered representations propose an alternative approach for generating views 

of 3D objects. In this approach an object is represented by a set of its views. Additional 

information (such as depth) mayor may not be stored with the views. Other views of the 

object are obtained by manipulating the model views. Viewer-centered representations 

are generally less concise than object-centered descriptions, but they generally are easier 

to construct and manipulate. An example for a viewer-centered representation is found 

in (Thompson and Mundy, 1987). In this system an object is modeled by 5184 (72 x 72) 

views obtained by rotating the object about the vertical and the horizontal axes by 5° 

intervals. Other views of the object are obtained by selecting one of the images, and then 

rotating, translating, and scaling the image in 2D. 

The scheme presented in this paper also uses viewer-centered representations, but it 

requires only a small number of views. In this scheme an object is modeled by a small 

set of views with the correspondence between the views. Novel views are generated by 
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applying linear combinations to the stored views. The method has several advantages 

over existing methods. First, it requires only a small number of views to represent an 

object. Second, the process of generating views is computationally simple. Third, explicit 

3D representations are not used. Fourth, as is shown below, the method handles rigid 

(polygonal) objects accurately under weak-perspective projection (orthographic projec­

tion followed by a uniform scaling). Finally, the system can also handle rigid objects with 

smooth bounding surfaces and articulated objects. 

The rest of the paper proceeds as follows. In Section 2 the method for generating 

views by combining model views is presented, and in Section 3 the problem of model 

construction is discussed. 

2 Generating Views by Combining Model Views 

The scheme for generating views of 3D objects is based on the following observation. If 

a view is represented by vectors that contain the position of feature points in the image, 

then the novel views of objects can be generated by linearly combining small numbers 

of the objects' views. In Section 2.1 we show that using this scheme correct views of 

rigid (polygonal) 3D objects can be generated. Extensions to rigid objects with smooth 

bounding surfaces and to articulated objects are briefly mentioned ill Section 3.2. A 

detailed description of the scheme can be found in (Basri, 199:3; Ulhnan and Basri, 1991). 

2.1 Rigid Objects 

We begin with the following definitions. Given an image I containing n feature points, 

PI = (XI,YI), ... , Pn = (xn,Yn), a view VI is a pair of vectors x,y E nn, where x = 
(XI, ... , xnf and y = (YI, ... , Ynf contain the location of the feature points, PI, ... , Pm 

in the image. A model is a set of views {VI, .... , Vk}. The location vectors in these 

views are ordered in correspondence, namely, the first point in VI is the projection of the 

same physical point on the object as the first point in V2 , and so forth. The objects we 

consider undergo rigid transformations, namely, rotations and translations in space. We 

assume that the images are obtained by weak-perspective projection, that is, orthographic 

projection following by a uniform scaling. 
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Below we show that the novel views of a rigid object can be expressed as linear 

combinations of a small number of its views. The proof proceeds in the following way. 

First, we show (Theorem 1) that the set of views of a rigid object is contained in a four­

dimensional linear space. Any four linearly independent vectors from this space therefore 

can be used to span the space. Consequently, we show (Theorem 2) that two views suffice 

to represent the space. Any other view of the object can be expressed as (two) linear 

combinations of the two basis views. Finally, we show (Theorem 3) that not every point in 

this 4D space necessarily corresponds to a legal view of the object. The coefficients satisfy 

two quadratic constraints. These constraints depend on the transformation between the 

model views. A third view can be used to derive the constraints. 

Theorem 1: The views of a rigid object are contained in a four-dimensional linear 

space. 

Proof: Consider an object 0 that contains n feature points P1 = (X1 , Yi, Zd, ... , 
P" = (X", Y", Z,,). Let I be an image of 0 obtained by a rotation R, translation r, and 

scaling s, followed by an orthographic projection, TI. Let P1 = (X1, yd, ... , p" = (x"' y,,) 

be the projected location in I of the points P1 , ••• , P" respectively. For every 1 ::; i ::; n 

Pi = sTI(RPi + i) (1) 

more explicitly, these equations can be written as 

(2) 

where {rij} are the components of the rotation matrix, and tx, ty are the horizontal and 

the vertical components of the translation vector. (Under weak-perspective projection 

the depth component of the translation vector, t z , affects only the value of s.) Since these 

equations hold for every 1 ::; i ::; n, we can rewrite them in a vector notation. Denote 

X = (XJ, ... ,x"jT, Y = (Yi, ... , Y"jT, Z = (Z1, ... ,ZnjT, r = (1, ... ,I)T, x= (xJ, ... ,x,,)T, 

and y= (Y1, ... ,y"jT, we obtain that 

a1X+a2Y+a3Z+aS 
b1X + b2Y + b3Z + bS 

(3) 
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where 

al STH b1 ST21 

a2 ST12 b2 S7"22 
(4) 

a3 ST13 b3 ST23 

a4 stx b4 sty 

The vectors x and ii can therefore be expressed as linear combinations of four vectors, 

X, Y, i, and 1. Notice that changing the view would result merely in a change in the 

coefficients. We can therefore conclude that 

x, ii E span{X, Y, i,f} (5) 

for any view of O. Note that if translation is omitted the views space is reduced to a 

three-dimensional one. 0 

Theorem 2: The views space of a rigid object 0 can be constructed from two views of 

0 1 . 

Proof: Theorem 1 above establishes that the views space of a rigid object is four-

dimensional. Any four linearly independent vectors in this space can be used to span the 

space. The constant vector, f, belongs to this space. Therefore, only three more vectors 

are remained to be found. An image supplies two vectors. Two images supply four, which 

is already more than enough to span the space (assuming the two in1ages are related by 

some rotation in depth, otherwise they are linearly dependent). Let Vi = (Xl, iiI) and 

V2 = (X2, ii2) be two views of 0, a novel view V' = (X', il) of 0 can be expressed as 

two linear combinations of the four vectors x}, iiI, X2, and 1. The remaining vector, ii2, 

already depends on the other four vectors. 0 

Up to this point we have shown that the views space of a rigid object is contained in 

a four-dimensional linear space. Theorem 3 below establishes that not every point in this 

space corresponds to a legal view of the object. The coefficients of the linear combination 

satisfy two quadratic constraints. 

Theorem 3: The coefficients satisfy two quadratic constraints, which can be derived 

from three images. 

IThis lower bouud was independently noticed by Poggio (1990) 
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Proof: Consider the coefficients aI, ... , a4, bl , ... , b4 from Theorem 1. Since R is a 

rotation matrix, its row vectors are orthonormal, and therefore the coefficients satisfy the 

following quadratic constraints 

a? + a~ + a~ = b? + b~ + b~ 
albl + a2~ + a3b3 = 0 

(6) 

Choosing a different basis to represent the object (as we did in Theorem 2) will change 

the constraints. The constraints depend on the transformation that separates the model 

views. Given an object 0 = (X, Y, Z), let Vi = (Xl, fit) and V2 = (X2, Y2) be two model 

views of 0 such that Xl = X, ih = Y, and V2 is obtained by a rotation U, translation f!, 

and scaling .5'. According to Theorem 2, a novel view V' = (x', y') of 0 can be expressed 

as 

X' alXl + a2Yl + a3x2 + a4 1 

f31Xl + f32Yl + f33 X2 + f3S 

for some aI, ... , a4, f311 ... , 134. Plugging the value of X2 

Y2 

into Eq. 7, we obtain 

S'(U11X + U12Y + U13Z + t~) 
S'(U21X + U22Y + U23Z + t~) 

(al + a3s'u11)X + (a2 + a3s'u12)Y + (a3s'u13)Z + (a4 + adt~)l 
(131 + f33 S'U11)X + (132 + f33 S'Un)Y + (f33S'U13)Z + (134 + f33s't~)1 

(7) 

(8) 

(9) 

which contains the explicit values of the coefficients all ... , a4, bll ... , b4 from Eq. 6. Substi­

tuting these values into Eq. 6, we obtain the following constraints on aI, ... , a4, 131, ... ,134: 

ai + a~ + a~ - f3i - f3i - f3'#, = 2(131133 - al(3)U11 + 2(132133 - a2( 3)U12 

alf31 + a2f32 + a3f33 + (alf33 + a3(31)U11 + (a2f33 + a3(32)U12 = 0 
(lO) 

where U11 and U12 are the two upper left components of U. To derive the constraints, 

the values of Un and U12 should be recovered. A third view can be used for this purpose. 

When a third view of the object is given, the constraints supply two linear equations in 

U11 and U12, and, therefore, in general, the values of U11 and U12 can be recovered from 

the two constraints. This proof suggests a simple, essentially linear structure from motion 

algorithm that resembles the method used in (Huang and Lee, 1989; Ullman, 1979), but 

the details will not be discussed further here. 0 

The scheme therefore is the following. An object is modeled by a set of views, with 

the correspondence between the views, together with the two constraints. Novel views of 
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Figure 1: Generating views of a pyramid. Top: two model pictures of a pyramid. Bottom: two of their 

linear combinations. 

the object are generated by linearly combining the model views. Applying the quadratic 

constraints to the coefficients guarantees that the novel views in fact represent a rigid 

transformation of the object. In recognition applications, the obtained views are com­

pared with the actual image, and if a satisfactory match is achieved the object's identity 

is determined. Figure 1 shows the application of the linear combination scheme to an 

artificially made object. 

Although two views are sufficient to represent an object, in order to reduce noise and 

occlusion one may se.ek to use additional views to improve the accuracy of the model. 

The problem is then the following. Given 1 view vectors VI, ... , VI, recover the nearest four· 

dimensional hyperplane to these vectors. The obtained hyperplane is the linear sub-space 

that best explains the view vectors. The nearest hyperplane can be found by applying 

principal components techniques. A detailed algorithm can be found in (Ullman and 

Basri, 1991) (see also Tomasi and Kanade, 1991). 

For transparent objects, a single model is sufficient to predict their appearance from 

all possible viewpoints. For opaque objects, due to self occlusion, a number of models 

is required to represent the objects from all aspects. These models are not necessarily 

independent. For example, in the case of a convex object as few as four images are 

sufficient to represent the object from all possible viewpoints. A pair of images, one from 

the "front" and another one from the "back" contains each object point once. Two such 
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pairs ~ntain two appearances of all object points, which is what is required to obtain a 

complete representation of all object points. For concave objects additional views may be 

required. 

Note that positive values of the coefficients ("convex combinations") correspond to 

interpolation between the model views, while extrapolation is obtained by assigning one 

or more of the coefficients with negative values. This distinction between intermediate 

views and other views is important, since if two views of the object come from the same 

aspect (namely, include the same parts of the object), then intermediate views are likely 

to also come from that aspect, while in other views other aspects of the objects may be 

observed. 

A method that approximates the space of views of an object from a number of its views 

using Radial Basis Functions (Poggio and Girosi, 1990) was recently suggested (Poggio 

and Edelman, 1990). Similar to our method, the system represents an object by a set 

of its familiar views with the correspondence between the views. The number of views 

used for this approximation, between 10 to 100, is much larger than the number required 

under the linear combinations scheme. The system, however, can also handle perspective 

views of the objects. 

2.2 Extensions 

We have shown in the previous section that the linear combinations scheme accurately 

handles rigid (polygonal) objects under weak-perspective projection. The scheme can 

also handle objects that undergo general affine transformation in 3D, rigid objects with 

smooth bounding surfaces, and articulated objects. This is achieved by changing the 

number of model views, or by changing the functional constraints. A brief description is 

given below. 

The scheme can be extended to handle objects that undergo general affine transforma­

tion in 3D (including stretch and shear) simply by ignoring the quadratic constraints. In 

this case two views are required to span the space, and every point in this space represents 

a legal view of the object. 

The scheme can also be extended to handle rigid objects with smooth bounding sur­

faces. The problem with such an object is that its contours appear in different locations 

on the object at different views. Using three rather than two views (the space of views 
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for such objects is six- rather than four-dimensional), the curvature of the points along 

the contour is (implicitly) taken into account, providing a better prediction of the contour 

position following rotation. For details see (Basri and Ullman, 1988; Basri, 1992; Ulhnan 

and Basri, 1991). 

Finally, articulated objects can also be modeled by our scheme. An articulated object 

is a collection of links connected by joints. Each link is a rigid component. It can move 

independently of the other links when only its joints constrain its motion. The space 

of views of an articulated object with llinks is at most (4 x l)-dimensional. The joints 

contribute additional constraints, some of which may be linear, and they reduce the rank 

of the space, others are non-linear, in which case they are treated in the same way the 

quadratic constraints are treated in the rigid case. For example, an object with two rigid 

links connected by a rotational joint can be modeled by a six-dimensional linear space 

(Basri 1993). Three views can be used in these cases to span the space. Articulated 

objects with different numbers of links or with different types of joints require different 

number of views. Advance knowledge of the number of links and the type of joints, 

however, is not required. When sufficiently many views are presented, the correct rank of 

the views space can be recovered using principal components analysis. 

Figure 2 shows the application of the scheme to several objects with smooth bounding 

surfaces and to articulated objects. The figure shows views of the objects generated by 

combining several model views and the matching of these views to actual contour images 

of the objects. 

In our implementation we considered only the contour points of the object. The 

method, however, can be used in conjunction with other methods to obtain richer ap­

pearances of the objects. For instance, texture mapping can be applied to the surfaces 

between the contours or illumination patterns can be constructed on these surfaces. A 

scheme that recovers the illumination in lambertian surfaces by linearly combining three 

gray-level images was recently proposed (Moses, 1992; Shashua, 1991). 

3 Model Construction 

To use the scheme for generating views of 3D objects, models for the objects first must 

be constructed. As is mentioned above, objects are modeled in our scheme by sets of 
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Figure 2: Generating views of a VW car and a pair of scissors. Top: matching the model to a pictpre 

of the VW car. A linear combination of model images (left), an actual edge image (middle), and the two 

images overlayed (right). Bottom: matching a model to a picture a scissors. A linear combinations of 

model imag~s (left), an actual edge image (middle), and the two images overlayed (right). The prediction 

images and the actual ones align almost perfectly. 

their views with the correspondence between the views. The difficult part of constructing 

object models, therefore, is resolving the correspondence between views. This difficulty 

exists also in schemes that use object-centered models, since correspondence is required 

for recovering the 3D shape of the objects from sets of 2D images. 

In this section we outline an algorithm for recovering full point-to-point correspondence 

between images. Given two images of an object, the algorithm proceeds in three steps. 

First, the epipolar lines in the two images are computed. This can be done either by 

calibrating the camera externally or by tracking the position of four identifiable points in 

the images. (Under weak-perspective projection four non coplanar points are sufficient 

to recover the epipolar lines (Huang and Lee, 1989; Lee and Huang, 1990).) Next, the 

correspondence between contours is resolved. At this stage topological criteria, such as 

whether the contour is long or short, closed or straight, can be used. Also, if the object 

is opaque the order of the contours along the epipolar lines is preserved. Finally, point­

to-point correspondence is resolved by intersecting the contours with the epipolar lines. 

This procedure would work unless the contours coincide with the epipoles. 

The epipolar constraint is the following. Given two images /1 and h of an object 

obtained by applying a rigid (or even affine) transformation to the object, it is possible 
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to slice the images into straight lines {In and {Zn respectively, such that every point on 

Zl corresponds to a point on Z; and vice versa. Consequently, once the epipolar lines are 

recovered, the process of resolving the correspondence between the images is reduced to 

resolving the correspondence within pairs of epipolar lines. 

Under weak-perspective projection, epipolar lines are parallel to each other, and four 

pairs of corresponding points can be used to recover the epipoles (Huang and Lee, 1989; 

Lee and Huang, 1990). This can be derived directly from Theorem 1. Since the views of a 

rigid object are embedded in a four dimensional space, two images 11 and 12 provide four 

vectors Xb ilb X2, and il2, which, together with the constant vector r, must be linearly 

dependent. In other words, there exist nonzero scalars all a2, bb b2 , and c such that 

(11 ) 

The coefficients are determined (up to a scale factor) by four non coplanar points. The 

epipolar line are immediately derived from this equation. If we fix some point in the first 

image we obtain a line equation for the corresponding point in the second image. 

The epipolar lines break the transformation that relates the images in to its planar 

components and its non planar ones. The planar components can be recovered from the 

epipolar lines, while the non planar ones cannot be determined from two images. Suppose 

the two images are related by a rotation R, translation r, and scaling s. The translation 

component perpendicular to the epipolar line is given by c. (The translation components 

can be discarded altogether if we consider differences between points rather than their 

actual location. ) The values of the other coefficients are given below. 

(12) 

The scale factor is therefore given by the ratio 

s (13) 

The relative angle between the epipolar lines determines the planar parts of the rotation, 

as explained below. Rotation in 3D can be decomposed into a sequence of three successive 

rotations: a rotation about the Z-axis by an angle (x, a second rotation about the Y-axis by 
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(a) (b) 

Figure 3: Epipolar lines in two orthographic projections of a VW car. Note the fact that corresponding 

points lie along the epipolar lines. 

an angle (3, and a third rotation about the Z-axis by an angle,. Under this decomposition 

the following identities hold 

r32 sin a sin (3 

r3I - cos asin (3 
(14) 

r23 sin (3 sin, 

rI3 sin (3 cos, 

We therefore obtain that 
a tan-I .!!.I. 

a2 , -tan-I(-~) 
(15) 

while (3 cannot be determined. 

We can visualize this decomposition in the following way. After compensating for 

the translation and scale changes, we first rotate the image PI by a. Consequently, the 

epipolar lines in PI point to the horizontal direction. Next, we rotate the second image, 

P2 , by -,. As a result, the epipolar lines in P2 also point horizontally. The images 

obtained in this process are related by a rotation about the vertical axis, which is a 

rotation in depth. Following such a rotation the points move horizontally, namely, along 

the (rotated) epipolar lines. This motion cannot be recovered since it depends both on 

the angle of rotation, (3, and on the depth of the points. 

Figure 3 shows the epipolar lines in a pair of VW images. It can be seen that, in 

general, using the epipolar lines, when the correspondence between contours is given, 

point-to-point correspondence is uniquely determined. 
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4 Summary 

We have presented a scheme for generating views of 3D objects. An object is modeled in 

this scheme by a small set of its views with the correspondence between the views. Novel 

views of the object are generated by linearly combining the model views. The scheme 

handles rigid objects accurately and was extended to handle rigid objects with smooth 

bounding surfaces and articulated objects. 

To build models for the scheme, full point-to-point correspondence between the model 

views should be recovered. This can be done by matchlng the contours in these views 

using topological criteria and then intersecting the contours with the epipolar lines. 

The scheme can be used for object recognition and graphics applications. In recog­

nition, given an image, a system would attempt to generate a view of the object that 

matches the image. In graphics applications, the scheme can be used for presenting an 

object from several perspectives and for generating interframe views for creating a con­

tinuous sense of motion. Unlike in existing schemes, explicit 3D representations of the 

objects are not used. Additional research is required here for effectively handling the 

different aspects of the objects. 
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The paper discusses proposed solutions for constraint-based modelling, with special emphasis 

on constructive approaches. A new constructive scheme that overcomes a number of the 

present limitations is proposed. It is based on a non-evaluated, constructive solid model. The 

proposed approach supports instantiation of pre-defined models, parametric geometric 

operations in ID, 2D and 3D, variable topologies, and operations with structural constraints. 

The EBNF specification of the model definition language is presented and discussed through 

several examples. 

Keywords: Geometric modelling, solid modelling, CAD, constraint-based modelling, 

parametric design. 

1. INTRODUCTION 

Present CAD systems can be very useful for the design and representation of specific, final 

products. However, they still have a number of drawbacks that must be solved in order to 

use them in practical design applications. There is a need for facilities for conceptual design, 

and better tools for the generation of the design are required. On the other hand, the use of 

previous designs in a new one is not always supported. Finally, in most CAD systems it is 
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necessary to define the exact size and location of every geometric element and/or part. This 

is of course too rigid in many applications, where the interest of the user is to generate a 

prototype model from a number of shape specifications, and then adjust it through shape 

modification tools in order to optimize the performances of the product. 

Parametric CAD systems can design general objects that represent a family of different 

objects, sharing the same topological constraints but having different geometry [CFV88]. 

Given a set of specific parameters, particular components of the family are obtained. 

Parametric models store the geometry of the object together with variable dimension 

parameters [RSV89], [RoI91a]. Parametric design increases the flexibility in the design 

process, by defining the geometry and geometric constraints without specifying the set of 

concrete dimensions of the object. 

Parametric design [RoI91a] is becoming a useful methodology for conceptual design, 

tolerance analysis, efficient design of families of parts, representation of standard parts and 

features in libraries, kinematics simulations, and assemblies design. Several parametric 

design approaches have been proposed that will be reviewed in section 2. 

The present paper proposes a constructive definition of the object model that overcomes a 

number of the present limitations of parametric systems. It supports instantiating of pre­

defined models, parametric geometric operations in ID, 2D and 3D, variable topologies and 

operations with structural constraints. Next section discusses some of the well-known 

approaches for parametric design, focusing on constructive schemes and comparing their 

performances and limitations. The proposed constructive scheme is then presented in section 

3. Section 4 presents and discusses several connected examples, introducing the definition 

language of the object models. 

2. PROPOSED SCHEMES AND CONSTRUCTIVE APPROACHES IN PARAMETRIC 

DESIGN 

Roller [RoI91a] proposes a classification of parametric design approaches into variants 

programming, numerical constraint solvers, expert systems and constructive schemes. In 

variants programming, the user must write a procedure in a certain programming language 
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whenever he wants to define a parametric object. Variants programming is widely used in 

CAD systems through macro definition languages, mainly for the definition of parts 

libraries. The main drawback of this approach however is, that it is not practical for non­

expert users. 

The numeric constraint solver approach or algebraic method, translates all the dimensional 

constraints into a set of equations. The shape of a part can be defined and modified based on 

a set of characteristic points of the geometric model. An algebraic system of equations 

relates the characteristic points to the constraints. The geometry of a specific part is computed 

by solving the system of equations with an iterative numerical method. 

Several versions of this approach have been proposed [HiB7S] [LiGSI] [LiGS2] [LeAS5] 

[NeIS5] [Owe91] [Ser91].In this method the number of equations and variables grows fast 

with the number of geometric elements and constraints involved. The numerical resolution 

needs good starting points in order to converge and the computational cost is expensive. 

From the user's point of view, it is difficult to express a design in terms of a system of 

equations that reflects the relationship between the geometric entities of the design. 

Furthermore, the user doesn't have any feedback about inconsistent shapes or unexpected 

solutions. 

Another approach in parametric design, is the use of an expert system in order to create a 

geometric model based on a set of constraints. The constraints are thus expressed as rules or 

predicates [AldSS] [SunSS] [SAK90] [Yak90]. Given the constraints and the starting points, 

an inference engine is used to determine sequentially the unknown positions of the geometric 

elements. 

This method allows to use more complex constraints. However it needs a large number of 

predicates for simple shapes [Yak90]. The expert system approach doesn't seem to support 

incremental design. Moreover, it doesn't support cyclic constraints and it is expensive in 

memory and computations. 

In the constructive approach the sequence of interaction performed by the user in order to 

define an object is recorded by the system. The design sequence is described interactively 
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and graphically by the user. The previous works using this method can be classified into two 

main groups according to the way the user's actions are recorded. In the first group the 

interactive design generates a procedural description of the modelling operations of an object 

[RBN89] [Emm89] [Emm90] [Kon90] [RoI90] [RoI91b]. In the second group the design 

sequence is used for the management of a data structure that reflects the relationships 

between the geometric elements [Ros86] [CFV88] [GZH88]. 

There are many aspects that characterize a constructive method, however the most significant 

ones are: 

Whether the method generates a procedure or manages directly a data structure. 

The dimensionality of the method (2D/3D). 

The existence of mechanisms to detect inconsistencies. 

The need to specify all constraints. 

The possibility of instantiating other objects during the building of a new object 

(instantiating previous models). 

The existence of a mechanism to validate the parameters of an object or to fix their 

range of validity. 

The ability to detect and support topological changes. 

Whether it is possible to parametrize modelling operations. 

Table 1 discusses these aspects in relation to the most representative methods in the 

constructive approach. 

The result of the interaction with the user, together with an accurate set of parameters can 

be used in order to generate any object of a specific family. In general, this approach is based 

on the idea of programming with example [GPG90]. The user defines an example which is 

recorded by the system. It is thus necessary to keep the history of the design [YKH87] and 

this can be performed by recording the modelling operations and constraints. 

The design of an object is incremental. The design is a sequence of states that converges 

towards the final object. Every state is characterized by a set of geometric elements and 

constraints. The evolution between states is done through modelling operations and by adding 

new constraints. 
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Table 1. 

eMB EnYn90 GZH88 Kon9D I1BNB9 11019'18 

Kind of method estruct. proc. estruct. proc. proc. proc. 

Oinensionality 20 30 30 20130 20 20 

Inconss.detectlon ? yes ? yes yes yes 

AU constraints yes no no yes ? yes 

lost. previous model no yes no no yes no 

Validate parameters no yes no no yes no 

Parametrize mod. op. no yes ? ? yes yes 

Detect topol. changes ? ? yes ? yes yes 

The designer uses modelling operations and constraints while he is building the object in a 

natural way. The constructive approach preserves the user's traditional working enviroment 

and encourages his hability to decompose a problem into subproblems. In this sense it can 

be said that the system assists the user in the design of a solution. The geometric elements 

on which the system is based are simple user sketches whose exact sizes and positions are 

not needed. It is only necessary to define constraints. Under this perspective, the system 

doesn't need expert users and the user interface plays an important role. When the interactive 

design is finished, it can be immediately evaluated in order to modify the design sequence or 

to perform a new design of a part. Unfortunately, the classical constructive approach doesn't 

support circular constraints, that must be solved simultaneously. 

3. THE CONSTRUCTIVE PARAMETRIC SOLID MODEL 

A constructive parametric solid model (CPSM) can be defmed as the procedural description 

of the sequence of modelling operations and constraints performed by the user during the 

interactive design of a parametric object. It must be observed that the constructive parametric 

solid model is transparent to the user; the user simply interacts with the system through the 

graphical user interface in order to generate a particular object that will become the 

representative ofthe parametric family. The CPSM can be considered as a generic model of 
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the whole family of objects. The CPSM is a procedural description with a set of formal 

parameters. Instances - specific object models - of the CPSM are obtained by fixing the 

values of its formal parameters. The design process when using a constructive parametric 

solid model involves the following steps: 

A particular object of the parametric family of objects is designed through a 

graphical user interface and using available modelling operations and constraints. 

Dimensions and operation parameters can be either constant, related to other 

dimensions through constraints, or defined as a function of the formal parameters of 

the model. Constraints can be introduced at any moment during the design process. 

The corresponding constructive parametric solid model which tracks the design 

process is automatically generated. The contructive parametric solid model is 

represented by a sequence of statements from a definition language [SoB92]. 

Modelling operations and contraints are expressed through procedure calls in the 

language. This kind of ERep (Editable Representation) has the advantage of being 

editable, suitable for archival and transmission, it supports both generic and specific 

designs, and records the conceptual construction steps [RBN89] [HoJ92]. The formal 

description of the constructive solid model in a simple case with a limited set of basic 

geometric elements is presented in the appendix. 

The constructive parametric solid model can be evaluated in order to generate specific 

objects. Different sets of parameter values generate different specific objects, all of 

them from the same parametric family. 

Therefore, the proposed parametric system consists of two modules: 

The module that generates the constructive parametric solid model depicted by a 

sequence of avalaible modelling operations and constraints. Figure I shows the generic 

structure of this module. The user chooses the modelling operations and constraints 

through a grafical user interface. A model generator translates it and generates the 

CPSM that represent the generic object. 
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Figure 1. Generation of the Constructive Parametric Solid Model. 

The evaluation module which generates specific object models with a particular 

geometry and topology given a set of parameter values. This module (figure 2) 

includes a translator that generates an internal model representation. The validation 

and evaluation of the CPSM is done on this internal model representation model. With 

specific parameter values, the evaluation module produces a particular object model. 

Internal 

model 
rep. 

Figure 2. Evaluation of the constructive parametric solid model. 

It is possible to define assemblies using instances of previously defined parametric models, 

which are available through a models library. In addition to the representation of a generic 

object through modelling operations and constraints, the constructive parametric solid model 

includes information on the explicit geometry of the element which was generated during its 

design phase. As a consequence, the system can automatically deal with underconstraint 

situations. 

The domain of the proposed constructive parametric solid model is obviously limited by the 

power of the underlying language. On the other hand, it presents the following advantages: 
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.It represents the conceptual construction steps, in an incremental way. 

Intermediate models can be stored in generic object libraries, and they can be 

instantiated in later designs. 

It uses a scheme based on the design with example. Having always the default 

geometry of the specific object designed by the user, it automatically supports 

underconstraint cases. 

The system is structured three independent modules: the interaction module, the 

internal model representation, and the validation and evaluation module. 

The generic model CPSM is an editable representation, able for archive and 

transmission. 

The CPSM has a uniform representation for geometries of different dimensions. It is 

therefore a global approach involving 2D and 3D parametric design. 

It supports structural parameters, that is, parameters in geometric operations (2D to 

2D, 2D to 3D or 3D to 3D operations). 

The present approach is in some sense parallel to that of [HoJ92], [RBN89], [Emm90]. 

Hoffman-Juan presents a general framework for ERep languages in solid modelling, 

Rossignac et al. and Van Emmerick propose an specific language for the representation of 

the model. Rossignac et al. proposes to record the parameterized sequence of design 

operations. However, his approach is oriented to intensional model and feature-based design. 

Van Emmerick's approach works directly in 3D, but the user can only interact with a set of 

characteristic points of the model (geometric tree). Our approach is adressed to the design of 

generic objects in terms not only of modelling operations but also constraints. The user can 

interact with the whole geometry of the specific object being designed. The presented model 

covers both 2D and 3D parametric design. 

3.1. USER INTERACTION AND MODEL GENERATION 

The user interacts with the system through a graphical user interface. The user interface is 

an independent proces that manages and parses the operations provided by the user. 

Furthermore, the user interface manages the visualization of the model in progress. From the 

user operations the system generates the statements of the representation model through the 

following steps: 
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The user interacts with the already designed geometry, and defmes new operations and 

constraints. 

The system automatically generates the language description of the new designed 

features, and assigns symbolic names to any new geometric element. 

In parallel, an specific object model is stored with the explicit geometry given by the 

user interaction, in order to visualize it during the next interactive design steps. 

The set of basic geometric elements that can be used in modelling operations and constraints 

include OD elements (points), ID elements (lines and edges), 2D elements (planes, polygons 

and circles) and 3D elements (polyhedra, etc). All of them must be instantiated and are 

parametrically defined. They act as primitives within the final constructive parametric solid 

model. Modelling operations can either keep the dimension of the operands (for instance, in 

the case of boolean set operations between 3D elements) or increase it (like in sweep 

operations that transform a 2D element onto a solid). Modelling operations can be parametric 

operations, that is, the result depends not only on the operands but also on the value of a 

number of formal parameters. 

Both the interaction process and the structure of the constructive parametric solid model can 

be clarified through the design of a simple object. A family of 'L-shaped' solids is to be 

generated. Being L the edge size of the square faces, figure 3, the heigh of the part must be 

2*L and its length must be 2*L*F, F>O.5 (figure 3-a). Different specific objects from the 

same parametric family can be obtained by giving particular values to the parameters L and 

F. The design process starts by instantiating a square (one of the supported 2D parametric 

objects) and performing a sweep operation in order to generate a parametric prism with a 

general heigh H. The system automatically generates the corresponding constructive 

parametric solid model of the prism (see appendix) according to the following sequence of 

user's actions: 

select 'define new model' and enter its name. 

select 'define a regular polygon'. 

enter the parameters involved. 

select 'generate solid by parallel sweep' and define the parameters as: 

select the polygon just generated 

define the value of the sweep as a parameter of the model. 
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Figure 3. Example of object design. 

The result generated by the system is: 

model square yrism (L,H) { 

A:= Regyol (4, L, point(O., 0., 0.» 

B:= Paral_sweep (A, H) 

When the user chooses an avalaible modelling operation or constraint, he has to define the 

involved parameters. Thus can be done by, 

an specific value. It is the case of the number '4' in the previous sequence. 

a symbol that identifies a formal parameter of the model wich will appear on the 

heading of the CPSM. In the previous example the parameter 'L'. 

a function or expression that computes and returns the parameter value. It is the case 

of the function 'point' that creates a point located by the user on the graphic screen. 

The following options are therefore possible in the previous example: 

A: = Regyol (4, 16, point(O.O, 0.0, 0.0» 

where the length of the polygon edge has been fixed to 16. 

A: = Regyol (4, 2*L-H, point(O.O, 0.0, 0.0» 

in this case the number of sides is 4 and the polygon edge size is the evaluation of 

2*L-H. 
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The parameter A in the Paral_ sweep operation indicates that the polygon to be operated is the 

result of the Regyol invocation. Now, the user can simply ask for two instances of 

squareyrism and define in a graphic way a number of constraints in order to fix the relative 

location of both prisms. The final object is generated by means of a boolean union operation. 

The constructive parametric solid model that will be obtained for the final L-shaped object 

will be, 

model L _object (L,F) { 

A: = squareyrism (L, 2*L) 

B: = squareyrism (L, 2*L*F) 

Equal_normal (A.F2, B.F1) 

Coincident_2P (A.P5, B.Pl) 

Coincident_ 2P (A.P6, B.P2) 

C: = Union (A, B) 

In this second step, three constraints have been introduced. First, the user selects the top 

faces of both prisms, figures 3-b and 3-c, and asks for coincidence of the normal vectors. 

Then, coincidence of the point 5 of prism A with point 1 of prism B is required, and the 

same with point 6 of prism A and point 2 of prism B, figures 3-b and 3-c. The user works 

by graphically selecting the points to be coincident, and the system generates the 

corresponding constraint sentences in the model description by using the point ordering in 

the data structure associated to the square yrism model, figure 3. The set of imposed 

constraints produces the relative location of the prisms indicated in figure 3-d, while the final 

union operation generates the model of the parametric object in figure 3-a. It must be 

observed that the spatial location of the generated object is irrelevant in most cases. Both 

prisms have been designed in a general location, but the right assembly has been obtained 

by means of the imposed constraints. 

3.2. INTERNAL MODEL DATA REPRESENTATION AND EVALUATION 

Given a set of defined parameter values, the CPSM can be evaluated to an specific object 

(fig.2). The evaluation process includes the following steps: 
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An internal model representation is generated automatically from the CPSM. This 

representation keeps both the default geometry of the object and the constraints 

between geometric elements. 

The internal model representation is validated in order to detect inconsistencies and 

overconstraints. 

Finally, a numerical evaluator generates the specific object model from the internal 

representation and the parameter values. The evaluator first deals with non cyclic 

constraints, and solves the remaining nonlinear equations from cycles in a second step. 

The internal model representation consists of a graph containing all points that have appeared 

in the CPMS design process. Nodes of the graph contain: 

The point coordinates (Initially they contain the default geometry of the points). 

A list of constraints concerned with the point. Every constraint includes pointers to 

other graph nodes involved in it. 

More specific aspects of the internal model representation are presented in a forecoming 

paper. 

4. EXAMPLES AND DISCUSSION 

In this section we present both the design process and the generation of the constructive 

parametric solid model of the family of objects shown in figures 5 and 6. The first step 

consists on the generation of the parametric polygon indicated in figure 4-a. The model 

depends only on a single parameter, the heigh H. The user directly draws the closed polygon 

using a graphical user interface, and afterwards indicates several constraints on the vertical 

dimensions. The resulting constructive model of the parametric polygon includes both the 

input polygon with the specific coordinates input by the user, and the distance constraints, 

Model belljJoly (H) { 

A:= ClosedjJol (Hor_edge (Point(O.,O.,O.), Point(3.,O.,O.», 

Ver_edge (point(3.,O.,O.), Point(3.,2.,O.», 

Hor_edge (Point(3.,2.,O.), Point(2.,2.,O.», 



2P_edge (point(2.,2.,0.), Point(0.,16.,0.», 

2P_edge (point(0.,16.,0.), Point(-2.,17.,0.», 

Ver _ edge(point( -2.,17. ,0.),Point(-2., 18. ,0.», 

Hor_edge (point(-2.,18.,0.), Point(-4.,18.,0.», 

Ver_edge (point(-4.,18.,0.), Point(-4.,15.,0.», 

Hor_edge (point(-4.,15.,0.), Point(-2.,15.,0.», 

2P_edge (point(-2.,15.,0.), Point(O.,O.,O.») 

Y_dist (A.PT2, A.PT7, H) 

Y_dist (A.PT2, A.PT3, .1*H) 

Y_dist (A.PT3, A.PT5, .8*H) 

Y_dist (A.PTI, A.PTlO, .15*H) 

Y_dist (A.PT6, A.PT7, .05*H) 

X_dist (A.PT6, A.PTlO, 0.) 

X_dist (A.PTl, A.PT5, 0.) 

PTB PT7 
O.05~_ 

-
PT9 

O.B*H H 

PT1 PT2 

Figure 4. Parametric polygons. 
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PT4 

L1 

PT2 

L2 

It must be observed that the use of primitives like Hor_edge and Ver_edge in the input 

process of the polygon adds a number of implicit constraints between consecutive points of 

the polygon. Every geometric element has a default explicit geometry. In this way, edge sizes 

not forced by constraints will keep their input values. 
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Now, .the 3D solid 'bell' can be generated by means of a rotational sweep. A rotation axis 

must be supplied, and the distances from certain polygon points to the axis must be 

incorporated to the model in the form of constraints. However, when more than two distances 

from points to the axis are indicated, they act as additional constraints that force the shape 

of the swept polygon. In the present example, the user instanciates a bellyolygon with 2*D 

heigh and gives two extra constraints in order to shape the width of the bell. The generated 

model will be, 

Model bell (D) { 

e:= 2P_axis (Point(O.,O.,O.), Point(0.,30.,0.)) 

A: = bellyoly (2*D) 

Point_axis_dist (A.PTl, e, D) 

Point_axis_dist (A.PT9, e, D/3.) 

Point_axis_dist (A.PT6, e, .66*D) 

Point_axis_dist (A.PT2, e, 1.25*D) 

B: = Rotation_sweep (A, e, 360.) 

A second solid will be generated through a parallel sweep operation from the parametric 

polygon in figure 4-b. The initial parametric 2D polygon is designed in the same way as 

bellyoly, being the only difference that, now, the polygon includes three straight edges plus 

an arc. Corresponding constraints include dimension constraints, simmetry of the central point 

A.PT4, specification of the slant angles at both sides, and tangency of the arc. This last 

constraint is finally represented in the model in terms of trigonometric functions, 

Model 2D_window (Ll, L2) { 

A: = Closed yol(Hor_ edge(point(O. ,0. ,0.), Point(6. ,0. ,0.)), 

2P _edge(point(6. ,0. ,0.), Point(4.5, 12. ,0.)), 

3P _arc (point(4.5, 12.,0.), Point(3, 13.5,0.), Point(1.5, 12.,0.)), 

2P _edge (Point(1.5, 12. ,0.), Point(O. ,0.,0.))) 

X_dist (A.PTl, A.PT2, L2) 

Y_dist (A.PT2, A.PT4, Ll) 

Y_dist (A.PT4, 2Pyoint(A.PTl, A.PT2, .5),0.) 

Edge_angle (A.EDl, A.ED2, 80.) 



Edge_angle (A.EDl, A.ED4, 80.) 

Y_dist (A.PT3, A.PTS, 0.) 

Y_dist (A.PT4, A.PTS, (A.PT3.X, A.PTS.X)*.5*(l/cos(80.)-l/tan(80.))) 

} 
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Now, the swept object 3D_window is generated by a simple instatiating operation of the 

previous model plus a parallel sweep, 

Model 3D_window (Ll,L2) { 

B: = 2D _window (Ll,L2) 

C: = Paral_sweep (B, 10. *L1) 

Finally, the generation of the final object is performed through the difference between 

instances of the bell and 3D _window. Specific values of the parameters are supplied to the 

operating objects, as functions of the formal parameters of fmal_ object. Locating both 

objects in the right place for the boolean difference involves a graphical selection of the 

bottom faces of each objects - the corresponding faces in the associated data structure are 

A.F2 and B.F3 -, and a selection of the top face of the bell. The constructive parametric 

solid model which results for the final object is, 

Model final_object (D,L) { 

A: = bell (D) 

B:= 3D_window (L,.2S*L) 

Equal_normal (A.F2, B.F3) /* bottom faces */ 

Pl:= Centroid (A.F2) 

P2: = Centroid (B.F3) 

P3: = Centroid (A.F4) /* top face of A */ 

Coincident_2P (p2, 2P-IJoint (PI, P3, .12)) 

C: = Difference (A, B) 

All intermediate models are stored on a model library, and can be instantiated in different 

applications. Several models, like bell-IJoly and 2D_window, are 2D models, while bell or 

3D _window represent parametric solids. Any model is a non-evaluated representation of the 

parametric family, and can be evaluated by means of a geometric interpreter, figure 2. 
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Figure 5. The boolean difference between the objects generated in figure 4 defines a family 
of parametric objects. 

5. CONCLUSIONS 

A new constraint-based modelling scheme has been proposed, based on the definition of 

constructive parametric solid models. A non-evaluated procedural model of the parametric 

family is automatically generated during the design process of a single object of the family. 

General modelling operations together with geometric constraints can be mixed with no 

restriction during the design step. 

Constructive parametric solid models support instantiating of predefined models, variable 

topologies, parametric geometric operations in ID, 2D and 3D, and operations with structural 

constraints. A specification of the model definition language has been presented and discussed 

through several examples. 
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Figure 6. Several real objects from the parametric family defined in figure 5. 

Future work will involve the analysis of constraints consistency, the generation of specific 

tools for the detection of overconstraints, efficient mechanisms for deletion and editing of 

geometric parts, and aspects related to the validity and range of the parameters. On the other 

hand the set of supported modelling operations and geometric constraints will be extended 

beyond the kernel that has been presented in the appendix. 
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APPENDIX 

CONSTRUCTIVE SOLID MODELLING LANGUAGE. 

In this section we present part of the formal specification of the constructive solid modelling 

language. For a full definition see [SoB92]. 

A model is defined as a sequence of statements. The model has a name given by an identifier 

and a list of formal parameters that are used in order to evaluate the model. Every statement 

can be a modelling operation or a constraint. 

model :: = Model modeUd "(" formal_parameteUist ")" "{" statemenUist "}". 

formal_parameter_list :: = parameter_id { , parameter_id }. 

statement_list :: = statement { "<CR>" statement }. 

modeUd :: = identifier. 

parameter _id :: = identifier. 

Every statement in the model is a modelling operation or a constraint: 

statement :: = operation 

I constraint. 

identifier:: = letter { letter I digit}. 



The modelling operations supported can be unary or binary: 

operation :: = unary _ op 

I binarLop. 

Unary operations involve one geometric element: 

unary_op :: = creation 

I geometric_transf 

I section 

I copy. 

Binary operations involve two geometric element: 

binary_op :: = boolean_op. 

Some possible operations in order to create geometric elements are: 

creation :: = identifier": =" cr _geometric_element 

I model_instantiating. 

cr_geometric_element :: = cr_OD_element 

I cr 1 D element 

I cr 2D element 

I cr_3D_element. 

cr_OD_element :: = cr_point. 

cr_1D_element ::= cr_edge 

I cr_line 

I cr_axis. 

cr _ 2D _element :: = cr _polygon 

I cr_cercle 

I cr_arc 

I cr_plane. 

cr_point ::= Point "(" real_exp, real_exp, real_exp ")" 

I 2P _point "(" point_exp, point_exp, real_exp ")" 

Centroid "(" polygon_exp a)" 

Point_edge "(" edge_exp, real_exp "In 

I 4P _point"("point_exp, point_exp, point_exp, 

point_exp,real_exp,real_exp,real_exp,real_exp")" . 

cr_edge :: = 2P_edge "(" point_exp, point_exp ")" 

I Hor_edge "(a point_exp, point_exp ")" 

I Ver_edge "(" point_exp, point_exp a)". 

cr_line ::= 2P_line "(" point_exp, point_exp ")" 

I HorJine "(" point_exp ")" 

I Ver_line "(" point_exp ")". 
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Para_line "(" line_exp, point_exp ")" 

Perp_Iine "(" line_exp, point_exp ")". 

cr _polygon:: = cr _regular_polygon 

i cr_close_polygon. 

cr_regular_polygon :: = Reg_pol "(" sides_num, long, point_exp ")". 

cr_closed_polygon :: = Closed_pol "(" edge_list I point_list ")". 

cr_arc :: = 3P _arc "(" point_exp, point_exp, point_exp ")". 

cr_axis ::= 2P_axis "(" point_exp, point_exp ")" 

i Edge_axis "(" edge_exp ")". 

cr_polyhedron :: = regular_polyh 

I paral_sweep 

i rotat_sweep. 

The geometric elements are expressed as (a non exhaustive list follows): 

point_ exp :: = identifier 

cr_point 

poinUd. 

edge _ exp :: = identifier 

i cr_edge 

i edge id. 

polygon _ exp :: = identifier 

cr_polygon 

polygon_id. 

axis _ exp :: = identifier 

cr_axis 

axis_id. 

poinUd :: = identifier"." PT point_model. 

edge_id :: = identifier". "ED edge_model. 

polygon _id :: = identifier"." F polygon_model. 

The solid object creation could be: 

paral_sweep :: = Para I_sweep "(" polygon_exp, real_exp ")". 

rotat_sweep :: = Rotation_sweep "(" polygon_exp, real_exp ")". 

modeUnstantiating :: = modeUd "(" parameterJist ")". 

parameter_list:: = expression {. expression} 

expression:: = real_ exp 

i integer_expo 



Binary operations are defmed as: 

bool_ op :: = identifier": =" union 

intersection 

difference. 

union :: = Union "(" element_exp, element_exp ")". 

intersection :: = Intersection "(" element_exp, element_exp ")". 

difference :: = Difference "(n element_exp, element_exp ")". 

And the presently supported constraints are: 

constraint :: = distance 

angle 

coincidence. 

distance :: = 2 _points _ d 

I point_axis_d. 

2_points_d :: = 2P _dist "(" point_exp, point_exp, real_exp ")" 

X_dis~ "(" point_exp, point_exp, real_exp ")" 

V_dist "(" point_exp, point_exp, reaLexp ")" 

I Z_dist "(" point_exp, point_exp, real_exp ")". 

point_axis_d :: = Point_axis_dist " ("point_exp,axis_exp,real_exp")" . 

angle :: = 3P _angle "(" point_exp, point_exp, point_exp,real_exp")" 

I Edge_angle "(" edge_exp, edge_exp, real_exp ")". 

coincidence :: = points_coincidence 

I normals_coincidence. 

points_coincidence :: = Coincident_2P "(" point_exp, point_exp ")" 

Coincident_X "("point_exp, point_exp")" 

Coincident_ V "(" point_exp, point_exp ")" 

Coincident_Z "(" point_exp, point_exp ")". 

normals_coincidence :: = EquaLnormal"(" normal_exp, normal_exp")" 

I Angle_normal" (" normal_ exp, normal_ exp, real_ exp")" 

Perpe _normal" ("normal_ exp,normal_ exp")" 

Opposite_normal" ("normal_ exp,normal_ exp")". 

normal_exp :: = edge_exp 

I polygon_exp. 
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Abstract: Constrained optimization is used for interactive surface design in our 
new surface editor. It allows designers to modify B-spline surfaces to satisfy their design 
intents, expressed as geometric constraints. The restrictions on the set of constraints 
are few. [n the special case of no constraints a surface can be faired to remove design 
Haws. 

Introd uction 

In their introduction to my favorite geometric modeling textbook [Faux & Pratt, 
19871, the authors make the distinction between a "surface fitting system", which 
"performs what a numerical analyst would refer to as two dimensional interpolation", 
and a "surface design system", which allows the designer to modify it through "an 
interactive process, amounting to a dialogue between the designer and the computer." 
A surface fitting system typically has a very rigid template for its input, because it 
uses a closed formula to compute the surface. Coon's formula, for example, requires a 
closed chain of 4 curves. Other fitting systems solve linear equations, but that requires 
an exact match between the number of interpolation conditions (equations) and the 
number of unknowns. 

The flexibility offered on the other hand by "surface design" systems is achieved 
by allowing the designer to di recUy mani pulate (B-spline or Bczier) control points. 
U nfortunateiy, the effect on the surface of moving a single control point is highly un­
predictable. To make things worse, a surface -computed by a surface fitting scheme 
often has hundreds of control points. Modifying such a surface in any useful way must 
involve the coordinated manipulation of scores of control points, a hopeless task if done 
manually. By exposing the control points to the designer we have forgotten that they 
are nothing but the surface's mathematical coefficients; they should not be confused 
with design tools. 

This work presents a new B-spline surface design scheme that combines the flexi­
bility of control point manipulation with the precision of surface fitting. This scheme 
accepts the design intent in the form of exact geometric constraints. There is no re­
striction on the number of constraints, and only one restriction on their types: they 
must be expressed as linear equations in the surface's control points. This covers point 
and curve interpolation, surface normal direction at a point, etc. If there is no conflict 
among the constraints, they will be satisfied exactly, otherwise they will be satisfied in a 
least squares sense. By designating the boundaries of the affected region on the surface, 
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the designer is free to make the changes as local or global as he pleases. Control points 
are kept where they belong: in the engine room. 

The key to this flexibility is in treating the equations as the constraints in a con­
strained optimization problem, with a fairing goal function. This eliminates the need for 
a fnlly determined linear system, and allows the scheme to li\'e with as few constraints 
as the designer wishes to supply. In fact, the set of. constraints may be empty, and then 
the surface will be [aired, to remove design flaws. 

Previous Work 

Using optimization in surface design is not a new idea. Unconstrained optimization 
has been proposed for curve and surface fairing in [Farin & Sapidis,19891, [Hagen & 
Schulze, 1987], [Kallay & Ravani, 19901 and [Lott & Pullin, 19881. Since there is no 
exact definition for fairness, it is difficult to decide which goal function should be used 
to achieve a fair surface. For comparison, let us recall how curves are faired. 

Thin elastic strips of wood were historically used for designing ship hull and air­
planes. Elastic strips tend to minimize their bending energy, and curves of least energy 
are considered fair. \Vhen computers started to replace wooden splines in curve design, 
it was computationally too expensive to minimize the elastic energy, which is propor­
tional to the length integral of the squared curvature. As it turned out, the elastic 
energy's cheaper "cousin", the integral of the squared second derivative of the curve 
mapping, provides an acceptable fairness criterion ([Faux & Pratt, 1987]). This integral 
is not a geometric property of the curve, it depends on its parameterization, but the true 
curve of least energy is usually outside the space of curves used in CAD, i.e. piecewise 
rational curves, while the curve that minimizes the cheaper functional is a cubic spline. 

Choosing a goal function for surface fairing, we must again choose between a true 
geometric goal function and a cheap parameterization-dependent one. Lott and Pullin 
in [19881 chose the purist path, minimizing the elastic energy of the surface, which is 
proportional to the area integral of the sum of the squares its principal curvatures. Their 
results were good, but the method is computationally too costly for interactive design. 
In analogy to using the integral of the squared curvature for fairing curves, integrals of 
quadratic functions of the surface's partial derivatives were explored in [Hagen &Schulze, 
1987] and [Kallay & Ravani, 1990], but these methods were implemented only for some 
restricted classes of surfaces. Here it is done for the workhorse of CAG D: tensor product 
B-spline surfaces with any degrees and knot sequences. 

The idea of using constrained optimization for general interpolation schemes has 
been suggested in [Ferguson & Grandine, 1990]. The goal function was not specified in 
the paper, but it was, as in [Lott & Pullin, 1988], purely geometric. As a result, the 
computations were too expensive for interactive design. Using a quadratic functional, 
the surface design scheme presented in [Celinker & Gossard, 1991J is sufficiently fast for 
interactive design. Its practicality is limited, though, by two factors. First, it restricts 
the types of input constraints: Only such constraints are accepted that directly eliminate 
some variables. Second, the surface in [Celinker & Gossard, 1991] is represented as a 
finite-element mesh, commonly used for structural analysis, but rarely for design and 



87 

manufacture. Our scheme accepts any number of linear equality constraints of any type, 
and works on B-spline surfaces. 

The Variables 

Suppose we are given a tensor-product B-spline surface 

So(u,v) = L C;jNij(u,v), 
ij 

(1) 

where N;j are the B-spline basis functions, and C ij their control points. We need to 
compute the control points of a new modified surface S( u, v) that satisfies a given set 
linear equality constraints in the control points C ij . The designer wishes to restrict all 
changes to a specified region on the surface. Let K be the set of indices ij of those basis 
functions that vanish outside the specified region. For ij in K, write the coefficients of 
the target surface S as Cij+Dij . The modified surface will then be 

S(U,v) = So(u,v) + L DkNk(U,V). (2) 
kEK 

The pert urbation vectors D k will be the variables of the constrained optimization prob­
lem. Note that the index k ranges in the set K of pairs of integers. The conversion from 
the double index (i,j) of a control point to a single index k (as required by the solver) 
is done by a C macro. 

The Goal Function 

When a flat thin elastic plate at z = 0 is deformed to the shape of the surface 
z( x, y), its bending energy (under some simplifying assumptions) is proportional to the 

area integral of (~)2 + 2( :;;y)2 + (~)2. The first term in our goal function is the 

sum of these "thin-plate" energies of the coordinates of surface mapping (also used in 
[Celinker & Gossard 1991]). The second term is the squared deviation from the original 
surface (used in [Lott & Pullin, 1988]). Our goal function is therefore: 

J J 82S 82S 82S 82S 82S 82S 
F = w( 8u2 • 8u2 + 2 8u8v· 8u8v + 8v 2 • 8v2 ) + (S - So) . (S - So)dudv. (3) 

The weight w is at the user's diposal, expressing the relative importance assigned to 
fairing versus adherance to the original design; a large w represents greater emphasis 
on fairing. 

'vVe did experiment with some other, somewhat more geometric quadratic goal 
functions. For example, the true elastic energy of the surface (under some simplifying 

assumptions) is proportional to the area integral of (~.N)2 + 2( :::11 .N)2 + (~.N)2, 
where N is the surface normal. We tried to minimize the quadratic function obtained 
by fixing N in several ways: The normal of the original surface, or its local or global 
average. However, the simple-minded (and cheapest) approach, of fairing the sum of the 
energies of the surface's coordinate functions, seems to produce better looking surfaces, 
perhaps because it "fairs" the parameterization as well as the geometry. 
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Unconstrained fairing: The Equations 

"Vrite the first integrand as 

(4) 

where Eu = E2 = 1 and El C~ 2. 

[n terms of our optimization variables Db the, goal function expands to: 

+ L Dk·DINkN1dudv = L AkIDk·DI + 2 L bk·Dk + C, (.) ) 
k,l kJ k 

where: 

(6) 

and 

(7) 

and c doesn't depend on the variables Dk. 

The necessary optimization conditions are the linear equations, one for every IE K: 

L .4kIDk+hl= O. 
k 

(8) 

Since the goal function is quadratic, this condition is also sufficient, and the mini­
mum is global. 

Note that .4 is a symmetric matrix of scalars, while the unknowns D k and the right 
hand side b k are columns of 3-dimensional vectors. The matrix .4 is sparse, due to the 
compact support of the B-spline basis fll'lctions. 
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Censtraints 

The surface 5 interpolates a given point Q if there exists a parameter pair (u,v) 
such that 5(1t,v) = Q. This equation is linear in the surface's control points, but not 
in u and v. It is therefore common practice in interpolation schemes to apply some 
heuristic procedure for assigning a parameter pair (1t, v) to Q. In our surface editor 
(1t, II) is the parameter pair of the point on 5 nearest to Q. The equations are then 

L DkNk(u,v) = Q - 5o(u,v). 
kEK 

(9) 

If we require 5 to interpolate a curve R( t), again we need a procedure for defining 
a curve (U(t),'lI(t)) in the surface's domain, to make the condition 5(u(t),v(t)) = R(t) 
linear. Given such a procedure, the problem can be reduced to a multiple point inter­
polation constraint if both curves are H'-splines. To see that, raise degrees if necessary, 
so that R( I) and 5( u(t), v( I)) ha\'e the same degree d, and refine them to make their 
knots compati ble. If the curves 5( u( t), v( t)) and R( t) agree on d + 1 points in each span 
then the curves must coincide. The curve interpolation condition is therefore equivalent 
to d + 1 point interpolation conditions per span. 

In our implementation the curve (u(t), v(t)) in the surfaces domain is defined by 
an approximate projection of R on 5. In other words, (u(t), v(t)) is computed so that 
5(.,,(t),o(t)) is an approximation of R(t). 

Meeting a prescribed surfacl> normal direction at a given point is equivalent to 
the surface partial derivatives being perpendicular to the given normal. This can be 
expressed as linear equations in the control points. This type of constraint has not been 
implemented in our editor yet. 

Once the constraints have been gathered as a list of linear equations 

L Pik·D k = qi, ( 10) 
k 

their origin no longer matters. This allows mixing different types of geometric con­
straints. The resulting equality constraints are handled with Lagrange multipliers Ai, 
one for every constraint. The constrained problem reduces to the uIlconstrained problem 

min(F + L AlL Pik·D k - qi)) (11) 
k 

in the variables D k , Ai (see [Gill, Murray & Wright, 1981]). The minimality conditions 
are obtained by equating to zero the partial derivatives of (11) with respect to the 
coordinates of D k and Ai. The equations are all linear. 

In the presence of conflicting constraints, we must replace these constraints with 
the minimality conditions for the sum of the residues 

min L(L Pik·D k - q;)2. 
k 

(12) 

These conditions are again linear. The resulting linear system may still be singular, but 
the equations are no longer conflicting. Our sol ver returns the least norm solution. 
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Implementation and Results 

Our surface editor was implemented as a prototype within GM's Corporate Graph­
ics System (CGS). It seems to produce good looking surfaces, as the following examples 
illustrate, and our own color curvature-plots verify. In its unconstrained mode, it very 
effectively removes undesired wiggles from a surface. The typical response time is not 
longer than a few seconds, even on a Sun SPARC station 1. 

First we see the lines of maximum curvature on a bicubic surface of 7 by 8 spans, 
modeling a car body surface. The lines are disrupted by a flaw in the surface: 

After unconstrained fairing, the lines of curvature flow smoothly. Position and the 
first two derivatives were preserved along three boundaries, by clamping the three 
raws or columns of control points adjacent to those boundaries. The boundary near 
the flaw was free to move. 
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Next 'we see the same surface with a single point interpolation constraint. 

x 

The modified surface interpolates the point. The entire surface was changed, pre­
serving position and the first two derivatives along all boundaries. The three rows (or 
columns) of control points adjacent to the boundaries were not included in the opti­
mization process. 
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Finally, here is the same base surface with 7 target curves to interpolate. All the 
control points are subject to optimization here, imposing no boundary conditions. Note 
that the intersection pattern of the curves is a far cry from the regular mesh required 
by most surface fitting schemes: There is a curved quadrangle with its two diagonals, 
and an additional arc hovering. 

Here is the modified surface. The problem was overconstrained - 462 constraints 
were imposed on 330 variables. As a result, the surface looks like a short blanket pulled 
over big feet: It visibly misses the boundary in the area marked by the arrow. 
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1. Introduction 

Polyhedral approximation of range data has the advantage of being simple to 
obtain from raw data and of being capable of approximating any sampled surface to 
the desired precision. Among different possible polyhedral approximation schemes, 
surface triangulation is a popular one due to its efficiency in computing and storage. 
Surface triangulation has been used to solve many problems, such as definition of the 
object shape [BOIS-84], digital terrain modeling [FOWL-79], control of the automatic 
machining of surfaces [JERA-89], smooth interpolation between 3-D points [LA WS-
77], approximation of the digitized object surfaces [FAUG-84,DELI-91], and com-

. . 

puter graphics. 

Different methods have been proposed to construct a surface triangulation-based 
approximation to a set of range data. Faugeras et al [FAUG-84] presented a technique 
to approximate 3-D objects without holes. De Floriani et al [DEFL-85] designed an 
algorithm to approximate surfaces defined over an arbitrarily shaped domain. Lee et al 
[LEE-89] introduced an approximation scheme for visual communication purposes. 
Recently, Delingette et al [DELI-91] proposed a deformable model based on surface 
triangulation to approximate a set of sampled surface points. 

However, all these schemes suffer from a common problem: they cannot reflect 
surface characteristics of the objects, i.e., points and edges where the triangular 
patches join generally have no physical significance. In this paper, we propose a 
method for constructing a polyhedral surface model from a range image constrained to 
its surface characteristics. These characteristics are firstly extracted from the range 

image. A triangulation-based surface approximation of range data is then constructed 
to embed this edge-junction graph, i.e., the polygonal approximation of the extracted 
surface characteristics are embedded as edges of the surface triangulation. The con­
struction of this approximation is adaptive in the sense that an initially rough approxi­
mation is progressively refined at the locations where the approximation accuracy does 
not meet the requirements. 
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We organize the paper as follows: Section 2 presents the general idea of our sur­
face approximation scheme. Section 3 discusses how to extract surface characteristics 
from a range image. Section 4 presents an adaptive surface approximation scheme 
based on the idea of a constrained surface triangulation. Section 5 gives the experi­
mental results followed by Section 6 which concludes the paper. 

2. General Idea 

Our aim is to construct a triangulation-based surface approximation of a set of 
dense sampled surface data arranged in the form of an image. The main issue 
involved in this problem is how to choose from a range image a subset of data points 
which allows the construction of a triangulation-based surface approximation to within 
a predefined error tolerance. We use an adaptive refinement technique to solve this 
point selection problem. 

Because surface triangulation is a piecewise representation, the refinement of a 
triangulati()n-based surface approximation can be performed locally. We examine the 
approximation error of each triangular patch; if the error for a patch is greater than a 
predefined tolerance, we locally refine the surface approximation around this patch. 
The refinement can be achieved by adding new points to the triangulation. Thus, the 
point selection strategy is as follows: each time the approximation accuracy for a tri­
angular patch is greater than a given tolerance, the data point which is worst approxi­
mated by this patch will be added to refine the approximation. This point selection 
strategy is adaptive in the sense that it is only performed at the locations where the 
approximation is not satisfactory. 

Such an approximation scheme has already been used by several authors to obtain 
a triangulation-based surface approximation [FAUG-84,DEFL-85,SCHM-9IaJ. How­
ever, it has been criticized for its inability to reflect characteristic features of object 
surfaces [FAN-90J. Specifically, the points and edges where the approximating tri­
angular patches are joined generally have no physical significance. To remedy this 
defect, we propose to first extract from range images the surface characteristics which 
reflect significant object shape features. These characteristics are then embedded into a 
triangulation-based surface approximation in such a way that the subsequent adaptive 
refinement will not destroy them. 

We have considered two kinds of surface characteristics: surface discontinuities 
and curves of surface curvature extrema. Surface discontinuities of type CO and C 1 

often indicate physical events on object surfaces. For example, CO discontinuities 
often indicate the occlusion of two surfaces or the self-occlusion of a surface; while 
C 1 discontinuities often correspond to a vivid edge on the object surface. The curves 
of surface curvature extrema correspond to surface ridge or valley lines and have been 
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considered as important shape descriptors. Examples of these three types of surface 
characteristics are shown in Fig. 1. 

Local symmel'Y curves 

(c) 

Fig. 1 (a) CO and (b) C l surface discontinuities. (c) Surface curvature extrema. 

In the next section, we describe how to extract such surface characteristics from a 

range image. 

3. Extraction and Organization of Surface Characteristics 

Because surface characteristics playa crucial role in the final surface description, 
their extraction constitutes a key step in our surface approximation scheme. We expect 
that an extraction process will satisfy the following requirements: 

1) The localization of edges, especially those corresponding to surface discon­
tinuities, must be as precise as possible. 

2) The labeling of edge types must be correct. 

In general, there are two kinds of methods for extracting surface characteristics: 
region-based or edge-based. Edges detected by region-based methods often do not 
correspond to the real surface characteristics, especially when there is an over­
segmentation. In contrast, edge-based methods provide edges which correspond more 
closely to the reality. We therefore chose to use edge-based methods. 

Although edge-based methods using curvature computation [FAN-87,PONC-87] 

satisfy requirement 2, they suffer from an edge displacement problem: the computa­

tion of the surface curvatures is highly noise sensitive, an image smoothing is thus 
needed to decrease the effects of noise; however, such smoothing often works blindly 

to cross the potential surface discontinuities and thus causes edge displacement. 

The quality of today's range images allows us to use relatively simple techniques 
to extract the edges of surface discontinuities without smoothing data [GODI-89]. We 

thus adapt a two-step strategy to extract surface characteristics: we first detect the sur­

face discontinuity edges and organize them in such a way that missing edges are 
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recoyered and spurious edges eliminated. We then smooth range data without cross­
ing these extracted edges. The surface curvatures are finally computed and edges 
corresponding to curves of maximum curvature extrema detected. In the following 
subsections, we present these steps in more detail. 

3.1 Extraction of CO and C 1 Discontinuity Edges 

Geometric model fitting methods have been proposed to detect edges in intensity 
images. The basic idea of such methods is to fit predefined edge models to data, and 
then make a decision to accept or reject the presence of such models. Geometric 
model fitting provides an explicit mechanism for classifying the detected edges. We 
have chosen a method proposed by Leclerc [LECL-87] to detect discontinuity edges. 

A naive method of using the geometric model fitting to detect a CO discontinuity 
of a 1-D function at a point p would be as follows: we fit a curve to the points in a 
neighborhood left of p, and fit a separate curve to a neighborhood right of p. Then we 
compare statistically the limits of these two curves when they approach p. If they are 
significantly different, we declare that at p there is a CO discontinuity. The same pro­
cess can be used to detect a C 1 discontinuity. An apparent drawback of this method is 
that for a point near a discontinuity, its left- or right-hand neighborhood will overlay 
this discontinuity. Therefore, the approximated curve for the points falling in this 
neighborhood is not a correct estimate of the underlying function, and the statistical 
tests of significance are inapplicable. If we could eliminate those points whose neigh­
borhoods overlay a CO or C 1 discontinuity, we would be left only with the points 
whose two-side estimated curves are correct. The statistical test could then be applied 
on them to decide whether they are discontinuity points or not. We have therefore the 
following discontinuity detection procedure for 1-D sampled points. 

1). Fit a curve to each of the left- and right-hand neighborhoods for every point; 

2). Eliminate those points whose neighborhoods overlay a discontinuity; 

3). Apply a statistical test on remaining points to see if there is a discontinuity. 

To perform step I, polynomial of degree 1 is fitted to the left-and right -hand 
neighborhoods of a given size for every point. The sum of the fitting errors of these 
two fits are calculated and stored. The elimination of false points in step 2 is done by 
taking into account the fact that when a fitting crosses a discontinuity, the sum of the 
fitting errors is generally very high. Thus by performing a non-minimum suppression 
on the values of the sum of the fitting errors through the sequence of points, we can 

eliminate those false points. For step 3, an F -test is performed on the two fitted curves 
at each point to decide whether there is a discontinuity or not. 

This 1-D procedure is applied in two passes to detect surface discontinuities in a 
range image: the first pass for each row, and the second pass for each column. Note 



99 

that with this method, detected edge points can be labeled as CO or e I type. For e I 
edge points, we can further decide whether they are convex or concave by comparing 
their fitted curves at their left- and right-hand neighborhoods. Results of applying this 
detection method to an example object is shown in Fig. 2. 

Q [J ) 

(a) (b) (c) (d) 

Fig. 2 Edge extraction for an example object. (a) Shaded display of range image. (b) 
Joint view of eO and el edge points. (c) CO edge points. (d) el edge points. 

3.2 Organization of CO and e I Discontinuity Edges 

After the extraction of discontinuity edge points, we can link them into edges of 
the same label on the basis of 8-connectivity. This linking is performed in such a way 
that the range values of the resulting edges are continuous in depth. Edges are oriented 
so that the surface closest to the sensor is to the right of the oriented edges. If two 
edges of different types or more than two edges meet together, a junction is created. 
An initial edge-junction graph is then obtained. Some faults are often present in such 
an initial graph (see Fig. 3(a». For example, junctions may be lost due to a complex 
surface geometry around surface vertices; edges may be fragmented due to the pres­
ence of noise; or spurious edges may appear due the presence of noise or to an invalid 

edge model. 

The aim of the organization process is to construct from these detected edges a 
final edge-junction graph in which missing edges are recovered and spurious edges are 
eliminated. Our edge organization process [CHEN-92] builds an edge-junction graph 
by using both the knowledge of a junction dictionary [MALI-87] and the principles of 
generic geometrical regularity obtained in perceptual organization studies [LOWE-

85,MOHA-92]. 

The edge-junction graph is a planar undirected graph similar to the one proposed 
in [GODI-89]. Its nodes represent junctions while its arcs represent edges. Each edge 
is labeled as convex( +), concave( -), occluding ( ----j), or limb( ----j----j), the range value and 

the image coordinates of its ordered associated points are also stored. Each junction is 
labeled according to the junction dictionary, its position and its connection with edges 

are stored. We see that such an edge-junction graph encodes the quantitative position 

information as well as the qualitative type descriptors of edges and junctions. The 
final edge-graph results for the previous object are shown in Fig. 3(b). 
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(a) (b) 

Fig. 3 (a) Faults in edge extraction. (b) Final edge-junction graph with labeled edges. 

3.3 Extraction of Curves of Surface Curvature Extrema 

Because extrema of the minimum curvature are very sensitive to noise, only the 
extrema of the maximum curvature are extracted. 

To smooth a range image, we use a binomial mask [BESL-88]. This smoothing is 
designed not to cross the discontinuity edges previously detected. 

The calculation of the principal curvatures and directions on this smoothed image 
is then performed by first fitting an orthogonal polynomial surface of degree 2 to a 
local neighborhood of each point, and then differentiating the resulting surface to 
obtain the partial derivatives necessary for the curvature computation. 

To detect edge points corresponding to the curves of curvature extrema, we use 
an efficient structural technique [HORA-89] which provides connected edges. A 
detection result is shown in Fig. 4(a). The detected edge points are linked and added 
into the edge-junction graph (Fig. 4(b)). 

! 

(a) (b) (c) (d) 

Fig. 4 (a) Edges of maximum curvature extrema. (b) All detected edges. (c) Doubling 
of CO edges. (d) Junctions after polygonalization 

3.4 Final Organization 

So far, for objects in a range image, we have extracted the edges of their surface 
characteristics and structured them into an edge-junction graph. However, such an 
edge-junction graph cannot be directly used for constructing a surface approximation. 



101 

We still need two special processing steps: the doubling of the CO edge points and the 
polygonization of the extracted surface characteristics. 

CO edges are caused by the occlusion of object surfaces. Thus, along a CO edge 
there are two surfaces meeting it. In the edge-junction graph constructed above, a 
detected CO edge belongs to the limit of the surface which is closer to the sensor. We 
thus need to double this CO edge in the farther surface in order to provide boundary 
limits for both adjacent surfaces. These boundary limits will be used in the surface 
construction process presented in the next section. As the detected edges have been 
oriented in such a way that the surface closest to the sensor is on their right, we can 
easily double a CO edge at its left side when we follow it along the defined orientation 
and orient the doubled edge in the reverse direction. If an object is totally contained 
inside a range image, we discard the background surface. In Fig. 4(c), two interior CO 
edges have been doubled. 

For our surface reconstruction process, we also need to polygonize the extracted 
surface characteristics. This polygonization is performed on the 3-D coordinates of the 
extracted edges. An algorithm for 2-D curve approximation [DUDA-73] has been gen­
eralized for 3-D curve approximation. The algorithm provides a continuous polygonal 
approximation in which the extremities of each 3-D line segments lie on the 3-D digi­
tal curves. For extremity, a corresponding junction is created in the edge-junction 
graph. An example is shown in Fig. 4(d). 

4. Adaptive Approximation by Constrained Surface Triangulation 

In order to embed the pre-extracted surface characteristics, a triangulation-based 
surface approximation requires the notion of a constrained triangulation. In this sec­
tion, we first define this notion and then present procedures for iteratively constructing 
such a triangulation. Based on these procedures, we describe an adaptive method for 
approximating digital surfaces. 

4.1 Constrained 2-D Triangulation and Surface Triangulation 

Since our input is a range image, we can use a 2-D triangulation method to con­
struct a surface triangulation. To construct a surface triangulation constrained to the 
pre-extracted surface characteristics then becomes to construct a 2-D triangulation 
constrained to the projection in the image domain of these characteristics. Such a set 
of projected surface characteristics is represented by D = (S, V) where S is a set of the 
2-D projections of 3-D segments and V is the union of the set of the extremities of S 
and the set of projections of the isolated characteristic points. 

A 2-D triangulation T constrained to a given D = (S, V) is a triangulation in which 
segments in S are embedded as its edges and points in V are embedded as its vertices. 
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It is easy to see that a given input data D can be triangulated in different ways. How­

ever, it can be shown that for any triangulation of D, the number of triangles 

Nt = 2n - nb - 2, and the number of edges Ne = 3n - nb - 3 is fixed, where n = I V I 
and nb is the number of points situated on the convex hull of V. 

Now suppose that a constrained triangulation T has been constructed for an input 

data D. A surface triangulation is obtained by backprojecting T to the 3-D space using 

the range value associated with each data point in V (Fig. 5). In the following, we will 

note T a 2-D triangulation, ST the surface triangulation obtained by backprojecting T, 
ti a triangle of T, and sti a triangle of ST. 

s~ surface triangulation 

I~Sti 
II I I 

, I 
T 

I~IIII: 
ti 

domain triangulation 

Fig. 5 Surface triangulation SF obtained by backprojecting 2-D triangulation T. 

4.2 Incremental Construction of a 2-D Locally Optimal Triangulation 

Because there are many ways to triangulate a given input data D, we would like 

to find a way to decide which one is the best. This needs a global criterion which can 
measure the "goodness" of a triangulation. The following idea was originally proposed 

by Lawson for 2-D triangulations [LA WS-77] and then adapted by Lee for 2-D con­

strained triangulations [LEE-86]. 

Suppose a(t) is a numerical measure of the goodness of a triangle t. Then associ­
ated with a triangulation T, we can define an index vector a(T) = (a], ... ,aN ), 

.... I 

where { ai } are obtained from { a(ti) } by putting them in increasing order. Note that 

the dimension of this vector is fixed because Nt remains the same for any triangulation 

of D. We can now compare the goodness of two different triangulations by using the 

standard lexicographical order of their associated index vectors: a < b means that for 

some integer m, we have ai = hi for i = l, ... ,m-l and am < bm. So a triangulation Tis 
said to be an optimal triangulation of an input data D with respect to a given a(t) iff 

a(T) ~ a(T') for any other triangulation T' of D. 

However, it might be difficult to obtain such an optimal triangulation in practice. 

In most cases, we will be satisfied with a locally optimal triangulation. We first define 

the notion of a locally optimal edge. An edge e is said to be locally optimal with 

respect to a measure aCt) if one of the following conditions holds: i) e is a constrained 

edge; ii) The quadrilateral Q formed by two triangles sharing e is not strictly convex. 
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iii) Q is strictly convex, e is not a constrained edge, and aCT) > aCT') where T' is 
obtained from T by swapping e with the other diagonal of Q (Fig. 6). Based on this 

notion, a triangulation T of an input data D is said to be locally optimal with respect to 
a measure aCt) if all edges of T are locally optimal with respect to aCt). 

Fig. 6 Two ways to triangulate a strictly convex quadrilateral. 

This swapping technique can be used to iteratively construct a locally optimal tri­
angulation: We first construct an initial but incomplete triangulation which includes 

all rest points or segments in its interior. We then update this triangulation by adding 

remaining points or segments, and at each iteration apply the swap operation to make 

the current triangulation locally optimal. The worst-case complexity of the algorithm 
is O(n2) [LAWS-77]. 

The realization of this algorithm needs two procedures: one for inserting a new 
point into an existing constrained triangulation (ADD_POINT), another for inserting a 
segment (ADD_SEGMENT). The point insertion procedure can be implemented by 
means of a stack in which edges to be tested for the local optimization are placed. 

The segment insertion procedure we use is a modified version of the one pro­
posed by De Floriani and Puppo [DEFL-88]. Its basic idea is to first insert two end­
points v 1 and V2 of a segment s by ADD_POINT procedure. Then the segment s itself 
is inserted. To insert s, those triangles of T intersected by s are collected which form 
an influenced polygon R with s as one of its diagonals. Thus s splits R into two 

polygons R 1 and R 2 which are then triangulated separately. After this, the swap 
operation is applied to the newly generated edges until they are locally optimal. In 
[DEFL-88J, an algorithm of time complexity 0 (n 2) was used to triangulate R 1 and 
R 2 . We use instead an algorithm of O(n) [TOUS-82] for the same purpose. The local 
optimization step is implemented by means of a stack as in the point insertion pro­

cedure. 

To construct an initial triangulation, we can simply use four comers of the image 

domain to form two triangles. We now tum to define a(t). 

4.3 Triangulation with Different Criteria 

Different definitions of aCt) give different criteria for obtaining a locally optimal 

triangulation. Many measures have been proposed in the literature [CHEN-92]. We 
introduce two of them below. One is in 2-D, the other is in 3-D. 
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It. has long been recognized that 2-D thin triangles should be avoided because 
they can cause a problem for spline approximation or for graphic rendering algo­
rithms. The minimum interior angle of a triangle can be used to measure its thinness. 
This leads to the max-min angle criterion of Lawson [LA WS-77] where a(t) is defined 

to be the minimum interior angle of t. Using this criterion leads to the so-called 2-D 
Delaunay triangulation which has also been proved to be a global optimal one with 

respect to aCt) so defined. 

The above criterion is a 2-D one which uses a numerical quantity defined on the ti 
of T. Similarly, we can define a 3-D criterion using a quantity defined on the sti of sr. 
Dyn, Levin, and Rippa [DYN-90] introduced a criterion called the quasi-G I continuity 
criterion. It is based on a numerical measure defined on the common edge of two adja­
cent surface triangles. The index vector for a triangulation is then defined on all inter­
nal edges of T 

where N'eis the number of internal edges equal to Ne - nb. Now let e be an internal 
edge of T and let t I and t 2 be the two triangles sharing the edge e. Then 
0.( e) = 180 - e, where e is the angle between the normals of st I and st 2 (Fig. 7). 0.( e) 
is in fact the angle between the planes supporting these two triangles. Maximizing 
a(e) will result in a triangulation in which the normal to the surface triangulation 
minimizes its direction changes when crossing the edges of the triangulation. 

e 

I I 
I I 

/,~/ 
Fig. 7 Angle between two neighboring surface triangles. 

4.4 Adaptive Surface Approximation by Surface Triangulation 

We now describe an adaptive surface approximation scheme which makes use of 
the procedures ADD]OINT and ADD_SEGMENT and the two triangulation criteria 

presented above. In this description, the function ERROR(st) returns the approxima­

tion error for a surface triangle st; FIND _POINT(st) finds the coordinates v of the 

point worst-approximated by st; f is a given error tolerance. Two lists, namely 
ACTIVE_LIST and DEFINITIVE_LIST, are used to store the surface triangles which 
need or needn't be refined. 



Adaptive Refinement of a Surface Triangulation 

1. Initialization 
1.1 construct an initial triangulation T constrained to the 

approximated surface characteristics; 
1.2 for each triangle tj E T do 

ifERROR(stj) > E do Add tj to ACTIVE....LIST; 
else do Add tj to DEFINITIVE_LIST; 

end for 

2. Patch Refinement 
while (NOT_EMPTY(ACTIVE_LIST» do 

2.1 t f- remove a triangle from ACTIVE_LIST; 
2.2 v f- FIND _POINT(st); 
2.3 ADD_POINT(T,v); 
2.4 for each new triangle tj do 

ifERROR(st) > E do Add tj to ACTIVE_LIST; 
else do Add tj to DEFINITIVE_LIST; 

end for 
end while 

3. Characteristics Refinement 
if REQUEST do 

. 3.1 refine the approximation of surface characteristics with new error tolerance; 
3.2 remove old constraints of surface characteristics from T; 
3.3 for each new refined segment Sj do 

3.3.1 ADD_SEGMENT(T,sj); 
3.3.2 for each new triangle tj do 

ifERROR(st) > E do Add tj to ACTIVE_LIST; 
else do Add tj to DEFINITIVE_LIST; 

end for 
3.4 goto 2. 

else finish. 
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To estimate the approximation error ERROR(sti) for a surface triangle sti, we 
must define a partition of the image domain with respect to a triangulation T. This par­
tition is obtained by associating with each triangle ti, the coordinates of the sampled 
points which are enclosed by ti (see Fig. 8). Let Ci be the set of coordinates associated 
with ti. Ci may be empty. In this case, the approximation error of sti will be con­
sidered as zero. Otherwise, we define the approximation error of sti as 

ERROR (sti) == max E( v). 
VEe! 

E(V) is the error associated with the coordinates v of a point and is defined as 

E(V) == I Zv - Iv I, 

where Zv is the range value at v, and Iv the value of sti at v (see Fig. 8). 

When calculating ERROR(sti), we register the coordinates of the point which is 
worst approximated by sti' The function FIND_POINT(st) is then trivial. 

Step 3 is an optional process for refining the approximation of the surface 



106 

characteristics (specified by the logical variable REQUEST). If at a certain refinement 
stage, the user requires that the original polygonization of the surface characteristics 
be refined, this process can be turned on. The refinement of this polygonization is 

realized by just adding new knots. The removal of a previously constrained segment 
from the triangulation T is very simple. We just consider this segment as an ordinary 
edge of T and apply the local optimization procedure to locally optimize T. 

sampled surface 

zv.~ - - I range value 

:fv - - I 

I I I I 
I 6 I 

~o 6000 .v. I 0 

o 0 0 coordinates 
o 

Fig. 8 Partition of image domain with a triangulation and definition of£(v). 

Different strategies are possible for choosing the next triangle to refine. For 
example, we can sort the triangles in ACTIVE_LIST based on their approximation 
error in a descending order. In this way, the worst approximated triangle will be first 
refined each time. However, the additional computation cost is needed. In the results 
presented below, we used a simple strategy in which the first triangle in list is taken. 

5. Experimental Results 

The proposed scheme has been applied to several range images from the NRCC 
range image database [RIOV-88]. We present some of them as examples to illustrate 
various aspects of this scheme. These range images are originally coded in 16 bits and 
have been requantized into 8 bits. In the following, we first present the various results 
of the adaptive approximation phase for the example image discussed above. We then 
present the results on both the characteristic extraction phase and the adaptive approxi­
mation phase for other objects. 

Block Image 1 

The object of the previous example is a subpart of the NRCC range image "BLOC 
27" (Fig. 9(a)). Its extracted surface characteristics have been shown in Fig. 4(b). 

Beginning from a polygonization of the surface characteristics with an error toler­

ance of 4 sampling units (61 segments in Fig. 9(b)), the adaptive surface approxima­

tion scheme with the max-min angle criterion was first applied by setting the logical 
variable REQUEST to false. This resulted in 160 triangles when £ = 4 (Fig. 9(e)) or 

349 triangles when £ = 2 (Fig. 9(h)). REQUEST was then set to true with a new 
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polygoniiation error tolerance equal to 2, the approximation scheme was applied and 
resulted in 84 segments (Fig. 9(c» and 205 triangles when e = 4 (Fig. 9(f) or 373 tri­
angles when e = 2 (Fig. 9(i». 

The adaptive approximation with the quasi-G 1 continuity criterion was then 
applied with REQUEST = false on the polygonization results shown in Fig. 9(b), 
which resulted in 134 triangles when e = 4 (Fig. 9(d» or 273 triangles when e = 2 
(Fig.9(g». We see that the number of triangles was reduced compared to the results 
obtained above. We have found that for surfaces having a preferred direction (the 
example object has a cylindrical surface), using the quasi-G 1 continuity criterion 
results in less number of triangles. By examining the domain triangulations in Fig. 9, 
we see that the shape of the triangulations shown in Fig. 9(d) and (g) follow better the 
preferred direction of the example object. 

Due to the limited space, we will present only two surface approximation results 
for other objects which are obtained by using the max-min angle criterion. 

Block Image 2 

This block object is also a subpart of the NRCC range image "BLOC 27". From 
Fig. 10(b) and (c), we see that the CO and C 1 discontinuity edges have been very well 
detected. Because the object is composed of only planar surfaces, no curvature 
extremum edge is detected. The polygonal approximation of the left- and right-side 
edges of the object has resulted in many edge segments (Fig. 10(g». This is because 
the quantization of a strongly slanted surface can result in an aliasing phenomenon. 

Telephone Image 

This is the NRCC range image "TELE I". The telephone wire has been masked 
out and the background set to zero. Four false C 1 discontinuity edges have been 
detected on the telephone (Fig. l1(c» The reason is that for a surface curved like a 
smooth roof, our detector will detect a false C 1 discontinuity edge along the roof 
when the image resolution is not high enough. Solving such ambiguities necessitates 
a priori knowledge of the object surfaces and the image acquisition setup. 

Face Image 

This is the NRCC range image "FACE 30" (Fig. 12). Because the image consists 
of many curved surfaces, we did not use the detected C 1 discontinuity edges which 
were mostly false. The most interesting results about this image are the edges of max­
imum curvature extrema at the "eye", "nose", and "mouth" parts of the face, which are 
meaningful enough for recognizing the face. 
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(a) (b) (e) 

(g) (h) (i) 

Fig. 9 "BLOCK I": (a) shaded display of the range image; (b) (c) Polygonization 
results with c set to 4 and 2, respectively; (d) (g) triangulation with the quasi-G I con­
tinuity criterion performed on (b) with c set to 4 and 2, respectively; (e) (h) triangula­
tion with the max-min angle criterion performed on (b)with c set to 4 and 2, respec­
tively; (f) (i) triangulation by max-min angle criterion performed on (c) with c set to 4 
and 2, respectively; 
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Fig. 10 "BLOCK 2": (a) shaded display of the range image; (b) (c) CO and C 1 discon­
tinuity edges, respectively; (d) maximum curvature extrema; (e) complete set of 
extracted edges; if) edge-junction graph with labeled edges; (g) polygonization; (h) (i) 

domain triangulation with error tolerance set to 4 and 2 units, respectively. 
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Fig. 11 "TELEPHONE": (a) shaded display of the range image; (b) (c) CO and C 1 

discontinuity edges, respectively; (d) maximum curvature extrema; (e) complete set of 
extracted edges; (j) edge-junction graph with labeled edges; (g) polygonization; (h) (i) 
domain triangulation with error tolerance set to 4 and 2 Llnits, respectively. 
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Fig. 12 "FACE": (a) shaded display of the range image; (b) (c) CO and C 1 discon­
tinuity edges. respectively; (d) maximum curvature extrema; (e) complete set of 
extracted edges; (f) edge-junction graph with labeled edges; (g) polygonization; (h) (i) 

domain triangulation with error tolerance set to 4 and 2 units. respectively. 
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6. Conclusion 

In this paper, we have proposed an adaptive surface approximation scheme based 
on a constrained surface triangulation. A significant feature distinguishing this scheme 
from the other ones [FAUG-84,DEFL-85,LEE-89,DELI-91] is that the constructed 
surface model embeds pre-extracted surface characteristics. Such surface models can 
be used for many applications. For example, for a face image segmented into its com­
posite subparts like "nose", "eye", and "mouth", the extracted subpart boundaries can 
be embedded into the constructed face model. This model would be very useful for 
face animation where the face models have frequently been constructed manually 
[THAL-88]. 

One possible extension of this work is to use smooth rather than flat surface prim­
itives in the approximation scheme. We have already used a triangular Gregory-Bezier 
patch model in a non-constrained surface approximation scheme [SCHM-9Ib]. A con­
strained piecewise surface constructed with such a patch model can have various 
degrees of continuity depending on the locations and the types of the detected surface 
characteristics. Preliminary results have been obtained and will be reported elsewhere 
[CHEN-92]. 
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The preservation of collinearity relationships under geometric operations is important in 
computer-graphics applications that manipulate line arrangements in engineering drawings 
and geographic information systems. Finite-precision computer implementations of these 
operations do not generally preserve these relationships. We show that for a wide class of line 
arrangements, any specified collinearity relationships can be preserved, without extending the 
precision, at the expense of a bounded displacement of the vertices of the arrangement. 

Consider a set of points on the integer grid subjected to a projective transformation. The 
transformed points will have rational-valued coordinates. If we wish to store these coordinates 
with the same number of digits as the original data, as is customary in most graphics 
environments, we must approximate the rational-valued coordinates by integers. This is the 
case whether we use "integer" or "floating-point" computer arithmetic. The most common 
methods of approximation are truncation and round-off (Figure la). These methods do not 
necessarily preserve the collinearity relationships that may have existed among certain subsets 
of the original point set. Thus, the primary reason for using projective transformations is lost. 

Our objective is to preserve at least some of the collinearity relationships by resorting to a 
more refined approximation. The collinearity relationships that we attempt to preserve are 
those that are the immediate consequence of the input specifications that postulate that certain 
subsets of points lie on a straight line. For instance, the point of intersection of two line 
segments will lie on both approximated lines, provided that the intersection point is explicitly 
represented as collinear in the original data structure (Figure 1 b). Derived relations, such as 
those postulated by Pascal's and Desargues' theorems [Coxeter 61], may be lost, unless the 
vertices resulting from the construction are explicitly specified to be collinear. 

Collinearity constraints that intrinsically cannot be represented by discrete points with 
rational coordinates do exist. Consider, for example, the sets {AOF, COH, EOJ, GOB, IOD, 
ABDE, CDFG, EFHI, GHJA, IJBC}, where the points A. ... J form the vertices of a five­
pointed star and 0 is the "center". We do not attempt to apprQximate overconstrained line 
arrangements. 

Even rotations can be approximated by rational transformations [Franklin 84]. Collinearity 
also plays an important role in Boolean operations that require intersecting pairs of line 
segments. The failure of preserving collinearity can often be observed in the output of 
drawing software, where the underlying integer grid (the display screen or 300 dpi printer) is 
far coarser than the internal 16-bit or 32-bit representation. We are concerned with both 
visible distortions and with inaccuracies in the data structure, which may give rise to 
inconsistent topology or incorrect answers to geometric queries. 
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Our approximation strategy is based on the continued-fraction expansion of the slope of a 
line. We have previously applied continued-fraction expansions to vertex approximations 
governed by location constraints [Mehta 91. Mukherjee 92b] rather than incidence 
constraints. The derivation of the approximation of a single set of collinear points is given in 
[Mehta 92]. and the graph representation for line arrangements is introduced in [Mukherjee 
92a]. Here we demonstrate a new back-tracking algorithm for approximating a certain class of 
line arrangments. which yields much lower error than our earlier single-pass method and 
seems to us eminently practical. 

The computational complexity of the algorithm and the bound on the maximum error (Le .• the 
error of approximation of the point with the maximum error) are both linear in terms of the 
number of vertices in the figure. The bound on the maximum error is also proportional to the 
square-root of the largest integer used in the computation. We argue that the class of 
geometric figures that the algorithm can approximate corresponds to those that usually occur 
in engineering applications. 

(a) 
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Figure 1. Round-otT destroys the collinearity between the end-points of two lines and 
their point of intersection (a). The collinearity may be preserved by small displacements 
of the end-points (b). 

2 Approximation of a set of collinear points 

Consider a set of n collinear points Pi with rational coordinates. Without loss of generality. we 
let the points Pi lie on a ray L in the first quadrant. (We can translate any point set or rotate it 
by multiples of 1C/2 without error.) Let the slope of this ray be c/d. Thus. 

Pi = (ai/bi c. ai/bi d). i= 1.2 •... ,n 

where ai, bi, c and d are all integers smaller than N, the largest representable integer (in 
contemporary digital computers, N is typically 216 or 232). 

We will approximate ray L by another ray L' with slope c'/d'. Each point Pi will be 
approximated by point qi. where 

qj = (ei', fi'), where ei', fi', are integers smaller than N, and ei'/fi' = c'/d'. 

Therefore the points qi have integer coefficients, and the error of approximation is: 

E = maxi [ (ej' - ai/bi c)2 + (fi' - ai!bi d)2 ] l/2 
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Figure 2. Successive approximations to a ray with slope c/d = 5/7 = 0 + 1/(1 + 1/(2 + 1/2». 
The approximating rays straddle the original ray with increasing offset and decreasing 
integer spacing. 

3 Continued fraction approximation 

Our objective is to choose c' and d' so as to minimize the least upper bound on E. Consider 
the continued fraction expansion of c/d: 

cld = Urn + 1/(um.! + I/(um-2 + 1/ .... 1/uo)) 

We obtain the slopes for successive approximating lines by omitting terms from the end. 
For the example of Figure 2, the slopes of the successive approximating lines are: 

cld = co/do = sn; cud! = 2/3; c2fd2 = 1/1; c3ld3 = OIl. 

As we omit terms by setting successive uj's equal to infinity, each slope will differ more and 
more from the original slope c/d. The final approximation is either the horizontal or the 
vertical axis, depending on whether Um is 0 or not. (Note that we have assumed that 
approximating line passes through the origin.) At the same time, the magnitudes of the 
numerators and denominators of the successive approximations of the slope decrease, 
increasing the density of integers on the approximating ray. On an approximating ray with 
slope cjdj, the distance between integers is (cP + dP)!rz. 

For any point Pi, the error E has two components (Figure 3): 

1. The distance from Pi to the closest point q'i on the approximating ray; and 

2. The distance from qi' to the nearest integer qi on the approximating ray. 
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Figure 3. The error of approximation of an arbitrary point on the ray has two 
components: the offset Ip - q'l, and the distance Iq' - ql to the nearest integer on the 
approximating ray. 

The first of these components, called offset, increases approximately linearly on successive 
approximations (as terms are omitted from the expansion) because of the increase in the 
(small) angle between L and L'. The offset is also proportional to the distance of Pi from the 
origin (which is bounded by the length D of the line). The second component is, in the worst 
case, inversely proportional to the density (cl + dP)·!12 of integer points on the approximating 
ray, which increases as the square root of the sine of the angle between the rays [Metha 92]. 
The key equality, [(c/ + dP)(cj+!2 + dj+!2)]·!12 = sin laj+! - ajl, is an immediate consequence of 
the unit-area property of lattice cells on the integer grid. 

Instead of rmding the minimum value of the sum of the two orthogonal components, we 
minimize the maximum of the two. The minimum of the maxima occurs when the two 
components are equal and can be shown to be 0(Dl/3), where D is the length of the line in 
units of integers. Figure 4 shows the offset OJ and the half-spacing Sj plotted against the 
difference tj between the slopes of the original and the approximating ray, where 

OJ = (co2 + cJo2)!12 sin (Itan·! eo/e1J - tan·! c/djl), 

tj = Iccldo - c/djl . 

This simple calculation does not take into consideration that the approximation is not 
continuous, and that it is therefore possible that the theoretical minimum occurs between 
successive approximations. The absolute worst-case error is 0(D1/2) [Metha 92]. However, 
the worst case applies only to some very special lines. 

An algorithm based on the above bound allows us to approximate any line segment L with 
only one point fixed (above, it is the origin). We call lines of this type one-constrained. 
Regardless of where the collinear points are located on L, the error is bounded by Nl/2. The 
time complexity of the computation for n collinear points is O(n + log N), because log N is 
the maximum number of terms in the continued fraction expansion of a fraction with 
numerator and denominator bounded by N [Knuth 81]. 
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Figure 4. The offset increases and the spacing decreases as a function of the absolute 
value of the difference between the slopes of the original and the approximating ray. 

4 Approximation of two-constrained line segments 

Consider now a line segment L 1 whose end-points are constrained to lie on two other line­
segments, L2 and L3 (Figure 5). We call such line segments two-constrained. The nominal 
position of L1 is defined by the best approximations of its end-points, as given by the 
approximations of L2 and L3, respectively. To approximate Ll, we shift its end-points along 
the constraining lines L2 and L3 in either direction from their nominal positions. For each 
integer position of either end-point, the deviation of every point on L 1 is determined. If the 
maximum error is within a preset bound, the algorithm proceeds to the next line to be 
approximated. 

The maximum deviation of the end points is also governed by the preset bound: once it is 
reached without obtaining an acceptable approximation for all the points on L l, nothing 
further can be done without backtracking to alter L2 and L3. 

As in the case of a one-constrained line, the maximum error has two components. The offset 
in the location of the endpoints is introduced by the approximation of L2 and L3 in the 
previous stages, and is bounded by O(Nl/2). The other component of the error depends on the 
sparsity of integers on L 1, which in turn depends on its slope. The slope of L1 depends on the 
constraining integer points on L2 and L3. 
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5 Graph representation of a line arrangment 

We approximate the lines that fonn geometric figures in such an order that we never have to 
approximate any but one-constrained and two-constrained lines. Line-arragements where such 
an order exists are called under-constrained line arrangments. Most engineering drawings, 
circuit diagrams, flow charts, etc., are of this type. Meccano constructions also generally 
correspond to underconstrained arrangments, since building an over-constrained arrangment 
would generally require solving a difficult integer-programming problem! However, see 
Figure 6 for the simplest example of an arrangement that is over-constrained, and perhaps try 

to construct it with a Meccano set. This arrangement occurs repeatedly in the one mentioned 
in the Introduction. 

We represent a line-segment arrangement by a graph G(V, E), with Y the set of nodes, and E 
the set of arcs. Each collinear set is a node in Y, and a point shared by two collinear sets is an 
arc. If a point is common to more than two collinear sets, we represent it by a hyper-arc. The 
graph representation does not have any dangling edges or vertices, neither does it have any 
self loops. Line arrangements that can be approximated by successive approximations of one­
constrained and two-constrained lines can be characterized recursively in tenns of this graph 
representation. 

Figure 5. An approximating point with integer coordinates on line Lt, whose end-points 
are constrained to be incident on previously approximated lines L2 and L3. 

Figure 6. The simplest example of an over-constrained line arrangment, and its graph 
representation. 
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Under-Constrained Graph: 
A graph G(V,E) is under-constrained if there exists some node v in V, such that degree(v) <= 
2, and G-v is an under-constrained graph. 

We now present an algorithm for the approximation of a line arrangement characterized by an 
under-constrained graph. This algorithm approximates the two-constrained lines in arbitrary 
order. The slope of each line is expanded in a continued fraction, and the integer point on the 
resulting line nearest to each vertex on the original line is determined. 

1. Obtain the Graph-Representation and sort the nodes according to their degrees. 

2. While the Graph contains a node 

Find a node of degree < = 2 
if there exists such a node 

push the node on to a stack 
else declare: OVERCONSTRAINED and exit. 

3. While the stack is not empty 

'Pop a node from the stack 
Approximate all points on the line. 

6 A back-tracking algorithm for approximation 

The above algorithm does a good job approximating line segments in a local sense. It fails, 
however, when points on these line segments define further lines, which may also contain 
points that lie on still other lines as well. In the simplest instance, the density of integer points 
on a line Ll is not taken into account in the approximation of two one-constrained lines L2 
and L3, which contain the end-points of L1. Therefore the error of points on L1 may be 
unacceptably large. 

In the drawings that we have studied to date, the portions that were difficult to approximate 
were not uniformly distributed throughout the drawing, but confined to isolated patches. It 
makes therefore sense to devote more computing resources to these areas. 

Our back-tracking algorithm is similar in spirit to Dobkin's and Silver's approximation of 
iterated pentagons [Dobkin 88]. We check on approximating each point on a line whether the 
error is acceptable. If it is not, we perturb the location of the parent· lines, and try again. This 
is done recursively, so that all possible configurations - subject to the chosen order of 
approximating the lines - are tried. This algorithm tends to distribute the errors uniformly 
along all the lines. We have found that a few iterations normally suffice to reduce the error 
considerably. The algorithm is given overleaf. 
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1. Obtain the Graph-Representation and sort the nodes by their degrees. 

2. If it is underconstrained, then obtain the list of lines. 

3. Recursively approximate the lines. 

recursively _approximate(line) 
if(test.condition(line) ) 

if(line->nexcline <> NULL) 

else 

recursively _approximate(line->nexcline) 
else "DONE" 

if(line->previous_line <> NULL) 
recursively approximate(line->previous_line) 

else "TRY ANOmER ERROR BOUND" 

tesccondition(line) 
update_slope_list(line); 

while (slope_list(line) <> NULL and check_error(line) > Bound 
gecnexcslope(line) 
approximate_aICpoints(line ); 

if(done) 
retum(l) 

else 
re~um(O). 

7 Experimental results 

We show results on two geometric figures, a Howe truss and an airport layout (Figure 7). 
Both figures are represented on a 1000 x 1000 grid: any finer grid would preclude visual 
observation of the deviations. The maximum diameters of both drawings are between 500 and 
600 grid units. 

In each case, the figures are represented by a set of infinite lines with rational-valued slopes. 
The vertices are then obtained by intersection. The results obtained by round-off are shown in 
Figure 8, by the one-pass algorithm in Figure 9, and by the backtracking algorithm in Figure 
10. The corresponding maximum deviations are shown in Table I. When the bound is 
decreased further than the minimum values shown, the backtracking algorithm does not find a 
solution. 

Table I - Maximum Error in Vertex Placement 

Truss (N = 1000) 

One-pass 
Bound =45 
Bound = 30 
Bound = 15 

MAX-ERROR 
41 
38 
14 
14 

Airport (N = 1000) 

One-pass 
Bound = 30 
Bound = 20 
Bound = 10 

MAX-ERROR 
65 
24 
18 
8 
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Figure 7. Two line drawings: a Howe truss and an airport layout. 

Figure 8. The results of scaling up and down the figures by a factor of 5, using round-off. 
The geometric errors introduced by round-off are circled. 



124 

Figure 9. Approximating the figures after scaling, using the single-pass algorithm that 
preserves the specified collinear relations. 

Figure 10. Approximating the figures after scaling with back-tracking. The 
displacements of the vertices are less than in Figure 9. 
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8 Conclusion 

We have shown that the continued-fraction expansion is a useful tool for preserving 
collinearity constraints. Eventually we hope to extend our results to incidence constraints for 
parallel and perpendicular lines, and to coplanarity constraints in three dimensions. 

Even the absolute worst case bound of O(DI/2) yields a useful engineering approximation. 
Few engineering designs require dimensioning tolerances smaller than 1 part in 10,000, Le., 1 
micron in a part with a 1 cm diameter (comparable to the coefficient of thermal expansion). 
Suppose that the error of approximation is of the same order as the tolerance: 

D1/2 ID = 1/1()4 > 1/216. 

Then D < 232, which is a reasonable degree of precision for integer representation in any 
contemporary computer. 
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Abstract 
In this paper, we present the development of an interaction simulation model between 
deformable objects which deal with both collisions and prolonged contacts. The model 
involves reaction forces (in the normal direction) and friction forces (in the tangential 
direction). Friction forces are classified as either kinetic friction when the objects are 
slipping on each other, and static friction when the objects are stuck. This model is 
developed in the framework of a modular system for dynamic simulations: The Cordis­
Anima system. 
In a first part, we will consider the existing physically based methods for movement 
generation in computer animation and their capacity to tackle the problem of interacting 
objects. These methods are essentially based on a continuous representation of matter. 
Then we will present the general context in which our interaction model was developed: a 
formalism for discrete structural modelling specially directed towards the representation of 
interactions. The third part is devoted to the description of our interaction model. And 
finally, we will describe several simulations achieved thanks to the modelor-simulator 
Cordis-Anima and using our surface interaction model: several kind of wheel drive 
vehicles crossing over various terrains. 

Key-Words: Physical modeling - Animation - Robotics 

I. The problem of interaction in computer animation 

At present the use of movement generation models based on Newtonian mechanics for the 
creation of computer animated images is widespread. Models of this type, all designated by the 
generic term of physical models have been developed basically for the purpose of creating 
sequences of realistic movements automatically. 

1.1 Continuous models 

For about a century now, engineer mechanics has offered numerical models based on a 
continuous representation of matter enabling the explicit calculation of the movements of certain 
objects when they are submitted to a set of forces [Bam81, Cia85]. Over the last few years, a 
great deal of the work carried out by computer animation researchers has consisted in adapting 
and applying these mechanical theories to the computer context. One of the major problems that 
arises here is hidden behind the term 'interaction'. Indeed, the theories of mechanics specify 
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how to calculate a movement from a given set of forces, but they generally omit to be more 
specific about the way these forces appear in the mechanical system in question. 

Today, there are several methods based either on forces or on impulses for the calculation of 
the dynamic behavior of interacting rigid objects [Hah88, Dum90, MW88, BB88, Bar89-90]. 
However, most of them propose distinct models for collisions, i.e. instantaneous (high speed) 
collisions and for prolonged contacts, while others merely omit this last case. More recently, 
Baraff [Bar9I] proposed an analytical method for the calculation of static and dynamic friction 
forces during prolonged contacts between non-penetrating rigid objects. But, as a consequence 
of choosing the context of purely undeformable objects, Baraff has to deal with indeterminate 
and inconsistant contact situations and cannot define a unified modeL 

These different methods have enabled the production of very satisfactory sequences of rigid 
object animation. However they are totally inadequate when the interacting objects are 
deformable. In fact, classical mechanics offer no general method for the description of 
collisions between two deformable objects. In computer animation, only the case of instant 
collisions has been treated in a relatively general manner [MW88, Gas89] (we must point out 
that M.P.Gascuel proposed a hybrid model made of a discrete deformable skin surrounding an 
articulated rigid body. see §L2). But, most of the time, the foregoing techniques are limited to 
interactions between a deformable object and a rigid polygonal object and are well adapted only 
to the specific application they were designed for [GTT89, TPBF87, PB88]. 

Thus, it appears that, although continuous models can directly access a representation of the 
dynamic characteristics of certain classes of objects, they are not well adapted to interacting 
objects, and all the less to complex interactions involving subtle phenomena, for example those 
relating to the microscopic roughness of the surfaces in contact. 

1.2 Discrete models 

Discrete models represent a totally opposite approach. In fact, at a first stage, the discrete 
model does not deal with the object's shape. The shape is a result of an interpretation of the 
physical model's behavior. The aim is no longer to superpose an analytic mechanical model on 
a given geometrical model but rather to represent interacting physical systems directly from a 
spatially dicretized model, i.e. by organizing elementary physical primitives. There are only a 
few applications of this type of model for computer animation. In fact, they are used principally 
when it is not possible to represent the desired phenomenon with a continuous model, and they 
are implemented specifically for a given context [TPF89, Mil88, CHP89, VG91]. An 
interesting approach based on a layered model using structured discrete model can be found in 
[Gas89]. The proposed method deal with the interactions between articulated bodies having a 
more or less thick elastic skin, while taking into account the relative stiffness of the objects and 
various propagation modes for the deformation. 

Finally, it appears that if certain methods are interested in dealing with non penetrating 
objects, none of them has tackled the problem of interaction in general . 

II. Cordis-Anima: modular system for animation by 
discrete physical models 

For about ten years, the researchers of the ACROE have been working on the elaboration of 
a general formalism and computation methods for a physical object modeler-simulator [CFL8l, 



131 

CLF84, (uc8S, LJC91]. The purpose of this work is the development of a complete system for 
animation and music synthesis. (This aspect will not be discussed in this paper but both 
applications share a large common basis). The major characterisitics of this system can be 
summed up by the two following paradigms: 

• Modularity: the system must enable the operator to construct all types of objects from a 
given set of components (physical primitives). It follows that any sub-object of this 
system must have the same communicational properties as the object itself . 

• Experimentability : the transition between the specification of the model and the 
simulation algorithms that implement it must be as quick and as flexible as possible. In 
this way, at any stage of the modelling, the operator can carry out a great number of 
simulations in order to refine the model. 

The above prerequisites directed the choice of representation towards discrete models, i.e. 
towards a discretization of matter as set of material points and an explicit expression of the 
interactions between these points. 

F 

L. forces 

<+ position 

<MAT> 

force I force 2 

¢I> 
position I position 2 

<LIA> 

Linear and Piecewise Linear 
force functions 

DorV 

Finite State Automaton 

( State I ) ~ ~ 3) (State 2 ) 

~(State3 )4 
figure I : Cordis-Anima general formalism 

With the Cordis-Anima formalism, all objects are represented by a discrete network 
consisting of only two types of components which are idealized representations of basic 
physical objects: the matter component ( <MAT», which represents a punctual mass (no spatial 
dimension) and the link component «LlA» which represents the interactions between 
punctual masses (figure I). In the simplest case, the link component represents a spring or a 
damper (which have no inertia). 

The combination of primary viscous-elastic behavior is done in a natural way with the 
Cordis_Anima formalism. Two punctual masses can be connected by several link component, 
the resulting force being the sum of the forces produced by each link. Moreover, link 
components must enable the representation of any type of discontinuity, such as those involved 
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in collisions. Therefore, besides linking mass components, they must fulfil another logical 
function. This function consists in making these links according to a state automata logic with 
or without memory, in order to modify the behavior of the material according to the values of 
certain of the system's variables as distances, relative speeds or forces (figure 1). The model 
presented in the following paragraph is based on the foregoing mechanism. 

III. Interaction model taking into account surface 
friction 

111.1 The standpoint of classical physics 

This model involves particularly the microscopic roughness of the surfaces in contact. When 
two pieces of matter are in contact, several phenomena may occur, but all raise a common 
problem: how to know what is happening on the borderline between the two objects (figure 2). 

figure 2: the microscopic roughness of the surfaces 

The phenomena that can be observed when the objects are brought into contact result from a 
great number of interactions between the different rough patch of the surfaces in contact, and 
this all the way to the molecular level. At present it does not exit any characterization of these 
miscroscopic interactions called cohesion or 'adhering'. That is the reason why all these contact 
situations have been characterized at a macroscopic level, i.e. by a set of experimental laws. 
The most widespread among these laws is known as the Coulomb model. 

According to this model, there are two states in contact situations: a 'kinetic state', in 
which both surfaces in contact are slipping on each other, and a 'static state' in which they 
are not (They stick together). These two states are associated respectively with two friction 
coefficients ~k and ~s (for most of the known materials ~k is smaller than ~s)· 

III.2 The algorithmic model 

The algorithmic model that we have developed from the Coulomb model and that we habve 
called "the dry friction model", follows a previous work on surface interactions involving 
viscous friction (damping forces) [JLR91]. 

The objects in contact are modelled with agglomerates [LJR91]. They are presented as a set 
of punctual masses associated with visco-elastic interaction modules (link components) that 
define a spatial bulk. In the case of more or less cohesive objects, these masses would be 
linked together by cohesive interactions (calculated according to piecewise linear force 
functions). The agglomerate is a physical model of matter which enables the generation of fixed 
obstacle borderlines as well as mobile and deformable objects of various shapes [JLL 91-92] 



133 

(figure3). Indeed the agglomerate is a model that allows the construction of pieces of 
heterogeneous matter presenting non-linear visco-elastic properties, pasty plasticities and 
fractures. This is why it is specially suitable for representing various kind of natural terrain. 

n 
figure 3 : a model of agglomerate : mobile body and rigid (ground type) fixed 

obstacles. 

The algorithm that we have developed controls the relative position of the bodies and the 
interaction forces (should they be free or in contact and should the contact be a collision or a 
prolonged contact.) Therefore it is composed of a three state automata defined within the 
Cordis-Anima formalism (see preceding paragraph and figure I). The first state correspond to 
the case in which the bodies dont touch each other (according to their specific spatial bulk), the 
two others deal with colliding bodies and with bodies in resting contact. In this last case, the 
static contact state is involved when the relative splip is small whereas the slipping contact state 
correspond to large slip. To each state is associated a specific force calculation (figure 4). 

The •• 
force equals zero. F-O 

The state of slipping contact: the bodies are in contact 
with a non-zero slipping speed (i.e. Speed> threshold), the F = Non-penetration + 

resistance to the 
force is composed of a non-penetration-force and of a force surfaces' motion 
which opposes to the relative motion of the surfaces. 

[The state of static contact: the bodies are in contact but 
F = Non-penetration with a slipping speed near zero (the speed will be compared + 

with a threshold), the force is composed of a non-penetration- adhesion 
force and of a gripping-force. 

figure 4: the three state automaton - free, static contact ;md slipping contact. 

The automaton controls the transitions between these different states according to the results 
oftests carried out on the system's variables: the distance between the two interacting masses, 
the relative tangential speed at the contact point and the value ofthe non-penetration-force. It 
should be pointed out that the apparent volume of our objects is only a result of the visco-elastic 
component set between each couple of interacting mass, and which define a spatial bulk. 
Indeed the surface of our objects is no more than an interaction border on which there is no 
mass. Therefore, in order to localize the interaction on the surface of contact, it is necessary to 
use a material point at the place where this interaction occurs. In order to achieve this, the 
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algorithm that we have developed generates a virtual point which is used for the calculation of 
the adhesion force in the case the automaton is set to the static contact state. 

111.2.1 Calculation of the non-penetration-force: F n p 
As stated above, a visco-elastic interaction component is set between each couple of masses 

which are supposed to interact. In the case of structured (strongly cohesive) agglomerate, this 
component is only set between the masses of the skin-deep layer. This interaction component 
provides each interacting masses with a non-penetration area. In the simplest case, the forces 
which result from this spatial bulk is computed according to an 'elastic-buffer' model (figure 
5), but we could use piecewise linear approximation of any function (e.g. an exponential-buffer 
instead of an elastic one). When prolonged contact occurs between the interacting objects, the 
force produced by the 'elastic-buffer' corresponds to the normal surface reaction. 

~>-" ....... , ~ 
: ..-o:n-e ~ , .." ... 

mass I . • ... ~ mass 2 
radius = R I radius = R2 

F 

if Dist > T ==> F = 0 
elseF=k*(D-T) 

Threshold = R I + R2 

Distance 

figure 5: the elastic buffer. 

111.2.2 Calculation of the slipping-force: F slip 
As the slipping-force opposes the relative slipping of the surfaces in contact, its direction is 

the opposite of the tangential speed. According to the Coulomb Model, this force is 
proportional to the normal reaction. This slipping-force calculation is illustrated in figure 6. 

Let, -- ----relative speed Sr= S r S 2 

¥2 / II ¥211 --and u== 

We have, 
....... ...... ------ ....... 

Normal speed S N~ ( Sr· Ii. P2 )* u 
-+ -+-+ 

Tangent speed S T == S - SN g r 0 

-+ -+ 
mass 1: posit PI ' speed SI and finally, 

-+ ---mass 2: posit P2 , speed S 2 ~<;lip = 

figure 6: slipping-force calculation 
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111.2.3' Calculation of the gripping-force (static contact): Fgrip 

The algorithm described in this paper only concerns point-surface interactions. With the 
Cordis-Anima formalism, this comes down to decide that one of the two interacting masses is 
bearing a given (non-empty) non-penetration area while the other is not. With the elastic-buffer 
model described above for example (figure 5), it comes down to choose T = RJ and R2 = o. 
Let us explain now how to compute the gripping-force in this case. 

As stated above, the automaton needs to generate a virtual point when the static contact state 
is reached, i.e. when the relative tangent speed of the bodies in contact becomes lower than a 
given velocity threshold. In the point-surface case the virtual point's position is equal to the 
position of the point at the time it begins to interact with the surface (figure 7). 

mass!........ 
posit PI 

----- -----..­V =PIP2 

virtual point 

interaction border line 

point/surface interaction component 

figure 7: Introduction of a virtual (contact) point 

Once the virtual point position is defined, the gripping-force is calculated according to a 
gripping (visco-elastic) component, e.g. a spring-damper unit, fixed between the interacting 
poi·nt and its associated virtual point. The automaton leaves the static contact state, and thus 
disables the gripping component, as soon as the gripping-force becomes larger than a force 
threshold (the de-grip threshold) whose value is given by the coulomb model: 

Force Threshold = I!S * F n p 

This force threshold and the formula used to calculate the slipping-force Fs1ip (figure 6) 
characterize the Coulomb model. 

111.3 Application : simulation of wheeled vehicles crossing over 
various terrains 

The surface interaction algorithm was used to achieve the simulation of the interactions 
between vehicle wheels and various terrains composed of fixed and mobile elements. 

Several models for the physical simulation of vehicles have already been proposed by 
several researchers for the purpose of computer animation [A092], scientific simulation for 
automobile industry [AOH91] and driving simulator systems [OB088]. In each case the vehicle 
was modeled as a set of linked rigid bodies according to modem car manufacturers' 
specifications (the model developed for the purpose of animation is a simplified version of the 
one used for scientific simulation). To simulate the interactions with the terrain (typically road­
tire interactions) the authors use behavorial laws (i.e. experimental data giving the forces as 
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functions of normal reaction, slip angles, etc .. ) while the vehicle model itself only presents 
punctual wheels. 

The purpose of the simulation tests that we have realized was rather to assess vehicle 
concepts defined in the framework of the development of autonomous planetary mobile robots 
intended to progress over little known natural terrain. This work was done within the 'V AP' 
project of the French Spatial Agency (CNES). 

In the particular case of a vehicle in a natural environment the interactions with the terrain, 
which depend on the latter's physical characteristics, are of prime importance and moreover 
there exists no experimental data about the interactions with natural terrain such as muddy, 
sandy or rocky grounds. For that, we need explicit physical models for the wheels, for various 
kinds of rocks and deformable grounds, and for multi-punctual interactions between all these 
elements. Beside this we used relatively simple models, from a mechanical and functional point 
of vue, which correspond to the proposed vehicle concepts. 

The model of vehicle presented here has four independant wheels each equipped with a 
motor, and an articulated chassis. The wheels are more or less deformable according to the kind 
of tires and present a set of masses on their edge (figure 8). 

figure 8 : the general structure of the vehicle 

The surface interaction module presented above was set between each wheel mass and the 
elements making the ground. Figure 9 illustrates the principle of introducing a virtual physical 
point in this case. It must be pointed out that this approach correspond to an adaptative 
discretization of the surface of the terrain. 

~ ~Wheel 

\:? Terrain 

• Temporary virtual 
physical point 

sticking interaction 
module 

figure 9 : Interaction modules set between the wheel mass and the terrain. 
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The resulting simulations have been particularly realistic. Notabbly they show that the 
wheels spin or skid in extreme situations, i.e. when the slope is too abrupt or when the 
accelerations are too sudden. It aslo can be observed how "ightly deformable terrains, e.g. non 
cohesive grounds or rigid grounds covered with mobile pebbles can severely entail the 
performance of the locomotion system. This type of behavior can not be represented if the static 
part of adhesion friction is not taken into account and of course, even less with behavorial 
laws. 

IV. Implementation and Experiments 

The general approach for animation using dicrete physical model described in this paper is 
implemented and tested through the Cordis-Anima modeler/simulator [Luc 91.2]. The working 
environment of this system includes a V AX 730, an Evans & Sutherland PS350 graphic 
workstation, an array processor AP120, and gestural retroactive devices which have been fully 
described in previous papers [Cad 81, Cad 84] . The fast communications between the 
simulation processor (API20), the graphic workstation and the retroactive device are performed 
thanks to several dedicated processors. The whole system provides the user with real-time 
simulation capabilities and with multi-modal communication tools. 

IV.1 2D simulations of various deformable terrains 

In these experiments we have used a 2D version of the vehicle presented above which is 
composed of two driving wheels and a rigid chassis (figure lO). The model of the wheels 
consist of set of punctual masses distributed on the outline of the wheel and connected by 
elatic-viscous connectors as shown in the diagram on figure 8. As the wheels and the terrain are 
deformables, multi-punctual wheel-ground contacts can occur. The movements are generated 
using two independant torque generator with speed command (see the 3D vehicle command law 
described in the following paragraph). 

We have made experiments involving terrains with complex outline, some of them made of 
plane ground littered with various size fixed blocks and others with mobile blocks (figure 11). 
Between these two extreme cases, we have experimented several kinds of deformable terrain. 
Non cohesive terrain can be characterized by parameters like compacity, internal friction, 
resistance to shearing of or pressure-sinking law. According to the Cordis-Anima formalism, 
these models are all made of several layers, each ones being made of a network of connected 
punctual masses. These layers are characterized by the involved connectors representing the 
non-linearities associated to the object boundaries -like internal friction-, or connectors defining 
some structural modifications (elastic and pla~tic deformation properties), see [Luc 9l.I]. The 
different layers are combined to make up a terrain model capable of deep or superficial 
deformations and presenting a given 'state of surface'. 

IV.2 Motion control for the 4-Wheel drive vehicle 

As we have said above, the vehicle has four independant driving wheels and is provided 
with an anti-rolling articulation on the front axle-tree. This articulated structure allow to 
continuously maintain a sufficient number of contact points between the wheels and the ground 
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when getting over some natural obstacles (rocks, small hills and hollows ... ). This is achieved 
by automatically modifying the configuration ofthe articulated mechanical structure under the 
effect of gravity and of reaction forces produced by the wheels/ground interactions (figure 12). 
The two axle tree are swivelling in the cha~sis plane, which allow, as well as the possibility to 
apply different speed commands on each wheel, to follow the desired trajectory. But the 
counterpart of this great manoeuvrability is the deep complexity of the command to apply to the 
locomotion system. As mentionned before, we have apply only constant speed command law 
and we have coupled together the pair of torque generator of each axle-tree while the swivel­
articulations was locked. And in fact this is the minimum to do to make the vehicle go straight 
ahead (figure l3). 
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figure 10: the 2D-version of the wheel-drive vehicle and a mobile block resting on the ground. 

figure 11: a) the animated sequence starting from the situation on figure 10. b) the 2D-vehicle 
crossing over two successive mobile blocks. (movement from right to left). 



figure 12.a and 12.b: the 4-wheel-drive vehicle and spherical rigid small hills (the chassis 
adapts its configuration to the shape ofthe ground). 

figure 13: the movements of the 4-wheel-drive vehicle when getting over the small hills. 
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I propose a new 4D interference check method among multiple 3D 
moving objects. One characteristics of this method is using hexadecimal­
tree as a 4D spatial index. Another characteristics is using 4D polyhedron 
to avoid direct treatment of curved surfaces which are boundaries of 4D 
motion trajectories. Based on an appropriate 3D geometric modeling 
system, I experimented on this method in a very simple case. I report its 
results. 

1. Introduction 
4D interference check is required in many research areas. For 

example, the robotics area requires it because robots must not injure 
human beings, objects and themselves. Collision-free path planning also 
requires it because planning itself is including 4D interference check. 
Grasping planning also requires it to obtain the contact positions. 
Movability check of mechanical parts and possibility check of mechanical 
assembly also requires it. In the computer animation area, 4D 
interference check is necessary to avoid physically impossible scenes in 
which an object crosses another object [Moor88]. 

But there are many difficulties in the 4D interference check. At 
fIrst, it is very diffIcult for human to understanding 4 dimensional space. 
Second, it is difficult to treat curved trajectories of 3D moving object. 
Third, there are few geometric modeling systems which are fit good for 
the achievement of 4D interference check. At last, amount of computation 
is very large. 

I use the 3D geometric modeling system based on the graph-based 
tool [Inam89] to experiment on the 4D interference check method. 
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2. Related Work 
Most current methods for interference check are 3D interference 

check [Boys79, Nobo87]. If such 3D interference check methods are 
extended to 4D, time will be sampled appropriately and 3D interference 
check will be performed at the each sampling point. However, they can 
not be said to be a reliable check because such methods may fail to find 
the interference between two sampling points. Figure 1 (a) shows this 
situation. To perform the reliable check, continuous-time must be 
considered as shown in Figure 1 (b). 

to t3 

(a) Discrete-time (b) Continuous-time 

Figure 1 Discrete-time and continuous-time 

There are related works in the area of collision-free path planning 
[Taka89, Fuji89, Sing87, Kamb86, Loza79]. However, they are 
theoretical rather than experimental. Most of them are 2D. Moving 
objects in them are usually simple shapes or points. They can not treat 
complex shapes which appear in a practical world. 

The octree was proposed for a 3D solid approximation [Jack80, 
Meag82, Yama84] or a 3D spatial indexing method [Fuji85]. However, 
octree is not suitable for rotations which usually often appear in 
representative 6-degree-of-freedom robot manipulators. It is because the 
octree is a set of cubes. 

The concept of S-boundary and active zone [Came89] based on CSG 
representation was also proposed for set operations and interference 
check. However, they can treat only 3D solids and can not treat moving 
objects. 

There had been no reliable (time-continuous) 4D interference check 
methods which treat moving 3D complex-shape objects. 
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3. A New 4D Interference Check Method 
In this section, I explain overview of a new 4D interference check 

method. This method is a time-continuous method and treats moving 
polyhedral complex-shape objects. 

The feature of this method is the use of hexadecimal-tree for a 
hierarchical 4D spatial index. The hexadecimal-tree is the extension of an 
3D octree [Jack80, Meag82, Yama84] to 4D. Hexadecimal-tree is defmed 
as follows: 

hex = <Homo, x, y, z, t, width, interval> 
, where x,y,z and t mean the hypercube position, 
width and interval mean the hypercube size 

hex = <Hetero, hexo, ... , hex 15> 
for each i E [0, 15]; hexi is hexadecimal-tree. 

The most significant advantage of hexadecimal-tree is that it makes 
interference check time-continuous. Another advantage of hexadecimal­
tree is that hypercube division occurs only if there is collision possibility 
in the hypercube. Another advantage of hexadecimal-tree is that it makes 
space and time complexity linear about number of elements of objects. 

For determining exactly whether interference occurs or not, it is 
necessary to solve complex mathematical equations which represents the 
boundary surfaces of motion trajectories. Solving such equations is not 
practical. To avoid complex equations, the new method uses a set of 
hypercubes which may intersect trajectory boundary. For judging the 
intersection, the new method uses maximum velocity of moving objects. 
At first, I explain mechanism of intersection judgement in 2D and show 
how the new method is time-continuous. Figure 2 shows a 2D point 
trajectory. 
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! 
....... ····································t················· ................... ~ .................. . 

: :----------l-- ---~------
CE = CF = v max (t max - t min) 

V max : maximum velocity 

t min t max 

Figure 2 A curved trajectory 

The moving point is at A when time is tmin. The moving point is at B 
when time is tmax. If you create polygon AEBF by using the maximum 
velocity, the moving point must be in the polygon AEBF during time is in 
the section [tmin, tmax]. If an object does not intersect the polygon 
AEBF, the object must not intersect the moving point in the time section 
[tmin, tmax]. This is time-continuous check. The length of an error bar 
EF is adaptively decreased by division of the time section. In the case of 
4D, the problem is more difficult, but the basic concept is the same. 

I explain the algorithm of a new method with a hexadecimal-tree 
spatial index. The new method checks interference among multiple 
moving polyhedral objects. In the algorithm, faces whose trajectories may 
intersect a hypercube corresponding to a hexadecimal-tree node are 
linked to the hexadecimal-tree node. There is no interference in the 
hypercube if no face is linked to the hexadecimal-tree node, or if all faces 
linked to the hexadecimal-tree node belongs to the same object. In other 
cases, some objects may intersect each other. Initial step of the algorithm 
obtains the size of the 4D trajectory box covering all trajectories of all 
faces of all moving polyhedral objects, and creates the root node of the 
hexadecimal-tree spatial index, and links all moving faces to it. Algorithm 
1 shows this step. 



{ate_hexad{ world) 

} 

S_index = create_nodeO->self; 
for all object in world { 
for all 4D_face in motion of object ( 

create_arc{S_index, 4D_face); 
}}} 
set size to S_index; 

Algorithm 1 
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The function create_nodeO creates a root of hexadecimal-tree. In the 
experiments, motions of objects are described by point-to-point motion. 
The point-to-point motions are specified by a sequence of pairs of time 
and C-space variables. A variable 4D_face indicates a pair of an object 
face and one time section of the object point-to-point motion. The 
function cr~ate_arcO links all face trajectories to the root node of the 
hexadecimal-tree. 

When some objects may intersect each other in the hypercube 
corresponding to a hexadecimal-tree node, the hypercube is divided into 
16 child hypercubes. Interference possibilities between each child 
hypercube and trajectories of faces linked to the hexadecimal-tree node 
are investigated. When there is interference possibility, the face is linked 
to the child hexadecimal-tree node. Algorithm 2 shows this step. 

divide_hexad{hwercube ) { 
create 16 child hypercubes; 
for all child_hypercube in hypercube { 

} 

for all 4DJace intersected by hyPercube ( 
if inter3ace4D_hypercube( 4D_face ,hypercube) then 

create_arc( child_hypercube, 4D_face); 

fqr all 4DJace intersected by hypercube ( 
dclctc_arc(hwercube ,4DJace); 

Algorithm 2 

In the case that the size of a hypercube is lower than the division 
limit, the algorithm judges that there will be interference in the minimum 
hypercube. In the case that there is no interference in all leaf 
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hexa,decimal-tree nodes, the algorithm judges that there is no 
interference. This judgement is reliable. Algorithm 3 shows this step. 

inteccheck(h.rpercube) { 
if not exist two objects 

such that both objects intersect hypercube then 
return NOT_INTERSECf; 

if size of hypercube < minimum acceptable distance then 
return WILL_INTERSECf; 

divide_hexad(hypercube ); 
for all cbiJd_h.rpercube in h.rpercube { 

result = inteccheck{cbild_hypercube); 
if result is WILL_INTERSECf then break; 

} 
return result; 

Algorithm 3 

I explain the method which investigates interference possibility 
between a hypercube and a face trajectory. To check interference between 
a hypercube and a face trajectory, the method checks interference 
between the hypercube and each edge trajectory of the face, and checks 
interference between the face and each cube edge at the first and the end 
time of the hypercube. This method will miss the cases such that whole of 
the hypercube is in the face trajectory. However, these cases can be 
ignored by the following reason: If there is interference, an edge of a 
polyhedral object and a face of another polyhedral object must exist such 
that they intersect each other at a certain time. The algorithm never miss 
the hypercube in which this intersection occurs even if division of the 
hypercube is repeated recursively. Therefore, the algorithm is reliable. 

I explain the method which checks interference between a 
hypercube and each edge trajectory of a face. Generally, an edge 
trajectory consists of a complex curved surface. To avoid the direct 
treatment of the complex curved surface, the method approximates the 
edge trajectory by 6 triangles using the maximum velocity of moving 
objects. Figure 3 shows a moving polyhedral object. An edge which is E 
at the time tmin is E' at the time tmax. [tmin, tmaxl is the time section of 
the hypercube. At the time (tmin+tmax)!2, the start and the end points of 
the edge are in the cubes whose size is 2Vmax(tmax-tmin). 
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tmax+tmin 
t=----

2 

................... J£--_. 
• • 

2 v max (t max - t min) 

Figure 3 An edge trajectory of moving polyhedral object 

The approximation by triangles is performed as the face trajectory 
enlarges. Figure 4 shows how to perform triangulation . 

.................................................................................................................... 

eoiA 
t = tmax t = tmin 

Figure 4 Triangulation of an edge trajectory 
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At fl,rst, the diagonal XIX is selected as the middle point of the diagonal 
is outside the face trajectory. Secondary, the triangle XOXIX is divided 
into 3 areas A, B and C. The other triangle is also divided into 3 areas. 
The edge trajectory may intersect the hypercube if the following 
equations are satisfied: 

[Xminh ~ [(l-r){ (l-p)x + p(eo + ~)} + r{ (l-p)x + p(el + ~)} ]i 

[(I-r){(I-p)x + p(eo - ~)} + r{(1-p)x + peel - ~)} h ~ [Xmax]i 

(These equations correspond to the triangle A in Figure 4) 

[Xmin]j ~ [(l-r){(l-p)xo + p(eo + ~)} + r{(1-p)xo + peel + ~)}]i 

[(I-r){(1-p)xo + p(eo - ~)} + r{(1-p)xo + pee) - ~)} h ~ [Xmaxlj 

(These equations correspond to the triangle B in Figure 4) 

[Xminli ~ [(I-r){(l-p)(e) +~) + p xo} + r{(I-p)(e) + 1:>.) + P Xl} h 
[(I-r){ (I-p)(el -~) + P Xo} + r{ (I-p)(el -~) + p Xl} li ~ [Xmaxh 

(These equations correspond to the triangle C in Figure 4) 

where i = x, y, Z, !::.. =-vmax (tmax - tmin), 0 ~ P ~ 1, 0 ~ r ~ 1, 
Xmin= <x min, Ymin, zmin>, Xmax = <xmax, Ymax, zmax>, tmin and 
tmax are the ranges of the hypercube. All these equations above have the 

same form as shown below: 

o ~ Cio + Cil P + Cj2 P r 

O~Ci3+Ci4p+q2pr 

(i = x, y, z and Cij is constant.) 

Considering that RHS of equations is monotone about both variables p and 
r, possibility of existence of p and r is clarified by checking four points 
(0,0), (0,1), (1,0), (I,I) and three straight lines p=l, r=O, r=1 on pr­
plane. 

Algorithm 4 shows the step of triangulation of an edge trajectory. 
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mter_face4D _hypercube( 4D_face ,hypercube) { 
obtain 4D_face trajectory box; 
if the box does not intersect hypercube then 

return NOT_INTERSECT; 
for all edge e in 4D_face { 

} 

if e(t",m) or e(t.ru.x) intersect hypercube then 
return WILL_INTERSECT; 

<vO, vI> = e; 
if triangulation < vO(t",m), v I (tmax» enlarge trajectory then { 

if triangle <vO(t",m), vO(tmax), vI (tmax» 

} else { 

intersect hypercube then 
return WILL_INTERSECT; 

if triangle <vO(t,ruJ, vJ(t,ruJ, vJ(t.ru.x» 
intersect hypercube then 

return WILL_INTERSECT; 

if triangle <vO(tmu,), v I (t",rn), vO(tmax» 
intersect hypercube then 

return WILL_INTERSECT; 
if triangle <vJ(t",rn), vO(tmax), vJ(tmax» 

intersect hypercube then 
return WILL_INTERSECT; 

for all edge e in hypercube(t",rn) { 
if 4D_face (t",rn) intersect e then return WILL~INTERSECT; 

} 
for all edge e in hypercube (tmax) { 

if 4D_face(tmax) intersect e then return WILL_INTERSECT; 
} 
return NOT_INTERSECT; 

Algorithm 4 

The main advantage of this method is that it makes the check time­
continuous as shown in Figure I (b). Another advantages are related to 
the characteristics of the hexadecimal-tree. Hexadecimal-tree make time 
and space cost linear about the number of elements of objects. 
Hexadecimal-tree divides hypercube adaptively only if it is necessary to 
divide. 

4. Experimental Results 
A prototype 3D geometric modelling system was developed about 

three years ago [Inam90] based on a graph-based tool [Inam89]. The 
characteristics of this system is that the system can treat other data 
structures and that directed arcs can be created among all elements such 
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as faces, edges etc. Based on this system, 4D interference checker using 
hexadecimal-tree is implemented. 

Table 1 shows the result of a very simple example. It shows two 
motions with two objects. One motion causes collision, and the other is 
collision-free motion. In the motion which causes collision, collision is 
found by about 2 minutes. In the collision-free motion, it costs about 30 
minuets and 1.5 Mbytes memories to authenticate collision-free. The 
latter costs more because the latter investigates all 4D spaces. 

collision i collicion-free · • 
complexity of shapes & motions ! 

number of objects 2 i 2 ! 
number of components 5 ! 5 ! 
number of faces 52 i 52 
number of edges 120 ! 120 ! 
number of control points 2 ! 4 ! 

! 

complexity of 4D spatial index 
! 
! 
! 

hexadecimal tree hieght 8 · 6 ~ 
hexadecimal tree node 289 i 1713 
number of arcs 1068 ! 8958 i · 

complexity of computation 

I number of checks 6704 116000 
number of intersections 1435 

! 
16064 

time complixity (min.) 2.0 I 28.9 

space complexity (kbytes) 369 i 1406 I 

Table 1 Experimental results of check between simple two objects 

Figure 5 shows 2D projection of 4D hexadecimal-tree and two moving 
objects at the' collision position and time. 
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Figure 5 40 Interference position projected to a 2D plane 

5. Discussion 
The time-axis is not equivalent to the x,y,z-axes while the x,y,z-axes 

are equivalent to each other. Ratio between space width and time interval 
of hypercubes must be constant in a hexadecimal-tree. The current system 
determines this ratio according to the minimum 4D trajectory box 
covering all moving objects. It is considered that efficiency is the best 
when this ratio is almost the same with the average velocity of moving 
objects and when standard deviation of velocity is very small. If a very 
fast moving object exists in the world where movement of most objects 
are very slow, it is considered . that efficiency of the system decreases 
according to the difference of velocities. This fact may be a disadvantage 
of the pure hexadecimal-tree. 

The implemented 40 interference check system is a prototype, and 
have many possibilities of improvement. 1) Maximum velocityis constant 
in the current system. If maximum velocity is estimated for each object 
and for each time section, 40 trajectory enlarging ratio becomes small. 2) 
Required time is proportion to the number of faces in the current system, 
and the current system can treat only polyhedron. In the case that there 
are objects with many faces, it is better to use simple polyhedron 
covering the object instead of complex polyhedron [Dai88]. 3) There are 
duplicate calculations in the current system. For example, the interference 
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check is performed both at the inside and at the outside of the boundary. 
This futility is eliminated by device of algorithms. 4) Parallel processing 
for high speed check is considered. Because divided 4D subspaces are 
independent, parallel processing is possible by checking interference for 
each subspace independently. When parallel processing is applied, upper 
bound of time complexity decreases from O(n) to O(1og n) if each 
hypercube requires the same order time, where n means number of 
hexadecimal-tree nodes. Thus, the log n means the approximated height 
of hexadecimal-tree. Space subdivision is also used in ray tracing for fast 
check of ray intersection [Glas84, Kap185, Fuji86]. Parallelism of such 
ray tracing is usually about for each ray while parallelism of the 4D 
interference check is about for each subspace. Of course, parallelism for 
each moving object is considered, however, each process depends on each 
other in such a case. In both cases, it is very hard to distribute tasks and 
data to hardware elements for realization of parallel processing [Kuni89]. 

In the algorithm here, only pure geometry (kinematics) is 
considered, and dynamicsis not considered. The algorithm uses the value 
V max At (maximum velocity multiplied by time interval) as the error 
range size. The values obtained from force and acceleration can be used 
instead of Vmax At. Such methods are regarded as applications of 
dynamics and they give better approximation of the range in which 
moving objectS exist. 

In kinematics of robotics, there are concepts of C-space 
(configuration"space) and W-space (work space) [Loza83, Hayw86]. C­
space is a space of joint variables. W-space is a space of positions and 
orientations of an end-effecter. The current system checks the 
interference in the time-dependent subspace of the W -space generated by 
parameters of the C-space. Usually, the concept of the W-space does not 
depend on time. For the purpose of 4D interference check, time must be 
added to the W-space because it is assumed that different objects pass 
through the same point at the different time. In the 4D interference check 
algorithm here, time division is adaptively and automatically determined. 

6. Conclusion 
A new 4D interference check method was introduced. The 

characteristics of this method is that it is using hexadecimal-tree as a 
spatial index, and that it is a time-continuous check and reliable. A 



ISS 

prototype system was implemented, and some experimental results were 
obtained. 
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Abstract 

The great potential provided by the existing 3D hardware and software provide us the tools for 

modeling and displaying complete 3D physical objects in computer systems. Despite the 

advanced ability to create and display 3D objects, there is a lack of interaction techniques by 

which the user can intuitively manipulate these 3D objects and perceive information about them. 

GIVEN (Gesture-driven Interactions in Virtual ENvironments) is a 3D interaction toolkit which 

aims at aiding in the development of new 3D interaction and dialogue techniques. The user of 

the GIVEN toolkit is not dealing any more with a picture of an object. He can directly 

manipulate 3D objects using 3D input devices, such as spaceball and dataglove, for grabbing, 

pushing and moving them. 

With our first application, for virtual environments, we found out that very unnatural object 

interactions happen if the collision detection, necessary for the interaction, is made by using 

only bounding volumes. Precise object interactions are required to let users grab, push and 

position objects precisely in a 3D world. 

For this purpose, a boundary representation was integrated to be used for the implementation of 

an advanced collision detection scheme. 

This paper describes an algorithm for performing the intersection of two polyhedra. New pre­

processing algorithms are explained in detail that speed up on average the overall performance 

of the intersection algorithm. Robustness is achieved by propagating all topological information 

immediately to the neighbor faces. The application of this algorithm inside GIVEN is also 

presented. 

Keywords: Collision Detection, Intersection Algorithms, 3D Interaction Techniques, Direct 

Manipulation Techniques, User Interfaces, Human Computer Interaction. 
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1. Introduction 

The recent increase of the available power of special purpose 3D hardware and software 

provided a new range of 3D applications. 

For these applications 2D interaction techniques are no longer adequate. New interaction 

devices are also required. Although 2D input devices, such as mice or joysticks, can be 

extended to 3D, they are not intuitive and easy to use. 

Present human-computer interaction for 3D applications is known to be far from optimal. 

Researchers are now looking for new interaction techniques (see also [FOLE87], [KRUE91]) 

that take full advantage of the 3D nature of these applications. 

Our research in interactive computer graphics and search for better 3D interaction techniques led 

us to the development of GIVEN, in which 3D interaction concepts and methods are developed 

and evaluated. 

The user or "visitor" of the GIVEN toolkit can navigate around and directly manipulate 3D 

objects. Via intuitive interaction techniques the user is enabled to grab, rotate, move and 

position 3D objects [BOHM92]. Input devices such as dataglove and space ball are used for 

controlling a virtual hand. 

For the recognition of interactions between moving and static objects a collision check has to be 

done all the time. Our experience with GIVEN showed us that for solid modeling or molecular 

modeling applications it is not sufficient to do collision checks using bounding volumes aligned 

with the coordinate axes. Users of these applications must be able to identify, grab, push and 

position 3D objects very precisely. 

The purpose of this paper is to describe how we realize precise interactions with 3D objects. 

A boundary representation available through the Topological Data Model (TOM) toolkit 

[WU91] was integrated and a robustness algorithm for performing the intersection of two 

polyhedra was implemented. This toolkit was provided to us from FhG-IGD - Darmstadt The 

algorithm for intersecting two polyhedra is well known (see also [HOFF89], [MANT88]) and 

we focus on new developed algorithms that can speed up on average the overall performance. 

Finally, results are summarized, conclusions are drawn and directions for further research are 

suggested. 
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2. GIVEN 

In this section a brief overview of the GIVEN system is presented. We will see how collision 

detection is important when interacting with 3D objects in virtual worlds. 

The GIVEN system is a 3D interaction toolkit which aims at aiding in the development of new 

3D interaction techniques. 

The visitor of the GIVEN environment uses a small set of hand gestures to manipulate virtual 

worlds. Performing gestures previously defined with a functional meaning, such as "fly 

forward", "grab object", "release object", and others, the user is able to communicate to the 

computer system his intentions. In this way, (s)he is enabled to navigate around and directly 

manipulate 3D objects using simple and intuitive interaction techniques. 

A dataglove is used as an input device and neural networks interpret the visitor's gestures that 

are produced as different hand positions. 

Behaviour is also assigned to objects in the virtual environment. Each object has its individual 

behaviour, that is, it knows how to react to various stimuli the environment exerts upon it. As 

an example, when an object is released, it falls down following the gravity laws, but it could 

also be like a balloon and rise in the air until it reaches the virtual room ceiling. 

2.1. GIVEN"s Architecture 

The main components of GIVEN are illustrated in figure 2.1. The Event Handler receives 

user's events from device drivers ( Dataglove, Spaceball) and the conventional input devices 

(keyboard and mouse). According to the data received from the Event Handler the Cursor 

Manager controls the cursor actions. The Renderer draws the current state of world using the 

Silicon Graphics GL graphics language. The Collision Detection module checks if any objects 

are colliding in the world at any moment. Finally, the System Kernel coordinates the actions 

between the Cursor Manager, Renderer and Behaviour Manager. 

An interaction takes place as follows. The Event Handler gets an event from a device driver. 

The Cursor Manager interprets the gesture information and controls the navigation. Next, the 

System Kernel ask the Collision Detection module if there are any collisions taking place. For 

objects that do collide, appropriate behaviour has to be determined. The Behaviour Manager 

takes care of the individual behaviour of objects. Once the behaviour evaluation is done and 

appropriate changes are made to the scene, a new frame can be rendered. 
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Figure 2.1 GIVEN's Architccture. 

2.2. Collision Detection 

Collision detection is one of the most important tasks to be realized when a visitor is 
manipulating a three-dimensional virtual world. When he comes near to an object to grab it a 

collision check must be done to guarantee that he is close enough. Again, when a ball is falling 

we must check if it is colliding with any object in the way to determine what kind of behaviour 

should be then executed. 

Fortunately, there is no need to check all objects in the scene for collision. For instance, static 

objects do not require to be checked for collision against other objects in the scene. Only active 

objects ( e.g., those that are moving like the hand cursor, a ball (ailing), should be checked if 

they are colliding with any other object in the scene. 

In the first version of GIVEN, the collision detection module is based on bounding volumes 

(CDBV). It is implemented hierarchically with two levels of checking (figure 2.2). 
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Figure 2.2 - Collision detection module's architecture. 

These collision checks do not use polygon information of objects. They only use bounding 

volumes parallel to the coordinate axes. Therefore, we can check very fast if two objects 

collide. 

Figure 2.3 - An object is grabbed but the virtual hand is not touching the object's surface. 
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Objects can be defined hierarchically in GIVEN. Perfonnance can, therefore, be improved if we 

define two levels of tests using worst-case and specific bounding volumes. Specific bounding 

volumes are detailed volumes that surround each object; and worst-case bounding volumes 

include object's specific bounding volume and the volumes of its descendents. Clearly, if there 

is no collision between worst-case bounding volumes of object A and B, there cannot be a 

intersection between the descendents of A and the descendents of B. 

Using bounding volumes for collision detection is not sufficient to achieve supposed 

naturalness interactions in virtual worlds. The main problem stems from the fact that two 

objects are considered to collide if their specific bounding volumes do collide. But, the only 

relevant information that we could extract after the second level of detection is that objects might 

collide but there is no certainty. Therefore further tests should be made. For that reason, very 

unnatural object interactions and situations can happen. An example is illustrated in figure 2.3. 

Users can never get "real" close to an object because collision is detected between object and 

hand's bounding volumes. 

3. Precise Collision Detection (PC D) 

Collision detection problems and their variations are an important topic of research in 

computational geometry. Their importance is mainly due to the fact that two impenetrable 

objects cannot share a common region. 

Virtual reality applications aim at creating virtual worlds with which the user interacts as if they 

were real. The main goal is to give the user the feeling of direct interaction with three­

dimensional "real" objects as naturally as possible. For this reason, the user of such systems 

wants to see simulated objects acting as if they were impenetrable and sense limits to his motion 

and actions in the same way as when (s)he is manipulating the physical world. 

For that purpose, it is necessary to extend the collision detection manager based on bounding 

volumes (CDBV) developed for GIVEN. Bounding volumes can be effectively used to state 

that two objects cannot intersect, but we cannot decide that two objects intersect just because 

their bounding volumes intersect. 

Therefore, a precise collision detection manager was developed [FIGU93]. A boundary 

representation was integrated to assist in the implementation of a robustness algorithm for 

intersecting two polyhedra and to find out how much one object is inside another. 

This section describes the key ideas and algorithms used to implement the precise collision 

detection manager. New developed algorithms are presented that can speed up on average the 

overall perfonnance. 
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3.1. Boundary Representation in GIVEN 

The data representation scheme fIrst developed for the GIVEN toolkit was mainly concerned in 

realizing fast rendering. 

Most of the shading models discussed in the literature, such as constant shading, Gouraud 

shading and Phong shading, implement effIcient shading algorithms for surfaces defIned by 

polygons and polygon meshes. For this reason, three-dimensional objects are modeled in 

GIVEN as polyhedral, faceted objects and the data model stores the polygons that make up the 

object's surface. The data structure is a very simple polygon modeling scheme [MORT85] 

where the object is the basic entity and its geometric shape is defined by cross-referenced lists 

of vertices and faces that represent the object's surface. 

Our desire of natural and precise interactions on virtual environments generated new ideas and 

therefore new questions such as the following: 

• Is this moving object colliding with any other? 

• Is this object inside or outside this other one? 

• What is the weight, volume, center of gravity, etc. of the object? 

Unfortunately, the GIVEN data structure, which was designed mainly to attain fast rendering, 

was not able to give sufficient information for answering these questions. For this purpose a 

solid modeling representational scheme was required that guarantees the creation of valid 

bounded and connected three-dimensional objects [MANT88J. 

For this reason, a boundary representation was integrated into GIVEN. We used a non­

manifold boundary scheme because it was the only representation available for us. It was 

important for us to have the power of a solid modeling system, which is adequate for 

answering arbitrary geometric questions algorithmically. Additionally, the extended domain of a 

non-manifold boundary representation would enable the designer of virtual environments that 

uses the GIVEN toolkit to exercise his creativity. However, this data structure was available as 

a toolkit. Unfortunately, using a toolkit is not as efficient as directly accessing the data 

structures. Therefore, this boundary representation was not efficient for rendering, and the 

original polygon modeling scheme was still needed. 

The GIVEN toolkit is now supported by two representational schemes as illustrated in fIgure 

3.1. The polygon modeling scheme is usually used for rendering. Only when this data structure 

is unable to give suffIcient information for determining the geometric properties, we access this 

information from the boundary model. 
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Figure 3.1 - GIVEN's representational scheme. 

3.2. Realization of Precise Collision Detection 

In this section we describe the precise collision detection algorithm. The main goal of this 

algorithm is to find out if two objects are intersecting. 

3.2.1. Precise Collision Detection Architecture 

The heart of a precise collision detection algorithm is a method for intersecting two polyhedra, 

A and B, which requires testing each face-pair for intersection. This is not efficient if it has to 

be done for every pair of objects in the scene. Therefore, a preceding calculation that filters out 

objects that cannot intersect should be done. 

The aim of the collision detection manager based on bounding volumes (CDBV) (see figure 

2.2) is to construct a list of objects whose bounding volumes intersect. 

Using this information we can extend the old collision detection pipeline to include then a third 

manager, called Polyhedral Intersection Manager (PIM), which will be responsible for 

calculating the intersection between two polyhedra (figure 3.2). Maintaining those pre­

processing steps presented in figure 3.2, allow us quickly to filter out those objects that cannot 

intersect, and a list is constructed for those objects whose specific bounding volumes do 

intersect. Thus, performance of the precise collision detection manager is improved because 

only a small set of pairs of objects will be tested by the Polyhedral Intersection Manager. 
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Figure 3.2 - Precise Collision Detection Manager's Architecture. 

3.2.2. Intersecting Polyhedral Objects 
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An algorithm for intersecting two polyhedra, A and B, requires a testing for each face fe A 

against each face ge B for intersection. However, a straightforward implementation, which tests 

each pair of faces for intersection, leads to a O(nxm) computational complexity (n and m is the 

number of faces of polyhedra A and B, respectively). Therefore, a preceding computation that 

filters out face pairs that cannot intersect should be done. 

These prepossessing steps cannot speed up certain cases of intersecting polyhedra. However, 

they do speed up the algorithm on average and therefore they were implemented. 

The intersection of polyhedral objects is performed in two steps : 

• 1. Filter out face pairs that cannot intersect (advanced filtering faces algorithm). If it is 

found that there is no pair of intersecting faces, we do only a containment test and skip 

the next step . 

• 2. Calculate intersection between pairs of faces and construct the intersection curve 

(intersection curve determination). 
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3.2,2.1. Advanced Filtering Faces 

This pre-processing step should eliminate pairs of faces from polyhedra A and B that cannot 

intersect. 

A simple way to do this is to enclose every planar face, fe A and ge B, in the smallest bounding 

volume that completely contains the face, whose sides are aligned with the coordinate axes. 

Then, for each pair of faces, fe A and ge B, we check if their bounding volumes intersect. If the 

bounding volumes do not intersect, then the faces inside them cannot intersect and are not 

further considered. For those pairs of faces whose bounding volumes intersect we cannot 

assume anything about their intersection and therefore they should be stored for further 

processement. 

This straightforward algorithm for rejecting face pairs that cannot intersect uses every pair of 

bounding volumes to check whether they intersect or not. This leads to an algorithm with 

worst-case complexity O(nxm), where nand m is the number of faces of polyhedra A and B, 

respectively'. In situations where objects have many faces and only a few do actually intersect, 

this algorithm does not perform well. 

To improve the average performance of the face filtering algorithm we developed an Advanced 

Filtering Face algorithm. Our approach introduces a pre-prossessing computation that reduces 

the set of faces of polyhedra A and B which have to be tested. 

This algorithm first calculates the intersection bounding volume of the two polyhedra. This 

volume is the intersection of the bounding volumes of the two polyhedra A and B. Second, for 

every face, fe A and ge B, we check to see if their bounding volumes intersect the intersection 

bounding volume. Those faces that actually intersect the intersection bounding volume are 

annotated and two sets of faces, fe A and g'e B, are constructed in this way. Third, only those 

faces, fe A and g'e B, that were selected in the previous step are candidates for intersection and 

now we will check to see if their bounding volumes intersect. 

This additional pre-processing step introduced in the advanced filtering faces algorithm 

provides better performance on average to the overall algorithm. However, we cannot expect 

better performance than O(nxm) in special cases of the polyhedra intersection. 

An example of the intersection between two faces in 2-dimensions (figure 3.3) shows us this 

method. 
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The Advanced Filtering Faces algorithm which filters out face pairs that cannot intersect works 

as follows: 

• 1. for every face f of A and g of B, determine the smallest bounding volume whose sides 

are parallel to the coordinate axis; 

• 2. Calculate the intersection bounding volwne between the two polyhedra A and B. 

• 3. Construct the set X of faces, fE A, whose bounding volume intersects the intersection 

bounding volume; symmetrically, construct the set Y of faces, gE B, whose bounding 

volume intersects the intersection bounding volume; 

• 4. Test every face in the set X against every face in the set Y to find out pairs of faces 

whose bounding volumes intersect. 

This algorithm suggests that before intersecting every bounding volume of faces fE A against 

every bounding volume of faces gE B to see if they intersect, we should filter out faces of A and 

B which are not in the intersecting bounding volume and therefore cannot intersect any other 

faces. This additional filtering process can be done in n steps for one object, and for two 

objects it will require therefore n+m checks. On the average it will reduce the number of faces 

which has to be later tested, and it will improve the overall performance of the algorithm. 

Therefore, this algorithm will perform much better in those situations where A and B have 

many faces but only a few of them actually intersect and therefore it was implemented. The 

worst-case running time for the bounding volumes intersection cannot be improved, but the 

average running time can be significantly improved. 

3.2.2.2. Polyhedral Containment Test 

After performing the advanced filtering algorithm, we may arrive at a situation where it is found 

that none of the faces' bounding volume pairs intersect. Therefore the two polyhedra, A and B, 
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cannot intersect. In this case, however, it can happen that one of the polyhedra is inside the 

other one and a polyhedral containment! test must be performed. 

For this purpose, we have developed an extended version for three-dimensions of the Cohen­

Sutherland line clipping algorithm [FOLE90j. It makes use of faces' bounding volume and 

therefore it can be applied to any type of polyhedral object and the containment test can be done 

very quickly. 

Figure 3.4 illustrates an example in two-dimensions of the two possible situations between 

which we want to distinguish when it is found that two objects cannot intersect 

L~ 

* I 
t]3 Intersection Bounding Rectangle of A and B 
_ _ Bounding Rectangle of A and B. 

Figure 3.4 - Two distinct situations where edge's rectangles of A and B do not intersect. 

Considering that we want to perform the polyhedral containment test for polyhedra A against 

polyhedra B. In this case, the bounding volume of object A and the faces' bounding volumes of 

object B will be used. To perform this test we start by extending the planes of the bounding 

volume of polyhedra A to divide three-dimensional space into twenty-seven regions (figure 3.5-

a). 

To each of these regions in space a six bit code is assigned, determined by where the region 

lies with respect to the outside halfspace of the bounding volume planes. Each bit in the code is 

set to either I (true) or 0 (false). The six bits in the code are established according to the 

following rule: 

• First bit, outside halfspace of top plane, above top plane, y ;;:: Ymax 

• Second bit, outside halfspace of bottom plane, below bottom plane, y ~ Ymin 

• Third bit, outside halfspace of right plane, to the right of right plane, x ;;:: Xmax 

• Fourth bit, outside halfspace of left plane, to the left of left plane, x ~ Xmin 

• Fifth bit, outside the halfspace of front plane, to the front of front plane, Z;;:: Zmax 

• Sixth bit, outside the halfspace of back plane, to the back of the back plane, Z~ Zmin. 

! A containment check will detennine if one object is inside or outside another one. 
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Then everY' faces' bounding volume of polyhedra B is classified according to its spatial position 

in relation to the bounding volume of polyhedra A. The code of the region where it lies is 

assigned to the two extreme points that defme each face's bounding volume of B. Then, we can 

annotate the regions where the face's bounding volume are located. 

Clearly, polyhedra A will be inside B if it is found that faces' bounding volumes of B fill all the 

twenty six regions in the space around the bounding volume of polyhedra A. 

A further improvement can be made if we consider only the fourteen regions illustrated in figure 

3.5 -b). In fact, it is sufficient to verify that the faces' bounding volumes of B lie in these 

regions to be sure that polyhedra A is inside polyhedra B. 

Figure 3.5 - a) Partitioning the 3D space using as 
reference the bounding volume of object A. 

Regions to be considered by the 
containment check 

Figure 3.5 - b) The fourteen regions which 
have to be taken into account are drawn as dash. 

3.2.2.3. Intersection Curve Determination 

Since bounding volumes intersection can determine only that two faces do not intersect, we 

arrived at a situation where we have found all candidates of intersecting face pairs. Now we 

have to intersect face pairs and construct their intersection curve. 

The implementation of such an algorithm should resolve possible numerical uncertainty 

problems rooted in floating point arithmetic. Therefore a boundary representation is used to 

achieve a robustness algorithm for the determination of the intersection curve between two 

polyhedral objects [MANT88], [HOFF89]. 

It is assumed that the boundary representation that was integrated provides the following 

topological information: 

• for each vertex, the adjacent vertices, edges and faces are given; 
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• for<each edge, the bounding vertices and the adjacents faces are specified; 

• for each face, the bounding edges and vertices are given, and they are organized in a loop 

locally enclosing the face area to the left. 

The geometric information available from the boundary model specifies the equations for the 

planes containing faces. The plane normal direction points locally to the solid exterior (figure 

3.6). A face is a finite, non zero convex area in a plane, bounded by one loop of vertices and 

edges. Edges are directed such that the face area locally lies to the left, as seen from the exterior 

of the solid. An edge is defined geometrically as a line segment bounded by two vertices and is 

characterized by the line direction. A vertex is a point element defined by a position vector in 

9P. 

Face 
Nonnal 

Figure 3.6 - Geometrical and topological convention. 

The conceptualized algorithm for intersecting face pairs works as follows: 

for each face pair fe A and ge B 

if face f and g are coplanar then return; 

else 

if face f do not intersect the plane a that contains face g then return; 

else 

if the intersection of face f with plane a is one point P I then 

test if PI is in face g; 

else 

Let r be the intersection segment of face f with plane a; 

Perform a line clipping algorithm for segment r on face g; 

Propagate topological information to neighbor faces. 

In the presence of coplanar faces this algorithm does nothing. When the two polyhedral objects 

have some faces in common, our only interest is in determining their boundary polygon. 
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However, their common boundary can be determined from the intersection of non coplanar 

faces adjacent to them and therefore it is not necessary to consider coplanar face pairs. 

For non coplanar and convex faces, fe A and ge B, we intersect the bounding edges of f with 

the plane a containing g (figure 3.7). The intersection will yield zero, one or two intersecting 

points. It is important at this point to classify these intersection points and store in a data 

structure their classifications. Each plane a is considered to be a slab with thickness 2£ and 

each intersection point is then classified as either coincident to a vertice or belonging to an edge 

of face f. 

) • point in edge ~ "3 
Plane 

2£ f:=:=;:==:;:::" 

Figure 3.7 • Intersection of face f with plane IX yields the segment r. 

If no intersection point was found after intersecting the face f with the plane a then this face 

pair do not intersect. In this case, we store only if face f is inside or outside the halfspace 

defined by the plane a. 

If f is intersecting plane a in one point, we must check if this point is in face g. Therefore, we 

must traverse each edge in the loop of face g and classify the point as coincident with one of the 

bounding vertices, with the edge interior, or if it is interior or exterior to the face g. These tests 

should be performed in this order. Tolerance regions must be introduced for vertex and edge 

elements as illustrated in figure 3.8. A vertex has a tolerance region which is a sphere with 

radius E. The edge tolerance region is a cylinder with the same length as the edge and radius E. 

If the point is exterior to the loop, the pair of faces f and g do not intersect. 

Figure 3.8 • Tolerance regions for vertex and edge elements. 
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The in~ersection of face f with plane a can also be a line segment r defined by two ending 

points, PI and P2. In this situation, the line segment common to the face pair is calculated using 

a line clipping algorithm. We implemented the Cyrus-Beck [HILL91] line clipping algorithm 

which is efficient and can be applied to any convex polygon. 

Our goal is to determine the part of segment r that lies in the interior of face g (figure 3.9). The 

interior of the convex face g is defined as the region in the inside half-space of every edge in the 

face. Therefore, segment r is tested against each edge of face g. Pieces lying in outside half­

spaces are "cut". When all edges have been processed, the piece of r that remains, call it r', 

must lie in the interior of face g and therefore is the intersection of the two faces. 

Face Normal p( Point in edge i V3 face f. 

~ - Point in edge ~ face g 

Figure 3.9 - Clipping the segment r against face g. 

Once again, we must classify the bounding vertices of r' as being coincident to any vertice, in 

the interior of an edge or inside of face g. For that purpose, we must consider again the 

tolerance regions, presented in figure 3.8, for the vertice and edge elements of face g. 

Finally, if it was found that the two faces f and g intersect, we must create new points and 

edges to propagate the topological information to the neighbor faces. During the calculation of 

the intersection curve every point was classified as coincident with a vertice or on an edge. For 

those intersecting points classified on an edge we must create a new point and split the original 

edge into two new edges to increase robustness. In this way, when analysing neighbor faces, 

the new intersecting points which have to be calculated will be "attracted" to these points. 

This algorithm presented here proved to be reliable and robust. The only disadvantage that can 

be pointed out is the requirement to define faces of polyhedra A and B as convex. Nevertheless, 

if a new line clipping algorithm that deals with concave faces is implemented we have a curve 

intersection determination algorithm that can be applied to any type of polyhedral objects. 
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4. Resurts 

The precise collision detection manager developed for GNEN allows the users of the GNEN 

environment to interact very precisely with three-dimensional objects. 

Now the user is able to get close to objects and has the "feeling" of touching 3D objects. In this 

way, the user is directly manipulate three-dimensional objects by pushing, grabbing and 

releasing them only when (s)he is touching its surface and not when (s)he is touching its 

bounding volumes (see figure 2.3). An example is illustrated in figure 4.1 where the user is 

enabled to grab a cone and put it on top of a teapot very precisely. 

Figure 4.1 - Precise mampulation or 3D objects. 

In the GIVEN toolkit the intersection curve between three-dimensional objects is used to 

provide additional depth perception of spatial relationships between objects in complex scenes 

(figure 4.2). For example, it can be particularly useful for positioning tasks where one object 

must be parallel to another or where adjacent objects must be positioned with their edges 

aligned. 
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Figure 4.2 - Displaying the intersection curve for allaining depth perception. 

Objects Complexity Operation Time 

scene 700 polygons navigation 50 msec / frame 

scene 700 polygons imprecise collision 70 msec / frame 

detection (specific 

bounding volumes) 

hand & cube 162 + 6 polygons precise collision detection 390 msec / frame 

thumb#1 & cube 30 + 6 polygons precise collision detection 270 msec / frame 

cube & cylinder 6 + 22 polygons precise collision detection 130 msec / frame 

Table 4.1 - Execution speed for grabbing interactions. 

Several scenes were constructed and execution time for various interaction tasks were measured 

on a Silicon Graphics 4D/320 VGX (table 4.1). The test scene contains 3 objects. The virtual 

hand which is a hierarchical object defined by the following parts: hand (162 polygons), 

thumb#O (46 polygons), thumb#l (30 polygons), index#O (32 polygons), index#l (32 

polygons), index#2 (30 polygons), middle#O (32 polygons), middle#1 (32 polygons), 

middle#2 (30 polygons), ring#O (32 polygons), ring#l (32 polygons), ring#2 (30 polygons), 

little#O (32 polygons), little#1 (32 polygons), little#2 (30 polygons). The two remaining objects 

are a cube (6 polygons) and a cylinder (22 polygons). 
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As shown in table 4.1 acceptable speed is achieved when the moving object has a small number 

of polygons. 

5. Conclusions and Future Work 

Experience with GIVEN showed us that very unnatural and imprecise object interactions 

happen in virtual environments if collision detection is made by using bounding volumes 

aligned with the coordinate axes. 

To enable the user of GIVEN to interact precisely with 3D objects, a non-manifold boundary 

representation toolkit, called Topological Data Model - TDM, was integrated in GIVEN to assist 

in the development of a precise collision detection manager. 

Collision detection is now made very precisely by intersecting two polyhedral objects and 

determining the vertices, edges and faces where the intersection curve lies. In this way, the user 

of GIVEN is enabled to get "close" to objects and to have the "feeling" of touching 3D objects. 

We believe that 3D interaction toolkits should be supported by solid modeling representational 

schemes. 

In the current situation we are using a toolkit where we do not have direct access to the data 

structure. In this case, the inquiring of the data structure costs too much time. For this reason, 

we are planning to implement a solid modeling representation scheme in the GIVEN kernel. 

We would like to use GIVEN in future as a testbed for developing new interaction techniques 

for solid modeling. With the precise collision detection manager the user is enabled to identify 

topological entities. In this way the user could directly construct 3D models in a complete 3D 

environment, using intuitive interaction techniques. 
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Abstract 
This paper presents a new mathematical representation for modeling robotic systems 

based on the use of spherical splines. They can be considered as a generalization of the 
spline concept with the introduction of control spheres. Very complex volumes modeled by 
spherical splines are described in funtion of a low number of control spheres. To modify 
the robot configuration, only control spheres must be recomputed. An extended hierarchi­
cal structure with different levels of accuracy including polyhedra, spherical volumes and 
spherical splines is explained in the paper. Distance computation for collision detection 
between robots results very fast when this structure is used. 

Introduction 
In the manufacturing and assembly processes of an integrated factory, robots are one of the 
main elements. To reach a completely authomatized process, robots must be intelligent 
enough to move independently. Therefore, they have to be able to decide its own motion 
to avoid any collision with objects in their workspace. To solve collision avoidance, every 
element of the manufacturing and assembly area, as well as robots, must be modeled. 

Two aspects must be considered in the implementation of a correct collision avoidance 
system: the type of volumes used to model objects, usually convex polyhedra (poly­
topes), and distance computation procedures. Distances between polytopes and its com­
putational complexity have been studied deeply during last years [Dobkin & Kirkpatric, 
1985], [Gilbert, Johnson & Keerthi, 1988], [Lin & Canny, 1991]. 

The type of model chosen has an important effect on collision avoidance. It can make 
easier and faster the distance computation, as well as accuracy depends on it. Convex 
polyhedra have been the most frequently used model in collision avoidance [Canny, 1986]. 

·This work was partially supported by Comisi6n Interministerial de Ciencia y Tecnologia (CICYT) 
under the project ROB 91-0362 
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Each opject can be represented as a convex polyhedron, or union of convex polyhedra. 
Many real world objects that have curved surfaces are represented by polyhedral ap­
proximations. The accuracy of the approximations can be improved by increasing the 
resolution or number of vertices and edges, but also increasing computational cost. 

When modeling robots for path planning, two different approximations are usually 
considered: transformating objects in the Configuration Space [Udupa, 1977] and working 
on Cartesian Space. The underlying idea of Configuration Space is to represent the robot 
in an appropiate space, the robot's configuration space, and to map the obstacles in this 
space. The robot shrink to a point by enlarging the obstacles [Lozano~Perez & Wesley, 
1979]. Some problems can arise with moving obstacles, which must be transformed into 
the Configuration Space after every movement. 

Working in the Cartesian Space, collision is detected by intersections between geome­
tries of robot and obstacles. Roadmap techniques [Nilsson, 1969] and cell-decomposition 
[Lozano-Perez, 1981] methods have been applied firstly in Cartesian Space and latter in 
Configuration Space. Other modeling methods frequently used in path planning are Oct­
Trees, used in [Faverjon, 1984] and generalized quad-trees with 2n trees in [Paden, Mess 
& Fisher, 1989]. 

Although the most of research works in collision avoidance and path planning have 
considered polyhedrical approaches for robot and obstacle modeling, several authors have 
used other kind of models. [Oommen & Reichstein, 1986] used ellipses to model moving 
objects and obstacles. [Fink & Wend, 1991] make a distinction between static,obstacles 
modeled in detail with polyhedra and changing obstacles described with spheres. [Khatib, 
1986] model objects by envolving n-ellipses and n-cylinders for applying potencial function 
method. [Johnson & Gilbert, 1985] apply collision avoidance techniques on a 3 degree of 
freedom manipulator modeled with cylindrical elements. 

A new approach has been recently presented in [Tornero, Hamlin & Kelley, 1990], 
where objects (and links of robot-arms) are approximated by an infinite number of spheres, 
producing spherical volumes. The distance computation between these models results very 
fast. A hierarchical structure using spherical objects is presented in [Tornero, Mellado, 
Hamlin & Kelley, 1992] with reduction in computational cost. Hierarchical structures 
are suitable to robotic systems because of their natural configuration, as for example in 
[Henrich, Cheng, Rembold & Dillmann, 1992]. 

This paper presents a new mathematical representation for modeling robotic systems 
based on the use of spherical splines. Firstly, hierarchical structure of robotic systems is 
presented. Next section introduces spherical splines described in funtion of a low number 
of control spheres. Last section considers an extended hierarchical structure with different 
levels of accuracy including polyhedra, spherical volumes and spherical splines. 

Hierarchical Structure for Robot Modeling 

A hierarchical structure is considered for describing the manufacturing and assembly area 
of the factory where static and mobile robots are working. This area is decomposed in 
cells, systems, subsystems and elements. Cells are the toppest level in the structure. The 
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Figure 1: Multi-level hierarchical structure 

following levels correspond to systems for describing mobile robots, assembly lines, etc.; 
subsystems for robot-arms, machine-tools, conveyors, etc.; and finally elements for the 
robot-links, components of machine-tools, etc. as can be seen in Figure 1. 

For robot-arms, a kinematical model based on homogeneous transformation matrices 
using a modified form of the Denavit-Hartenberg parameters [Denavit, 1955] is used in 
order to determine the position of the robot links. Characteristic points in each link are 
described with respect to its local coordinate system. The matrices relate the position of 
each coordinate frame to the previous one. According to [Craig, 1986], the homogeneous 
transformation relating frame i to frame i - 1 is given as follows: 

(1) 

where CO, SO, Ca and Sa stand for cosO;, sinO;, cosai and 'sinai respectively, CO_I> 
SO-I> Ca-l and Sa-l stand for cos Oi-I> sin Oi-I> cos ai-l and sin ai-l respectively and Oi 
defines the angular position of joint i for a manipulator with revolute joints, and ai, ai, di 

are the constant D-H parameters. 

Checking a robotic system for collisions consists of two steps. First, the characteristic 
points of the volumes in local coordinates are translated into world coordinates based 
on the forward kinematics. Second, distances between objects are computed using the 
appropriate algorithms. 

For the purpose of collision-detection, the different objects in the world need to be 
modeled. Each object can be represented by one or several models depending on the 
accuracy required, giving an extension of the conventional hierarchical structure concept. 
Generally, the complexity of the models used is directly related to the exactness of the 
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representation obtained. Any attempt to make the model less complex leads to some kind 
of approximation. There is a trade off depending on how much simplification is acceptable 
for the accuracy required versus the speed up in the collision detection. 

In addition, several objects in one level can be modeled separately, or globally at 
the toper level. For example, the links of a robot can be modeled at the element level 
or globally at the subsystem level. Obviously, the volume of the model at a level must 
contain the volume of the union of models used at lower level. Ususally, elements at the 
lowest level are formed by means of union of convex polyhedra. 

As an example, the hierarchical structure with three levels (system, subsystem and 
element) based on polyhedra for a robotic system compound of an ABB IRB L6 robot-arm 
on an ABB IRBT 6000S track motion is shown in Figure 2. 

Solid Modeling with Spherical Splines 

Splines are well known in Computer Aided Geometric Design [De Boor, 1978], [Bartels, 
Beatty & Barsky, 1987]. They have been widely used for modeling curves (and surfaces) 
that must 'pass exactly through individual points. For a set of points, Po, ... , Pn , the 
spline curve r(u),uo :::; u :::; Un is given by a piecewise curve. Each segment, ri(u),ui :::; 
u:::; UHb interpolates two of the given points: ri(ui) = Pi,ri(uHd = PHI. By derivative 
constraints, the spline is continous up to the second derivation. 

Since a cubic function is the simplest twisted curve, cubic splines, (particularly, natural 
cubic splines), are the most often used to represent twisted spatial curves. A cubic path 
segment limited by Pi, Pi+! is given by 

3 

ri(U) = EaijUj,Ui:::; u:::; Ui+I 
j=o 

(2) 

where aiO, ... ,ai3 determine the shape, location and size of segment i. The values of aij 
are function of Po, ... , Pn , which can be used as control points to modify the curve. In 
this paper, the complete spline is going to be represented by 

Sp(U) = [r(u),PO,""Pn ] (3) 

As splines are parametric formulae, it can be consireded as non-dimensional, that is, 
when applied on 2D, 3D or d-D points, the result is on 2D, 3D or d-D space respectively. 

On the other hand, the topology of the result of appliying splines on points in the 
Cartesian space depends on the degree of freedom (dof) considered. For example: 

• For I-dof, the result is a curve, represented by Equation (3). 

• For 2-dof, the result is a surface, represented by 

[s(u,v),P;j,i = 0, ... ,n,j = 0, ... ,m] (4) 

• For 3-dof, a volume is obtained, represented by 

[v(u, v, w), Pijk , i = 0, ... , n,j = 0, ... , m, k = 0, ... ,1] (5) 
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Figure 2: Hierarchical structure for an ABB IRB L6 on an ABB IRBT 6000S: a) System 
Level; b) Subsystem Level; c) Element Level 
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Figure 3: Spherical Spline with I-dof: a) Center Coordinate and Radious Interpolation 
with the Use of Splines b) Volume of the Spherical Spline 

A spherical spline consists on extending the concept of splines applied on points to 
splines applied on spheres. A sphere is represented as a four dimensional vector, s = 
(x,y,z,r), where the first three components represent the coordinate of the center of 
the sphere, c, and the last one its radious r. In this way, the representation is with four 
dimensional vectors projected into 3D space. The formulae is an extension of Equation (3): 

SS(u) = [v(u), so,···, snl (6) 

where s;, i = 0, ... , n are called control spheres. The spherical spline should not be 
considered as a sphere whose center is moving along a spline curve, because radious is 
also involved in the relationship of the spline. This case can be obtained when all the 
radii of the control spheres are the same. The proper result is the volume of the union of 
a (infinte) set of spheres. It is obvious that conventional splines are particular cases of the 
spherical spline (control spheres with null radii). Figure 3 shows how center coordinate 
and radii are generated from those of the control spheres with the use of splines and the 
final volume obtained. The shape of a spherical spline can remind snakes, tentacles or 
trunks of elephants. In fact, spherical splines are specially suitable for flexible and/or 
deformable objects, or as will be seen below, for articulated chains such as robot-arms. 

As the basic element of spherical splines is a volume, volumes are always generated, 
even for higher dof, opposite to conventional splines, where, as mentioned before, result 
depends on dof. 
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Figure 4: Control Spheres and Spherical Spline with I-dof for an ABB IRB L6 robot-arm 

In conventional splines, when the number of control points are equal to the dof plus 
one, particular cases are given: for I-dof, 2 (not equal) control points give a straigh line; 
for 2-dof, 3 (not co-linear) control points define a plane and for 3-dof, 4 (not co-planar) 
control points give a tetrahedron. For spherical splines, the following particular cases are 
given: 

• 2 (not equal) spheres define with I-dof a bi-sphere, which can be considered as a 
spherical cone. 

• 3 (not co-linear) spheres define with 2-dof a tri-sphere, which can be considered as 
a spherical plane. 

• 4 (not co-planar) spheres define with 3-dof a tetra-sphere, which can be considered 
as a spherical tetrahedron. 

These cases are given for linear relationship between control spheres. They have been 
presented in [Tornero, Hamlin & Kelley, 1990] and considered as spherically-extended 
polytopes in [Hamlin, Kelley & Tornero, 1992]. 

Robot Modeling with Spherical Splines 
The use of spherical splines as a modeling technique fits adecuately to model a robot-arm 
at the subsystem level. Robot-arms are usually articulated chains whose joints will be used 
to define control spheres for defining the spherical spline. If radii are suitably choosen, 
links between joints will be contained in the volume generated by the spherical spline. 
Therefore, an enveloping volume of the robot-arm is obtained. Figure 4 shows an ABB 
IRB L6 robot-arm with 5 control spheres and its model using a spherical spline generated 
from the control spheres. Note that two robot motors have not been considered for the 
model. To be included, bigger radii of control spheres could be taken, or a bi-sphere with 
horizontal axis could be joint to the spherical spline. 

When the robot-arm is moving, only new centers of the control spheres involved in the 
motion must be recomputed, by product of matrices defined by Equation (1), to obtain 
the new spherical spline. 
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Splines have been frequently used in robotics to define an end-effector trajectory (WU 
& Jou; 1988] [Schutte, Moritz & Neumann, 1991]. Spherical splines can take advantage 
of this fact: a 2-dof spherical spline will give the swept volume of such a movement. 
Therefore, only a set of control spheres need to be determined for describing the movement. 
If this swept volume does not intersect with an static obstacle, the movement is free­
collision. 

For a system with two robot-arms, the intersection of these 2-dof spherical splines will 
not imply that robot-arms collide. One robot could have completely passed through the 
intersection area before the other one has done it, producing no collision. This is because 
time has not been included. To include time constrains, one additional dimension can be 
considered. 

A temporary spherical spline is define as a spherical spline considering time as an 
additional dimension. For I-dof spherical spline, its corresponding temporary spherical 
spline is represented as 

[[r( u), so, ... , s,,], tI, ... , tm ] (7) 

For a fixed ti, a robot-arm configuration is given by the spherical spline [r(u), so, ... ,sn]. 
Forcing the robot to move according several configurations at time ti means a spline 
interpolation in time space. Only intersections at fixed time t, must be computed. 

To make easier distance computation, spherical splines can be considered as union of 
spheres. The number of spheres to be considered will depend on the accuracy required, but 
usually few spheres are enough to obtain a volume which envelopes completely the robot­
arm. The problem of finding the shortest distance between two robot-arms modeled with 
spherical splines, say SSi and SSj, can be stated as a minimization problem as follows, 

with 

where f{ x} = x if x ;::: 0 
= 0 otherwise 

d(SSi, SSj) = min d(Si, Sj) 
'iESSi,8jESSj 

d(Si, Sj) = f{1 C; - Cj I-ri - rj} 

(8) 

(9) 

The problem can be expressed in terms of finding two spheres, each belonging to a 
distinct spherical spline, with the shortest distance between them. A set of sphere-sphere 
distances can be represented as a mesh where the height means distance and the other 
two axes mean sphere considered for each robot. Figure 5 shows an example of a mesh 
with its contour: The :flat in the mesh represents a collision area. This mesh was obtained 
for two ABB IRB L6 modeled as in Figure 4. Considering ·20 spheres for each robot (less 
spheres could be considered), there are 400 sphere-sphere distances to be computed. For 
an average time of 0.05ms for sphere-sphere distance computation (see [Tornero, Hamlin 
& Kelley, 1991]) the complete collision detection problem between the two robot-arms 
can be computed in 20ms. 

Spherical splines could also be simplified using a lower number of bi-spheres instead 
of spheres. For distance computation between bi-spheres, fast geometrical algorithms 
presented in [Tornero, Hamlin & Kelley, 1990] can be adopted. In [Hamlin, Kelley & 
Tornero, 1992] this geometrical solution has been formalized as a spherical extension of 
the polytope model. 
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Figure 5: Distances between Spherical Splines: Mesh and its Contour of a Set of Sphere­
Sphere Distances Values for two Robots Modeled with Spherical Splines 

Spherical splines can be included in the hierarchical structure presented in first section. 
All the entities in the hierarchical structure are modeled by spherical-volumes. A given 
object or set of objects can be modeled by different spherical-volumes with different degree 
of accuracy. For entities at the element level, volumes used will depend on the shapes 
and dimensions of the objects. Toper entities, such as subsystems, systems and cells, 
will be modeled taking into account, in addition to shapes and dimensions of the objects 
included, the configuration at each instant. 

This hierarchical structure can be extended by considering different models in accor­
dance with the degree of accuracy required as, for example, spheres, bi-spheres, tri-spheres 
and spherical splines. Figure 6 shows the ABB IRB L6 robot-arm models with two dif­
ferent degrees of accuracy (sphere and spherical-cone) at subsystem and element levels. 
Spherical splines can be a model for a different degree of accuaracy in the subsystem level. 

The links of the robot-arms are modeled by spherical objects described with respect 
to their local coordinate systems. The kinematical representation given in Equation (1) 
is used in order to determine the position of the robot links. Characteristic spheres 
(control-spheres) in each link are described with respect to its local coordinate system. 

Each one of the models at the required level is obtained as a minimization problem: 
compute minimum volume of considered type which envelope all parts at this level. 

Depending on the relative position between entities, local or global models are chosen. 
For example, the links of a robot can be modeled globally at the subsystem level just as 
one object or separately at the element level when required. 
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Figure 6: Models at Subsystem and Element Levels for the ABB lRB L6 with two Degrees 
of Accuracy: a) Spheres; b) Spherical-Cones 

For the particular case commented above, the collision-detection procedure starts by 
checking global models for the robotic system at lowest accuracy (i.e. sphere). If collision 
is detected, better global models with higher accuracy are considered (i.e. spherical­
cones). 

When the highest level of accuracy has been reached, local models in the system, 
describing the subsystems, (robot-arm and motion track) are considered, starting with 
their lowest accurate representation. If collision is detected, repeat process for lower level, 
that is element level. The procedure ends when no collision occurs or when local models 
at highest accuracy have been checked. 

The collision-detection procedure manages the multi-level hierarchical structure ob­
taining reductions in computational time around 90% on average as was shown in [Tornero, 
Mellado, Hamlin & Kelley, 1992]. 

Conclusions 
This paper has presented an extended hierarchical structure for describing complex robotic 
systems, with different levels of accuracy, in connection to an efficient distance computa­
tion procedure. 

A new class of models for robotic modeling, based on the use of splines applied to 
spheres is introduced. It can be considered as a generalization of spherical volumes. 
Spherical splines are described in funtion of a low number of control spheres. To modify 
the robot configuration, only control spheres must be recomputed. Objects based on 
spherical approximation make easier the development of distance computation algorithms. 
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The distance computation procedure based on the multi-level hierarchical structure 
is highly efficient when dealing with complex objects, for which different models with 
different accuracy can be considered. The reduced time consuming required makes this 
procedure useful for real-time applications. 
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Abstract. N-dimensional chains of maps, or n-chains, is a combinatorial model defined for representing the 

topOlogy of cellular complexes. In this paper, we deduce from n-chains specialized combinatorial models for the 

representation of subsets of cellular complexes. Operations for handling these models are deduced from 

operations defined for handling n-chains. Afler generalization and systemization, we think that this study can be 

used in order to define the kernel or a geometric modeler, not based upon a single eombinatorial model, but upon 

a set of eombinatorial models. This can be very useful when simultaneously handling different subsets of 

cellular eomplexes. 

Keywords. Geometric modeling, non-manifold modeling, topological modeling, combinatorial models, cellular 

eomplexes, cellular manifolds, chains of maps, generalized maps. 

1. Introduction 

During the last years, many combinatorial models have been defined for the representation of 
the topology of subdivisions of topological spaces. A subdivision is a partition of the space into 
cells : vertices, edges, faces, volumes ... First, combinatorial models have been defined for 
Solid Modeling, i.e. for the representation of the topology of subdivisions of compact 
orientable surfaces, which define the boundaries of solids [AFF,Bau,Miin,We85]. Then, other 
combinatorial models have been studied for the representation of subdivisions of more general 
spaces : orientable or not orientable surfaces [GuSt], 3-dimensional and n-dimensional 
manifolds [ArKo,Bri,DoLa,Ede,FePa,Li89,Sob,Spe]), 3-dimensional and n-dimensional 
cellular complexes, i.e. for non-manifold modeling [ElLi,GCP,LiEI,LuLu,MuHi,RoOC, 
We86]. Handling general cellular complexes can be very useful for Geometric Modeling 
constructions [RoOC]. 

The origins of the work presented in this paper are the two following remarks: 
- A combinatorial model defined for representing the topology of general cellular 
complexes is often more complex than a combinatorial model defined for representing the 
topology of subsets of cellular complexes, i.e. more informations are explicitly 
represented. For instance, cells are not explicitly represented in many models used for the 
representation of the topology of cellular manifolds [ArKo,Bri,DoLa,GuSt,Li89,Spe]. 
When the topology of an object of a subset of cellular complexes is represented by a 
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model defined for the representation of the topology of general cellular complexes, 
informations are often redundantly represented. 
- Some subsets of cellular complexes are not closed under some construction operations. 
For instance, non-regularized boolean operations, applied to subdivisions of manifolds, 
do not ever produce subdivisions of manifolds. When using such operations for 
constructing subdivisions of manifolds, it can thus be necessary to temporary model 
more general cellular complexes. Either all subdivisions handled during the construction 
process are represented by a same general model, and redundancy is not avoided, or 
several combinatorial models can be used, according to the subset of cellular complexes 
to which the current subdivision belongs. This second solution is investigated in the 
paper. 

N-dimensional chains of maps, or n-chains, have been defined for the representation of the 
topology of n-dimensional cellular complexes [ElLi,LiEl]. In this paper, we study several 
subsets of cellular complexes, and we deduce from n-chains specialized models for the 
representation of these subsets. This approach presents the following interests: 

- There is a rigorous correspondence between each specialized model and the 
corresponding subset of cellular complexes, i.e. only valid objects can be modelled. 
Moreover, topological properties can be computed on the combinatorial model. Rigor and 
computation of properties are useful for the control of a construction process; 
- All models are deduced from a same general model, and use a same formalism. Their 
definitions are based upon a single type of basic elements, on which applications act. The 
translation of this formalism into a data structure is direct. For instance, each basic 
element can be implemented by a record which contains, for each application, a pointer to 
the record corresponding to its image by this application. Moreover, these models are 
deduced by applying very simple mechanisms. Conversion operations between these 
models are thus easily defined. 
- Operations have been defined for handling n-chains. Specialized operations are here 
defined for handling specialized models deduced from n-chains. All operations can be 
expressed using the basic operations defined for constructing n-chains. Each subset of 
cellular complexes is closed under the related set of operations. 

Cellular complexes and subsets of cellular complexes are studied in section 2, and the definition 
of n-chains is also recalled in this section. Specialized models deduced from n-chains are 
presented in section 3. We conclude in section 4. 

2. Cellular complexes and n-chains 

In this section, we define cellular complexes and severals subsets of cellular complexes which 
are considered in section 3. Then, the notion of n-dimensional chains of maps, or n-chains, and 
the relation between n-chains and the topology of cellular complexes are recalled, but they are 
not formally detailed: cf. [LiEI]. 
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2.1. Cellular complexes and subsets of cellular complexes 

Here, cellular complexes are defined as simplicial complexes structured into cells. A simplicial 
complex is a set of simplices, i.e. vertices, edges, triangles, tetrahedra ... , which satisfy some 
properties (cf. below). This definition of cellular complexes is based on the fact that, starting 
from a cellular object which satisfies some properties not detailed here (cf. [Bri] for instance), 
we can deduce a structured simplicial complex by computing its barycentric triangulation: cf. 
Figure 1-1. This classical idea is employed in [Bri] in order to define cell-tuple structures. 

tJ<o :LJ«> 
o 

Figure 1-1. Top left, a cellular complex. Its barycentric triangulation is computed: each cell is 
triangulated by inserting a vertex at its barycenter, whose associated number is the dimension 

of the cell. Down right, a splitted view of the resulting numbered simplicial complex. 

Combinatorial models for the representation of cellular complexes [Bri,Li89,LiEl] can be 
defined as extensions of combinatorial models defined for representing simplicial complexes 
[FePa,FrPi]). Though the relation between cellular combinatorial models and cellular 
complexes is established through simplicial complexes, these models are cellular ones, i.e. cells 
can be any cells, and not only simplices. 

Here, we give combinatorial definitions of simplicial and cellular complexes. The relation 
between these combinatorial objects and geometric objects is not detailed here, since it is well­
known in mathematics and intuitive enough [FrPi]. 

Let V = (vo, .. . , vv) be a finite set of abstract objects called vertices. An n-dimensional 
simplex or n-simplex is a set of n+ 1 distinct vertices, n ~ O. An i-simplex (viO, ... , vii) is an i-
face of an n-simp1ex (vo, ... , vn) if and only if (vO, ... , vn) ;:) (viO, ... , vid. An n-
dimensional simplicial complex K is a finite set of 0-, 1-, ... , n-simplices, such that (Figure 1-
2) : 

- Any face of any simplex of K is a simplex of K ; 
- The intersection of two simplices of K is either empty, or it is a simplex of K. 
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A simplicial complex can be constructed by adding "closed" simplices, i.e. a simplex and all its 
faces, and by identifying simplices: Figure 1-2. With a constructive point of view, a simplicial 
manifold can be defined as a simplicial complex constructed by adding "closed" n-simplices 
and by identifying (n-I)-simplices in such a way that an (n-l)-simplex belongs to the 
boundaries of at most two n-simplices . 

-

• . h i~. 
~T~ /· 

· "'-J/ i ".". - ./.". . .-. "'-./ "'-./ 1/1 .. 
. ---. 

adding a 2·simplcx 

--
idellli fying 0- and I·faces 

of two 2-silllplices 

--

Figure 1-2. Top, a simplicial complex. Down, constructing a simplicial complex. 

A cellular complex is a simplicial complex such that (Figure 1-1 down right and 1-3): 
- It is structured by numbering its vertices. A number n(v) is associated to each vertex v, 
such that, for any i-simplex () = {va, ... , vj} which is not a face of a j-simplex, j > i, the 
numbers n(vO)' ... , nevi) are all distinct, and 0 :::; n(vO)' ... , nevi) :::; i. A simplex incident 
to vertices numbered no, ... , np is denoted by {nO, ... , np}, with nO :::; ... :::; np. An i-

dimensional cell, or i-cell, is the set of all j-simplices {nO, ... , nj_l> iJ incident to a same 
vertex numbered {i}, O:::;j :::; i; 

- Each "closed" cell, i.e. a cell and its boundary, is a cellular manifold as defined below. 

A cellular complex can be constructed by adding "closed" cells and by identifying cells: Figure 
1-3. Classical notions as boundary or star of a cell, incidence and adjacency relations between 
cells can be easily defined on so-defined cellular complexes. 

Intuitively, numbering a simplicial complex is the converse operation of barycentric 
triangulation. It is not possible to define such a structure on any simplicial complex, but it is 
always possible to subdivide it in order to get a simplicial complex which can be structured into 
a cellular complex. 
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Figure 1-3. Constructing a cellular complex. 
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This definition· of cellular complexes is now extended in order to include cellular objects such 
that the boundary of a cell may be incomplete [RoDC] : Figure 1-4. In terms of associated 
simplicial complexes, that means that simplices exist, such that all their faces do not belong to 
the complex. Such objects can be constructed by adding "closed" cells, by identifying cells and 
by removing cells. 

Figure 1-4. Left, a cellular complex where the boundaries of cells are incomplete. Right, a 
splitted view of this cellular complex. 

Starting from so-defined n-dimensional ceIlular complexes, we study (Figure 1-5) : 
- "Closed" ceIlular complexes, in which the boundary of each ceIl belongs to the ceIlular 
complex: they are celIular complexes as initiaIly defined: Figure 1-1 down right; 
- Homogeneous celIular complexes, in which each i-celI belongs to the boundary of an n­
cell, 0 ::;; i < n ; 
- Regular cellular complexes : with a constructive point of view, regular cellular 
complexes can be constructed by adding "closed" n-cells, and by identifying (n-l )-cells ; 
- Cellular manifolds, which m'e regular cellular complexes in which an (n-l )-cell belongs 
to the boundaries of at most two n-cells. 
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o 

Figure 1-5. Left, an homogeneous cellular complex. Middle, a regular cellular complex. 
Right, a cellular manifold. 

2.2. N-chains 

N-chains are defined for the representation of cellular complexes as previously defined. 
Roughly speaking, a cellular complex is a set of 0-, 1-, ... , n-cells on which a boundary 
relation iS'defined, i.e. each i-cell is associated with the 0-, ... , (i-I)-cells of its boundary. J­
cells are modelled by i-dimensional generalized maps, or i-G-maps, and the boundary relations 
between i-cells and j-cells are fonnalized by applications oj, 0 ~ j < i ~ n. 

Cells. An n-G-map G = (D, ao, aI, ... , an) is defined by [U89] (Figure 2-1) : 
- D is a finite set of darts; 
- aj is an involution, i.e. for each dart d of D, aj(aj(d» = dajaj = d ; 
- For any i, j, 0 ~ i < i+2 ~ j ~ n, ajaj is an involution. 

The relation between n-G-maps and n-dimensional cellular manifolds is the following. It is 
well-known that an n-dimensional simplicial manifold can be represented by only representing 
n-simplices and by associating each n-simplex with at most n+ 1 n-simplices which share with it 
(n-l)-simplices [FePa]. Since simplicial manifolds are here structured by numbering the 
vertices, an n-simplex is incident to vertices numbered from 0 to n, and an (n-I)-simplex is 
incident to vertices whose set of associated numbers is {O, ... , nJ-{i}, 0 ~ i ~ n. Moreover, a 
cellular manifold is not constructed by simply identifying (n-I )-simplices, but (n-I )-cells. 

Each dan ofD corresponds to an n-simplex, and conversely. Let (J and 1: be two n-simplices, 
and dCJ, d't be the corresponding darts. If (J and 1: share an (n-l )-simp1ex numbered {O, ... , n}­
Ii}, dCJaj = d't, and d'taj = dCJ . aj is obviously an involution. The fact that ajan is an 
involution for 0 ~ i < i+2 ~ n corresponds to the fact that (n-I)-cells are identified during the 
construction of an n-dimensional cellular manifold: cf. [Li89] and Figure 2-1 . 

All notions related to n-G-maps are defined through the orbit concept: Figure 2-2. The orbit of 
dan d related to involutions aiD, ajl, ... , ajj, 0 ~ io < i l < ... < ij ~ nand j ~ -1, is the set of 



199 

all darts which can be reached by applying these involutions in any order, starting from d. If j = 
n, this orbit is a connected component of the n-G-map, since it contains all darts corresponding 
to n-simplices of a connected component (in its usual meaning) in the associated cellular 
manifold. If j < n, this orbit corresponds to a (n-j-I)-simplex, since it contains all darts 
corresponding to n-simplices which share an (n-j-l)-simplex numbered {O, ... , n}-{iO, ••• , ij } 

in the associated cellular manifold. An i-cell of an n-G-map is the orbit of a dart for all 
involutions except ai : it contains all darts corresponding to n-simplices which share a same 0-
simplex numbered {i}. 

• 
O-dar! I-dart 

~ 
2-dan 

o 

o ~_+-_~o 

Figure 2-1. Top, graphical representation of darts . Down left, a cellular manifold. Down right, 
the corresponding 2-G-map (D , ao, a), (2) where the boundary of each cell is represented. 

Darts d, dao, da2' daoa2 are not filled, and daOa2 = da2aO' 

Let G = (D, ao, aI' ... , an) be a connected n-G-map, and let m be an application on D, which 
value is undefined for each dart of D. If an is the identity on D, G models a "closed" n-cell, (D, 

ao, al> ... , an_I> m) models the open n-cell, and (D, ao, aI, ... , an-I) models the boundary 
of this cell: cf. Figure 2-2. 

Operations. Operations have been defined for handling n-G-maps [BDFL,Duf,Li89] : 
- Any traversal of an n-G-map can be performed by applying involutions ai or 
compositions of these involutions. For instance, such traversals are needed for 
computing cells or topological properties as orientability ; 
- Any n-G-map can be constructed by adding "closed" n-cells and by identifying (n-l)­
cells. Due to the definition of n-cells, adding an n-cell mainly consists in constructing an 
(n-l )-G-map. Identifying (n-l )-cells is achieved by the sewing operation, which consists 
in modifying involution an on the darts of the (n-l)-cells which are identified, i.e. on 
orbits for aO, ... , a n-2. 

Boundary relations and n-chains. As mentionned above, a cellular complex can be 

defined as a set of i-cells on which boundary relations between i-cells and j-cells are defined, 
for 0 ::;; i ::;; n, 0 ::;; j < i. Boundary relations satisfy the properties: 
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-;- If a k -cell ck belongs to the boundary of a j-cell Cj, and if Cj belongs to the boundary of 

an i-cell Cj, ck belongs to the boundary of Cj, 0 $ k < j < i $ n ; 
- In an i-cell, all i-simplices joined through faces opposite to vertices numbered (j+ I ), 

"', (i-I) share a same j-simplex numbered (O, ... , j), 0 $ j < i ; 
- There is a correspondence between the numbering of an i-cell and the numbering of the 
j-cells of its boundary, 0 $ j < i : in other words, numbering is invariant under boundary 
relations. 

o o 

o o 

<o.j>(d j) = (dj,dsJ : the set of darts incident, with d t, to a 
vertex numbered 0 

«xo>(d j) = (d t,d2J : the set of darts incident, with d t, to a 
vertex numbered 1 

<uo,Ut>(d j) = [dt,d2, ... ,ds J : the set of darts incident, with 
dl> to the vertex numbered 2 

Figure 2-2. Top, 2-G-maps which represent,from left to right, a closed cell, the corresponding 
open cell and its boundary. Down, a 2-G-map which represents an open cell, and examples of 

orbits. 

Formally, an n-chai~ C = «G.i)i=O, ... ,n' (O'j)OSj<iSn) is defined by [ElLi] (Figure 2-3) : 
- Gj = (Di, ab, ... , ai~l' al = m) is an i-G-map, such that m is an application on Di 
which value is undefined for any dart: Gi models open i-cells; 
- (O'j)j=o, ... ,i-l are applications from Di to Dj u (e). Applications oj model the boundary 
relation between i-cells andj-cells. They satisfy for each dart d ofDi : 

• Property I : if d.O'J.* e, d.O'jO'~ = dO'L 0 $ k < j < i ; 
• Property 2 : da~O'l = dO'l, j+I $ ~ ~ i-I;. . 
• Property 3 : dakO'] = dO'], or dakO'] = ~O']aL 0 $ k < j < i. 

e is an undefined value. Let d be a dart of Di. If doj = e, the corresponding i-cell is locally not 
incident to a j-cell, else it is. 

Operations. The principle of traversal operations is similar to the corresponding operations on 

n-G-maps : they consist in traversing darts by applying involutions a~ and appli~ations O'j. For 
instance, the boundary of an i-cell can be computed by applying applications O'j to all darts of 
the i-cell, for 0 $ j < i. . 
Any n-chain can be constructed by applying two basic operations: adding an open i-cell, and 
joining an open i-cell with the j-cells of its boundary from dimension 0 to j, 0 $ i $ n, 0 $ j < i : 
cf. [ElLi,Elt]. 
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Figure 2-3. Top, a 2-chain which models the cellular complex displayed in Figure 1-4. Down: 
illustrations of properties: a. property 1 ; b. property 2 ; c., d. and e. property 3. 

Implementation. An n-G-map can be easily implemented using records and pointers 
[BDFL,U89]. Each dart is implemented by a dart record, which contains n+l pointers to dart 
records. Each pointer associates the record with the dart record corresponding to the image of 
the dart by an involution. Constraints of consistency, necessary for such a data structure 
implements n-G-maps, are also easily deduced from the definition of n-G-maps. All traversals 
can be performed by a single algorithm, similar in spirit to a depth-first search traversal in a 
graph [BDFL). Construction operations are implemented by operations which modify pointers 
on dart records, and they are directly deduced from the "adding cell" and sewing operations. 
This type of implementation can be easily generalized for n-chains and all models deducedfrom 
n-chains in section 3. It is clear that other types of implementation can be defined [BDFL,Duf]. 

3. Subsets of cellular complexes and related combinatorial models 

Specialized models are deduced from n-chains for the representation of subsets of cellular 
complexes. In fact, properties of cellular complexes of these subsets are used in order to reduce 
the amount of explicit informations contained in the model. The mechanisms employed for 
deducing specialized models are classical and simple ones: 

- If cP, 'Yand 11 are applications, such that 11 = yep, the explicit representation of 11 can be 
omitted if cP and 'Y are explicitly represented ; 
-If an object is such that it implicitly exists and no application is explicitly represented on 
it, its explicit representation can be omitted. 
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These mechanisms, applied to a model, produce an equivalent model, i.e. both models 
correspond to a same subset of cellular complexes. Classical consequences are the followings. 
It is clear that less space is required for implementing a model in which the amount of 
informations explicitly represented is reduced. But if implicit informations have to be explicitly 
handled, they have to be computed, meaning more computing time. Similarly, some operations 
can be less costly, since less explicit informations have to be modified. On the other hand, if 
arguments of these operations are implicit, it is possible that they have to be explicitly computed 
before applying the operation. Examples of these classical consequences are mentioned for 
combinatorial models deduced from n-chains. 

First, these mechanisms are applied to n-G-maps and n-chains ; then, they are applied in order 
to deduce specialized models for the representation of "closed", homogeneous and regular 
cellular complexes, i.e. "closed", homogeneous and regular n-chains. At last, we show that n­
G-maps is a specialized model which can be deduced from regular n-chains for the 
representation of cellular manifolds. 

3.1. Generalized maps 

Let G = (D, ao, aI, ... , an) be an n-G-map, and M be the associated cellular manifold. M can 
be constructed by adding n-cells and by identifying (n-I)-cells. This corresponds in G to the 
fact that Un joins all darts corresponding to n-simplices incident to a same (n-I)-cell, i.e. aian 
is an involution for 0 S; i S; n-2 : in other words, an is an isomorphism between two orbits for 
aO, aI, ... , a n-2· It is thus useless to keep the explicit definition of an for all darts of these 
orbits: it is sufficient to only know that two darts of these orbits are images from each other by 
Un : Figure 3-1. 

Let d and d' be two darts of these orbits, such that dan = d'. We define An by dAn = d', d'An 
= d, and An is undefined for all other darts of the orbits. Conversely, it is possible to extend An 
for all other darts of the orbits in an isomorphism between these orbits, and get the definition of 
Un. d and d' are called representative darts of the orbits. 

_A2 

Figure 3-1. A reduced 2-G-map which models the cellular manifold of Figure 1-5. 
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This can be extended for all involutions <Xi such that i ~ 2, since <Xj<Xi is an involution for 0 5: j 
5: i-2. A main drawback is the fact that computing orbits in so-reduced n-G-maps is more 
complex than in non-reduced n-G-maps [EIt]. 

3.2. Chains 

Properties 1 and 2 satisfied by applications cr of n-chains can be used in order to reduce the 
amount of explicit informations contained in n-chains. 

2 2 

~~o 
or 

~o o I '-0_ 1 

~~2 ~~2 
(~ "~ 
~_O 1 0 ~ 1 0 

o 0 

Figure 3-2. Using properties 1 (top) and 2 (down) in order to reduce the amount of explicit 
inter-cellular relations in 2 -chains. Dashed arrows mean that the corresponding relation is not 

explicitly represented. These relations are not represented at all in the following figures. 

Property 1 means that if a k-cell ck belongs to the boundary of a j-ce11 Cj, and if Cj belongs to 
the boundary of an i-cell Cj, ck belongs to the boundary of Cj, 0 5: k < j < i 5: n : 

- If the boundary relations between ci and Cj, Cj and ck are explicitly represented, it is 
useless to explicitly represent the boundary relation between ci and ck' More formally, let 
d be a dart, such that dcrj *. £ : if crj and cr~ are explicitly represented for d and dcrj, the 
explicit representation of cr~ for d is useless: Figure 3-2. This property is employed in 
section 3.3 in order to define a specialized model for representing "closed" cellular 
complexes; 
- If the boundary relations between Cj and Cj, Cj and ck are explicitly represented, it is 
useless to explicitly repre~ent the b0l!ndary relation between Cj and ck' More formally, let 
d be a dart, such that dcrJ ~ £ : if crJ and cr~ are explicitly represented for d, the explicit 
representation of cr~ for dcrJ is useless: Figure 3-2. This property is employed in section 
3.4 in order to define a specialized model for representing homogeneous cellular 
complexes. 

Property 2 means that in an i-cell, all i-simplices joined through faces opposite to vertices 
numbered {j+ I}, ... , {i-I) share a same j-simplex numbered {O, ... , j}, 0 5: j < i. The explicit 
representation between all i-simplices and the j-simplex is useless, since the explicit 
representation between one i-simplex and the j-simplex is sufficient. More formally, given a 
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dart d ofDi, it is s~fficie~t to expl!citly represent oj for d, and not for all darts of the orbit of d 
for involutions aj.!l, aj.!2, ... aj!l : cf. Figure 3-2. This is employed in section 3 in order to 
simplify the drawings. 

3.3. "Closed" chains 

"Closed" cellular complexes. Roughly speaking, "closed" cellular complexes are cellular 
complexes such that the boundary of each cell is completely defined and belongs to the cellular 
complex. Let C be a "closed" cellular complex, ck and ci be a k-cell and an i-cell of C, such that 
ck belongs to the boundary of Cj, with i > k+1. An (i-i)-cell ci-l of C exists, such that ck 
belongs to the boundary of Cj_l and Cj_l belongs to the boundary of ci. It is thus useless to 
represent all boundary relations between cells. Only the explicit representation of boundary 
relations between i-cells and (i-l )-cells is needed, 0 < i ~ n. 

"Closed" n-chains. This corresponds in n-chains to the fact that for a~y dart d of Di, doj ¢ £ 

for any i, j, 0 ~ j < i ~ n. A "closed" n-chain C = «Gi)i=O •.... n' (O"i!l)O<i!>n) is defined by 
(Figure 3-3) : 

- G1 = (Di, ab, ... , aj!r, ai = m) is an i-G-map which models open i-cells; 
- O"i!l is an application from Dj to Di-j which satisfy, for any dart d ofDi : 

• Property 4: dai!jO"i!jO"i=i = dO"j!jO"it 0 ~ i-2 < i ~ n ; 
• Property 5 : da~O"j!l = dO"j!j aii? or da~O"j!l = dO"j!j, 0 ~ k ~ i-2 < i ~ n. 

-
creating closed 2·cc:lIs identification of O-ctiIS idcnlincalion or i -cells 

Figure 3-3. Top, a closed 2-chain which models the cellular complex shown in Figure 1-1. 
Down, constructing a closed 2-chain. 
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It is possible to compute for any dart d of Di a dart of the incident j-cell by applying crj\ .. crjj 1. 
Property 4 (resp. property 5) corresponds to properties 1 and 2 (resp. property 3) of n-chains. 

Operations. Traversal operations for handling "closed" n-chains are obviously deduced from 
the corresponding operations on n-chains. For instance, the boundary of an i-cell may be 
computed incrementally by computing the (i-1)-cells of its boundary by applying crj!1 to all 
darts of the i-cell, then the (i-2)-cells of its boundary by applying ot1 to all darts of the 
computed (i-1)-cells, and so on. 
Two basic operations are defined for constructing any "closed" n-chain : creating a "closed" i­
cell, i.e. an i-cell and its boundary, and identifying i-cells: cf. Figure 3-3. They can be defined 
by the basic operations defined for constructing n-chains. For instance, creating a "closed" cell 
consists in creating a cell, creating the cells of its boundary, and in joining all these cells 
together. 

3.4. Homogeneous chains 

adding. 2-coll 

-

• 

• 
adding a O·eell and 

joining i t with .he 2-cc ll 

-

~"'~,~ 
• 

adding a I·eell and 
joining il wilh the 2 -ccll 

-~~ ~ I ~ """""~r 

joinillg 111C 2~cc l l 
10 1 he 0-0011 

Figure 3.4. Top, an homogeneous 2-chain which models the homogeneous cellular complex 
drawn in Figure 1-5. Down, constructing an homogeneous 2-chain. 

Homogeneous cellular complexes. An n-dimensional homogeneous cellular complex is 
an n-dimensional cellular complex, such that each i-cell belongs to the boundary of an n-cell, 0 
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~ i < n. The explicit representation of boundary relations between i-cells and j-cells is useless 
for 0 ~j < i < n, since they can be deduced from the boundary relations between n-cells and i­
cells, and between n-cells and j-cells. 

Homogeneous n-chains. This corresponds for n-chains to the fact that for each dart d of 
Oi, a dart d' of on exists, such that d'a~ = d, for 0 :s; i < n. An homogeneous n-chain C = 
((Gi)i=O, ... ,n, (a~)i=9 .... ,n-l) i~ de~ned by (Figure 3-4) : 

- Gi = (Oi, exb, ... , ai~l' al = tIl) is an i-G-map which models open i-cells; 
- crY is an application from on to Oi u (£). For sake of simplicity, properties satisfied by 
these applications are not detailed: cf. [Elt]. 

It is clear that for any dart d of Oi, it is possible to compute a dart of an incident j-cell by 
computing a dart d' of on such that d'crY = d, and by applying a'J to d', for 0 :s; j < i < n. 

Operations. Traversal operations are not changed for n-cells : for instance, the boundary of 
an n-cell can be computed as for n-chains. But it can be necessary to compute applications oj, 0 
:s; j < i < n for traversing the other j-cells, for instance when computing the boundary of an i­
cell. 
An homogeneous n-chain can be constructed by first constructing n-cells, using the operation 
for creating cells defined for handling n-chains, and second by constructing i-cells of their 
boundaries and joining the n-cells with these i-cells: cf. Figure 3-4. Note that it may be 
necessary to compute applications aj, 0 :s; j < i < n, when joining an n-cell with an i-cell, in 
order to check the validity of the resulting n-chain. 

3.5. Isomorphic chains 

~ 

~! I ,~ 

adding a 2-cell, joining 
il wilh the existing cells and 

making the 1-ee1l implicit 

-

~ 
./~ .. L • 

odding 0 2<ell joined 
with illl implicil l-eell 

~ . /~ • 

idcnlifying Ihe two l -<:c l1 s 

Figure 3-5. Top, making a J-cell implicit. Down, constructing an isomorphic 2-chain. 

Isomorphic cellular complexes. Isomorphic cellular complexes are cellular complexes for 
which property 3 of cellular complexes is stronger. Isomorphic cellular complexes are such that 
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the "subdivision" of a cell corresponds exactly to the "subdivision" of its boundary: cf. Figure 

2-3-c. Non-isomorphic cellular complexes are in fact objects which are not generally handled in 

Geometric Modeling: cf. Figures 2-3-d and 2-3-e. 

Isomorphic n-chains. Isomorphic n-chains are such that, for each dart d of Di and for each 

j, ~ ~ j < i ~ n, dcrj = I:: or crj is ~n isomorphism between the orbit of d for involutions ab, ... , 
a/I and thej-cell to.which dcrJ belongs: cf. Figure 2-3-c. As for n-G-maps, it is useless to 

explicitly represent crJ on all darts of the orbit of d : cf. section 3.1. d and doj are representativ~ 

darts of their orbits, and we just have to explicitly represent this "relation" between d and do]. 
Moreover, since the j-ce\l belongs to the boundary of the i-cell, it is useless to explicitly 
represent the boundary relations between the j-cell and the k-cells of its boundary, 0 ~ k < j, 
since they can be deduced from the boundary relation between the i-cell and the k-cells. At last, 
the explicit representation of all darts of the j-cell is useless, except for dcrj, since no 

applications are explicitly defined on them: cf. Figure 3-5. 

Operations. As an example of traversal operations, the boundary of a j-ceJl may be computed 

as in n-chains if the j-cell is explicitly represented, else it is necessary to compute an explicitly 

represented i-cell, 0 ~ j < i ~ n, such that its boundary contains the j-cell. Since the cells of the 

boundary of the j-ce\l belongs to the boundary of the i-cell, it is possible to easily compute the 
boundary of the j-cell starting from the i-cell. This is similar to the corresponding operation in 

homogeneous n-chains. 

An isomorphic n-chain may be constructed by adding an explicitly represented i-cell, joining an 

explicitly or implicitly represented j-ce\l with an i-cell, 0 ~ j < i ~ n, and making a cell implicit 

as described above: cf. the definition of isomorphic n-chains and Figure 3-5. Some "technical" 
problems can arise: for instance, it may be necessary to modify the representative dart of a cell. 

In fact, these problems can be automatically handled during an interactive construction process. 

3.6. "Closed", homogeneous and isomorphic chains 

"Closed" homogeneous isomorphic cellular complexes. These cellular complexes 

simultaneously satisfy the properties of "closed", homogeneous and isomorphic cellular 

complexes (cf. sections 3.3, 3.4 and 3.5). According to these properties, it is useless to 
explicitly represent i-cells, for 0 ~ i < n. Only n-cells are explicitly represented, the other cells 

are implicitly represented. The boundary relations are represented only between n-cells and 
implicit i-cells, 0 ~ i < n. 

"Closed", homogeneous and isomorphic n-chains. An i-cell is implicitly represented 

by a representative dart. Applications crr map representative darts of orbits for a8, ... , ai~l to 

representative darts of i-cells. Formally, such an n-chain is defined by «Di)i=O, .... n_l, Gn, 

(crf)i=O ..... n-l), with (Figure 3-6) : 
- Di is a set of darts; each dart of Di implicitly represents an i-cell ; 

- Gn is an n-G-map which models open n-cells ; 

- crf is an application which maps representative dalts of orbits for aB, .... ai~l onto Di. 
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Properties satisfied by these applications can be easily deduced from properties 1-3 of n­
chains. For instance, let d be the representative dart of an implicit i-cell, and let dI, ... , dp be 

the representative darts of all explicit n-cells, such that dqdl = d, 1 :s; q :s; p ; for all q, q', 1 :s; q, 
q' :s; p, the orbits of dq and dq. for as, ... , ai~l are isomorphic to each other. 

Cre:!110, cI~ed. hOI11Qf:encllus. 
isomotphic 2-cell$ Iden'llicalion or O-t'ell~ idcm ilic~lion or I ·cells 

FIgure 3·6. Top, a "closed" homogeneous isomorphic 2-chain. Down, constructing such a 2-
chain. 

Operations. Traversal operations are similar to those defined for handling isomorphic chains. 
For instance, the boundary of an n-cell can be computed as in isomorphic n-chains ; the 
boundary of an i-cell can be computed through the incident n-cells, 0 :s; i < n. 
N-chains of this type may be constructed as closed n-chains, by creating closed n-cells and by 
identifying implicit i-cells, 0 :::; i < n. 

3.7. Regular chains 

Regular cellular complexes. Regular cellular complexes are "closed" homogeneous 
isomorphic cellular complexes, which can be constructed by adding "closed" n-cells and by 
identifying (n-] )-cells. The explicit definition of i-cells is useless, for 0 :s; i < n-!. 
Consequently, the explicit representation of the boundary relations between i-cells andj-cells is 
also useless, j < i. 

Regular n-chains. I-cells are not represented for 0 :s; i :s; n-2. (n-I)-cells are implicitly 
represented by a representative dart. A regular n-chain is defined by (Dn-I, Gn, (Jn~I)' with 
(Figure 3-7) : 

- Dn-l is a set of darts; each dart implicitly represents an (n-I )-cell ; 
- Gn is an n-G-map which models open n-cells ; 
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- (jn~i is an application which maps representative darts of orbits for all, ... , a.n~2 in Gn 
onto Dn-I. 

'he 2·d.". d,.d2.d).d •• ds.d6 
belong to. same O·cel l 

Figure 3-7. A regular 2-chain which models the regular cellular complex of Figure 1-5. 

Properties 1-3 of n-chains are implicitly satisfied through the definition iself of regular n­
chains. I-cells which are not represented are defined through a notion which is very close to the 
notion of orbit for n-G-maps. For instance, the O-cell incident to a dart d of Dn is defined as the 

set of darts which are reached by applying successively involutions a.7, a.1, .. . , a.n~I' 
application (jn~I and its "inverse" «()n~I)-1 in any order: cf. Figure 3-7. 

Operations. Traversal operations are here quite different from the corresponding operations 
defined for handling closed, homogeneous and isomorphic chains, since i-cells are not 
represented at all for 0::; i ::; n-2. In fact, traversal operations are closed to traversal operations 

defined for handling n-G-maps [Elt]. 
Constructing regular chains is very simple, since it consists in creating n-cells and in joining 
these cells through ()n~I along implicit (n-l)-cells. It is easy to prove that this operation is thus 

simpler and less costly than the corresponding operation defined for handling general chains. 

3.8. G-maps 

Cellular manifolds. Cellular manifolds are regular cellular complexes such that each (n-I)­
cell belongs to the boundary of at most two n-cells. 

Manifold n-chains and n-G-maps. Let G = (Dn-I, Gn, ()n~l) be a regular n-chain which 

models a cellular manifold. Properties of cellular manifolds correspond to the fact that, for each 
dart d ofDn-l, at most two darts d] and d2 exist in Dn such that dl()n~] = d2()n~1 = d. We can 

thus define an application An such that dIAn = d2, and d2An = dl. An is obviously an 

involution, and d corresponds to the orbit of d I or d2 for An-

A manifold n-chain is defined by (Gn, An), where Gn = (Dn, a.S, ... , a.n~l> m) is an n-G-map 

which models open n-cells, and An is an involution which maps representative darts of orbits 

for all, ... , a.n~2 onto other representative darts of such orbits. This involution can be extended 
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in an isomorphism Un between orbits for as, ... , an~2' and the manifold n-chain is obviously 
equi~alent to the n-G-map con, as, ... , an~l' an) : cf. Figure 3-8. 

~.-J/~ 

/~TY 
---!.-. -

r*~r ~ 
Figure 3-8. From a regular 2-chain which models a cellular manifold to a 2-G-map. 

Other specialized models can be defined by a systematic study. For instance oriented maps have 
been defined for representing oriented cellular manifolds [Li89]. [Bri] has proved that incidence 
graphs as defined in [Ede,Sob] are equivalent to cell-tuple structures or n-G-maps for the 
representation of the topology of cellular manifolds in which no cell exists such that its 
boundary .self-intersects. 

4. Conclusion 

This paper presents a set of combinatorial models, from n-chains defined for the representation 
of the topology of cellular complexes, to n-G-maps defined for the representation of the 
topology of cellular manifolds. There is an exact correspondence between each subset of 
cellular complexes and the related combinatorial model. Operations are defined for handling 
each subset of cellular complexes, and this subset is closed under the related operations. 
Moreover, if it is necessary to temporary model more general cellular complexes during a 
construction process, conversion operations exist for converting a model into a more general 
model, and conversely [Elt]. 

A specialized model corresponds to a subset of n-chains which satisfy some properties. These 
properties are employed in order to reduce the amount of explicit informations contained in the 
model. The consequences of such a process are classical and well-known. Less space is 
required for implementing a specialized model, but more computing time can be needed, e.g. 
for computing the implicit informations. Nevertheless, it is often not necessary to explicitly 
handle all informations; and many construction operations are less costly on specialized models 
than on general n-chains, since less informations have to be modified. A complementary 
systemic study is now necessary in order to get precise results about the classical space/time 
duality in this case. 
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We are now studying: 

- The definition of other subsets of cellular complexes, in order to deduce specialized 
models for their representations; 
- The implementation of a set of combinatorial models in the kernel of a geometric 
modeller. A possible approach is the study of the algebraic specification of a set of 
models, from n-chains to n-G-maps [BDFL,Duf] ; 
- The automatic choice of a model according to the object which has to be represented 
and to space/time requirements. The use of a specialized model can be completely 
tranparent for a user: that means that the user knows that (s)he handles a sub-class of 
cellular complexes which satisfy some properties, but (s)he does not know the 
specialized model which is employed for the representation of these cellular complexes if 
(s)he does not want to ; 
- The automatic generation of combinatorial models, given the properties of the cellular 
complexes which have to be represented; 
- The automatic definition of operations for a specialized model, according to its 
properties; 
- The comparison between these extensions of the notion of map and other non-manifold 
models used in Geometric Modeling. It will be an extension of the comparison between 
n-G-maps and combinatorial models used for the representation of cellular manifolds 
presented in [Li9l]. 
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Abstract: The Hierarchical Assembly Graph (HAG) is a common representation method 
for geometric models. The HAG is a directed acyclic graph. Nodes in the graph represent 
objects, and arcs denote the sub-part relation between objects. Affine transformations and 
other instantiation parameters are attached to the arcs. An instance of an object in a HAG is 
defined as a path ending at its node. Information common to all instances whose paths end at 
a given node can be attached to this node. Data associated with a single instance cannot be 
attached to any single node or arc in the graph. Such private data can be stored in an external 
list, hash table, or a partial expansion of the graph into a tree, but all of these schemes have 
severe drawbacks in terms of storage, access efficiency, or update efficiency. 

In this paper we present a scheme for representing single instances in the assembly graph 
itself, by identifying an instance with the last node in its path when the only way of reaching 
the last node is through a. unique path starting at the first node of the path. We give an 
algorithm for singling an instance in the graph, i.e. transforming the graph into an equivalent 
one in which the instance can be identified with a node. We also show how to undo an instance's 
singling when its private ~ata is no longer needed. 

Keywords: Assembly, Hierarchical Assembly Graph (HAG), geometric data structures, singl"e 
instance representation, singling algorithm. 

1 Introduction 

One of the most important activities in computer-aided design and computer graphics is the 
design of geometric models [Hoffmann89, Mii.ntylii.88]. The preferred way of designing a model 
is hierarchically, by composing objects or parts into more complex objects. A common method 
of representing such a model is by a hierarchical assembly graph (HAG), a directed acyclic 
graph in which nodes denote objects and arcs denote the sub-part relation between objects. 
Geometric and other parameters related to the model can be attached to the nodes or the 
arcs. The most common example is attaching affine transformations to arcs to denote relative 
placement and scale of part and sub-part [Braid78]. 

An important observation regarding the HAG is that internal nodes do not represent in­
stances of objects in the final model, but 'generic objects'. The generic object appears in as 
many instances as there are paths leading to it from the root of the graph. The HAG has two 
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notabl~ advantages: space efficiency - information common to all instances generated from 
the same generic object (including their sub-graphs) is stored only once; and fast update -
modification of parameters or information in the generic object is instantaneously reflected in 
all its instances in the graph. 

In many cases it is desired to attach data to a single instance. For example, saying that 
the color of one chair in a meeting room is different from the default color of the other chairs; 
or that a specific screw in a machine has a unique mark on top. In this paper we call this 
type of data private instance data, and assume that there is no special structure imposed on it, 
Le., private data of one instance is independent of private data that may be attached to other 
instances. Note that since our graph can be instantiated as a sub-part in another graph, we 
actually want to associate private data with a sub-path in this other graph (a sub-instance). 

An instance is specified by a path in the graph, therefore private data cannot be attached 
to a single node or arc. There are some simple methods for single instance representation, 
which include an external list or hash table, an expansion of the graph into a tree, and storage 
of a partial expanded tree having only paths leading to instances with private data. Each of 
these schemes has disadvantages in terms of storage, access efficiency, or update efficiency, to 
be described later. 

We are not aware of substantial previous work on the issue of single instance representation 
or even on the representation of assemblies. There is a rich literature on boundary represen­
tations (see the textbooks [Hoffmann89, Miintylii.88]) and some work on hierarchical boundary 
models, e.g. [Floriani88]. Braid [Braid78] and Lee and Gossard [Lee85] describe assembly data 
structures which are essentially hierarchical assembly graphs. A more complex assembly struc­
ture, including symbolic repetitions and recursions, is described in [Emmerik91]. A modeling 
system using sequences of parameterized transformations is described [Rossignac89], and a 
method for interactive editing of a node's affine transformation is detailed in [Rossignac90]. 
None of these papers deals with the general problem of associating private data to single in­
stances in geometric hierarchies. Requicha and Chan [Requicha86] briefly discuss the fact that 
single instances correspond to paths, in the context of representing features and tolerances in 
CSG. Rossignac [Rossignac86] presents a technique for storing, at any node, lists to sub-node 
instances, using a relative path. These references are used to override the inherited attributes 
for that instance during evaluation. However, usage of private instance data is done by ex­
panding the graph into a tree. 

The single instance representation issue is extremely practical, and was probably solved 
ad-hoc in many systems. The lack of literature may be attributed to the existence of seemingly 
simple and obvious solutions. However, the issue is important enough to justify a separate 
discussion, and its elegant and efficient solution is not as simple as first imagined. 

This paper has two main contributions. First, we discuss the single instance representation 
issue in a general manner, defining the problem and the requirements from a solution. We 
describe numerous obvious solutions and show that they are not efficient in terms of time and 
space. 

Second, we present a scheme for representing single instances in the assembly graph itself, 
by identifying an instance with the last node in its path when the only way of reaching it 
is through a unique path from the first node. We give an algorithm for singling instances in 
the graph, i.e., transforming the graph into an equivalent orie in which the instance can be 
identified with a node. We also show how to undo an instance's singling when its private data 
is no longer needed. The elegance of our scheme lies in that it enables private data to be stored 
uniformly within the graph itself, in a similar way to storage of common data and transparently 
to algorithms manipulating the graph. 
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Section 2 defines the problem and discusses the advantages and disadvantages of the simple 
solutions. Section 3 presents the singling algorithm and some of its properties, and also shows 
how to undo the effects of the algorithm in order to delete private instance data once it is not 
needed. 

2 Instances in Hierarchical Assembly Graphs 

In this section we motivate and define the problem of representing single instances in hierar­
chical assembly graphs. We define the terms strict instance and sub-instance, discuss simple 
solutions to the problem and show that they have severe disadvantages. 

2.1 The Hierarchical Assembly Graph (HAG) 

A geometric model is best designed hierarchicaly, by composition of simple objects into more 
complex ones. The natural way of representing such a model is by a directed acyclic graph 
(DAG) 1. A node in the graph represents a generic object. We denote objects and nodes by 
capital letters (A, B, N), where 'object A' means the sub-graph rooted at node A. An arc in 
the graph from node A to node B means that object B is one of the objects used in defining 
object A. We say that the meaning of the arc is an instantiation of the generic object B; we 
also refer to B as' a sub-object of A and to A as a parent of B. We denote arcs by small letters 
(e;, ek). Note that it is a mistake to denote an arc by the pair of nodes it connects, since there 
may be several arcs connecting the same two nodes; an object can utilize another object more 
than once. 

Figure l(a) gives a textual specification of a simple HAG, in the notation described in [Em­
merik91]. The same HAG is visualized in Figure l(b); bold, hatched arcs denote several arcs, 
numbered in the range shown to their right. Figure 1 (c) shows a possible object represented 
by the HAG. 

X=5Y 

Y=2Z 

Z= block 

(a) (b) 

Figure 1: An example of a HAG. 

/88 
DD 
DD 
DD 

(c) 

Various parameters of an instantiation are attached to the corresponding arc. One such 
common parameter is an affine transformation expressing the placement and scale of a sub­
object relative to those of its parent. There may be other parameters, for example, if the 

1 By requiring that the graph be acyclic we rule out using it for representing fradal-like objects. This is not 
a practical limitation. See [Emmerik91] for a description of a system allowing cyclic graphs. 



216 

Display (Node lV) { 
UpdateCurrentColor (Color(lV» 
if lV is a leaf 

} 

DisplayPrimitive (Geometry(lV» 
else 

for each out-going arc e { 

} 

PushGraphicsState() 
MultCurrentTransformation (Transformation(e» 
Display (DestinationNode (e» 
PopGraphicsState() 

Figure 2: A procedure for displaying a model represented by a hierarchical assembly graph. 

sub-object is an object parameterized by dimensions then an instantiation can supply the 
desired dimensions. 

As an illustrative example, Figure 2 gives pseudo-code for displaying a model represented 
in a HAG, assuming: (1) all children of a node are combined with the set union operator, (2) 
every node, has a color attached to it which is inherited by its children, (3) there are display 
functions available for the geometric primitives in the leaves of the graph. 

2.2 Instances 

The HAG is a graph and not a tree since one generic object may be instantiated more than once, 
by different objects or even by the same object. For example, in mechanical engineering there 
is a large number of standard parts which are commonly utilized in many of the components 
of a machine. In interior design, the same chair, lamp, or tile can be used many times in a 
building. 

We define a strict instance of an object A in the graph as a path in the graph starting 
from the root and ending in A. When the path can start in any node we say that the path 
is a sub-instance, because it corresponds to a strict instance in the sub-graph rooted at the 
path's first node. For simplicity, we will refer to both types as an instance and use sub- or 
strict-instance only when the differentiation is needed. 

An instance I is denoted by the list of the arcs on its path: I = (el' ... , ek). Note again that 
it is wrong to denote a path by a list of its nodes since this creates an ambiguity when there 
is more than a single arc connecting the same two nodes. Note also that an instance's path 
does not have to end in a leaf. 

We say that an instance contains another if its path contains the other instance's path. 
Instances overlap if their paths have common arcs. 

2.3 Single Instance Representation 

Information common to all instances of a node is attached to the node. This information may 
include the object's basic geometry, default color and material, and so on. It may be desired 
to associate private data to an instance. As examples, pin number 1 in a VLSI chip should be 
marked by a slight change in geometry; In Figure 1 the block pointed to by the arrow needs to 
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be drawn in a different color. We call the operation of Msociating private data to an instance 
I a singling of I. 

Private instance data cannot be attached to any specific node or arc in the graph since it 
is Msociated with a whole path in the graph. A scheme for representing single instances is 
needed. Note that private instance data should not be lost when the object is instantiated in 
another object; this is the whole point in hierarchical design. Hence, a requirement from such 
a scheme is that it be capable of representing sub-instances (corresponding to partial paths), 
not only strict instances (corresponding to paths from the root). 

On the other hand, there is no reMon why a single instance representation scheme should 
be required to represent two overlapping or containing instances. From the point of view of the 
design process, it is meaningless to Msociate different private data with two such instances; it 
only matters which object is instantiated and through which path from the root. 

An interesting issue is the way in which instances are specified. In an interactive system, 
the user is obviously not expected to type in whole paths in the graph. Instead, he/she can 
graphically select one strict instance and be given the power to step up and down its path to 
narrow or widen it. An instance may also be the result of querying. For example, instances 
located in a specified area of space, touching a specified object, or visible from a certain location. 
Instance specification is an orthogonal issue to the instance representation issue discussed in 
this paper. 

2.4 Simple Solutions: List, Hash Table, Partial 'free and Graph 

A very simple scheme for single instance representation is to expand the graph into a tree, in 
which CMe private data can be attached to any node because there is only one way of reaching 
a node. However, this method loses the two main advantages of the graph. Storage efficiency 
is lost because common instance information will be duplicated. For large models this becomes 
prohibitive. Update efficiency is damaged because a modification of a generic object is no longer 
automatically reflected in all of its instances, and requires traversing the tree and performing 
the modification on every duplicated node. 

A second scheme for single instance representation is to store the instances in a separate, 
external structure, in which a single entity corresponds to a path in the assembly graph. This 
scheme hM the appealing interpretation that the graph stores the common instance information 
and the other structure stores the differing information. 

The external structure can be a simple list whose nodes correspond to paths in the graph. 
This scheme requires a search in the list each time an instance is visited in the graph, in order to 
determine whether it hM an Msociated private data. A hMh table can be used instead of a list 
to make the search more efficient, but there are problems in designing efficient hMh functions, 
especially that a key here is of varying length. Another alternative, an array indexed by an 
instance's serial number, consumes too much space and creates consistency problems when the 
numbers change M a result of a change in the HAG. 

It is possible to combine both schemes by using a partial tree. A partial tree is an expansion 
of the graph into a tree having only the paths leading to instances with private data. Figure 3 
shows a HAG (a) and a partial tree singling the sub-instance (5) (b). Arcs 6 and 7, which are 
not contained in any path leading to sub-instance (5), do not appear in the partial tree. A 
traversal of the graph is accompanied by a coordinated, synchronized traversal of the tree to 
identify the existence of private data. 

The partial tree scheme is indeed attractive for representing strict instances, but not for 
sub-instances. Suppose that an object B with private instance data is used a large number of 
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times, in an object A, i.e., it appears in many paths in the graph of A. The partial tree will 
duplicate all of the instances of object B, but all the duplicates will be identical (Figure 3(b)). 
We see that the partial tree has the same disadvantages as the fully expanded tree in terms of 
storage and update efficiency. 

1 .. 2 

5 

(a) (b) (c) 

Figure 3: (a) A HAG, (b) a partial tree singling sub-instance (5), (c) a partial graph singling 
the same instances. 

A solution may be to store a partial graph instead of a partial tree. In a partial graph, 
instances are represented by a partial tree rooted at the first node on the instance's path, and 
all arcs which do not lead to the first node are removed from the graph. Figure 3( c) shows a 
partial graph singling instance (5); arcs 6 and 7 do not appear, while parts leading to the first 
node of instance (5), the third node, are stored as a graph. This scheme presents a problem 
when an instance whose path contains the path of a singled instance is to be singled, with 
different data (for example, instance (1,3,5) in Figure 3( c)). An algorithm is required for 
singling instances in partial graphs. 

The singling algorithm presented in the next section singles instances in general directed 
acyclic graphs. As such, it can be used on the partial graph too. However, it can be used 
directly on the orignial graph, obviating the need for the partial graph. 

3 A Scheme for Instance Singling 

In this section we present a scheme for singling instances in directed acyclic graphs. The scheme 
stores instances as equal-status nodes in the graph. We give an algorithm for instance singling 
and show how to undo its effects. 

3.1 General Idea 

The main observation on which the scheme is based is that a path (hence an instance) can be 
identified with its last node, if and only if the only way of reaching the last node of the path 
is through a unique path starting from the first node. Another way of phrasing this condition 
is that there is no upward ambiguity when going from the last node up to the first node of the 
path. Note that the condition has two essential parts:' that the only way way of reaching the 
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last node of the path is from the first node, and that there is only one such way. When this 
condition is fulfilled, the instance's private data can be associated with this node or with the 
arc directly leading to it (Figure 4). 

(a) (b) (e) 

Figure 4: (a) An example of a HAG having three nodes, m + narcs, n X m strict instances, 
and n x m + m + n instances. No single node or arc can be identified with an instance. (b) 
The output of the singling algorithm when singling the path (1,1). (c) An erroneous answer 
in which the path is duplicated. 

The graph is transformed to achieve this situation. The transformation process should be 
careful to preserve all original paths in the graphs, not to duplicate paths, and not to add 
new paths. The graph in Figure 4(a) can be transformed as in (c) to single the path (1,1). 
However, the old path still exists in the graph. A correct solution is shown in (b), where all 
and only original paths are present and no path is duplicated. 

Our scheme has the advantage that it is completely transparent to graph traversal algo­
rithms; they operate as they ordinarily would, not knowing or caring whether the data they 
find associated with a node is private or not. There is no need to search for instances in exter­
nal structures or to coordinate the traversal with one on a partial tree or a partial graph. For 
example, in Figure 2, a node's color is used to update the current display color. The procedure 
is used with no change when the color belongs to a single instance. 

Every operation that could be performed on the original graph can also be performed on 
the transformed graph. In particular, a different instance can now be singled, so that a singled 
graph represents the whole assembly, including private data of many single instances. 

3.2 A Singling Algorithm 

Denote the path of the instance I to be singled by I = (ej, ... , ek), 0 < j ::; k and the nodes 
it passes through by (Nj_l, ... , Nk ). InArcs(N),OutArcs(N) denote the sets of in-coming and 
out-going arcs of node N, respectively. CHI (C for 'children') denotes the arcs in OutArcs(Nd 
which connect to nodes other than Ni+!. Pi (P for 'parents') denotes the arcs in InA7·cs(Nd 
which arrive from nodes other than Ni-l. Ei denotes the set of arcs in OutArcs(Ni) connecting 
Ni- I to Ni; other than ei. Pseudo-C code of the algorithm is shown in Figure 5, and Figure 6 
shows the main transformation performed. 

The algorithm performs k - j + 1 stages, such that stage i deals with Ni , i = k .. j. Note 
that the order is bottom-up. At stage i, if ei is not the only in-coming arc to node Ni the node 
is split into two nodes Nf and NP, I for 'instance' and 0 for 'other'. The out-going arcs of 
node Ni are duplicated and each new node receives a copy, except that the copy of ei+! coming 
out of NP does not connect to Nf but to NI~-l. The only in-coming arc of Nf is ei, to assure 
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Singling (Graph G. Path I. Data data) { 
let the arcs on I be ej, ... ,ek 

} 

let the nodes on I be Nj-l> ... ,Nk 

for i = k to j { 

} 

if there is only one arc in InArcs(Ni) 
continue 

replace Ni by two nodes N! and Nf 
OutArcs(N!) = OutArcs(Ni) 
OutArcs(Nf) = OutArcs(Ni). with ei+l connecting to Nl~l instead of N!+l 
InArcs(Nf) = ei 
InArcs(Nf) = InArcs(Ni) - ei 

attach data to node Nt or its in-coming arc 

Figure 5: Pseudo-C code for the singling algorithm. 

upward disambiguity (the condition necessary for identifying the new node Nt with the singled 
instance), All other in-coming arcs to Ni become in-coming arcs of NP. 

Note that only the arcs CHI are duplicated, not the whole sub-graph descending from them; 
both sets of arcs denoted by CHI in Figure 6(b) lead to the same nodes. 

To prove that the algorithm is correct, we have to prove (1) instance I can be identified 
with node Nt; (2) the new graph is equivalent to the original one in terms of their instances. 
For (1), all we need is the following invariant, whose proof is easy: 

• After stage i there is a node N! which has a unique in-coming arc ei, reaching from Ni- I , 

and (among others) an out-going arc ei+l> connecting to N!H. 

As a result, after stage i there exist two nodes Nt and Ni - I connected by a unique path 
Ni-I, N!, ... , N£' This path can be denoted by the names of its nodes because there is no 
ambiguity - only a single arc connects each pair of nodes. After the last stage, in which i = j, 
we can safely identify the original path (ej, ... , ek) with node Nt. 

Instance-equivalence of the new and original graphs means (1) all previously existing paths 
still exist (2) they exist not more than once (3) no new paths are added. To verify these 
conditions we enumerate the paths in the graphs explicitly. Before stage i there are 10 types 
of paths in the graph: paths that do not pass through Ni , and nine types of paths which pass 
through it in the following ways: 

(ei, eiH), (ei, e?+l)' (ei' c), (e?, ei+l), (e?, e?+I)' (e?, c), (p, ei+l), (p, e?+I), (p, c) 

where e? E Ei , e?H E EHl> c E CHI, P E Pi. From the formulation of the algorithm it is 
clear that if we identify the new nodes N! and Nfl with the original Ni for the purpose of path 
equivalence, the paths above are exactly those which are present in the graph after stage i, and 
that none of them is duplicated. We conclude that the transformed graph possesses exactly 
the same instances as the original graph. Hence the algorithm is correct. 

The time complexity of the algorithm is O(Ei 10utArcs(Ni) I), because the work performed 
at stage i is dominated by the duplication of out-going arcs. Regarding space complexity, in 
the worst case the graph's storage may double, because the space occupied by Ei OutArcs(Ni ) 

may turn out to be on the same order as that of the whole graph. 
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(a) (b) 

Figure 6: The situation in (a) is replaced by that in (b). Node Ni is split into two nodes, N!, 
which belongs to the path to the singled node, and N? , for all the other paths. 

The algorithm is optimal in terms of the number of nodes in the transformed graph, since 
a node is split into two if and only if there is more than one in-coming arc, and in this case the 
node must be split in order to prevent upward ambiguity. 

Finally, note that consecutive singling of each and every strict instance in the graph will 
result in an expansion of the graph into a tree, since at the end no node will have more than 
a single in-coming arc. 

3.3 Deleting Singled Instances 

In a dynamic or interactive environment it is necessary to provide a way of deleting singled 
instances once their private data is no longer needed, in order to optimize the graph's storage 
and the efficiency of graph traversal algorithms. Deleting singled instances is done by reversing 
the process shown in Figure 6, and it requires two small modifications to the singling algorithm: 
twin node connection and arc counting. 

Twin node connection means linking the two nodes N! and N? which result from splitting 
node Ni at stage i. This symbolic link is essential when searching for two nodes to join to a 
single node. . 

Arc counting means keeping a counter on every arc ei participating in a singled path. The 
counter counts the number of singled paths using this arc. Arc counting is necessary since 
singling of some instance J may utilize arcs created for singling of a previous instance I. 
If those arcs were to be joined automatically when deleting instance I, instance J may not 
be singled anymore, which would impair the equivalence of the transformed and the original 
graphs. 

In Figure 7, singling instance (1) in the simple graph (a) results in the graph (b). Singling 
instance (2) does not change the graph. Suppose it is now ·desired to cancel the singling of 
instance (1). If this is done by joining the two nodes Bi and Bt, instance (2) is not singled 
anymore. A counter on arc 2 will show that it is used for singling some instance hence the 
node it leads to (BD cannot be joined to another. 
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(a) (b) 

Figure 7: An example for the necessity of arc counters. 

When deleting singled instances, the process of joining two twin nodes together back into 
one node is only done when all counters in all in-coming arcs have a value of 1. Otherwise, no 
joining is done and the only operation done in stage i is decrementing the counter on arc ei. 

4 Discussion 

We have motivated and defined the problem of associating private data with single instances 
in hierarchical assembly graphs (HAGs). An algorithm for singling instances was presented. 
The algorithm is suited for singling instances corresponding to arbitrary paths in the graph, 
not necessarily paths starting at the root (strict instances) or ending at a leaf. 

The singling algorithm can be used in two ways to solve the above problem. First, it can 
be used on the original HAG itself. Second, it can be used on a partial graph, as defined 
in Section 2. The latter option is appealing since the common and private data of instances 
are clearly separated into two structures. The former is more elegant since the whole singling 
process is completely transparent to algorithms manipulating the HAG. These operate with no 
modification since singled nodes are similar in structure and functionality to the other nodes 
in the graph. 

In this paper we have not dealt with updating singled instances after modification of the 
graph itself (i.e., when adding or deleting nodes or arcs). The arc counters (Section 3) can be 
easily used to notify the user that an editing operation invalidates an instance's private data; 
meaningful automatic treatment of this case is left to future reports. 

Another topic for future work is how to organize the private data when imposed on it 
there is a structure different from the structure of the assembly graph (for example, if color 
inheritance of instances depends upon their location and 'not upon their sub-part hierarchy). 
It seems that in this situation an external structure cannot be avoided. 
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by Means of Pseudo-Boolean Operators 
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Abstract: In geometric modeling two main technologies have been successful and are 

continuing their development: solid modeling and surface modeling. These techniques are 

still used separately while being complementary in their advantages: a solid modeler is able 

to describe objects with a clear distinction between inner and outer parts, whereas a surface 

modeler is better suited in the description offreeform objects, but leaves the model validity to 

the user responsibility. The integration of the two technologies is therefore an important topic 

of the current research in the field. 

This paper presents a new technique to perform booleans with trimmed curves and surfaces; 

such a technique is not based on point set classification, but exploits geometry orientation; 

this makes it able to deal with non closed topologies, thus extending the classical concept of 

boolean operators. According to this approach several valid operators can be defined, which 

behave like booleans in the case of closed topologies but differently with non closed ones. 

1. Introduction 

In geometric modeling two main technologies have been successful and are continuing their 

development: solid modeling and surface modeling. These techniques are still used separately 

while being complementary in their advantages: a solid modeler is able to describe objects with 

a clear distinction between inner and outer parts, whereas a surface modeler is better suited in 

the description of free form objects, but leaves the model validity to the user responsibility. The 

integration of the two technologies is then an important topic of the current research in the 

field. 

Some works have been published about non-manifold topology [WEI86, MAS90], and some 

others covered the topic of the integration of surfaces and solids [VAR84]. A modeler that 

performs booleans on solids bounded by trimmed surfaces is described in [CAS87]; another 

approach to the same problem is presented in [FAR87]. Both approaches are based on point 

set classification. This is a clear limitation when unbounded topology is allowed by the 

representation scheme, a typical situation in surface modelers. An interesting approach toward 

the integration of solids and surfaces was published by Chiyokura [CHI91], but further 
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research is needed to define a robust theoretical background about "open-sets". A system 

which handles solids and surfaces in a homogeneous way is known to the authors [XOX90]; 

unfortunately no detailed description of the underlying approach has ever been published. 

This paper presents a new technique to perform booleans with trimmed curves and surfaces. 

Such operators, here called pseudo-booleans, are not based on point set classification, but 

exploit geometry orientation; this allows to deal with non closed topologies, thus extending the 

classical concept of boolean operators. Moreover, it is pointed out that according to this 

approach several valid operators can be defined, which behave as booleans in the case of 

closed topologies and can be applied also to non closed ones. 

Since the point set classification can be here avoided in most cases, a modeler using the 

presented technique is faster and more robust than a classical one in computing booleans; 

indeed, it has to perform few vector operations, where a classification of points against solids 

is usually in order. 

Furthermore, this approach makes easier the surface trimming; indeed, by just indicating the 

surface to be trimmed and the trimming surface, the modeler is able to decide which parts to 

retain on the basis of the surface orientation. 

out 

out 

points to be classified using ray-firing 

Fig. I - Curve classification via ray-firing. 

The approach also allows to create bounded solids from sets of surfaces, no user intervention 

being needed during the process. Free form geometries can be used during the first phases of 

the design, so that solids from surfaces can be automatically generated for a more accurate 

analysis of the design. 

2. General description 

The basic assumption of point set classification is that a solid divides the space in three parts: 

interior, exterior, and boundary. Then a point set classification algorithm typically returns 

either in, out, or on, depending on the location of the given point with respect to the solid. 
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In the case of BRep models, the most effective point set classification algorithm is called ray­
firing. A ray is fired in a random direction from the point to be classified, counting the 

number of intersections with the boundary of the solid. For even numbers the point is outside, 

and for odd ones it is inside, whereas the point is classified as on if lying on a face. 

When the element to be classified is a curve, the traditional approach is to split the curve at any 

intersection with the boundary and to classify its resulting parts, such a classification simply 

consisting in the point set classification of a point lying on each curve part (Fig. 1). 

It can be noted that a curve intersecting the solid changes its "local status" when passing from 

the interior of the solid to the exterior, or vice versa (Fig. 2). 

out 

Fig. 2 -Local transitions of a curve with respect to a solid. 

Therefore, in the case the local transition between interior and exterior can be computed, the 

curve classification might be done without ray-firing. Since the boundary of a solid is oriented, 

the normal to the surface being the geometric element which determines the orientation, if also 

the curve has an orientation the test for computing the local transition is usually simple. A 

transition from interior to exterior happens when the normal to the surface and the curve have 

the same orientation, in the other case the transition being from exterior to interior (Fig. 3). 

It can be noted that the same approach has been followed by Crocker and Reinke [CR08?] to 

avoid expensive point set classification during boolean operators computation for BRep solids. 

nonnal 

1,/ curve entering 

Fig. 3 - Curve orientation with respect to the solid boundary. 

A classification realized by checking local transitions does not require the closeness of 

objects, thus resulting in an actual extension of the domain of the algorithm: with a local 
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transition check technique, a curve can be classified with respect to an object without a 

complete boundary, whereas this is not possible with ray-firing algorithms which rely on the 

closeness of the boundary. 

Since the object boundary can be non closed, the semantics of the classification should be 

changed here, considering that a curve may cross the boundary only once. It results in 

configurations where a curve "enters" the object without "leaving" it, or vice versa (Fig. 4). 

local trasition 

object with incomplete bow1(lary 

Fig. 4 - A curve "entering" an object without leaving it. 

This approach to local transition evaluation is exploited by a new kind of operators, called 

pseudo·boo[eans. When a pseudo-boolean operator is applied to objects with closed boundary 

it behaves as a "regular" boolean does, but it operates also in the case of objects with open 

boundary, with a behavior which is predictable for a user aware of the orientation of the 

entities under consideration. In this sense, pseudo-booleans actually have a broader domain 

than "regular" booleans. 

In the following the algorithm for computing pseudo-intersections is discussed; pseudo-unions 

and pseudo-differences are conceptually analogous, except for geometry orientation. 

3. Two dimensional algorithm 

In this Section, first some notation is introduced. Then the pseudo-intersection of two curves 

intersecting in one point is defined. Finally, the definition is extended, considering curves 

intersecting in more than one point and curve chains. 

3.1. Notation 

Consider two oriented curves c;=[ai,bJ, i=1,2, defined with a trimmed parametric 

representation Ci=Ci(t;). Let cl and c2 be Gl, non self-intersecting, and non overlapping (i.e., if 

Clr1C2;i0, then dim(cl(lc2)=0; so that they intersect in single points). 

An intersection point p of c1 and 'c2 is defined so that there exist the values tIE T I and t 2E T 2 

such that CI(tI)=C2(t2)=P. Given such a point p, it can be shown that the conditions imposed 

on the curves imply that there exists £>0 such that N(P,CI,C2,e) is a non empty neighborhood of 

p with radius e such that: 



c1 ('t1) = C2('t2) = q, q * P 
C/tj±O) E N(P,c1,c2,e) 

~ q e N(P,cl,~,e); 
~ C/tj±O') E N(P,cl,~,e), '10', 0<0'<0, i=1,2. 
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The first condition (Fig. 5) expresses that p is the only point in the neighborhood belonging to 

both curves; the second condition (Fig. 6) establishes that the neighborhood contains only 

points of the curves defined by a connected set of values of the parameter tj (in the following 

the neighborhoods will be indicated as N(p) whenever this cannot generate ambiguities). 

Forbidden intersection point 

Fig. 5 - A case of violation of first condition. 

--- Forbjdden situation 

Fig. 6 - A case of violation of second condition. 

A normal vector is defined for each point on cj as the unit vector orthogonal to the first 

derivative to the curve in the point and right-bounded with respect to the derivative. Then each 

cj splits N(p) in two parts: a (conventional) "local outer" part, NjO(p), where the normal of the 

curve in p lies, and a "local inner" one, N/(p) (in the case p is the extreme point of a curve, it 

can be assumed that the curve is locally extended, so that NjO(p) and Njl(p) result however 

well-defined: such a case is immaterial for the algorithm). 

"local inner" pari 

. """ ,"w· ""~ 
normal 

Fig. 7 - The normal of each curve in the intersection point p 
splits the neighborhood N(p) in two parts. 

Since the curves have an orientation, the intersection point p splits each curve in two parts, 

one part "entering" the neighborhood, 'Yi,! = [aj' p], and one part "leaving" it, 'Yj.2 = [p, bJ 
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"leaving" part 

"entering" part /~ 
normal 

Fig. 8 - Due to its orientation, each cmve has an "entering" and a "leaving" part 
with respect to a point. 

A relation of "local containment" ~ is then defined between parts of curves and 

neighborhoods, such that: 

Yjj ~ N(p) <=> 3qE Yjj: qE N3. jI(p). 

Therefore, a part of a curve with an extreme in an intersection point is "locally contained" in 

the neighborhood of that point iff some of its points lie in the "local inner" part defined on the 

neighborhood by the other curve (note that given a curve cj the index 3-i simply identify the 

other curve). 

3.2. A basic definition of pseudo· intersection 

Let cI and c2 be oriented, GI, non self-intersecting, and non overlapping. 

The pseudo-intersection of cI and c2, cI r\ c2, is defined as: 

c I 11+ c2 = U y .. @N(p) Yjj 
'J 

for i= 1 ,2, j= 1 ,2, with the further assumption that: 

cI 11+ c2 = cI II c2 

if the curves intersect in p but Uy."'N(P) Yjj = 0, or do not intersect (thus in the first case 
. 'J 

CIII+C2={P), in the second one =0). 

Therefore, the pseudo-intersection is constituted by the parts of each curve lying in the "local 

inner" part defined on the neighborhood of the intersection point by the other curve. 

Fig. 9 - Two intersecting curves (left) and their pseudo-intersection (right). 

It should be noted that when the curves are tangent in the intersection point a number of cases 

arises. 

The given definition of 11+ can be translated to a more suitable form from a computational 

point of view. 

Let nj and dj be respectively the normal and the first derivative of cj in p. 



~ - ~--------­
~-"~~ 
.L ~ ~ the single point p 

L~~ =< 
Fig. 10 - The cases of pseudo-intersections arising 

when the normals in the intersection point are colinear. 
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In the case nl¢±n2 (non local colinearity), it can be shown that the relation of local containment 

can be expressed in terms of nj and <\, as: 

[aj' p] (i; N(p) ¢::) dj e n3_j > 0 

[p, bJ (i; N(p) ¢::) dj e n3_j < 0 

("xey" is here the inner product of x and y). It should be noted that d1en2>O iff d2enl<O, and 

therefore conditions d l en2>O and d2enl>O are mutually exclusive. Moreover, while the absolute 

value Idjl of the derivatives depends on the specific parametrization, their direction does not, so 

that such conditions are well defined. On the other hand, if the normals of the curves in p are 

colinear, these equivalencies cannot be applied, and a deeper analysis is in order. 

In such a case the information brought by the first derivative is "too local" for discriminating 

which parts of which curves constitute Cl"+C2. While relying only on differential geometry 

would require derivatives of higher and higher order, a more effective approach, although 

perhaps less elegant from a theoretical point of view, allows to reach a computationally 

efficient definition of "+, and can be applied also in the case of Gl curves. 

Let NB(p) the boundary of the neighborhood N(p) (in 2D a circumference centered in p and 

with radius e). On the basis of the conditions imposed on the curves, each entering part [aj' p] 

intersects NB(p) in a different point qj. In the same way, each leaving part [p, ba intersects 

NB(p) in a different point rj' Therefore the segments [qj' p] and [p, rJ are defined. 

Then, two cases must be distinguished, on the basis the curves are defined with the same 

orientation (i.e., nl = n2), or with opposite orientation (i.e., nl = -n2). 

In the first case, nl = n2, the relation oflocal containment becomes: 

[aj' p] (i; N(p) ¢::) [qj, p] • n < [q3-j, p] • n 

¢::) [p, rJ • n < [p, r3_J • n 
(note that being nl = n2 the subscript can be dropped), while in the second case, nl = -n2: 

[aj' p] (i; N(p) ¢::) [qj, p] e nj > [p, rd e nj 

[p, bJ (i; N(p) 

3.3. Pseudo-intersection of curve chains 

In the general case the pseudo-intersection has to be performed between curves intersecting in 

more than one point and curve chains. 
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If two curves intersect in more than one point each curve is implicitly divided in parts by 

intersection points (Fig. 11), so that the pseudo-intersection operator has to decide which 

curve parts have to be retained. 

CI 

C2 

823 

Fig. 11 - Intersection between two curves in many points. 

The condition to discard a curve part is that at least one of its ends lies locally outside with 

respect to the other curve, the local containment relation being computed for each intersection 

point as discussed in the previous Section. The algorithm for the pseudo-intersection of curves 

intersecting in more than one point is then (Fig. 12): 

1) intersect the two curves; 

2) evaluate the local containment relation at the ends (intersection points) of each curve part; 

3) for each curve discard all the parts having at least one end lying locally outside the other; 

4) connect the remaining parts in order to create a curve chain. 

Intersect the curves 

Evaluate local containment relation 
at each intersection point 

Remove the curve parts 
having at least one endpoint 
lying locally outside the 
other curve and connect the 
result in a unique curve chain 

Fig. 12 - Steps for the pseudo intersection of curves intersecting in more than one point. 

Also the case of intersection of curve chains can be dealt with as already presented: by 

considering a curve chain as a unique Co curve, the algorithm for curves intersecting in more 

than one point can be directly adopted (when curves intersect in a vertex, the local containment 

can be evaluated as described for intersections at curve endpoints). An example of pseudo­

intersection between curve chains is shown in Fig. 13. 
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-0 
Fig. 13 - Pseudo-intersection between two curve chains. 

4. Three dimensional algorithm 

The approach presented in the previous Section can be extended to surfaces in a 

straightforward way by exploiting the 2D algorithm. The basic idea is to preprocess surfaces to 

orient intersection curves in parametric space, and then to use the 2D algorithm. 

This Section explains the way data are preprocessed and how pseudo-booleans between sets of 

surfaces are pedormed. 

4.1. Constraints 

The set of surfaces on which the pseudo-intersection operator is defined must satisfy some 

constraints. In analogy to the 2D case, surfaces are assumed as non overlapping, so that the 

intersection between two surfaces is a curve, possibly reduced to single points or the empty 

set. The overlapping situation should be detected before the application of the operator in 

order to properly modify the involved surfaces. Another annoying problem arises since 

intersection curves are computed numerically, so that the real intersection and the computed 

curve could not match exactly. This problem is unavoidable while numerical computation is 

used. The treatment of this problem being beyond the scope of the paper, it is assumed here 

that the match between curves is exact; since the algorithm works on trimmed surfaces, the 

trims are assumed to be coincident with the boundary curves of each surface. It is also assumed 

that a data representation for thmmed surfaces and solids exists and that it connects the model 

parts in a complete way, i.e., it allows the interrogation of the relations between parts starting 

from any point of the data structure [W0085]. 

4.2. Some preliminary concepts 

A parametric surface is a mapping from R2 to R3. As in the case of curves, the goal is to select 

the parts of a surface lying locally outside with respect to the other in order to remove them 

during the pseudo-intersection computation. If the surface normal is defined as the unit vector 

orthogonal to the surface in each point and pointing outside the virtual material, the parts of a 

surface to be removed can be selected according to the criterion of being "on the same side" of 
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the otner surface normal. Again, this selection can be realized in a simple way by exploiting the 

orientation of the intersection curves. 

The intersection of two parametric surfaces is a mix of points, curves and surfaces. Any point 

belonging to the intersection can be inversely mapped to the parametric space of the involved 

surfaces; then, in the case the intersection is a curve, the inverse mapping defines two curves, 

called "curves on surface", each one lying in the parametric space of a surface. The 

representation of a curve on surface is defined as follows. Let c(w) be a 2D curve in parametric 

space, and s(u,v) the surface which the curve lies in, being cx(w) and Cy(w) the two component 

functions of the curve. The curve on surface cs(w) is then cs(w) = s(cx(w),cy(w)). 

4.3. The algorithm for two surfaces 

The intersection of two surfaces consists of some curve branches. The typical representation 

of each branch consists of a curve in Cartesian space and two curves on surface (one for each 

surface). Since the curves in parametric space (often called "trimming curves") define the 

valid portion of the surface domain of a trimmed surface, the parametric space representation 

of the curves on surface is all is needed to perform the algorithm, and a suitable application of 

the 2D pseudo-intersection in parametric space is able to select the·valid part. 

The orientation phase proceeds as follows (Fig. 14): 

1) let ni(u,v) be the normal to the i-th surface in the point (u,v), c(w) the intersection curve, 

and dew) its fIrst derivative in the point w. The normal of the 2D curve on surface Si can be 

remapped in 3D, its direction being given by the cross product d(w)xni(cx(w),Cy(w)); 

2) for each point of c(w), the direction of the mapped normal of the curve on surface Sl has to 

point in the half space defIned by the normal of S2. In the general case, to correctly orient 

the curve it is suffIcient to compute the sign of the inner product between the mapped 

normal and the surface normal in one point of the curve (analogously to what has been 

shown for curves). As previously, the special case of the colinearity of normals has to be 

managed in a different way; 

3) when one trimming curve has been oriented, the other one simply assumes the opposite 

orientation. 
r---~~~--------------------. 

c 

Fig. 14 - An example of orientation of curves 

Once the curves have been oriented, the algorithm proceeds performing the 2D boolean as 

described in the previous Section. 
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After the orientation phase all cUlVe normals in parametric space point in the direction of the 

side to be removed. Applying the 2D algorithm in the parametric space of each surface the new 

trim can be computed. The entire process is summarized in Fig. 15. 

Cartesian space , parametric space Si , parametric space 8J 

Intersect surfaces + @] EJ 
Orient curves in both .' 0 E3 parametric spaces 

Apply 2D algorithm 0 to compute 

~ C) the new trim 

Fig. 15 - Steps for'computing the pseudo-intersection between two surfaces. 

4.4. Special cases 

The problem of colinear normals arises also for surfaces, and it is even more common than in 

2D (as an example, consider a cylinder touching a plane). The technique for selecting which 

part has to be retained is based again on a preprocessing for the 2D algorithm. To detect this 

situation, a "check plane" orthogonal to the tangent of the intersection curve is defined. Such a 

plane intersects both surfaces, thus generating two curves that just touch when they cross the 

intersection curve. The local containment test can be performed in the parametric space of the 

check plane, to know whether the two surfaces intersect or just touch (Fig. 16). 

Cartesian space parametric space 

tangent to the intersection curv\ / 
cbeckpJane 

Fig. 16 - Check plane construction. 
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If the two surfaces intersect, curves on surfaces have to be oriented. The local containment 

check can provide infonnation about curve orientation in the parametric space; indeed, the 

vector d(w)xnj(cx(w),Cy(w» has to point in the direction of the trimmed part (Fig. 17). 

check plane 

Fig. 17 - Choice of the d(w)xnj(cx(w),cy(w» vector. 

4.5. The algorithm for set of surfaces 

If two sets of surfaces are involved the algorithm has to be slightly modified. Each surface of 

each set is intersected with each surface of the other set to obtain all intersection curves, and 

such curves are oriented in the way described in the previous Section. Then, for each surface, 

they are connected to generate a set of composite curves on the surface. Finally the 2D 

pseudo-boolean can be perfonned(Fig. 18). 

Fig. 18 - Pseudo-intersection between two sets of surfaces. 

This stage can involve the problem that the curves in the parametric space could not generate a 

closed shape (Fig. 19). 

The algorithm could recognize the problem and take some decision, the simpler one being to 

abort the operation and rollback to the previous status. 
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c(w) 

Fig. 19 - A case in which the intersection does not generate a closed shape. 

5. Open Problems 

To maintain model consistency is the most difficult thing in the development of geometry based 

algorithms. This holds in particular in the case of surfaces, since the domain is 2D and many 

consistency conditions are extremely difficult to be checked. An example of this is in Fig. 20. 

c, c, 

., 

Fig. 20 - A typical example in which difficulties arise in the consistency check. 

The main problem is that in some cases the trimming curves are closed but their orientation 

depends on the side in which the curve is analyzed. In case of curves similar situations can be 

easily detected because intersections consist of single points and inconsistencies between sides 

are evident. On the other hand, in the case of surfaces such kind of inconsistencies can lead to 

non trivially detectable inconsistencies, since the curves are locally correct whereas the trim is 

globally wrong. 
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6. Conclusions and future work 

The paper presented a new operator, called pseudo-intersection, extending the classical 

concept of booleans. This operator is aimed to integrate surface and solid modelers, allowing 

operations between any entity in the model. 

It should acknowledged that this is just a very initial step toward such an integration. While 

pseudo-booleans are "solid oriented" operators extended to surfaces, "surface oriented" 

operators should be extended to solids, and perhaps brand new operators have to be 

introduced. 

The algorithm itself for computing pseudo-boolean requires further investigations. The 

Authors do not know whether pseudo-booleans can be computed exploiting local information 

only. Is it possible to know which part of the curve/surface has to be retained by interrogating 

higher order derivatives only? Furthermore, the detection of inconsistent results should be 

enhanced in the case of surfaces, and the management of overlapping curves and surfaces has 

to be addressed in future research work. 

The implementation of pseudo-booleans for surfaces is on going, so that it is still impossible to 

perform speed tests. However, our guess is that pseudo-boo1eans are faster than regular ones 

because they do not use the ray-firing algorithm when surfaces intersect. 

A straightforward extension of this algorithm can perform a pseudo-boolean among many sets 

of surfaces to find a pseudo-common volume. A free form geometry can be thus built by using 

surface based operators, converting the result into a solid by just trimming away redundant 

parts. 
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Abstract 

This paper presents an interactive deformation technique. The entity employed 

for defining the deformation of an object is a 3D axis as well as some associated 

parameters. 

The technique allows an easy specification and control of deformations that can 

be defined with that entity such as bending, twisting and scaling. 

Contrary to existing techniques, the method developed is independent of both 

the geometric model of the object to be deformed and the creation technique used 

to define the object. 

Moreover, it can easily be integrated into traditional interactive modeling sys­

tems. 

CR Categories and Subject Descriptors: 1.3.5 [Computer Graphics]:Computatio­

nal Geometry and Object Modeling - Curve, surface, solid, and object representation; 

Geometric algorithms, languages, and systems; Hierarchy and geometric transformations; 

1.3.6 [Computer Graphics]: Methodology and Techniques - Interaction techniques. 

Additional Keywords and Phrases: Solid geometric modeling, deformations. 
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1 . Introduction 

Today's graphics systems for producing images consist of several software components, 

the first one being a 3D geometric modeler with which a user can define objects geometry. 

A geometric modeler often includes two classes of modeling techniques: the creation 

techniques such as the sweep, the loft or the extrusion and the modification techniques. 

Modification, or deformation, techniques may be used either for refining the shape of 

an object defined using creation techniques or for changing the shape of existing objects 

obtained by scanning a real object, for instance. 

The approaches taken to deforming objects include: 

• Manipulation of the geometric model. 

The deformation techniques of this class consist of direct manipulation of the ge­

ometric model representing the surface. They are often very dependent on the 

geometric model. For instance, one may interactively move the control points of 

a spline surface or of a hierarchical spline surface [FB88]. If the geometric model 

representing the surface is an implicit surface [WBB+90] defined by points (resp. 

axis), the deformation technique involves moving the points (resp. deforming the 

axis). 

Recent work has also shown that the trivial solution that consists of moving the 

control points of a spline surface can be extended to allow the user to manipulate 

freely any point or even a curve of the surface [BB91, WW92]. These new techniques 

make direct manipulation less dependent on the geometric model. 

• Manipulation of a creation entity. 

In a general modeling system, it is usually preferable to use the same geometric 

model such as a spline or a polygonal surface, for representing each object. In this 

case the creation technique and thus the creation entities used for defining an object 

are often independent of the geometric model of the object. Creation entities may 

include the axis or the cross-section used for creating a surface as a sweep, or the 

profile curve, or angle used for the defining of a surface as a surface of revolution. 

A common practice for deforming objects this way consists of manipulating the 

entities, or the parameters, used to create the surface. 
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BasiCally, deformations of this class can be resumed as a redefinition of some of the 

creation entities followed by a recomputation of the surface. 

• Manipulation of a deformation entity. 

Techniques for which a deformation entity is defined and used to deform the object 

fall into this class. The deformation entity can be compared to the creation entity, 

since it plays the role of an interface between the geometric model and the user. 

One of its consequences is to make the deformation technique independent of both 

the geometric model and the creation technique. Techniques such as the FFD and 

the EFFD [SP86, Coq90], or Cobb's region or skeletal warp [Cob84]lie in that class. 

Techniques of the third class present several advantages: 

• From a user point of view, the same deformation technique can be applied to any 

object, no matter where it comes from. Furthermore, the geometric model becomes 

transparent for the user. 

• These techniques can be combined with one another to increase the power of the 

modeling system. 

• The deformation is completely defined by the deformation entity. A deformation 

tool [Coq90] can thus be defined, permitting the reproduction of the deformation 

several times, on possibly different surfaces. 

In order to take advantage of these benefits, one of bur goals was extending some 

deformation techniques of the first two classes to the third one. 

This paper deals with deformations defined by an axis. These deformations are simple 

and specific, but very useful and commonly employed. They include bending, twisting 

and scaling around an axis. 

Several techniques exist for deforming an object with an axis. 

One of them consists of defining the object as a sweep surface and then deforming 

the axis or modifying other parameters such as a scale factor or a twist factor defined 

along the axis (cf. Manipulation of a creation entity). A second solution consists of using 

implicit surfaces, defined by a skeleton-axis, to represent the surface (cf. Manipulation of 

the geometric model). 
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It follows that: 

• The object has to be defined as either a sweep surface or an implicit surface with 

an axis as skeleton. The class of objects that can be defined this way is rather 

restricted. 

• The only axis that may be used to deform such an object is the creation axis. 

• Combining these deformations with other deformations is rarely possible. 

Parent [Par77] uses axial deformations for deforming 2D shapes while Barr [Bar84]' 

has proposed 3D axial deformations where the axes considered are only straight axes and 

the bending operations are very restricted in comparison with what we can expect from 

a real 3D axis. 

Our purpose is thus to develop an axial deformation technique that is independent of 

the geometric model and valid for any creation technique and any axis. 

The following section explains the principles of the Axial Deformation technique and 

emphasizes the computation process. Section 3 presents several extensions increasing both 

the generality and the power of the previously defined deformation techniques. Finally, 

we give some examples to illustrate our approach. 

2 Axial Deformations 

Our goal is to define a deformation technique that makes use of a 3D axis for deforming 

existing objects. This technique is called AxDf, for Axial Deformation. Suppose we have 

an object. From the user's point of view, the deformation process is as follows: 

• First, the user defines a 3D axis, that can be positioned either inside or outside the 

object. This 3D axis may have any shape, depending on the deformation desired. 

• Second, the user changes the shape of the axis, and the deformations so applied to 

the axis are automatically passed on to the object. 

Figure 1 illustrates the AxDf technique by a simple example. Figure I-left shows the 

sphere we wish to deform as well as the axis used for defining the deformation; a straight 

axis, in black has been designed. Figure 1-right shows the sphere deformed in a manner 

that is intuitively consistent with the motion of the axis visualized in black. 
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Figure 1: Deforming a sphere. 

Within an interactive modeling system, the 3D axis will be represented by a 3D curve; 

any spline curve can be used. 

To make this deformation technique practical, we must find a way to pass the axis' 

deformations to the object. We handle this problem using a two-step process. First, each 

vertex 1 V of the object is attached to one point Av of the axis and its local coordinates 

(x,y,z) in the axis' local coordinate system are computed. Second, the deformed vertex 

is obtained by computing the associated local coordinate system at A~, homologous to 

Avon the deformed axis, and transforming the (x, y, z) coordinates from this coordinate 

system to the world coordinate system. 

Three problems have to be considered: 

• attaching a vertex to the axis, 

• defining local coordinate frames on the axis, 

• computing the coordinates of the deformed vertices. 

These three problems will be studied in the following paragraphs. 

1 From now on, every point of an object will be called a vertex to avoid any confusion with the points 

of the deformation axis. 



246 

2.1 Attaching a vertex to the axis 

To compute axial deformations, each object vertex must be attached to the 3D axis. A 

natural association consists of attaching the vertex to the closest point of the curve. The 

closest point can be computed either recursively by using the convex hull property of a 

spline curve or by discretizing the curve. Selecting the closest point of the curve may raise 

some problems, namely when several points of the axis are located at equal distance from 

the object vertex, or when a vertex lies in two different planes normal to the axis and the 

best choice is not the closest axis point. Several techniques for improving that choice are 

under consideration. One of them consists of taking into account vertex adjacencies in 

order to make the association function continuous. 

The attach point is represented by its parameter value on the axis curve. 

2.2 Axis local coordinate frames 

After attaching each object vertex to a point of the axis, we now define a local coordinate 

frame at each point of the axis in order to allow the computation of the (x, y, z) local 

coordinates of each object vertex in this coordinate system. 

Several methods exist for defining coordinate frames at each point of a 3D curve. A 

common practice consists of considering the well known Frenet frame. For each point of 

a 3D curve, the Frenet frame is represented by the three orthogonal unit vectors defined 

by the tangent, the normal and the binormal at that point. This frame depends on the 

first and the second derivatives of the curve, it can thus be computed explicitly. 

However, three problems exist: 

• The normal is not defined on linear curve segments, nor more generally, where the 

curvature vanishes. 

• The normal direction flips at the inflection points. 

• The normal can rotate in an undesirable manner around the 3D curve. 

An alternative to the Frenet frame has been proposed by Klok in [Kl086]. Klok defines 

a rotation minimizing orthogonal frame by the requirement that the rotation of the frame 

be minimized along the curve. 
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Assuming that C( 8), 8 E [0, L] is a regular curve, Klok defines the rotation minimizing 

orthogonal frame t(8),J(8),g(8) along C such that 

t(8) = C'(8)/IIC'(8)11 

f'(8) = -(C"(8).J(s))C'(8)/IIC'(8)112 

g'(8) = -(C"(s).g(s))C'(s)/IIC'(s)W 

J(O) and g(O) being chosen such that t(O), J(O) and g(O) are mutually orthogonal unit 

vectors. 

These equations guarantee that the rotation of J(8) is minimal along the curve. 

As a closed-form solution of the previous equations does not exist, Klok also gives a 

geometric construction of the rotation minimizing frame based on an approximation of 

the curve by a sequence of straight line segments. 

This solution has been adopted for computing the frames at each point of the axis. 

Note that a special treatment has been added for cusps: when a cusp is detected on the 

axis, the orientation of the following frames is reversed. 

The (x, y, z) coordinates of V are thus defined as the coordinates of V in the frame 

associated to Av. Note that in most cases, x equals zero. 

2.3 Deformed vertices 

The process for computing the deformed position VAxDj of a vertex V is as follows. 

Let A~ be the point of the deformed axis corresponding to Av. A~ is defined such that 

its parameter value on the deformed axis is equal to the previously computed parameter 

value of Av. 

VAxDj is the vertex defined by the (x, y, z) local coordinates in the frame associated 

with A~. 

3 Extensions 

We have thus far proposed a basic version of the AxDf technique. The only deformations 

that can be controlled are the deformations obtained either by bending or stretching the 

axis (d. Figure 1 for a simple example). Other parameters can be defined in order to 

extend the AxDf technique. Some of them are suggested in the following paragraphs. 
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3.1 Scale and twist 

Scale and twist graphs can easily be added to the Axial Deformation technique. The twist 

(resp. scale) value permits the twisting (resp. scaling) of the object around the axis. The 

objective is to define both a twist and a scale factor at each point of the axis; these factors 

are then used for computing the deformed object's vertices. From the user's point of view, 

a twist (resp. scale) factor can be defined at any point of the axis. The value along the 

axis is thus obtained by interpolating the values defined by the user. Figure 2 illustrates 

the twist factor by a simple example. The undeformed object is composed of two rods 

shown in Figure 2-left; a straight axis has been positioned between the 2 rods. Figure 

2-right is obtained without changing the shape of the axis, just by adding a twist factor 

of 0 at one end and another of 360 degrees at the other end. 

Figure 2: Twisting two straight rods. 

3.2 Zone of influence 

In order to improve the Axial Deformation technique, a zone of influence can be intro­

duced to define the portion of the 3D space to be deformed. In our implementation, we 

have taken advantage of the deformation axis to define that space. A simple solution 

consists of defining two zones of influence ZImin and ZImax as general cylinders around 

the deformation axis, ZImin being included into ZImax. 
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The vertices of the object lying inside ZImin (resp. outside ZImax) will be fully de­

formed (resp. will not be deformed at all). Vertices in-between will be partially deformed 

by interpolating the deformation parameters, such as twist, scale and attach point. 

Each zone of influence is defined by the two radii R,."in and Rmax of each circular 

cross-section along the axis. These radii are defined in the same manner as the twist or 

the scale parameters. 

Figure 3 illustrates the use of the zone of influence. In Figure 3-left, a planar surface 

is shown and the axis used to deform the surface is visualized in black. The two zones of 

influence are also visualized using transparencies: ZImin is the inner zone while ZImax is 

the outer one. Only the vertices of the object lying inside ZImax will be deformed. The 

deformed surface is shown in Figure 3-right where the deformed axis is shown in black. 

Figure 3: Zone of influence. 

3.3 Deformation tool 

A consequence of the independence of the AxDf technique and the geometric model is the 

capacity of exploiting the deformation tool paradigm. The deformation tool must fully 

describe the deformation. In AxDf, a deformation tool is composed of: 

• two axes: the undeformed, or initial axis, and the deformed, or final one, 

• two zones of influence, ZImin and ZImax, 

• a twist graph and a scale graph. 
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Figure 4: The same deformation applied to two different objects. 

As the deformation is fully described by the deformation tool, the same deformation 

can be applied several times to different objects, simply by using the same deformation 

too!. In Figure 4 the same deformation tool is applied to two different objects: a straight 

ribbon and the twisted rods presented in Figure 2. The initial axis is a straight line while 

the final axis renresents a node. A twist has also been added to this deformation. 

Figure 5: Adapting the deformation tool to the object. 

A deformation tool can also be adapted to the object to which it will be applied. In 

Figure 5 we have applied the node-deformation tool to an object that is not straight, a 

horseshoe. This has been made possible simply by adapting the initial axis to the shape 
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of the object. In Figure 5-left the visualized axis is the new initial one. The deformed 

horseshoe is shown in Figure 5-right together with the final axis. 

4 Examples and Concluding Remarks 

Two simple examples of deformations of well known objects by the AxDf technique are 

illustrated in Figure 6 and 7. Figure 6 presents two teapots. On top, an axis has been 

designed by the user inside the spout of the undeformed teapot. The deformed teapot 

presented below results from a deformation of the axis. 

Figure 6: Deforming the teapot . 

In Figure 7, a deformation that includes both a deformation of the axis and a modifi­

cation of the scale graph is applied to the VW. 

In our implementation, computing the deformation of the most detailed object (2160 

vertices) takes approximatively 0.30 second on an IRIS 310 VGX. 
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Figure 7: Deforming the VW. 

Although specific and simple, the deformations that can be controlled with the AxDf 

technique are very common and most useful. Furthermore, AxDf offers the following 

advantages: 

• Since the deformation is independent of the object to which it is applied, it can be 

re-used to deform other objects. 

• Since AxDf is independent of the creation technique, it can be used to deform any 

existing object. 

• AxDf can easily be combined with other deformation techniques, such as FFD. 

• AxDf can be applied to many different geometric models such as spline surfaces, 

polygonal surfaces or hierarchical surfaces. 

• AxDf can easily be integrated into most general and interactive modeling systems. 

• AxDf is very intuitive and fully interactive. 
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This paper has shown that AxDf is a viable deformation technique for geometric 

modeling. It greatly increases the class of deformations obtained by manipulating a 

deformation entity and makes easier the control of some deformations usually defined 

using the FFD techniques. There are however a number of enhancements and extensions 

to AxDf that we should like to investigate. Some of them are: 

• checking for self-intersection of the deformed surface, 

• automatically (or semi-automatically) designing the first axis on the surface, 

• implementing an adaptative subdivision technique such as that of Griessmair et al. 

[GP89] in order to maintain an acceptable resolution of the surface, 

• allowing several axis to be used simultaneously for deforming an object. 

Furthermore, due to the simplicity of the deformation entity (the axis), it seems likely 

that this approach would also be very attractive for animation applications. 

AxDf is part of ACTION3D, a general interactive modeling system developed jointly 

by SOGITEC and INRIA. 
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Abstract 

This paper proposes a method of generating surfaces from a network 
of curves that have arbitrary parametric forms, and that intersect in an 
arbitrary topology. 

The surfaces generated from the network are represented by multisided 
patches defined on a multivariate coordinate system. An m-sided patch is 
generated by blending m sub-surfaces with a transfinite interpolant, and 
each sub-surface is generated by blending two sweep surfaces that are 
defined by a pair of curves intersecting with each other in the network. 
An advantage of the final surfaces is that they have everywhere the same 
order of continuity as the curves. 

This method is flexible in its representation of the curve expressions 
and the connective topology of a network. It can implement a surface 
model in user-friendly and designer-oriented CAD interfaces that handle 
direct input of 3D curves. 

Key Words: Computer-aided geometric design, Multisided patches, 
Sweeping, Blending, Geometric continuity, Curve network. 

1 Introduction 

New technologies in computational graphics, such as photo-realistic 
rendering, enhance the visual effect of presentations in industrial design 
and commercial production. The input of shapes, however, is still a time­
consuming process, and needs the support of skilled CAD operators. 
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A new paradigm is required for current 3D-CAD systems used to design 
the shapes of free-form surfaces, because the systems are inadequate for 
quick input of shapes in the initial stage of conceptual design. 3D-CAD 
systems have come to use the metaphor of sketching that was used by 
2D-drawing systems in order to realize a designer-oriented environment 
of shape input. Sketching systems aim at a user-friendly interface that is 
easy to use, intuitive, and good at handling complicated shapes. 

In current surface modellers, free-form surfaces have a topological 
constraint on their control points or profile curves; they must be arranged 
in the topology of a regular two-dimensional mesh. This constraint is 
derived from the formation rule of tensor product surfaces. 3D-sketching 
systems based on current surface modellers therefore generate tensor 
product surfaces such as loft or sweep surfaces from a set of hand-drawn 
curves arranged in the topology of a regular mesh. This topological 
constraint, however, limits the expressional flexibility of designers. 

On the other hand, advanced three-dimensional input devices have 
been proposed for CAD systems whose interface handles the input of free­
form curves. For example, an MIT group (Sachs, Roberts and Stoops, 
1991) has developed a CAD interface that allows users to design shapes 
by entering information of free-form curves directly in three dimensions, 
using a pair of hand-held sensors. The interface manages the input of 
a curve network that is free from the topological constraint of a regular 
mesh. We call such a network irregular. The network, however, represents 
only a wireframe model and lacks a surface model. This limitation 
of the representative model makes it impossible to conduct engineering 
evaluations and simulations such as interrogation or rendering of surfaces, 
or data generations for Numerical Control machine or Finite Element 
Method. The above example highlights the need for a method of skinning 
an irregular network of curves. 

Multisided patches have the potential to generate smooth surfaces 
from an irregular network of curves, because they can have an arbitrary 
number (more than two) of sides corresponding to their boundary curves. 
The existing methods of generating multisided patches have the following 
common drawbacks: 

• Each boundary curve of a patch must contain only one segment; it is 
always defined by one expression . 

• It is impossible or very complicated to generate curvature-continuous 
surfaces. 
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Each boundary curve of a patch often comprises many curve segments if 
it is designed by sketching. Moreover, designers using surface modellers 
in industrial design often impose strict conditions on the continuity of 
surfaces so that shapes will have a smooth appearance. They claim 
that C2 continuity (that is, uniqueness of surface normals and of either 
principal curvatures or principal directions) is necessary in order to 
confirm the shape from the continuous reflection curves on the surfaces. 
However, the existing methods are inadequate to satisfy these conditions. 

For these reasons, we have improved the mathematical model of 
multisided patches to match data incidents to corresponding edges, and 
to ensure geometric continuity of arbitrary degrees. 

In this paper, we propose a method of skinning a network with 
multisided patches. These are generated by sweeping and blending the 
curves corresponding to the boundaries of the patches. This method 
can implement a surface model in CAD interfaces that handle only 
a wireframe model by allowing direct sketching of curves in three­
dimensional space. 

In Section 2, we explain the existing methods of generating multisided 
patches and sweep surfaces. In Section 3, we propose a method of 
generating a multisided patch from curves surrounding the patch. In 
Section 4, the method proposed in Section 3 is modified for singular 
conditions on the topology of the network: patches that have multiple 
and T-connected intersections, and open-sided and two-sided patches are 
considered. In Section 5, we give examples of curve networks and surfaces 
generated from them by our method, and in Section 6, we offer some 
conclusions and discuss future work. The Appendix includes a proof of 
the geometric continuity of the patches defined in Section 3. 

2 Previous Work 

Methods of generating multisided patches have become important 
as a result of the need for a mathematical model that can handle 
complicated shapes. These methods eliminate the drawback of tensor 
product surfaces; namely, a constraint on the arrangement of control 
points or profile curves. 

Catmull and Clark (1978), Doo and Sabin (1978), and Nasri (1987) 
proposed the recursive subdivision method, to remove the restriction 
on the topology of surfaces. This method, however, does not have 
closed-form parametrization. Hosaka and Kimura (1984), and Loop and 
DeRose (1989) introduced multisided patches, which are regarded as a 
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generalization of Bezier patches for multivariate barycentric coordinates. 
Loop and DeRose (1990) presented a method of constructing multisided 
B-spline surfaces with multisided patches, called S-patches, by using 
Sabin nets (Sabin, 1983). However, it is hard to calculate the control 
points of these patches in such a way as to generate G2 continuous 
surfaces. 

Varady (1991) proposed a method of overlapping patches, introducing 
local parametrization for individual vertex patches, and Charrot and Gre­
gory (1984) introduced multisided patches by using local parametrization 
of a multivariate coordinate system and a convex combination of blending 
functions. Nielson (1987), and Hagen and Pottmann (1989) also proposed 
triangular patches defined on barycentric coordinates through the use of 
blending functions. Their methods are similar to Charrot and Gregory's, 
and are extendible to multisided patches. These methods can generate 
G2 surfaces by increasing the degree of constituent equations, and they 
have no constraints on the representation of sub-surfaces to be blended. 

The above-mentioned methods of generating topologically free surfaces 
are still used for patches that match data incidents only to corresponding 
vertices. That is to say, the surfaces are defined by geometrical values 
assigned to corresponding corners of the patches. 

On the other hand, methods of generating sweep surfaces are well 
known and are implemented on most surface modellers, because they 
allow the design of shapes to be curve-based rather than vertex-based. 

Woodward (1988) proposed techniques for skinning surfaces by using 
interpolation based on B-splines, and Coquillart (1987) described a 
method based on non-uniform rational B-splines by adding a profile curve 
to scale the inbetween cross sections. Choi and Lee (1990) classified 
sweeping rules as parallel, rotational, spined, and synchronized sweeps; 
these sweeps are generalized by combining coordinate transformation 
and blending. Klok (1986) proposed a method of sweeping along a 3D 
trajectory by using rotation minimizing sweep that is a modification of 
Frenet frame sweep, and Tai, Loe and Kunii (1992) presented techniques 
of homotopy sweep. 

Their methods are flexible in terms of shape definition, but the 
representations of surfaces are restricted to tensor form. That is to say, 
the surface expressions comprise only the product of two independent 
parameters for cross sectional curves and guide curves, and this property 
restricts the topology of surfaces. 
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3 S ttrface Model 

In this section, we propose a method of generating an m-sided patch 
surrounded by m boundary curves by using m-variate coordinates. 
We first introduce generalized barycentric coordinates for the m-sided 
domain. Next, we generate two sweep surfaces by sweeping two cross 
sectional curves along the ith boundary curve; the cross sectional curves 
are selected from those curves sharing an intersection with the i th curve. 
Next, we generate a surface by blending the above two sweep surfaces, 
and call it the ith sub-surface. Finally, we generate an m-sided patch by 
blending the m sub-surfaces. This blending uses a transfinite interpolant 
that preserves the geometric continuity of the i th sub-surface on the i th 

boundary curve. 

3.1 Generalized barycentric coordinates 

Let a patch be surrounded by boundary curves C i Z = 1,2, ... , m, 
and be defined over an m-lateral polygon called a domain polygon. Each 
vertex of the domain polygon Pi corresponds to an intersection of the 
curves, and each edge of the domain polygon ei corresponds to a section 
of a curve between two intersections, as shown in Figure 1. 

We embed the multivariate coordinates on the domain polygon by using 
the generalized barycentric coordinates proposed by Loop and DeRose 
(1989; 1990). The mapping from each point P on the domain polygon 
P = {PI, P2, ... , Pm} to the generalized barycentric coordinates 
i = {i I, i 2, ... , i m} is defined as follows: 

where (}i(P) denote the signed area of triangle P Pi Pi+1, whose sIgn IS 
determined to be positive if P is inside P. 

The coordinates i define m-sided patches, and have the following 
properties: 

• Division of one: L~l ii = 1 . 

• Vertex preservation: Pi is mapped to ii = 1 n ijf-i = 0 . 

• Edge preservation: ei is mapped to ii + ii+1 = 1 n ijf-i,i+1 = O. 

• Pseudo-affine property: P = L~l ii(p) Pi holds if the domain polygon 
is regular. 
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3.2 Construction of sub-surfaces 

In this subsection, we propose a method of constructing sub-surfaces. 
The ith sub-surface, denoted by Sj, is generated from the boundary curves 
on ej , ej-1 , and ei+1. Without loss of generality, we assume that the curve 
Cj(t) on ei spans from 0 to ~j , and let C j _ 1(0) and C i+1(0) coincide 
with the vertices Pi and Pi+1 respectively (see Figure 1). All the curves 
can have arbitrary parametric forms that map the value of a parameter 
t E [O,~;] to a 3D point Cj(t); they can have arbitrary degrees and nodes 
of segments if they are represented by polynomial spline functions. The 
spans ~j are also arbitrarily set; however, it is desirable to make the spans 
be proportional to the arc length or the Euclidean distance between two 
intersections of the curve Ci in order to avoid generating unnaturally 
shaped surfaces. 

We here consider a sweep of cross sectional curves C i - 1 and C i+1 in 
which C j is regarded as a guide curve. 

First,. we introduce the local parameters Uj and Vi: Uj defines the 
parameter space of the guide curve C j , and Vi defines that of the cross 
sectional curves C j - 1 and C j +1. 

l;J Wi = { 
J.L 

Ui Wi L li+k 
k=1 

Vi = [~i-1 (1 - ~iJ + ~i+1 ~jJ E>i+k , 

m even 
m odd 

(1) 

where the suffix of l is defined to modulus m, and l J represents a floor 
function. 

Let the cross directional derivative Di about ej be defined by partial 
derivatives with respect to fi' i = 1,2, ... , m: 

a a 
Di = (fi + f i- 1) -an. + (fi+1 + f i+2) -af-

{.,-l ,+2 

m-2 a a a 
+ L li+k -af. - (~i - Ui) a'f- - Ui -af. ' 

k=3 ,+k ,,+1 
then (Ui , Vi) form an orthogonal parameter space with respect to D;: 

Di Ui 0, 

DiVi = ~i-1 (1- ~J +~i+1~ii· 
The sweep surface Ti,p is then represented in (Ui , Vi) coordinates by 

Ti,p( Ui , Vi) = Mp [Cp( Vi) - Cp(O)] + C i ( Ui), P = i - 1, i + 1 , (2) 
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where Mp represents an affine transformation matrix whose 3 X 3 elements 
are functions depending only on the parameter Ui, and a parallel (or 
translational) sweep of C p along C i is obtained by setting Mp to a 
unit matrix. The elements of the matrix Mp can be also determined 
by calculating an orthonormal coordinate frames along the guide curve 
C i , using a method of Frenet frame or rotation minimizing sweep (Klok, 
1986). This method imposes only weak restrictions on the guide curve; it 
must be regular and twice continuously differentiable with non-vanishing 
curvature. 

Next, we generate the ith sub-surface Si by blending the two sweep 
surfaces T i,i-l and T i,i+l with functions gi-l(Ui) and gi+l(Ui) 

Si(f) = gi-l(Ui) T i,i-l(Ui , Vi) + gi+l(Ui) T i,i+l(Ui , Vi) , (3) 

where gi-l and gi+l are determined in such a way as to satisfy the following 
constraints: 

gi-l(Ui)+gi+l(Ui) - 1, Ui E [O,Lli] ' 

gi-l(O) = gi+l(Lli) 1. (4) 

We here introduce weight parameters Wi for each curve C i , and 
construct the functions gi-l and gi+l by using Wi as 

Wi-l(~i - Ui) + Wi+l Ui ' 

where the parameter Wi controls the influence of C i on the shape of the 
sub-surface Si. 

The values of the elements of the matrix Mp and the function gp are 
uniquely determined for each pair of the intersecting curves (C i , C p ). 

The above-mentioned methods of determining these values are effective 
in that they can calculate smooth and natural shaped surfaces fast and 
stably. We may use nonlinear optimization techniques to minimize the 
variation of curvature or the energy of surfaces in order to generate the 
fair shapes (Moreton and Sequin, 1992). Their calculation, however, is 
time-consuming and unstable for our surface model. 

It is noteworthy that the sub-surface Si defined by the above 
expressions has the same order of geometric continuity as the cross 
sectional curves C i - 1 and Ci+l (see Appendix). 



262 

i !. 

II \",~":~\.,, 
... /~/..... .,/ '\" \ .. , .'"..,: ". Si .. ' ..... . t,.- ...... "[. . ...... t . .,/ .... ::~ 

.•... 1,1-1\, ...... + ..... ./ 1,1+1'" •• !,i+2 

1\{r- ' 
Figure 1: Sweeping of curves Figure 2: Blending of sub-surfaces 

3.3 Blending of sub-surfaces 

In this subsection, we generate an m-sided patch Qm by introducing 
a blending function Bi of the nth-degree. The patch Qm is composed 
by the convex combination of the m sub-surfaces Si, i = 1,2, ... , m as 
follows (see Figure 2): 

m 

Qm(£) = I: Si(£) Bi(£) , 
i=l 

where Bi is defined by 

B!'(£) = (£i£i+1t 
i L:k=l (£k£k+1t 

Equation (5) imposes the following conditions on the edges: 

Bi(£) 
Bi(£) 

Oh Bi(£) 
o£·h 

J 

1; £ E ei , 
0; £ E e#i , 

0; £ E ei , 

i, j = 1,2, ... , m, h = 1,2, ... , n - 1 , 

(5) 

where £ E ei := {£i+£i+1 = 1 n £#i,i+1 = O}. Consequently, Qm preserves 
the derivatives of Si with respect to D i , up to the (n - 1) th-order on ei: 

DfQm(f) = DfSi(£) ; £ E ei, h = 0,1, ... , n - 1 . (6) 
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Equation (6) implies that the continuity condition of Qm on ei is 
reduced to that of Si. Also, patch Qm has twist compatibility at the 
vertices (or corners) of the domain polygon, where compatibility was 
introduced by Gregory (1974) for a rectangular patch. 

The function By has singular points on the corners, but the 
singularities can be removed by adopting the limiting behavior of By 
near the vertices such that 

f E Pjf.i , i+1 

f E Pj=i, i+1 

where f E Pi := {fi = 1 n fjf.i = O}. Note that these limiting values 
preserve the continuity of the generated surface. 

This blending function is regarded as a generalization of the interpolant 
proposed by Nielson (1987) and Hagen and Pottmann (1989), whose 
methods concern a triangular domain. Charrot and Gregory (1984) 
proposed a blending function that has a similar property. Their function, 
however, uses a combination of three successive variables for pentagonal 
patches and interpolates the values on two sides, whereas our function 
uses a combination of two successive variables and interpolates on one 
side. Notice that the multivariate coordinates in the Gregory-Charrot 
scheme are defined by the perpendicular distances of a point from the 
sides of a regular polygon, and are thus not identical with the generalized 
barycentric coordinates. 

In Figure 3, we show the equi-valued line plots of B? for domain 
polygons with three, four, and five sides, where each line indicates 
n/10, n = 0,1, ... , 10 . 

Figure 3: Equi-valued line plots of B? 
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4 Modifications for singular topology 

The sub-surface Sj described in Subsection 3.2 destroys the condition 
of geometric continuity with an adjacent sub-surface Si along the ith 

boundary, if the constituent cross sectional curves for Sj and Si are not 
successively parameterized. 

An irregular network of curves causes such discontinuity of cross 
sectional curves between adjacent sub-surfaces if the following conditions 
on an intersection are satisfied: 

• More than two boundary curves intersect at a common vertex (called, 
multiple intersection). 

• The open end of a curve intersects in the middle of the other curve 
(called, T-connected intersection). 

Besides, the method in Subsection 3.2 cannot deal with such conditions 
on a domain as 

• An open set of the boundary curves defines the domain of a patch 
(called, an open-sided patch). 

• Only two boundary curves enclose the domain of a patch (called, a 
two-sided patch). 

We call the above four conditions singular topology. 
We consider that a curve network of singular topology is necessary in 

order to design complicated shapes flexibly, and therefore modify the rules 
of generating and blending sub-surfaces so that they satisfy geometric 
continuity for singular topology. The following four subsections explain 
the modified methods for each condition of singular topology. 

4.1 Multiple intersection 

More than two curves often intersect at a common point in a network; 
this point may represent a pole of a sphere or the center of a symmetrical 
shape. 

Let the guide curve e j have a multiple intersection with two curves 
eLl and eLl' as shown in Figure 4 (a). The adjacent sub-surfaces Si 
and Sj must have a boundary curve that is successively parameterized; 
however, two cross sectional curves eLl and eLl are independently 
parameterized. We therefore replace the cross sectional curve for Sj 
and Si with a common curve (:i-1 that is continuous at the multiple 
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intersection. For example, <\-1 is constructed by averaging the cross 
sectional curves such that: 

C. () _ E~=l CLl(t) 
,-1 t - >.. ' 

where>.. indicates- the number of the curves cLl that intersect with C j 

at the multiple intersection. 
This modification of cross sectional curves ensures that the sub-surfaces 

Sj and Si have geometric continuity of the same order as the curves cLl' 
However, the final surface does not satisfy geometric continuity at the 
multiple intersection, because of inconsistency of the geometric quantities 
at the intersections. Nevertheless, we can modify the intersecting curves 
in such a way that geometric continuity is satisfied at the multiple 
intersection. For G l continuity, the first-order derivatives of the curves are 
adjusted so that they are on a common plane at the multiple intersection. 
For G2 continuity, the second-order derivatives of the curves are also 
modified so that the curves have a consistent principal curvature or 
principal direction at the multiple intersection (Miura and Wang, 1992). 

4.2 T-connected intersection 

Hierarchical representation of a curve network is effective for designing 
complicated shapes, and it is realized by using T-connected intersections 
in the network. 

Let an open end of a curve CT be connected to the middle of a boundary 
curve C j( u) at U = Tj ~j , and let the curve C T split a sub-surface Sj into 
two sub-surfaces S~ and S} , as shown in Figure 4 (b). 

It is obvious that the sub-surfaces S~ and S} cannot have geometric 
continuity with the adjacent sub-surfaces Sj if they are constructed by 
using [CLI , C~ , C~+d and [CLI , C} , C}+l] respectively. 

We generate sub-surfaces that have geometric continuity with Sj as 
follows: 

1. Generate sub-surface Sj by neglecting C T and using cLl and C}+l 
as cross sectional curves and C j := C~ U C} as a guide curve. 

2. Split the sub-surface Sj( Uj , Vj) at Uj = Tj ~j into two sub-surfaces: 
SHUj, Vj) := Sj (r; Uj, Vj), S}(Uj, Vj) := Sj ((1 - Tj) Uj + Tj ~j, Vi)' 

The curve C T is used as a guide curve in constructing the sub-surfaces 
S~+l and sLl and used as a cross sectional curve for S~+2 and SL2- As a 
result, the final surfaces obtained by blending sub-surfaces have geometric 
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contip.uity with Sj , and they exactly interpolate the curve CT because 
the sub-surfaces S~+I and SLI contain the curve CT. 

4.3 Open-sided patch 

When the shape of a surface is being designed, a transitional network 
of curves may contain a domain that is topologically not closed. We 
here consider a modification of the method described in Section 3 for 
generating a surface from a set of boundary curves surrounding the 
open domain. This technique allows designers to check the shape of the 
transitional network. 

Assume that a virtual curve C m is added to a set of boundary curves 
C j , i = 1,2, ... , m -1 in order to surround an m-sided domain, as shown 
in Figure 4 (c). 

Because sweep surfaces TI,m and 'I'm-I,m cannot be defined, sub­
surfacesSI and Sm-I are equated to T I,2 and T m- l ,m-2 respectively. 
We then generate the m-sided patch Q!" by blending the sub-surfaces 
as follows: 

4.4 Two-sided patch 

m-I 
Qm(f) = L: Si(f) BF(f) , 

;=1 

U m 

l-um 

o 

i = 1 
i =m-l 

ii-I, m - 1 

The definition of a domain polygon in Subsection 3.1 implies that a 
two-sided patch cannot be defined; however, a domain enclosed by two 
curves often occurs in the construction of a curve network, especially in 
the first stage of designing a shape. Therefore, we propose a method of 
skinning the two-sided domain by extending it into a quadrilateral region, 
as shown in Figure 4 (d). 

We here split the curves C 1 and C 2 into two pieces as 

C~(t) := C1 G) , Ci(t):= C 1 (b.12+ t) , 
C~(t) := C2 G) , C~(t):= C 2 (b.22+ t) 
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Then the sub-surface Sj, i = 1,2,3,4 is constructed by the method 
proposed in Subsection 3.2 with the split curves. The sub-surface Sl is 
constructed by using C~ as a guide curve, and by using cg and c~ as 
cross sectional curves, and the sub-surface S2 is constructed with Ct, cg 
and C~. The sub-surface S3 and S4 are similarly constructed by using cg 
and C~ as a guide curve respectively, and by using C~ and Ct as cross 
sectional curves. This construction ensures the geometric continuity of 
the sub-surfaces Sj on ej . 

The final four-sided patch Q4 is generated by using the same blending 
functions Bi introduced in Subsection 3.3 as 

4 
Q4(f) = L S;(f) Bi(f) . 

;=1 

C~-l 

C~ C~ 
......... r;L~i ....... ..! Ci 

D. i···················· ........ ·.··. 

(a) Multiple intersection· Si 
...... ....... 

(b) T-connected intersection 

..... 

(c) Open-sided patch (d) Two-sided patch 

Figure 4: Singular topology 
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5 Examples 

In this section, we present some examples of curve networks and 
surfaces generated from them by our method. 

Figure 5 shows an example of a closed surface generated by a network 
that excludes the singular topology described in Section 4, where yellow 
balls indicate intersections of curves. 

In Figure 6, we show an example of a surface defined by a curve 
network that contains multiple and T-connected intersections, where 
green balls indicate multiple intersections and red balls indicate T­
connected intersections, and Figure 7 shows an example of a surface 
defined by a curve network that has open-sided and two-sided domains. 

All surfaces are generated from curves that have C 2 continuity 
represented by cubic splines, where the weight parameters Wi are set to 
1 for all curves, so that every pair of sweep surfaces are blended linearly. 
Translational sweeps are adopted for all the examples by setting Mp to a 
unit matrix. Surface data are generated by tessellating m-sided patches 
into triangular-stripes, and are rendered by using the Phong shading 
method on an IBM RISe Systemj6000 1. 

(a) A network (b) A surface 

Figure 5: A network excluding singular topology 

'IBM RISC System/6000 is a trademark of IBM Corp. 
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(a) A network (b) A surface 

Figure 6: A network including multiple and T-connected intersections 

(a) A network (b) A surface 

Figure 7: A network including open-sided and two-sided domains 
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6 . Conclusions 

We have presented a method of generating surfaces from a network of 
curves. Compared with existing methods, it has the following advantages: 

• Surfaces can be defined by a network of curves that have arbitrary 
parametric forms. 

• The network can be defined on an arbitrary connective topology, and 
all domains surrounded by the curves can be skinned. 

• Each patch can have an continuity with adjacent patches if all curves 
surrounding it have cn continuity. 

These advantages make it possible to construct a surface model on user­
friendly CAD interfaces for designing shapes by inputting 3D curves, 
such as (1) a sketching system with pen-input device, or (2) a virtual 
environment system with an advanced 3D input device such as a Spaceball 
or a DataGlove. 

We have not considered the topological representation of a network 
in this paper. Our method assumes that the topological data for the 
network is predetermined. Because of the complexity of the topology 
in an irregular network, it is difficult to construct topological data 
automatically from curve data. The topological representation and 
operations (including non-manifold conditions) for the network are our 
next research topics. 
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Appendix 
Proof of geometric continuity 

The nth-order geometric continuity of surfaces, denoted by an, 
quantifies the smoothness of the connections between patches, and is 
independent of the parametrization of patches. Equation (6) implies that 
the an condition of Qm on ej is reduced to that of Sj. We here prove 
that sub-surfaces Si constructed by the method given in Subsection 3.2 
have an continuity. 

We show that Si can be reparametrized to yield en continuity along 
the common boundary if cross sectional curves have en continuity at 
their intersections with a guide curve, because this property ensures an 
continuity according to Herron's definition (Herron, 1987). 
Definition: Two surface patches are said to be an continuous if one can 
be reparametrized to yield a true en join between the two. 

We aSsume the following premise without loss of generality: 
[Premise] 

1. Two adjacent sub-surfaces Si and Si are defined on regular domain 
polygons sharing ei . 

2. The surface Si (or Si) is defined on Uj and Vi (or iii and Vi) formed 
by the barycentric coordinates .e (or l) in Equation (1), and .e (or l) 
are determined by the common two-dimensional coordinate system 
(x,y). 

3. The coordinate system (x, y) has its origin at Pi, the direction of the 
x coordinate coincides with ei, and the point (1,0) coincides with 

Pi+l· 

The claim for an continuity is as follows: 

[Claim] There exists a reparametrization of x(x, y) and y(x, y) such 
that 

ahSi(Ui(X, 0), Vi(X, 0)) 
axh 

ahSi( Ui( x, 0), Vi( x, 0)) 
ayh 

ahsi( Ui(XO, Yo), Vi(XO, yo)) 
axh 

ahSi ( Ui( xo, Yo), Vi(XO, yo)) 
ayh 

(7) 

(8) 

where Xo = X(x,O) , Yo = y(x,O) , h = O,l, ... ,n, and assignment of 
y = 0 is made after the derivatives have been obtained. 
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From Equations (2), (3), and (4), the derivatives of Sj and Sj with 
respect to x on ej are represented by 

h h () h - h (-) 8 Si 8 C i Uj 8 Si _ 8 C j Uj 0 '- . 
8xh - 8xh ' 8xh - 8xh ' E e" h = 0,1,000, no 

From the premise, Uj and Uj are represented on ej as follows: 

Uj(x,O) 

Ui(X, O) 

Because the identical relation of Ui(X, 0) == Ui(X, 0) holds, Equation (7) is 
always satisfied without reparametrizing; x(x, y) = x 0 

Considering aUi(X,y)/ay = aUi(X,y)/ay = 0, we can represent the 
derivatives of Si and Si with respect to y as follows: 

ahSi(Uj, Vi) 
ayh 

8Si(Ui , Vi) 
ay 

[ ] 
(h) aSi( Ui ,Vi) 8Vi 

aVj , ay , 

[8S i (Ui ,Vi) 8Vi] (h) 
aVi 'ay , 

where [as/8v, 8v / 8y](h) represents the chain rule of differentiation such 
as 

[as avt) as 8v 
av ' ay av ay 

, 

[as 
av ' 

av] (2) 
ay 

a2s (av) 2 + as a2v 
8v2 ay av 8y2 

[as 
av ' 

aV] (3) 

ay 

If C i - I and CHI satisfy en continuity on ei , the derivatives of Si and 
Si on ei always coincide as 

ahSi(Ui,O) 
a- h Vi 

ahCi_I(O) ahCi+I(O) 
gi-l (Ui) M i - 1 h + gi+l (Ui) M i+ 1 h 

aVi aVi 

It is thus necessary and sufficient that 

ah Oh-
Io Vi 10 Vi Im--= Im-- , 
y--+O 8yh y--+O 8yh h=1,2,000,n, (9) 
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holds for Equation (8) to be satisfied. 
Let y(x,y) = Rl(x) y + (1/2) R2(x) y2, 

and abbreviate 8Vi(X,O)/8y and 82vi(X,O)/8y2 as Vy(x) and Vyy(x), 
and similarly 8Vi(X, O)/8y and 82vi(X,O)/8y2 as Vy(x) and Vyy(x) , 
then Equation (9) is represented by 

Vy(x) = Rl(x) Vy(x) , 
2 - -Vyy(x) = Rl(x) Vyy(x) + R2(x) Vy(x) . 

It is clear that Vy( x) never vanishes on ei , and thus the functions Rl (x) 
and R2(x) always exist as 

Rl(x) 

R2(x) 

Vy(x) 
Vy(x) , 

Vyy(x) - Rl(x)2 Vyy(x) 
Vy(x) 

We have therefore proved that the claim is satisfied for e2 continuity. 0 

For en, n > 2 continuity, we can obtain similar results by introducing 
y(x, y) = 2:~1 (l/i!) Ri(x) yi. 
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Abstract 

Freeform surfaces are commonly used in computer aided geometric design, so accurate 
analysis of surface properties is becoming increasingly important. In this paper, we define 
surface slope and surface speed, develop visualization tools, and demonstrate that they 
can be useful in the design process. Generally, surface properties such as curvature and 
twist are evaluated at a finite set of predetermined samples on the surface. This paper 
takes a different approach. A small set of tools is used to symbolically compute surfaces 
representing curvature, twist and other properties. These surfaces are then analyzed using 
numeric techniques. 

The combination of symbolic computation to provide an exact property representation 
(up to machine accuracy) and numerical methods to extract data is demonstrated to be 
powerful and robust. This approach supports a uniform treatment once the surfaces are 
computed and also provides global information, so questions such as 'is a surface devel­
opable?' or 'what are the hyperbolic regions of a surface?' can be answered robustly. 

Categories and Subject Descriptors: 1.3.5 [Computer Graphics): Computational 
Geometry and Object Modeling-Splines; Curve, surface, solid, and object representations. 

Additional Key Words and Phrases: NURBs, Freeform surface analysis. 

1 Introduction 

Sculptured surface representations are fundamental forms in computer graphics and in computer 
aided geometric design. During different stages of modeling with sculptured surfaces, quite a 
few properties of the surfaces may be of interest to the designer or required for a proper design. 
The designer may need to isolate regions with surface slopes, defined in this paper, which are 
too high or too low, to detect all regions with twists larger than prespecified values, to have a 
visual bound on the distance traveled in the Euclidean domain while moving in the parametric 
domain (which we refer to as speed bound), or even to isolate all the hyperbolic (saddle) regions 
in the model. 

Previous work directed at computing first and second order surface properties evaluated 
them over a discrete grid. Normals were computed and visualized by drawing them as arrows, 

'This work was supported in part by DARPA (N00014-91-J-4123) and the NSF and DARPA Science and 
Technology Center for Computer Graphics and Scientific Visualization (ASC-89-20219). All opinions, findings, 
conclusions or recommendations expressed in this document are those of the authors and do not necessarily 
reflect the views of the sponsoring agencies. 

t Appreciation is expressed to IBM for partial fellowship support of the first author. 
'Current address: Computer Science Department, Technion, Haifa 32000, Israel. 
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called "b,edgehogs" [SchwS3], over the grid. There have been attempts [BarnSS, BeckS6, DillS1, 
Forr79] to understand and compute second order surface properties such as mean and Gaussian 
curvatures, as well as twist, by evaluating them over the predefined grid (plate 1). 

Given a surface S( u, v), there is no common method to accurately subdivide S into con­
vex, concave, and saddle regions. Using symbolic tools developed in section 2 this trichotomy 
becomes feasible [Elber92], as is demonstrated in section 3. 

In section 2, we describe the required symbolic computation tools so properties such as 
Gaussian curvature, surface normal, surface slope, surface twist, and surface speed bound may 
be computed and represented as freeform surfaces. We call such derived surfaces property sur­
faces. We emphasize the NURBs and Bezier representations although other representations 
could be used, including any (piecewise) polynomial or (piecewise) rational representations. In 
section 3, we apply these tools to some examples and demonstrate their effectiveness. Visual­
ization is used extensively in the section to communicate the relationship these properties have 
with the shape of the surface. 

2 Background 

Surprisingly enough the set of symbolic tools one needs for the analysis treated here is small. 
One needs to have representations for the derivative, sum, difference, and product of scalar 
curves and surfaces. Any manipulation of curves or surfaces using these tools will result in 
a curve or a surface of the same type. The resulting curve or surface is exact to within the 
accuracy of the numerical computation, since these operation have closed forms and are, in fact, 
symbol manipulators. Therefore, we refer to the usage of these tools as symbolic computation. 

Contouring will also be used as a tool to extract information from the symbolically computed 
property surfaces. 

2.1 Symbolic Tools 

Given a Bezier or NURBs curve, the form of the derivative as a curve in vector space is well 
known (see [FarinS6]), 

dC(t) 
dt 

and this result easily extends to tensor product surfaces. 

(1) 

The symbolic computation of sum and/or difference of two scalar Bezier or NURBs curves 
is achieved by computing the sum and/or difference of their respective control points [Elber92, 
FarinS6, FarouSS], once the two curves are in the same space. This requirement can be met by 
representing them as curves with the same order (using degree raising [CohenS6a, CohenS6b] 
on the lower order one, if necessary) and the same continuity (using refinement [CohenSO] of 
knot vectors for NURBs). 

k k 

L PiBt,r(t) ± L QiBtAt) 
i=O i=O 

k 

L (PiBt,.(U) ± QiBt,.(U)) 
i=O 
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k 

2)Pi ± Qi)Bf,Au). (2) 
i=O 

This result easily extends to tensor product surfaces as well. 

Representation for product of scalar curves is the last requirement. For Bezier curves 
(see [Farin86, Farou88]), 

where 

m n 

L PiBf'(t) L QjB'J(t) 
;=0 j=O 
m n 

L L P;QjBf'(t)B'J(t) 
;=OJ=O 

i, j 
i+ j = k 

(3) 

This result can also be extended to tensor product surfaces. It is also necessary to represent 
scalar products as part of representing sums and differences of rational curves and surfaces, as 
well as derivatives of rationals. 

Finding a representation for the product of NURBs is far more difficult. A direct algorithmic 
approach has recently been developed [Morken] which supports symbolic computation of the 
coefficients of the product after finding the knot vector of the product curve. However, since it is 
computationally expensive and complex to implement, one might choose to exploit the B-spline 
representation uniqueness property and compute the coefficients of the product by solving an 
equivalent interpolation problem [Elber92]. 

2.2 Contouring operator 

It is frequently useful to know the zero set of a property surface or to have ill regions in which 
the values of the property is larger than some threshold, either for itself or to use in further 
analysis. Contours in the parameter space of the property surface can be used as trimming 
curves for the original surface [McCoI88], so the trimmed surface will consist of ill regions of the 
original surface with property values larger (or smaller) than the contouring level. The problem 
of computing the contours is closely related to finding surface-surface intersections and ray­
surface intersections [Kaji82], problems with inherent numerical complexities and instabilities. 

Let F(u, v) = (x({u,v), YlU,v)), z{{u,v))) and P = Ax + By + C z + D = 0 be the property surface w u,v w u,v W tI.,V 

and the contouring plane, respectively. By substituting the components of F( u, v) into Pone 
can solve for ill values of u and v in the parametric domain for which F( u, v) n P # 0. 

S(u,v) = A x(u, v) B y(u, v) C z(u, v) D --+ --+ --+ w(u,v) w(u,v) w(u,v) 
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Ax(u, v) + By(u, v) + Cz(u, v) + Dw(u,v) 
w(u,v) 

(4) 

A single NURBs surface representation for equation 4 can be found using the operations 
defined in section 2.1, namely surface addition and surface multiplication. The zero set of the 
surface S( u, v), in equation 4, is the set of parametric values for the required intersection. Since 
both F(u, v) and S(u,v) share the same parametric domain, mapping the parametric domain 
information back to F( u, v) is trivial. S( u, v) is a scalar surface, which leads to a simpler and 
faster computation. Assuming w( u, v) # 0, the zero set of S( u, v) can be computed using only 
the numerator of S( u, v). Thus, even if F( u, v) is a rational surface, contouring computations 
can be performed on scalar polynomial surfaces. 

In the following section, the tools defined in this section will be used. The four basic 
operations for surfaces: addition, subtraction, multiplication, and division will be combined with 
differentiation to define or approximate property surfaces, as necessary. Then the contouring 
algorithm will be used to analyze and extract useful information from them. 

3 Examples 

3.1 Surface slopes 

The slope of a planar curve at a given point is equal to the angle between the tangent to the 
curve and a reference line, usually the horizontal axis. In an analogous way we define the 
surface slope at a given point, p, as the angle between the plane tangent to the surface at p 
and a reference plane. Without loss of generality, in the discussion below we assume that the 
reference plane is the xy plane. 

Since the angle between two planes, is equal to the angle between their two normals, to 
compute surface slope, one need only compute the angle between the surface normal and the z 
axis. Let n be the surface unit normal and let nz be its z component. Then, the tangent of the 
slope angle P is equal to: 

J1- n2 tan(P) = ___ z. 
nz 

(5) 

When nz = + 1 the surface orientation is horizontal. If nz = 0 the surface is vertical, and 
finally if nz = -1 that surface is horizontal again, but this time facing down. 

Inspection of the surface unit normal equation shows that n( u, v) cannot be computed 
directly using the symbolic tools of section 2.1 because of the need to determine the square 
root. However, the z component of the unnormalized normal surface, n, is equal to: 

_ ( ) _ &x(u, v) &y(u, v) _ &y(u, v) &x(u, v) 
nz u, v - &u &v &u &v' 

where x( u, v) and y( u, v) are the x and y components of surface S( u, v). 

Then, nz(u,v) = nz(u,v)/lIn(u,v)ll, where IIn(u,v)1I is the magnitude of n(u,v) 

(6) 

Even though nz( u, v) contains a square root factor, it is a scalar function, and can be squared 
so that nz( u, v? can be represented. 

Given a slope P in degrees (or radians) the conversion to the n;( u, v) value required is 
straightforward using equation 5. Therefore, given a certain slope P, one can compute the 
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Figure 1: Silhouettes are equivalent to the zero set of equation 6 (rotated view). 

required nz and n; using equation 5. Since n; is representable using (piecewise) rationals, one 
can contour this surface at the required n; level. Plate 2 demonstrates tills exact process for 
several slope levels. 

Alternatively, one can use the symbolically computed property n;( u, v) as a scalar map 
designating the color of the surface at each location, much like a texture map. Plate 3 is an 
example for this approach, for the same surface as in plate 2. 

The technique presented here has also been used to compute silhouette curves of sur­
faces [Elber90j, and is equivalent to the zero set of equation 6. ftz( u, v) is symbolically computed 
and its intersection (contouring) with the plane Z = 0 provides the required silhouette curves 
in parametric space. Figure 1 shows one such example. 

Slope is not an intrinsic surface property. In fact, since it is orientation dependent, it provides 
the designer with a measure on the planarity of the surface as well as on its orientation. 

3.2 Surface Speed 

The speed of a curve is defined as the distance moved in Euclidean space per unit of movement 
in parameter space. For a curve, 

Set) II~II 
( dx)2 (dy)2 (dz)2 

dt + dt + dt (7) 

We define the speed bound of surface S( u, v) as the supremum of the speeds of all curves on 
the unit circle of the tangent plane using the first partials as a basis. 

Let art) be a curve in the parametric domain of S(u,v), that is net) = (u(t),v(t)). By 
providing tills speed bound of the surface parametrization, one can compute certain properties 
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on oEt) and use the speed bound to extrapolate and provide bounds on the properties on the 
composed curve So 0 = S( u(t), v(t)). 

Let ")'( t) be an auxiliary arc length parametrized curve with its image in the parametric 

space of S(u,v), i.e. ")'(t) = (u(t),v(t)), with (¥tr + (~r = 1, for all t. Then 

IldS(U(~~'V(t))W = 11 8SdU + 8SdVW 
8u dt 8v dt 

( 8x du + 8x dv r 
8u dt 8v dt 

(8Y dU 8YdVr 
+ 8u dt + 8v dt 

(8ZdU 8zdVr 
+ 8u dt + 8v dt 

~ (~:r + (~:r + (~~r 
(8y )2 (8Z)2 (8Z)2 + 8v + 8u + 8v ' (8) 

since 

( 8x du + 8x dv r 
8u dt 8v dt ( (~:, 8x) . (du 

8v dt' ~:)r 
II(~:, 8x) . (dU 

8v dt' ~:)W 
~ IIG:, ~:)W II(~;, ~:)W 

II(~:, ~:)W 
(~:r + (~:r (9) 

If 0 ~~ = ~~ (see figure 2 with collinear partials along the surface boundary, which implies 
the surface is not regular there) and o¥t = ~, then 

II (~: ' ~:). (~;, ~~) W = II (~: ' 0 ~:) . (~;, ~:) W 
II~: (1, 0) (~;, ~:) W 

1~:12 (1 + (2) 
(~:r + (~:r (10) 

and the upper bound established in equation 8 is reached. Therefore, this bound is minimal. 

Since it is not possible to represent the square root of equation 8 as a (piecewise) rational 
surface, in general, we compute instead 

S(u,v) = ((~:r + (~~r + (~:r 

+ (::r + (~~r + (::r) . (11) 
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Figure 2: Degenerated boundary provides the two extremes on speed bound. 

Plates 4 and 5 are two examples of using S( u, v) to compute a speed bound on the surface. 

The speed surface can be used to provide a measure on the quality of the parametriza­
tion. This can becomes especially important if the surface is to be evaluated (for any purpose, 
including rendering) at a predefined set of parameter values. 

3.3 Variations on Surface Twist 

Also interesting is the ability to visualize surface twist. Basically, the twist is defined as the 
cross derivative component: 

T( ) = &2S(u,v) 
U,v &u&v. (12) 

This equation is representable and can always be computed symbolically for (piecewise) 
rationals. Plates 6, 7 and 8 shows this property as a texture mapped on the surfaces. 

Using equation 12 as a twist measure has a major drawback as can be seen in plate 7. Even 
though the surface is fiat, the twist component is not zero since the speed of the parametrization 
is changing. In other words, the mapping from the parametric space to the Euclidean space is 
not isometric. It would be more helpful to use the twist component in only the surface normal 
direction (see [Barn88]) to eliminate the twist as a result of a non isometric mapping. 

( &2S(U,V)) 
h2 = 121 = n, &u&v (13) 

where h2, and = 121 are two of the components of second fundamental matrix form, L (see 
also [Carm076, Mill77, Stok69J). 

Obviously, this time the 112 component in the fiat surface in plate 7 is zero showing no twist 
in the normal direction. Furthermore, the use of this property showed that the teapot has 
virtually no twist in the normal direction as well. All the twist in plate 8 was a result of the 
nonisometric mapping. Plate 9 shows a nonplanar surface, similar to the one in plate 7 using 
112 as property surface mapping colors onto the surface, as texture. 

Since now one can compute both the total twist (equation 12), and the twist in the normal 
direction (equation 13), one can consider computing the twist in the tangent plane to the surface 
as the difference of the two quantities. This difference would provide another measure as to the 
quality of the surface parametrization. 



282 

3.4 Surface Trichotomy 

It is frequently desired to provide a bound on the angularity of a surface. It is also desired in 
some cases to detect and isolate concave or convex regions. In 5-axis NC milling, a fiat end 
cutter is usable only for the convex part of the surface. 

In [Carmo76, Elber] it is shown that one of the principal curvatures must be zero along the 
boundaries of convex, concave, or saddlelike regions and that this immediately necessitates that 
IILII = 0 where IILII is the determinant of the second fundamental matrix form. It is also shown 
in [Elber] that the zero set of 11111 can be used instead where 

(ft, ::ffv) l' 
(ft,~) 

and ft is the unnormalized normal ft( u, v) = ~~ x ~~ to the surface. 

(14) 

Each element of 1 is representable as a NURBs, using the tools developed in section 2. The 
bottom of plate 10 shows the scalar surface 11111 with the zero plane and their intersection. The 
top of plate 10 uses these intersection curves to form the surface trichotomy into convex (red), 
concave (green), and saddle (yellow) trimmed regions. Plate 11 demonstrates this method on 
a more realistic object. The teapot trichotomy degenerates into a dichotomy since no concave 
regions exist in the teapot model. 

Finally, it is interesting to note that a sufficient condition for a surface to be developable is 
that its Gaussian curvature is zero everywhere, i.e. K (u, v) == 0 [Faux79]. Since K (u, v) = l!§II, 
where G is the first fundamental form [Carmo76, Mill77, Stok69]' this condition is equivalent to 
the condition that IILII == 0, for regular surfaces when IIGII =f O. A simple practical test that can 
answer whether a surface is developable or not is to symbolically compute and compare each of 
IILII coefficients to zero. Plate 12 shows two developable NURBs surfaces, one ruled along an 
isoparametric direction while the other is not. 

3.5 Bounding the Curvature 

In [Elber] it is suggested that the sum of the squares of the principal curvatures may be a 
relevant measure of shape and can be represented as 

(K~)2 + (K~)2 
(911[22 + 111922 - 2912/12)2 - 211GII1I11I 

IIGII211ftll2 (15) 

~ is bounded to be at most V2 larger than the larger absolute value of the two principal 
curvatures. Furthermore, ~ can be represented using the tools described in section 2. In plates 12 
and 13, the ~ property has been computed for the two developable surfaces and for the Utah 
teapot model respectively and used as a texture mapped through a color map table. 

Plate 14 shows a surface subdivided into regions based on~. The property surface ~(u,v) 
of the surface in plate 14 is contoured in figure 3 and regions with different curvature bounds 
are formed. 
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Figure 3: Curvature surface bound, {, of the surface in plate 14. 

4 Conclusions 

Surfaces derived from both first and second order analysis of sculptured surfaces are represented 
as NURBs surfaces using a small set of operators. We show that a combination of symbolic and 
numeric operators can be used to globally represent, approximate, or analyze these property 
surfaces. Other properties that cannot be represented as piecewise rationals have approxima­
tions that bound these properties and are representable. Further, we introduce two new derived 
surfaces to help visualizing and understanding surface shapes - speed and slope. 

The full power of the NURBs representation can be used to analyze and to globally determine 
characteristics of these derived surfaces, which can then be used to visualize results or for 
feedback into design. For the first time the designer can guarantee that the steepness of the 
whole surface will be less than a specified slope or that a whole surface will have speed bound 
smaller than a specified value. 

We show that symbolic computation supports robust computation and simplifies visualiza­
tion of surface properties. Its usefulness is demonstrated in [Elber92] for applications from 
error bound for offset approximation to adaptive and almost optimal toolpaths for machining 
purposes, as well as the surface analysis discussed in this paper. 
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Chapter 6 

Curve and Surface Modeling 



Smooth Surface Interpolation with 
Bezier Surfaces Having Rational Bezier Points 

Abstract 

Kenji Ueda 
Ricoh Company, Ltd. 

1-1-17, Koishikawa, Bunkyo-ku 
Tokyo, 112, JAPAN 

The first order cross boundary derivatives of Bezier rectangles and triangles are inde­
pendently derived for each boundary by putting the Bezier points in the rational Bezier 
form. This representation simplifies the cross boundary construction in connecting two 
Bezier patches. Degree elevation allows handling the Bezier rectangle and triangle in a 
uniform manner. The interpolating surfaces take the standard Bezier form except the 
control points are convex combinations of the control points defining the cross boundary 
derivatives. The blending functions are in the rational Bezier form of the smallest degree 
and have the minimum significant values to define the control points. The surfaces hav­
ing rational Bezier points can be easily and economically converted to rational Bezier 
surfaces, however, with zero weight Bezier points at corners. A method for removing 
such singularities is also described. 

Keywords 

Bezier rectangles, Bezier triangles, radial derivatives, Gregory surfaces, convex combi­
nation surfaces, rational Bezier points, zero weights, rational Bezier surfaces. 

1 Introduction 

Various techniques for interpolating a mesh of curves by a smooth surface have been 
developed in computer aided geometric design. The Bezier surface is widely used in free­
form surface modeling. Many methods have been proposed to interpolate a network of 
three and four-sided regions smoothly by inserting a Bezier surface in each region. 

Smooth surface connection using the Bezier rectangle is reviewed in (Du and Schmitt, 
1990). A local surface interpolation method with tangent plane continuity for four-sided 
regions is described in (Chiyokura and Kimura, 1983; 1984). This method is also used 
in (Shirman and Sequin, 1987; 1991) to interpolate three and four-sided regions. For 
Bezier triangles, some interpolation methods are presented in (Piper, 1987; Hagen, 
1989). Triangular surface fitting schema are surveyed in (Mann, et al., 1992). In (Liu 
and Hoschek, 1989; DeRose, 1990; Wassum, 1992), geometric continuity conditions for 
Bezier surfaces are described. 

This paper describes a general method for smoothly interpolating three and four­
sided regions in a unified manner. The method constructs the Bezier rectangle and tri­
angle control points from the cross boundary derivatives defined by using their boundary 
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Figure 1: Bezier points of bicubic Bezier rectangle 

data as the derivatives of a Bezier rectangle. The control points are blended by rational 
functions in the Bezier forms. Each surface patch has rational Bezier points and are 
easily converted to rational Bezier surfaces. 

In the next section, the Bezier rectangle and triangle are defined and a property of the 
control points of the Bezier triangle is shown. The smooth surface connection method 
(Chiyokura and Kimura, 1983) of two adjacent surfaces from their common boundary's 
data is introduced in section 3. In section 4, smooth surface interpolation methods of 
three and four-sided regions by Bezier rectangles and triangles having rational Bezier 
points are presented. Finally, a conversion method of the interpolating surfaces to 
rational Bezier surfaces is shown. A technique for removing the singularities of the 
rational Bezier surfaces is also described. 

2 Bezier Surfaces and Their Bezier Points 

This section shows the definitions of Bezier rectangles and triangles and a geometric 
relation between a Bezier triangle and a Bezier rectangle. 

2.1 Bezier rectangles and triangles 

A Bezier rectangle of degree m x n is expressed by the following form: 

m n 

S(u,v) = I: I: Bi(u)Bj(v)Pi,j (0 ~ u, v ~ 1), (1) 
i=Oj=O 

where Bi(t) is the univariate Bernstein polynomial of degree n: 

(2) 

Figure 1 shows the Bezier point array Pi,j when m = n = 3. 



Figure 2: Bezier points of quartic Bezier triangle 

A Bezier triangle of degree n is expressed by the following form: 

i+j+k=n 
S(u,v,w) = L bi,j,k(u,v, W)Qi,j,k 

O$.i,i,k 
( O~U'V'W~l) 

u+v+w=l ' 

where bi,j,k( u, v, w) is the bivariate Bernstein polynomial of degree n: 

n _ n! i j k 
bi,j,k(u,v,w) - ~k'u v w . 
. Z.J •. 

Figure 2 shows the Bezier point arrangement Qi,j,k when n = 4. 

2.2 Geometric properties of the Bezier triangle 

291 

(3) 

(4) 

The relationship between cross boundary derivatives of a Bezier rectangle of degree 
n x n and a Bezier triangle of degree n + 1 is discussed in (Farin, 1982). Geometric 
property of Bezier triangles is shown by transforming Bezier triangles to degenerated 
Bezier rectangles. 

A Bezier triangle of degree n is transformed to the following bivariate form by 
substitutions u = t(l - v) and w = (1 - t)(l- v). 

S(U,v,w) = i+j~=n n! i( )i j( )k( )kQ 
L...J Tijlt 1 - v v 1 - t 1 - V i,j,k 

09,j,k z.J .. 
n n-j 

L Bj( v) L B~-j(t)Qi,j,n-j-i' (5) 
j=O i=O 
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Co(t) 

Figure 3: Interpolation of curves of varying degrees 

This substitution maps barycentric coordinates (u, v, w) to Cartesian coordinates 
(t,v). Thus the surface S(u,v,w) is transformed to S(t,v): 

n 

S(t,v) = EBj(v)Cj(t), (6) 
j=O 

where 
n-j 

Cj(t) = E B?-j(t)Q;,j,n_j-i' (7) 
i=O 

The surface S( t, v) is an interpolation of curves whose degrees varies from n to zero 
(Fig. 3). The derivatives at the boundary v = 0 as follows: 

(8) 

This surface is converted to a Bezier rectangle of degree n x n by elevating the degree 
of each curve to n. Each curve Cj(t) is converted to a curve Cj(t) and the control points 
of all curves Cj(t) form a Bezier rectangle of degree n x n: 

n 

Cj(t) = EBi(t)Q:,j' (9) 
i=O 

The resultant Bezier rectangle has a degeneracy corresponding to the curve of degree 
zero as shown in Figure 4. 
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C~(t) 

Figure 4: Degenerated Bezier rectangle 

2.3 Derivatives at boundaries 

The property of Bezier points of a Bezier triangle implies that it is possible to construct 
Bezier points of Bezier triangle of higher degree which express the cross boundary deriva­
tive of a Bezier rectangle. 

For example, the Bezier points Qi,i,k in Figure 5 are the first order derivatives of a 
quartic Bezier triangle constructed from the Bezier points Pi,i of a cubic Bezier rectangle 
that uses the following calculations: 

QO,O,4 = Po,o, 

Q _ Po,o + 3P1,o 
1,0,3 - 4 ' 

Q _ 2P1,o + 2P2,o 
2,0,2 - 4 ' 

Q _ 3P2,o + P 3,o 
3,0,1 - 4 ' 

Q4,O,O = P 3,o 

Q _ Po,o + 3PO,l 
0,1,3 - 4 ' 

Q _ P 1,o + 3P1,l 
1,1,2 - 4 ' 

Q _ P 2,o + 3P2,l 
2,1,1 - 4 ' 

Q _ P 3,o + 3P3 ,l 
3,1,0 - 4 . 

(10) 

If higher order derivative is required, the degree of a Bezier triangle is elevated 
according to the order. 

3 Smooth Surface Connection 

Various techniques to connect two Bezier surfaces at the common boundary have been 
developed. Although there are three combinations of a Bezier rectangle and a trian-
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Figure 5: Derivatives of cubic Bezier rectangle and quartic triangle 

gle; rectangle-rectangle, triangle-triangle and rectangle-triangle, we can get the Bezier 
points for Bezier rectangles and triangles from the solution for the rectangle-rectangle 
connection. 

3.1 Smooth connection of adjacent Bezier rectangles 

We introduce the technique by Chiyokura and Kimura (Chiyokura and Kimura, 1983) 
to connect two surfaces with tangent plane continuity along their common boundary. 

Figure 6 illustrates the technique. It shows that we can obtain the inner control 
points, which are indicated by hollow points in the figure, satisfying the following tangent 
plane continuity condition: 

:v Sb(u, V)lv=o= k(u) ! SB(U, v)lv=; h(u) :u sa(u, V)Ll' (11) 

where two functions k( u) and h( u) are assumed to have the following form: 

k(u) = (1 - u)ko + ukl, h(u) = (1 - u)ho + uhl . (12) 

By the conditions at u = 0 and u = 1, the constants ko, kl, ho and hi are obtained 
to satisfy: 

(13) 

The values of b l and b 2 are obtained as the following values by solving the equations 
(11), (12) and (13): 

3bl = (kl - ko)ao + 3koal + 2hoCl + hlcl, 

3b2 = 3kla2 - (kl - kO)a3 + hOC2 + 2hlCl' 
(14) 

Although this technique was originaly for constructing the control points of Bezier 
rectangle, the obtained control points can be transformed to those of Bezier triangle as 
mentioned in section 2.3. This technique satisfies our purpose to connect any combina­
tions of three and four-sided regions as shown in Figure 7. 
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Figure 6: Connection of two Bezier rectangles 

4 Smooth Surface Interpolation 

In the previous section, we have obtained a technique for constructing the Bezier points 
which represents the cross boundary derivative at each boundary of Bezier rectangles 
and triangles. In this section, a method for interpolating the three and four-sided regions 
is presented. The interpolating surfaces are Bezier surfaces with rational Bezier control 
points. We also present a optimal form for the rational Bezier points. 

4.1 Interpolation of four-sided regions 

A Gregory patch (Chiyokura and Kimura, 1983) is a surface definition method based 
on the Gregory's square (Gregory, 1974) to interpolate four-sided regions. In Gregory 
patch, the interior control points are represented by a rational blending function of two 
sub-control points associated with one of the boundaries. 

The bicubic Gregory patch is defined as follows: 
3 3 

S(u, v) = I: I: Bf(u)B;(v)Pi,j(u, v), 
i=Oj=O 

where 
( ) uP¥ 1 + VPi'I 

PI,I U,V =' , , 
u+v 

( ) _ UP1,2 + (1- V)Pi',2 
P I2 U, V - ()' , u+ I-v 

( ) _ (1 - U)P~,I + VP~,I 
P 21 U, V - () , , l-u +v 

( ) (l-u)P~2+(I-v)P~2 P U V = ' , 
2,2, (l-u)+(I-v)' 

(15) 

(16) 
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Figure 7: Connection of bicubic Bezier rectangle and quartic triangle 

and Pi,j(u,v) = P iJ for the rest of the control points. Figure 8 illustrates the bicubic 
Gregory patch. The four internal control points move along line segments; the end points 
of each line segment are the sub-control points defining the cross boundary derivatives. 

Different functions are allowable for each control points in (16) to blend the sub­
control points as in (Gregory, 1983). However, those blending functions are required to 
satisfy at least the following conditions: 

P1,I(O,V) = P~,I' 
P 1,2(O, v) = P~,2' 

P 2,1(I,v) = P;,I' 

P2,2(I,v) = P;,2' 

P 1,I(U,O) = pr,I' 

P 1,2(U, 1) = pr,2' 

P 2,I(U,O) = P;,l> 

P 2,2(U, 1) = P;,2' 

Further requirements for blending functions are mentioned in section 4.3. 

4.2 Interpolation of three-sided regions 

(17) 

The method for interpolating four-sided regions can be easily adapted to interpolate 
three-sided regions. Quartic Greogory triangle, for example, is defined as follows: 

where 

i+j+k=4 
S( U, v, w) = L bt,j,k( u, v, w )Qi,j,k( u, v, w), 

O'Si,i,k 

UQV +vQu 
Q ( ) 1,1,2 1,1,2 

1,1,2 U, V, W = U + v ' 

vQw +wQv Q ( ) 2,1,1 2,1,1 
2,1,1 U, V, W = v + w ' 

wQu +uQw 
Q ( ) 1,2,1 1,2,1 

1,2,1 U, V, W = W + U ' 

(18) 

(19) 
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Figure 8: Bicubic rectangular Gregory patch 

and Qi,j,k( u,"v, w) = Qi,j,k for the rest of the control points. Figure 9 illustrates a quintic 
triangular Gregory patch. This surface is equivalent to the tGB patch of (Schmitt, Chen 
and Du 1991). Another expressions for the inner control points of triangular Gregory 
patch are presented in (Mann, et al., 1992). 

It is clear that functions to blend sub-control points must satisfy the following con­
ditions: 

Ql,l,2(0, v, w) = Q~,l,2' 

Q2,1,1(U,0,W) = Q~,l,l' 

Ql,2,1(U,V,0) = Qt2,1' 

4.3 Rational Bezier points 

Ql,l,2( u, 0, w) = Qr,1,2' 

Q2,1,1(U,V,0) = Q~l,l' 

Ql,2,1(0,V,W) = Q~,2,1· 

(20) 

The interior control points of interpolating surfaces are represented by rational func­
tions. In other words, the surfaces are recognized as Bezier surfaces having rational 
Bezier points. While these surfaces interpolate three and four-sided regions well, they 
have special mathematical forms to define their shape. Here, we propose optimal forms 
for their blending function, in consideration of conversion to rational Bezier surface. 

It has been mentioned that the blending function must satisfy the condition (17) 
or (20). It is desirable that the all functions appeared in a surface have a uniform 
expression. If all rational control points in a surface have a uniform expression, the 
surface is represented as a convex combination surface. This property minimizes the 
rate of degree elevation, when the surface is converted to a rational Bezier surface (Ueda, 
1991). 

The function f( u, v) is the proposed blending function for Bezier points of a Bezier 
rectangle and it is defined as follows: 

(1 - u)u{(l - V)2VO + v2Vt} + (1- v)v{(l - U)2Uo + u2Ud 
f(u,v) = (I _ u)u{(l- V)2 + v2} + (1- v)v{(l- U)2 + u2} 
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0,4,0 

Figure 9: Quartic triangular Gregory patch 

[ 2]T[ ][ 2] (l-u) 0 Uo 0 (I-v) 
2(1 - U)U Vo 0 Vi 2(1 - V)V 

U 2 0 U1 0 V 2 

[ 2]T [ ] [ 2]. (l-u) 010 (I-v) 
2(I-u)u 101 2(I-v)v 

u 2 0 1 0 v2 

(21) 

This function f( u, v) is represented by the rational Bczier form, illustrated in Figure 
10, and can smoothly blend the four values, Vo, Vi, Uo and U1• The hollow control 
points in the figure indicate that the weights of these control points are zero. 

The function has the following properties: 

f(u,O) = Vo, 
f(O,v) = Uo, 

feu, 1) = Vi, 
f(l,v) = U1 • 

(1- u)(I- v}Vo + uvVi 
(1 - u)(I- v) + uv 

u(l- v)Vo + fl - u~vVi 
u(1 - v) + 1 - u v 

if Vo = Uo, Vi = U1 , 

(22) 

(23) 

It is obvious that f(u,v) can satisfy the condition (17). Using the function f(u,v), 
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Uo 

Figure 10: f( u, v) 

the Bezier points in (16) can be replaced by the following rational Bezier points: 

( ) _ u(l - V)Pi,1 + (1 - U)VPi,1 
PI,I U, V - (1 ) (1 ) , u -v + -u v 

( ) uVPi2+(1-u)(I-v)Pi2 
P l2 U, V = '( )( )' , , uv+ l-u 1- v 

( ) (1- u)(1 - V)P~,1 + uvP;,1 
P 21 u, v = ( )() , , l-u I-v +uv 

(24) 

( ) (l-u)vP;2+u(l-v)P;2 
P22 U, V = ( )' ( ) '. , I-uv+ul-v 

While the function f ( u, v) is suitable for the blending function of the rational Bezier 
points explained earlier, f(u,v) is inadequate in some cases such as (Chiyokura, Taka­
mura, Konno and Harada 1991; Miura and Wang 1991). 

The reason of the inadequateness is related to the derivative of the Bczier surface 
having rational Bczier points. The derivative of the surface S( u, v) and the derivative 
at the boundary v = 0 are as follows: 

a m {n dna } 
av S(u,v) = t;Bi'(u) ~ dvBj(v)PiAu,v) + ~Bj(v) au PiAu, v) , (25) 

!S(U,V)I,,=o= taBi'(u) {n (Pi,I(U,O) - Pi,O(U,O» + :vPi,o(U,V)LJ· (26) 

To define its four cross boundary derivatives independently, the derivatives of the Bczier 
points must also be considered. This means the value of the derivatives of the Bezier 
points are zero at the four boundaries. 

In the case of section 4.1, Pi,O, which are not rational Bezier points, satisfy the 
following conditions for i = 1,· ··,3: 

(27) 

When a function of higher degree is necessary to make derivatives of the rational 
Bezier points to zero at the boundaries, one of the following general forms of the function 
f(u,v) must be used. 
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f(u,v) B~d( U){B~d(V )Vo + B~~( v )lIi} + B~d( V ){B~d( u)Uo + Bi~( u)Ud 
B~d( u ){B~d( v) + Bi~( v)} + B~d( V ){B~d( u) + B~~( u)} 

(1- u)dud{(1 - v)2dVO + v2dlli} + (1 - v)dvd{(l_ u)2dUo + u2dUd 
(1 - u )dud{(1 - V)2d + v2d } + (1 _ v )dvd {(I _ u )2d + u2d } 

The general function f( u, v) can be expressed in the following matrix form: 

T 
B~d(U) 0 0 ... 0 Uo 0 . .. 0 0 B~d(v) 

Bid(u) 0 0 ... 0 0 0 ... 0 0 Bid(v) 

B~~I(U) 0 0 ... 0 0 0 . .. 0 0 B~~I(V) 
B~d(U) VO 0 ... 0 0 0 . .. 0 lIi B~d( v) 
B~~I(U) 0 0 ... 0 0 0 . .. 0 0 B~~1 (v) 

B~L(u) 0 0 ... 0 0 0 . .. 0 0 B~L(v) 
B~~(u) 0 0 ... 0 U1 0 . .. 0 0 B~~( v) 
B~d(u) 

T 
0 0 0 1 0 0 0 B~d( v) · .. · .. 

Bid(u) 0 0 .. . 0 0 0 ... 0 0 Bid(v) 

B~~I(U) 0 0 · .. 0 0 0 · .. 0 0 B~~1 (v) 
B~d(u) 1 0 · .. 0 0 0 . .. 0 1 B~d(v) 

B~~I(U) 0 0 ... 0 0 0 . .. 0 0 B~~I(V) 

BiL(u) 0 0 · .. 0 0 0 · .. 0 0 BiL(v) 
Bi~(u) 0 0 · .. 0 1 0 · .. 0 0 Bi~(v) 

(28) 

(29) 

It is apparent that f( u, v) of the rational Bezier form has only one non-zero control 
point at each side. This property of rational Bezier points decreases the amount of 
computation in conversion of the surface to the one of the rational Bezier form. 

This general form ofthe f( u, v) has not only the property (22), but also the following 
properties : 

& I & I & I & I 8uJ (u,v) u=o= 8uJ (u,v) U=I= 8vJ (u,v) v=o= 8vJ (u,v) V=I= 0, (30) 

where i = 1,2,···,d-l. 
For the rational Bezier points of Bezier triangles, there is a function g( u, v, w) that 

blends the sub-control points: 

( ) vwUo + wuVO + uvWo 
9 u,v,w = . 

vw+wu +uv 
(31) 

The function smoothly blend three values, Uo, VO and Wo, and has the following prop­
erties: 

g(O,v,w) = Uo, 

g(u,O,w) = Vo, 

g(u,v,O) = Woo 

(32) 
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Figure 11: g(u,v,w) 

The function g( u, v, w) has its general form as well as the function f( u, v), as follows: 

g(u,v,w) = vdwdUo + wdudVo + udvdWo 
vdwd + wdud + udvd 

b~~diu,v,w)Uo + b~~oiu,v,w)Vo + b~~,o(u,v,w)Wo 
b~~,iu,v,w) + b~oiu,v,w) + b~~d,o(u,v,w) 

(33) 

This function has only one value at each side as well as f( u, v), when it is expressed by 
the rational Bezier form. The general form of the g( u, v, w) has not only the property 
(32), but also the following properties: 

EJi I EJi I 8
i I auig(u,v,w) = 8vig(u,v,w) = 8wig(u,v,w) = 0, 

u=o v=o w=0 

(34) 

where i = 1,2" .. ,d-l. The function g( u, v, w) is often used in the area of interpolating 
three-sided region (Hagen, 1989; Foley and Opitz 1992). 

Using g(u,v,w), the Bezier points in (19) can be replaced by the following rational 
Bezier points: 

( ) _ VWQi,j,k + wuQiJ,k + uvQij,k 
Qijk U,V,W - , 

" vw+wu+uv 
(35) 

where 

Qw +Qu QV _ 1,2,1 1,2,1 
1,2,1 - 2 ' 

Qu +Qv QW _ 1,1,2 1,1,2 
1,1,2 - 2 ' (36) 

Qv +Qw QU _ 2,1,1 2,1,1 
2,1,1 - 2 . 

5 Conversion to Rational Bezier Surfaces 

A Bezier surface having rational Bezier points can be converted to rational Bezier sur­
faces. IT the rational Bezier points do not have the common denominator, these points 
must be transformed to have their common denominator. Since the rational Bezier 
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points, which are introduced in the previous section, have the co=on denominator 
and each control point has only three or four non-zero values, the cost of conversion and 
the degree of converted surface are minimum. 

5.1 Bezier rectangle with rational Bezier points 

A Bezier rectangle with rational Bezier points has the following form: 
m n 

S(u,v) = EEB;"(u)Bj(v)P;,iCu,v), 
;=0;=0 

where 
p q 

E EBt(u)Bj(v)Wk,IP~~ 
P ( ) k=OI=O ;,; u,V = =":;p;=-;;-q-------

E E Bt( u )Bj( v )Wk,l 
k=OI=O 

Using an identity of the univariate Bernstein polynomials: 

B~(t)Bq(t) = (:) (~) BP+9(t~ 
• J (~ + ~) '+J " 

~+J 

(37) 

(38) 

(39) 

the surface S( u, v) is converted to the following rational Bezier rectangle (Ueda, 1992): 

m+pn+q 
" "Bm+p(u)Bn+q(v)w' .p~ . L..." L..." l J ~,J ',J 

S(u, v) = ...:.;_=0:.....:.;_=0.:....... ________ _ 
m+pn+q (40) 

E E B;"+P(u)Bj+q(v)w;,; 
;=0 ;=0 

In this process of conversion, computations with the zero elements are not necessary. 
The number of non-zero elements of rational Bezier points is always four, which is the 
number of the sides of a four-sided region. 

For example, the surface of (15) with the control points (24) is converted to a rational 
biquintic Bezier rectangle. The control points P;,; of the rational Bezier rectangle are 
illustrated in Figure 12. This figure shows the control points at four corners have 
zero weights. The zero weights are due to the zero weights of their rational blending 
functions. Actually the control points near the corners have the following characteristics: 

w~,O = 0, 

W~,5 = 0, 

P~,l = P~,o, 
P~,4 = P~,5' 

w~,O = 0, P~,l = P~,o, 

w~,5 = 0, P~,4 = P~,5' 

These characteristics are considered in Figure 13. 

H f( u, v) of higher degree, such as: 

feu v) = (1- u)2u2{(1 - v)4Vo + v4Vd + (1- v)2v2{(1 - U)4UO + u4Ud 
, (1_u)2u2{(1_vt+v4}+(1_v)2v2{(1_u)4+u4} ' 

(41) 

(42) 

is used as a blending function, the number of control points with zero weights at the 
corners increases. 
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Figure 12: Rational Bezier rectangle with zero weight Bezier points 
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Figure 13: Geometric arrangement of rational Bezier rectangle 

5.2 Bezier Triangle with rational Bezier points 
A Bezier triangle with rational Bezier points has the following form: 

where 

i+i+k=n 
S(u,v,w) = L: bi,i,k(U,V,W)Qi,i,k(U,V,W), 

O$i,i,k 

I+m+n=p 
~ bP ( ) QiJ,k L..J l,m,n U, V, W Wl,m,n l,m,n 

Q ( ) O<l,m,n 
i,j,k U, V, W = -='-,I+"-m-'--,-+-n_-p---------

L bf,m,n(u,V,W)WI,m,n 
O~ltmtn 

Using an identity of the bivariate Bernstein polynomials: 

p! q! 
i!j!k! l!m!n! + 

bf,i,k( u, v, W )br,m,n( u, v, w) = -----"'--,(~p-+-q-.,.)-;-! ---bf+?J+m,k+n( U, V, w), 

(i + l)!(j + m)!(k + n)! 
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(43) 

(44) 

(45) 
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Q~, 5 = Q~,l,5 

Figure 14: Geometric arrangement of rational Bezier triangle 

the surface S( u, v, w) is converted to the following rational Bezier triangle: 

Hi+k=n+p 
'" bnTP(u v w)w'. Q~. L.-J ',Jlk" ',J,k t.,J,k 

( ) O$i,i,k S u,v,w = --~~------------------­i+i+k=n+p 
2: b~tk( u, v, w)W;,i,k 

O$i,i,k 

(46) 

In this process of conversion, computations with the zero elements are not necessary 
as well as the Bezier rectangle. The number of non-zero elements of rational Bezier 
points is always three, which is the number of the sides of a three-sided region. 

For example, the surface of (18) with the control points (36) is converted to a 
rational Bezier triangle of degree 6. The control points near the corners has the following 
characteristics: 

W~,O,6 = 0, Q~,O,5 = Q~,l,5' 

W~,6,O = 0, Q~,5,O = Q~,5,l' ( 47) 

w~,o,o = 0, Q~,O,l = Q~,l,O· 
The control points Q:,i,k of the rational Bezier triangle in consideration of the above 

characteristics are illustrated in Figure 14. 

5.3 Removing the singularities at the corners 

A rational Bezier surface converted from a Bezier surface having rational Bezier points 
has singularities at their corners. This singularities are usually inconvenient, because 
control points with zero weight are generally prohibited. 
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The Corners are the base points (Warren, 1992) of the surface and the base points 
can be removed by using surface subdivision techniques (Goldman and Filip, 1987; lino 
and Wilde, 1991). While this method can remove the singularities of the surfaces, it 
produces several degenerated surfaces from one surface. 

In this section, another method for removing singularities from the surfaces is pre­
sented. Since this method (Ueda, 1992) is mathematically an approximation rather 
than a conversion, it is practical to use and generate only one surface. In the method, 
the blending function is approximated. The function f( u, v) is replaced by its approxi­
mation function J« u, v) and g( u, v, w) by g'( u, v, w). 

The function J« u, v) is expressed by the matrix form of the following rational Bezier 
function: 

B~d(U) 

B~d(u) 

B~~l(U) 
B~d(u) 

B~~l(U) 

B~L(u) 
B~~( u) 

T 
(UO + Yo)€ 0 

0 0 

0 0 

Yo 0 

0 0 

0 0 

(Ul + Yo).: 0 

B~~l(U) 
B~d(u) 

B3~l(U) 

B~L(u) 
B~~(u) 

T 21: 0 

o 0 

o 0 
1 0 
o 0 

o 0 
21: 0 

... 

... 

... 

... 

... 

... 

... 

0 Uo 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 Ul 0 

010 
000 

000 
000 
000 

000 
010 

... 

. .. 

... 

... 

... 

... 

... 

0 (Uo + Vi).: 
0 0 

0 0 

0 Vi 
0 0 

0 0 
0 (Ul + Vi)1: 
o 21: 

o 0 

o 0 
o 1 

o 0 

o 0 
o 21: 

B~~l(V) 
B3d(v) 
B~~l(V) 

B~L(v) 
B~(v) 

B~d(v) 

B~d(v) 

B~~l(V) 
B~d(v) 

B~~l(V) 

B~L(v) 
B~~(v) 

(48) 
The function J« u, v) is obtained by putting the minute values at the four corners of 

(29). By this approximation the singularity at the four corners of the function f( u, v) 
is removed. In other words, the values f(O,O), f(O,l), f(l,O) and f(l, 1), which have 
been undefined, are fixed with the following values: 

1'(0,0) = Uo + Yo, 1'(0,1) = Uo + Vi, 1'(1,0) = Ul + Va, 1'(1,1) = Ul + Vi. (49) 
2 2 2 2 

The properties of the derivatives (30) of the function feu, v), however, are inherited 
to the function J«u,v): 

where i = 1,2, ... ,d - 1. 
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The approximated function of g(u,v,w) is g«u,v,w) and is defined as follows: 

(51) 

The function g( u, v, w) is approximated by putting the minute values at the three corners 
of (34) as well as f(u,v). 

This function also fixes the undefined values of g( u, v, w): 

v+w 
g(l, 0, 0) = --2-' 

u+w 
g(O, 1,0) = --2-' 

u+v 
g(O,O, 1) = -2-' 

and it preserves the properties of its derivatives at the boundaries: 

a
i I a

i I a
i I auig«u,v,w) = avig«u,v,w) = awig«u,v,w) = 0, 

u=o v=o w=o 

where i = 1,2,· .. , d - l. 

(52) 

(53) 

Both of the approximated function J« u, v) and g« u, V, w) affect the conversion cost 
of surfaces to rational Bezier surfaces. This is because the number of non-zero elements 
in the rational Bezier points is increased. Even if any form of the functions f( u, v) or 
g( u, v, w) is used, the number of non-zero values is merely changed from four to eight 
about the function f( u, v), or from three to six about the function g( u, v, w). 

6 Conclusion 

This paper describes a smooth interpolation method for three and four-sided regions in 
a unified manner, given an independent cross boundary derivative along each boundary 
curve. The Bezier triangle construction from a Bezier rectangle cross boundary deriva­
tive proves that the connection problem of two adjacent three or four-sided surfaces can 
always be reduced to that seen between two four-sided surfaces. 

The interpolating surface is a Bezier rectangle or triangle having rational Bezier 
points, and the surface can be converted to a rational Bezier surface. The proposed 
blending functions have the smallest degree and the minimum significant values to 
define the control points, when the functions are represented in the rational Bezier 
form. These properties suppress the increase of computational cost of converting these 
surfaces to rational Bezier surfaces. 

The interpolating surface has singularities at the corners. Introducing a small scalar 
deviation in the formulation removes these singularities without significantly affecting 
the surface shape. This approximation allows converting Bezier surface with rational 
Bezier points into standard rational Bezier surface and NURBs. 
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ABSTRACT. We describe a method to generate blend surfaces which fit with 
continuous curvature to the primary surfaces. This blend surface is obtained as 
the bicubic tensor spline minimizing a variational problem. Among all the bicubic 
tensor splines which give a curvature continuous blend surface, the one is chosen 
which minimizes a bilinear functional. In Section 2 we summarize and extend the 
results of a previous paper in such a way that they are applicable to our problem. In 
Section 3 we outline in detail the procedure how to generate a blend surface based 
on these results. 

1. INTRODUCTION 

The problem is to find a "blend surface" which either connects two "primary surfaces" or 
closes a hole in a single surface. In any case one would like that the composition of these 
surfaces is a rather smooth object (see [12]). There are severable methods to achieve this 
task, rolling ball method, potential method, PDE-methods and others (see [2, 6, 9]). 
In [5] we presented a method based on variational principles. There we described how 
to obtain blend surfaces which are" geometrically smooth", briefly CGI (or just GI). 
That is, the normal vector varies continuously (across the boundaries with the primary 
surfaces). However, for visual reasons as well as enginering applications, one often wants 
to have stronger smoothness conditions. It is known, e. g., that in general Gl-surfaces do 
not give smooth reflection curves. 

The authors would like to thank the reviewers for their many helpful comments on this 
paper. 

2. BLENDING TECHNIQUES BASED ON VARIATIONAL PRINCIPLES 

Geometric properties of a parametrized surface F : n -+ 1R3 such as area, arc length, 
curvature, etc. can be expressed as functionals of the partial derivatives of the components 
Fi of F . Thus to find a blend surface it seems reasonable to look for a parametrization F 
which has prescribed boundary data and minimizes a functional depending on the partial 
derivatives of the Fi's. For example, to obtain the surface of minimal area, one has to 
minimize 

JI(F):= 10 II:~ (u) x ::'(U)1I2 du , 

where II . 112 denotes Euclidean length, and ::. (u) x ::. (u) is the vector product of the 
tangent vectors ::. (u) and ::. (u) of the surface F( u) . In this case, one can only prescribe 
the boundary values not the normal or even the curvature. Thus, generating blend surfaces 
by this method will only yield continuous surfaces. The normal vector or the tangent plane 
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will be discontinuous along the boundary between primary surface and blend surface. This 
becomes clearly looking at the one-dimensional analogue: There is no curve of minimal 
length, connecting two points PI and P2 and having a tangent at the endpoints not parallel 
to PI P2 • 

Minimizing one of the functionals 

and 
J3 (F):= lY:::'F(u)ILlF(u))du 

respectively, where HF ( u) denotes the mean curvature of the surface F in F( u) and LlF 
denotes the Laplacian of F , one can prescribe boundary values and normal vectors at the 
boundary. By this method one can generate smooth blend surfaces, i. e. GI-continuity 
at the boundary. The procedure based on functional J3 is described in detail in [5). A 
similar idea is used in [11) to construct surfaces satisfying interpolation conditions or more 
general linear constraints. A completely different approach, also based on a variational 
concept, is the minimal norm network chosen by [8), [7) and others. In citegre93,wel92 
one cannot achieve G2-continuity, i. e. the curvature will not be continuous (along the 
boundary .of primary and blend surface). In order to achieve this, one has to consider 
functionals where partial derivatives of order 3 enter in an essential way. A possible choice 
is the following: 

J4 (F) := in (V(LlF)(u)IV(LlF)(u)) + a(LlF(u)ILlF(u)) + b(V F(u)IV F(u)) du (1) 

where (as above) "Ll" denotes the Laplacian and "v" the gradient. 

Thus 

(V F(u)IV F(u)) = L:T:I L:;:I (~(u) r 
(LlF(u)ILlF(u)) = L:T:I (L:J:I ~(u)r 

(V(LlF)(u)IV(LlF)(u)) = L:7:I L:;:I (a~~i(u)r 

a and b are positive constants, which later on may serve as design parameters. 

Let us briefly explain the different parts of the functionals. In case the parametrization 

is isometric, i. e. ::, and ::, are orthonormal at every point, V(VF(u)IVF(u))du is 
the surface element, hence fn(V F( u)IV F( u)) du is the mean square of the area of the 
parametrized surface. HLlF(u)ILlF(u)) is the square of the mean curvature HF(U) of 
the surface at F(u). Thus the term fn(LlF(u)ILlF(u)) du measures somehow the to­
tal mean curvature. Finally, V(LlF(u)) tells how the mean curvature varies. Thus, 
fn(V(LlF)(u)IV(LlF)(u)) du will be small if the curvature does not change much. The sec­
ond and third term also allow a physical interpretation (see [3)). In case the parametriza­
tion is nearly isometric, the second and third term represent the energy due to bending 
and stretching respectively. 

While for curves it is always possible to find an isometric parametrization (parametrize 
by arc length), for surfaces this is impossible in general. In fact this can be achieved if 
and only if the Gaussian curvature is 0 . Nonetheless, by choosing the parameter space 
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according to the geometry of the surface, one can achieve that the interpretation of the 
three terms in (1) given above is true in an approximate manner. 

The choice of an appropriate parameter space on the one hand and the need to give a 
representation of the surface by bicubic tensor splines makes it necessary, to consider more 
general functionals than the one given in (1). In fact, one has to consider those, which 
are induced by (1) via a transformation of variables. The formulation will be easier to 
understand, if we start with an slightly more general approach. 

Since partial derivatives up to order 3 may enter the functional, we choose as the space of 
all possible parametrizations the Sobolov space H 3 ( n, R 3) . It consists of all (continuous) 
parametrizations F: n ..... R 3 , F(UloUZ) = (F1(UloUZ),F2(Ul,U2),F3(uj,U2)) , such that 
each component Fi , (i = 1,2,3) has square integrable partial derivatives of order::::: 3 . 
For a precise definition of H3 (R,R 3 ) see [1]. H3 = H3(R,R 3 ) is equipped with an inner 
product given by 

Here we used multi-index notation. That is, the sum is taken over all pairs of nonnegative 
integers a = (aloa2) such that lal = aj + a2 ::::: 3. For a = (aloa2) : a~:I!(u) := 

8aa~;aa2f, (u) . H 3(n, R 3) is completefor the norm 1I·IIH3:= rr::;;;; induced by the inner til U 2 V~',')H;j 

product, i. e; it is a Hilbert space. 

On H3 we consider functionals B of the following form 

( ) {"" ( ) alai 1':' ( ) alf!IG, ( ) B F,G := io..L., Wija{3 U ~ U 8u f! U du. 
2,J,Ot,/3 

(2) 

The summation taken is over all i,j E {1,2,3} and all multiindizes a,j3 of order::::: 3 . 
Wijot(3 : n ..... R are bounded weight functions. B is bilinear and continuous with respect 
to the H3-norm. Moreover, we assume that B is symmetric, positive semi-definite, and 
definite on the linear subspace Hg which consists of those F E H3 which vanish together 
with all the partial derivatives of order::::: 2 on the boundary an of n . That is we require 

B(F,G) = B(G,F) for all F,G E H 3 , 

B(F, F) ~ 0 for all FE H3 , 

(3) 

(4) 

there exists ,> 0 such that B(F, F) ~ ,(FIF)H3 for all FE Hg. (5) 

Let us consider a concrete example. 

B4(F, G) := Jo.C'v(.6.F)(u)IV'(.6.G)(u)) + a(.6.F(u)I.6.G(u)) + b(V' F(u)lV' F(u)) du (6) 

where a ~ 0 and b > 0 constants. The functional J4 defined in (1) is precisely the 
quadratic form corresponding to B4 , that is, J4 (F) = B4(F, F) . 

2.1 Lemma The functional B4 satisfies the conditions (2)-(5). So does every functional, 
which is induced by B4 via a (three times differentiable) transformation of variables. 
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Proof. Obviously, B4 satisfies (2)-(4). It remains to verify condition (5). 

By Friedrich's inequality (see [1]) there exist a constant 11 , depending only on n , such 
that 

1o(G(u)lG(u))du:::: 11 incVG(u)JV'G(u))du 

provided that G vanishes on the boundary! Thus, if F E Hg , then we can apply this to 
the function G = F + /j.F and obtain 

in (F( u) + /j.F( u)JF( u) + /j.F( u)) du :::: 11 10 (V'(/j.F) ( u) + V' F( u)JV'(/j.F)( u) + V' F( u)) du 

Furthermore, since id+/j. is an isomorphism from Hk to H k - 2 there are constants /2 , /3 > 
o such that 

Then we have 

12(FJF)H3 :::: (F + /j.FJF + /j.F)Hl = 
= Io(F(u) +/j.F(u)JF(u) +/j.F(u)) du+ Io(V' F(u)+ V'(/j.F)(u)JV' F(u)+ V'(/j.F)(u)) du:::: 

:::: (1 + It} Io(V' F(u) + V'(/j.F)(u)JV' F(u) + V'(/j.F)(u)) du = 
= (1 + It} Io(V'(/j.F)(u)JV'(/j.F)(u)) + 2(V' F(u)JV'(/j.F)(u)) + (V' F(u)JV' F(u)) du 

Since V' F vanishes on the boundary (F E Hg i), partial integration (more precisely 
Green's formula) yields Io(V'F(u)JV'(/j.F)(u))du = - Io(/j.F(u)J/j.F(u))du:::: O. Thus 
the estimate given above in combination with the assumption b > 0 implies that there is 
I > 0 such that 

Given a transformation of variables CP : n -+ n , and considering the induced bilinear 
functional B , i. e. B( F, G) := B4( F 0 CP, G 0 CP) , then obviously B satisfies (2)-(4). That 
also (5) is fulfilled follows readily from the fact that under a transformation of variables Hg 
is mapped onto Hg , i. e., F E Hg(n, JR3) {=} F 0 CP E Hg(n, JR3) . This is a consequence 
of the chain rule for differentiation. 0 

The problem we want to investigate is the following: 

Given a parametrized surface Fo E H3 and a bilinear functional B satisfying 
(2)-(5) find in the affine subspace Fo + Hg c H3 a parametrized surface F 
that minimizes the corresponding quadratic form Q(-) = B(-, .) i. e. 

FE Fo + Hg and B(F, F) :::: B(G, G) for all G E Fo + Hg. (7) 

The condition F E Fo + Hg ensures that F and Fo as well as their partial derivatives of 
order:::: 2 agree on the boundary of n . This means, that the surfaces represented by Fo 
and F respectively, have the same normal vector (or tangent plane) and the same Dupin 
indicatrix, in particular, the same curvature at each point of the boundary an . 
Problem (7) has a unique solution, and the solution can characterized by a linear equation. 
In fact, the following result can be proven (compare with Proposition 2.2 in [5]). 
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2.2 Proposition. Given Fo E H3 and a bilinear functional B satisfying (2)-(5), then 
(7) has a unique solution F E H3 . Moreover, the solution is characterized by the following 
condition 

B(F, G) = 0 for all G E Hg . 

Proof. From (2)-(5) it follows that B satisfies the parallelogramm law 

To prove existence, we choose a minimizing sequence (Fnl C Fo + Hg. That is we 
have linln_oo B( Fn, Fn) = q := inf {B( G, G) : G E Fo + Hg} . From (8) we conclude 
that B( Fn-;,Fm , Fn-:tm) = ~ B( F", Fn) + ~ B( F,n, F,n) - B( Fn~Fm , Fn~Fm) :::; ~ B( F", Fn) + 
~B(Fm' Fm) - q -> 0 as n,m -> 00 . Then (7) implies IIFn - F,nll~3 = (Fn - FmIF,,­
Fm)H3 -> 0 as n, m -> 00 , which shows that (Fn) is a Cauchy sequence in the complete 
space H3 . Thus F := limn_ oo Fn exists and, since Hg is a closed subspace, F E Fo + Hg . 
Moreover, since B is continuous with respect to the H 3-norm we obtain B( F, F) = 
limn~oo B(Fn' Fn) = q . 

Let us prove uniqueness next. Given F, G E Fo + Hg , F -I G and B(F, F) = B(G, G) , 
then 0 -I F :... G E Hg. Hence by (5) B( F;G, F;G) > O. From (8) it follows that 
B(F!G, FiG) < B(F,F) = B(G,G) . Since FiG E Fo + Hg, neither F nor G minimizes 
B(·,·) . 

It remains to show the characterization of the minimum. If F is a solution to (7) and 
G E Hg then for t E R F+tG E Fo+Hg ,hence B(F, F) :::; B(F+tG, F+tG) = B(F, F)+ 
2tB(F, G)+ t2 B(G, G) . Thus the real function f : t ~ B(F, F) + 2tB(F, G)+ e B(G, G) 
has a minimum at t = 0 . Hence 2B(F, G) = 1'(0) = 0 . 0 

It follows from the proposition, that (7) can be solved by solving an infinite dimensional 
linear system. Of course, this can be done only in an approximate way, one has to consider 
a finite dimensional problem. In fact, one determines the minimum in an appropriate finite 
dimensional subspace. Let us briefly describe the procedure: 

• Choose a (sufficiently large) finite dimensional subspace 80 of Hg and a basis 
{el, ... ,eN} of 80 , 

• Determine the coefficients aij := B( ei, ej) , 1 :::; i :::; j :::; N , aij := aji , i > j and 
bi := B(Fo, ei) . 

• Solve the N x N linear system Ax + b = 0, where A = (aij) , b = (hi) . 

• Then F: Fo + L:~l Xiei is the (approximate) solution. 

In case the parameter space is a rectangle, as finite dimensional subspace one can choose 
a space of tensor spline surfaces. In fact, if nand m are the degrees with respect to first 
and second variable, then 8",m C H3 provided that n ~ 3 and m ~ 3 . Thus for example 
bicubic tensor spline surfaces (n = m = 3) can be chosen for this purpose. 
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3. GENERATING BLEND SURFACES 

In the following we want to outline how the results of the previous section can be applied 
to generate blend surfaces. We assume that the primary surfaces are given as cubic spline 
surfaces and we are going to construct a bicubic tensor spline surface which acts as a 
blend. 

We consider the problem of connecting two given primary surfaces SA and S B each having 
a circular hole. Then (locally) we have parametrizations FA and FB of the primary 
surfaces . FA , FB : [0,271"] X [0,1] -+ ]R.3 are periodic with respect to the first variable. 
f AO(t) := FA(t,l) and fBO(t) := FB(t,O) represent the boundary curves at the holes. 
f AI(t):= ¥,:(t, 1) and fBI(t):= W,:;(t,O) respectively are tangential fields to the surfaces 
at the boundary. Finally, in order to get curvature continuity, we have to consider second 
order derivatives, fA2(t):= aa2FHt,l) and fB2(t):= 8a2FHt ,0) respectively as well. 

U2 U2 

In the following we assume that the three curves f AO, f AI, f A2 are periodic cubic splines 
over a commen grid. The same is assumed to be true for fBo, fBI, fB2 This is justified 
by the assumption that the primary surfaces are given as cubic spline surfaces. 

The need to work with tensor splines makes it necessary, that the parameter space is a 
rectangle (more precisely a flat cylinder, due to the periodictiy with respect to the first 
variable). On the other hand, the functional J 4 has the geometric interpretation given 
in Section 2 only if the parametrization is "nearly" isometric. This forces the parameter 
space to be of a similar shape than the hole which has to be closed by the blend surface. 
Both tasks can be accomplished, by considering a transformation of variables. Thus one 
has to perform the following steps: 

1. Choose a primary parameter space 11 C ]R.2 whose boundary consists of two closed 
curves ,. and ,b and map ,. to f AO and ,b to fBO respectively. This should be done 
in such a way, that it fits the geometry of the hole which has to be blended best 
possible. 

2. Find a parameter transformation <I> : [0,271"] X [0,1] -+ 11 , periodic with respect 
to the first variable such that <1>(-,0) is a parametrization of ,. and <1>(.,1) is a 
parametrization of ,b . 

3. Choose a grid (set of knots) 0 = to < tI < ... < tN = 271" in [0,271"] such that 
{<I>( tj, 0) : 0 S j S N} contains all knots of f Ai and {<I>( tj, 1) : 0 S j S N} contains 
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all knots of fBi. Choose an equidistant grid of [0,1) consisting of M + 1 points, 
M 2:: 3 . That is, Sj := il ' j = 0,1, ... ,M . Then determine the canonical B-spline 
basis {b; 1/9 dj : 1 :::; i :::; N, -1 :::; j :::; M + I} of the set of all scalar-valued bicubic 
tensor splines subordinated to the grid (t;, Sj )O$i$N.O$j$M which are periodic with 
respect to the first variable. 

4. On H3(n, JR.3) consider the bilinear functional B4 defined by (6) and determine the 
bilinear functional B on H3([0,27r) x [0,1)' JR.3) induced by B4 via I) . 

5. Define a bicubictensor spline surface Fo : [0, 27r) x [0, 1) -+ JR.3 , which is subordinated 
to the grid (t;,Sj)O$i$N.O$j$M and fulfils the boundary data in the following way: 

Fo(ut, u2) = 
f AO(UI)(d_1 (U2) + dO(U2) + d l (U2)) + iff Al (uI)(dl (U2) - d_l (U2)) + 
+ ~2f A2(UI)(~d_I(U2) - !do(U2) + ~dl(U2)) + 
+fBO(Ut}(dM- 1(U2) + dM(U2) + dM+1(U2)) + if fBI (uI)(dM+1(U2) - dM- 1(U2)) + 
+~fB2(UI)GdM-I(U2) - !dM(U2) + ~dM+1(U2)) . 

Here (as in step 3) {d j : -1 :::; j :::; M + I} is the canonical cubic B-spline basis on 
the unit interval [0,1) corresponding to the grid {il : ° :::; j :::; M} 

6. Determine the coefficients Ck;j := B(Fo,ek(b; 1/9 dj )) for 1 :::; i :::; N , 2 :::; j :::; 
M -2, k = 1,2,3 and aij.r.:= B(el(bi 1/9 dj),el(b. 1/9 dt )) for 1:::; i,r:::; N, 2:::; 
j, S :::; M - 2 . Here et, e2, e3 denotes the canonical basis in JR.3. Then solve for 
k = 1,2,3 the N(M - 3) x N(M - 3) the linear system AXk + Ck = ° . 

7. Defining Xij := (Xli;' X2ij, X3ij) , 1 :::; i :::; N , 2 :::; j :::; M - 2 then F := Fo + 
Ef:l Ef;;2 xij(b; 1/9 dj ) is the blend surface we are looking for. 

Let us comment in more detail on some of the seven steps. 

ad 1) The choice of the parameter space depends on the geometry of the problem. There 
is no general rule for choosing n . Note that also the identifications of '"fa with f AO and 
'"fb with fBO should be done in a compatible way. 

ad 2) Any parameter transformation that satisfies the conditions can be chosen here. 

ad 3) The indentification of the spline f AO with '"fa and finally via I) with [0,27r) x {OJ 
yields a set of knots in [0,27r) . In the same way one has knots induced by the spline fBO . 

As grid ° = to < tl < ... < tN = 27r one chooses the refinement of these sets of knots. 
Defining Lk := 27r-tN_k and tN+k := 27r+tk for k 2:: ° one obtains a grid on JR.. Let bi be 
the B-spline vanishing outside the interval (ti-2, tH2) , normalized such that Ei bi( u) = 1 
for all U E JR. . Then the periodic B-spline basis function bi , i = 1,2, , ... , N are given by 
b; := ... + bi-N + bi + bHN + ... . The grid with respect to the second variable is chosen 
equidistant only to keep things as simple as possible. In general a few points will suffice 
3 < M < 10 should yield satisfactory results. dj is the spline vanishing outside the interval 
(~, i:Jj) , normalized such that Ej dj = 1 . Finally, bi 1/9 dj(ut, U2) := b;(UI)dj(U2) . 

ad 4) If 111 : n -+ R is the inverse of parameter transformation I) then the bilinear 
functional B induced by B4 via I) is defined as follows: B(F, G) := B4(F 0111, Go 111) . 
Differentiation of the integrand using the chain rule and then substitution of the variable 
U = I)(u) will finally lead to representation of B of the form (2) (see Example 3.2 in [5)). 
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ad 5). Below, in the proof of Proposition 3.1 it is shown, that Fo actually satisfies the 
desired boundary conditions. Thus Fo may be considered as a "curvature continuous" 
blend function. However, this will (if at all) be a reasonable blend surface only in case M 
is small, M = 3,4,5 . Note that in the case M = 3 , we have Hg = {OJ hence F = Fo . 

ad 6) To determine the coefficients Ckij , one may first of all give the representation of 
Fo as linear combination the basis functions bi ® dj , i = 1, ... ,N , j = -1,0, 1, M -
1, M, M + 1 . This can be easily achieved in case the boundary data f Ai and fBi are 
given by their control points. One has to determine B( ek(br ® ds), ek(bi ® dj )) for i,1" = 
1, ... N , s = -1,0, 1, M - 1, !vI, M + 1 and j = 2, .. ,M - 2 . Then the coefficients 
Ckij can be easily obtained as linear combination of these quantities. Note also that 
B(ek(br ® ds), ek(bi ® dj)) of 0 only if 11" - il ::; 3 and Is - jl ::; 3. This also shows, that 
the matrix A of the linear equations which finally has to be solved contains many zeros 
(provided that Nand/or M is large). 

ad 7) We have mentioned in the previous remark, that the control points of Fo can be 
obtained easily, provided that the boundary data are given by their control points. The 
control points of F then are obtained by adding to the control points of Fo the quantities 
Xij . 

3.1 Proposition. The procedure described above yields a curvature continuous blend 
surface. 

Proof. We have 
d_! (0) = ~ d~! (0) = -¥ 
do(O) = ~ d~(O) = 0 

d!(O) = ~ d;(O) = ¥ 
dj(O) = dj(O) = dj(O) = 0 

Thus by the definition of Fo we have at U2 = 0 : 

d'!..! (0) = M2 

d~(O) = -2M2 

d~(O) = M Z 

for j> 1 

Thus the partial derivatives of Fo and FA of order::; 2 agree at the common boundary. 
Of cousrse the same argument applies to the common boundary of Fo and FB . 

Since F - Fo E Hg , the partial derivatives of F and Fo up to order 2 agree along the 
boundaries Uz = 0 and Uz = 1 . Thus the surface composed of the primary surfaces SA , 
SB and the blend surface F is C Z as well. 0 

CONCLUSION. The method to generate blend surfaces by minimizing a suitable 
functional as described above is rather general. There are no restrictions on the geom­
etry of the primary surfaces. It always yields a curvature continuous object. Even the 
assumption that the primary surfaces are given as cubic spline surfaces is not essential. 
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Then the final solution will not be a tensor spline surface (due to the fact, that in this 
case Fo as defined in step 5 will not be a tensor spline surface). 

In comparison to other existing methods, there is some relation to the PDE-method 
introduced by Bloor and Wilson in [2]. 

The relation stems from the fact that to a variational problem there corresponds an "Euler 
equation". Under suitable regularity assumptions, the solution of this partial equation is 
a solution to the variational problem. In order to obtain the same degree of smoothness 
by the PDE method one has to deal with (at least) sixth order pde's, which numerically 
by far cannot so easily be solved like, for example, second order elliptic equations. 

In case the boundary data are given by splines, the method described above yields as a 
final result the control points of a tensor spline surface. Thus the surface can be drawn 
easily using these data, no additional interpolation is necessary. 

References 

[1] R. A. Adams, Sobolev spaces, Academic Press 1975 

[2] M. 1. G. Bloor, M. J. Wilson, Generating blend surfaces using partial differential 
equations. CAD 1989, pp. 165-171 

[3] R. Courant, D. Hilbert, Methoden der Mathematiscllen Physik, Springer-Verlag, 
Berlin Heidelberg 1968. 

[4] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York 
1969. 

[5] G. Greiner, Blending techniques based on variational principles, to appear 

[6] C. Hoffmann, J. Hopcroft, The potential method for blending surfaces, in G. Farin 
(ed.), Geometric modelling: algorithms and new trends, SIAM, Philadelphia 1987, 
pp. 347-364. 

[7] H. P. Moreton, C. H. Sequin, Functional Optimization for fair surface design, Sig­
graph '92, pp. 167-176 

[8] H. Pottmann, Scattered data interpolation based upon generalized minimum norm 
networks, Preprint Nr. 1232, TH Darmstadt, May 1989 

[9] J. R. Rossignac, A. A. G. Requicha, Constant-radius blending in solid modelling, 
Compu. Mech. Eng. 3 (1984), pp. 65-73. 

[10] G. Strang, G. J. Fix, An analysis of the finite element method, Prentic Hall, Engle­
wood Cliffs 1973. 

[11] W. Welch, A. Witkin, Variational surface modeling, Siggraph '92, pp. 157-166 

[12] J. R. Woodwark, Blends in geometric modelling, in R. R. Martin (ed.), The mathe­
matics of surfaces II, Oxford University Press, Oxford 1987, pp. 255-297. 



Filling N -sided Holes 

Suresh Lodha 
Department of Computer and Information Sciences 

University of California, Santa Cruz 
CA 95064, USA 

Abstract 

Smooth surface patches, such as Gregory patch, Brown's square and Nielson­
Foley patch, which interpolate a given function and its derivatives on the boundary 
of a rectangle or a triangle, with incompatible twist terms, have been constructed 
with rational parametric representation by using boolean sum techniques, convex 
combination methods and procedural methods to fill N -sided holes. Chiyokura 
and Kimura proposed a representation of Gregory patch in Bernstein-Bezier form, 
where interior control points are expressed as convex combinations of incompatible 
control points via rational blending functions. No such representation is known for 
solutions to the above problem over pentagonal domains. We construct smooth 
rational sUrface patches which interpolate a given function and its cross-boundary 
Ck derivatives on the boundary of any convex polygonal domain with incompatible 
twist data. These patches are represented in S-patch form, where control points 
are expressed as convex combinations of incompatible control points via rational 
blending functions. This constructive rational technique provides novel solutions 
for blending incompatible Ck data over polygonal domains. In particular, new 
solutions are constructed for rectangular and triangular patches as well. 

Keywords: N -sided hole, rational surface patch, blending functions, S-patch, 
Gregory patch, Brown's square, convex polygonal domain, twist, cross-boundary 
derivatives. 

1 Introduction 

The n-sided hole problem arises when n patches surround a hole. The objective is to 

construct a surface patch that fills the hole and meets the surrounding surface patches 

smoothly. We shall restrict our attention to the case where the surrounding patches have 

polynomial or rational parametric representations. Thus, the problem is to construct a 

smooth interpolant for a parametrically defined vector-valued function and its derivatives 

on the boundary of a polygonal domain. These interpolants on a fixed domain generate a 

surface patch, which then can be fitted together with adjacent patches to create a smooth 

surface. 

The problem of filling an n-sided hole is an important problem and has been studied 

by various researchers over the last thirty years. In its earliest form, the n-sided hole 
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arose as a problem of filling wire-frame meshes of curves by surface patches. Given a 

user-defined network of curves and cross-boundary derivatives, a solution to the n-sided 

hole problem creates a smooth surface which interpolates the user-specified data. 

Coons [Co064) pioneered this study by solving the problem of interpolation to po­

sition and derivative information for networks of curves with a rectilinear structure by 

constructing what are known today as Coons patches. His scheme involves side-side in­

terpolants, which interpolate the data and its derivatives on the two opposite sides of 

a rectangle. The final solution is created by taking boolean sums of these lofting inter­

polants. These patches are then fitted together over a net of rectangles to form a smooth 

surface. Gordon [Gor69) recognized the boolean structure of these patches, and Gordon 

[Gor69) and Forrest [For72) explicated these methods in detail. Barnhill, Birkhoff, and 

Gordon [BBG73) extended Coons patches from rectangular domains to standard trian­

gular domains. This construction was then generalized by Little [Bar91) to arbitrary 

triangular domains via barycentric coordinates. 

One of the difficulties associated with this problem is the incompatibility of the cross­

derivatives or the twist terms at the corners of the domain. The schemes, described 

above require that the cross-derivatives or the twist terms be compatible at the vertices 

of the domain. However, in general, one cannot expect the twist terms to be compati­

ble. If the twist terms are incompatible, it is well-known that a parametric polynomial 

patch cannot fill the hole [Pet90). Therefore, solutions using parametric rational patches 

were proposed. Gregory [Gre74) proposed alternative solutions for both rectangular and 

triangular domains with incompatible twist terms. These schemes involve using rational 

blending functions to take care of the incompatible twist terms at the corners. Gregory's 

solution for rectangular domains, known as the Gregory patch, was represented in Bezier 

form by Chiyokura and Kimura [CK83). Here interior control points are represented no 

longer as constants, but as rational combinations of user-specified incompatible control 

points. We shall refer to this representation as a rationally controlled Bizier represen­

tation. This representation is compact and very suitable for computation. For example, 

various algorithms, such as the deCasteljau algorithm for evaluation and subdivision of 

Bezier surface patches, can also be applied to surface patches with a rationally controlled 

Bezier representation. Moreover, since this representation is expressed in terms of the 

user-specified control points via rational blending functions, it provides some geometric 

intuition for understanding the patch. Nielson [Nie79) proposed an alternative solu­

tion for triangular domains by using a side-vertex method. Foley [Fol9l) noted that the 

discretized version of Nielson's solution for the cubic triangular case has a rationally con­

trolled Bezier representation. Alternative solutions for the rectangular domain were also 
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proposed' by Brown using convex combination methods [Lit83]. Brown's square [Gre83a] 

is another example of a solution with a rationally controlled Bezier representation. The 

generalization of a family of Gregory patches proposed by Ueda and Harada [UH91] also 

have rationally controlled Bezier representations. 

Extensions of these methods to pentagonal domains and the underlying difficulties 

which are encountered have been studied by Gregory, Charrot, and Hahn [CG84, GH89, 

GH87, Gre83b, GC80]. These schemes, however, are procedural. The resulting surface 

patches, which fill 5-sided holes, do not have any compact representation in terms of 

user-specified control points. Hosaka and Kimura [HK84] derived expressions for non­

rectangular patches in terms of control points, but in general they are quite complicated. 

The n-sided patches developed by Sabin [Sab83] are restricted to 5 and 6 sides. Other 

n-sided patch representations have been proposed by Herron [Her79J, Varady [Var91, 

Var87], and Loop and DeRose [LD90]. 

Attempts have also been made to generalize these results, when the hole-filling surface 

patch meets the surrounding surface patches, not just with C1 continuity as in the above 

cases, but with higher order of continuity, such as C 2 or C3 • A generalization to smooth 

interpolants, which match the value of the fnnction and C 2 cross-boundary derivatives 

for the case of rectangular domains is described by Barnhill [Bar83] and Worsey [Wor84]. 

Extensions to higher dimensions have also been studied. Interpolation to boundary data 

on a hypercube has been investigated by Barnhill and Worsey [BW84, Wor85, BS84]; 

interpolation to boundary data on a simplex is described by Gregory [Gre85]. 

This work introduces a new solution in a compact form, suitable for computation, 

which works for any number of sides, any number of derivatives, and any number of 

dimensions. We construct these surface patches in rationally controlled S-patch rep­

resentation, where the interior control points are expressed as convex combinations of 

user-specified incompatible control points using rational blending functions. This repre­

sentation arises naturally in solving the n-sided hole filling problem, and provides good 

geometric intuition for the proposed solution. The S-patch representation [LD89] is itself 

a natural generalization of the Bezier representation. Our construction unifies the myriad 

solutions, proposed for filling n-sided holes, including the Gregory patch, the Brown's 

square and the Nielson-Foley patch. 

After a review of Bezier simplexes in Section 2, of barycentric coordinates for a convex 

polygon in Section 3, and of the basic properties of S-patches in Section 4, the n-sided 

hole problem is described in Section 5. Sections 6 and 8 introduce the rationally con­

trolled Bezier representation and rational blending functions, which are used to describe 

the general solution presented in Section 9. Section 7 motivates the proposed solution 
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by giving an example of a 2-sided hole problem from the curve case. Finally, Section 

10 presents many examples of filling n-sided holes using the techniques described in 

this paper including the Gregory patch, Nielson-Foley patch, Barnhill-Worsey patch and 

Brown's square. 

2 Bezier Simplexes 

This section describes the multi-index notation, and reviews the definition of a Bezier 

simplex. A detailed treatment of these topics is given in [dB87, LD89]. A multi-index 

will be denoted by an italic character with a diacritical arrow at the top, as in i. A 

multi-index is a tuple of non-negative integers, for instance, i = (io, ... , in). The norm 

of a multi-index i, denoted by 1 i 1 is defined to be the sum of the components of i. By 

setting i = (io, ... , in) and requiring that 1 i 1= d, the n-variate Bernstein polynomials of 

degree d can be defined by 

( d). . O"o •• oa'n 
'7 0 n 
~ 

wh"" ( : ) i. tho multinomial """"cimt ddin'" by 

and ao, ... , an are non-negative real numbers that sum to one. A Bezier simplex is a 

polynomial map B of degree d from an affine space At of dimension n to an affine space 

A2 of arbitrary dimension s, and is represented in the Bernstein-Bezier basis with respect 

to a domain simplex D. in At as follows: 

(I) 

where ao, ... , an are the barycentric coordinates of a point v relative to the domain 

simplex D.. The summation in equation (I) is taken over all multi-indexes where the 

norm is equal to the degree of the Bernstein polynomials, viz. 1 i 1= d. It is well-known 

that such a representation for a polynomial map is unique. The points Ct are individually 

referred to as Bezier control points and collectively referred to as the Bezier control net 

for B relative to D.. Note that for n = 1, s = 3, Bezier simplexes are Bezier curves in 

3-space and for n = 2, s = 3, they are triangular Bezier patches. 
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3 Barycentric Coordinates 

This section reviews the definition of barycentric coordinates for a regular convex polygon. 

Let P be a convex n-gon, defined by the intersection of n halfspaces, so that 

.. 
P = n (Uk?: 0) 

k=I 

Let PI,"', p .. denote the vertices and E I ,···, En denote the edges of the polygon P. 

Let Uk = 0 be the equation of the edge Ek, which goes from the vertex Pk to the vertex 

Pk+I. In the previous statement and in what follows, all indexes are to be interpreted in 

a cyclic fashion, so that every index k is mapped into the range 1,···, n by the formula 

[(k - 1) mod n] + 1. 

Let O'k(p) denote the signed area of the triangle PPkPkH as shown in Figure 1, where 

the sign is chosen to be positive for points inside the polygon P. Since O'k(p) and Uk(p) are 

both linear functions, both vanish at Pk and Pk+I, and both are positive inside the polygon 

P, they must d~ffer only by a positive multiplicative constant. Therefore, O'k(p) = ekUk(p). 

Let 1l'k(p) denote the product of all O"s except for O'k-I(P) and O'k(p); that is, 

and therefore, 

(2) 

Figure 1 Geometry of the functions O'i used to construct barycentric coordinates 
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(3) 

Theorem[LD89]: The functions /,k(p) for a regular convex n-gon satisfy the following 

properties: 

1. The functions /'k(p) are nonnegative whenever P is inside the polygon P, that is, 

/'k(p) ;::: 0 V PEP, k = 1,···, n. 

2. The functions /'k(p) form a partition of unity, that is, 1:k=1 /'k(p) = 1 V pEP. 

3. P = 1::'=1 /'i(p)pi. 

Remarks: The first two properties follow easily from the definition of the /'k(p). The 

third property generalizes a property satisfied by the barycentric coordinates for the 

triangles, and is referred to as the pseudo-affine property by Loop and DeRose [LD89). 

The fun<;tions /'k(P) will be referred to as barycentric coordinates for the convex polygon 

P. More generally, 'any set of functions satisfying properties 1 to 3 above for a fixed 

domain will be referred to as barycentric coordinates for that domain. 

4 S-patches 

S-patches build on the theory of Bezier simplexes and barycentric coordinates. A regular 

n-sided S-patch is a mapping from a regular convex n-gon P and is constructed conceptu­

ally in two phases: first, the polygon P is embedded into an intermediate domain simplex 

b. = V!,·'·, Vn in an affine space of dimension n - 1; next, a Bezier simplex is created 

using b. as its domain; finally, S is defined as the composition of the embedding and the 

Bezier simplex. That is, if L : P -+ b. represents the embeddi~g, and if B : b. -+ ftl is 

the Bezier simplex, then 

S(p) = B 0 L(p), PEP, 

as indicated in Figure 2. 

Given the barycentric coordinates /'k(p) of a point P inside the regular convex n-gon 

P, the embedding L is defined as 
n 

L(p) = L /'k(p)Vk. 
k=1 

If Or denotes the control net of a Bezier simplex B, then an S-patch is defined as 



COOO11 

s 

Figure 2 Schematic representation of S-patches 

A rational S-patch is defined as 

S(p) = LtWjCl'~t(-rl(P), ... ,/'n(P)) 
LiWJ'Bi (-rl(P),··· ,/,n(P)) 
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where the weights WJ' associated with the control points Ci are generally chosen to be 

positive. 

The integer d in the above equation is known as the depth of the S-patch. Since 

the barycentric coordinates /,k(p) are rational functions of degree n - 2, the S-patch is 

a rational parametric patch of degree d(n - 2). The control net Ct is referred to as the 

control net of S, an example of which is shown in Figure 2. The S-patch representation 

has the following useful properties: 

• S-patches can be evaluated by first evaluating L, and then evaluating B using the 

deCasteljau algorithm. 

• S-patches lie within the convex hull of their control nets. 

• An S-patch of depth d can be described as an S-patch of depth d + 1 using a depth 

elevation algorithm. 
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• , Boundary curves are in Bezier form. For example, the boundary curve correspond­

ing to the bottom boundary of the control net is a quadratic Bezier curve whose 

control points are Czoooo, Cuooo, and C02000. Control points such as these are called 

boundary control points. 

• The tangent plane variation along a boundary curve is determined entirely by the 

control points, which are at unit distance or less from that boundary. The distance 

gk(i) of a control point Ci from the k-th boundary is defined to be d - (ik + ik+d. 

Referring to Figure 2, the tangent plane along the bottom boundary (k = 1) of 

the control net is entirely determined by the boundary control points, which are 

at distance 0 from the boundary, and by the control points C IOOO!' C IOOIO , C IOIOO , 

COIOOI, C OIOIO, and C 01100, which are at unit distance from the boundary. 

• The h-th cross-boundary derivative along the k-th boundary curve is determined 

entirely by the control points, which are at a distance h units or less from that 

boundary, that is, gk(T) :S h. These control points will be referred to as the first 

h layers of control points across the k-th boundary. Therefore, in what follows, 

the user will be required to prescribe the first h cross-boundary derivatives along 

a boundary curve in terms of the S-patch control points, which are at a distance 

h units or less from that boundary. If the first h cross-boundary derivatives across 
, 

a boundary arise from an adjacent Bezier triangle, an algorithm to compute the 

regular S-patch control points at a distance h units or less from the boundary 

is described in Loop and DeRose[LD89]. It is only in this algorithm that the 

properties of the barycentric coordinates of the regular convex polygon are used. 

Since barycentric coordinates have now been developed for any convex polytope 

in arbitrary dimension [War92], the construction described later in this chapter is 

generalizable to higher dimensions. 

• When n = 3, that is, for triangular domains, an S-patch is simply a triangular 

Bezier surface patch. In other words, regular S-patches generalize triangular Bezier 

surface patches. When n = 4, that is, for rectangular domains, an S-patch is 

simply a bi-d-ic tensor product Bezier surface patch. In other words, S-patches 

also generalize rectangular tensor product Bezier surface patches. 

• More significantly, there exists an algorithm for representing an n-sided regular S­

patch as m-sided regular S-patch using multiprojective blossoming [LD89, DeR88, 

DGHM92]. In particular, an n-sided regular S-patch can be represented as a col­

lection of triangular Bezier surface patches. 
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5 The N-sided Hole Problem 

The n-sided hole problem arises in situations as the one shown in Figure 3, where polyno­

mial patches surround an n-sided hole. The objective is to construct a surface patch that 

fills the hole and meets the surrounding patches with Ck continuity. We shall consider 

the more general case where the surface patch meets the surrounding k-th patch with 

ca. continuity. In other words, the surface patch meets different surrounding patches 

with different orders of continuity. 

Referring to Figure 3, the hole to be filled is assumed to be surrounded by n patches 

FJ , ••• ,Fn. The domain polygon P of H is a regular convex n-gon. Let Nk be a unit 

vector normal to the edge Ek • The following information is prescribed in the n-sided hole 

problem: 

• The ca. cross-boundary derivatives of the hole across the kth boundary are given 

by the $-patch control points Cf, which are at a distance ak units or less from the 

k-th boundary, that is, gli) ::; ak. 

6 Rationally Controlled Bezier Representation 

This chapter describes a solution which fills the hole with a single rationally controlled 

S-patch. The rationally controlled representation is compact and is particularly suitable 

for efficient computation. This section introduces the rationally controlled Bezier rep­

resentation. Any parametric polynomial curve S(p) of degree d can be represented in 

Bezier form as 

Figure 3 The n-sided hole problem 
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where i = (iI ,i2) with Iii = d, and 'YI(P) and 'Y2(P) are the barycentric coordinates of a 

point P belonging to the domain interval~, so that 'YI (p), 'Y2(P) ~ 0, and 'YI (P)+'Y2(P) = l. 

If the domain interval is the standard unit interval [0, 1) and the point P on the interval 

has the coordinates t, then 'YI(P) = t, and 'Y2(P) = 1 - t. 

Any rational parametric curve S(p) of degree d can be represented in rational Bezier 

form as 
S(p) = L, Ctwi'~t("(1 (p), 'Y2(P)) 

LjWjB, ("(1 (p), 'Y2(P)) 
where Wi are the weights associated with the control points. 

A rational parametric curve S(p) admits a rationally controlled Bizier representation 

of degree d, if it can be represented in the following form: 

where the control points Ci-(p) are rational functions of p. Similarly, an S-patch admits 

a rationally controlled S-patch representation of degree d, if it can be represented in the 

following form: 

where C,(p) are rational functions of p. In this chapter, we will be interested in a very 

specific form for C;(p), where C;(p) = Lk It (p )Ct- The control points ct are the user­

specified control points across the k-th boundary and the functions fi(p) are rational 

blending functions. 

Remark: It is clear that any rational parametric curve S(p) (resp. S-patch) of degree 

d admits a rationally controlled Bezier representation of degree d. In general, a rationally 

controlled Bezier curve (resp. S-patch) of degree d is a rational curve (S-patch) of higher 

degree, which depends upon the degree of C,(p). The advantage of this representation is 

precisely to represent curves (S-patches) of high rational degrees in terms of a compact, 

low degree, rationally controlled Bezier representation. Moreover, this representation 

arises naturally in the n-sided hole filling problem, and it provides some good intuition 

for the proposed solution. 

7 Motivation 

This section describes the motivation for introducing the rationally controlled Bezier rep­

resentation by presenting an example from the curve case. The objective is to construct 

a curve that fills an interval, also referred to as a 2-sided hole, and meets the surrounding 

curves FI and F2 with Ch continuity. We demonstrate how a rationally controlled Bezier 
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curve can provide a naturally elegant solution to this problem. Section 9 generalizes 

these results to n-sided holes. 

First, we consider the case h = 1, which is well-known as the Hermite interpolation 

problem. As a first solution, we seek a parametric curve of degree 3, which solves this 

problem. We assume that the user specifies the position and the derivative data at both 

ends of the curve in terms of the control points of the interval filling curve H(t) of degree 

3, as shown in Figure 4. In other words, 

FI (1) 

F;(l) 

F2(O) 

F;(O) 

cio 
3(CJI - Cio) 
cg3 

The superscript k in C; denotes the control point specified from the k-th end point. 

In this case,· a well-known solution [Far88] to the 2-sided hole problem is given by the 

following parametric polynomial Bezier curve of degree 3: 

H(t) = L CrB! 
1~=3 

... ... ... ... ... ... 
" ... ... 

Figure 4 The 2-sided hole problem: C l cubic case 
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1 2 
C 11 = (1-t)C 11+tC11 

Figure 5 The 2-sided hole problem: Cl quadratic case 

where C30 = Cio, C2l = Cil' C12 = C;2' and C03 = C~3' 

Now let us consider the case when the desired interval filling curve H(t) of degree 2 

is sought. In general, there does not exist a parametric polynomial curve of degree 2, 

which solves the Hermite interpolation problem. Therefore, what we seek is a rationally 

controlled Bezier curve of degree 2. Again, let us assume that the user specifies the 

position and the derivative data at the end points in terms of the control points of a 

curve of degree 2, as shown in Figure 5, so that the following equations hold: 

Fl(l) 

F;(1) 

F2 (O) 

F~(O) 

The following rationally controlled Bezier curve of degree 2 solves the interval filling 

problem: 

H(t) = 2: C~Bf 
1~=21 

h C Cl C (l-t)CiJ+tCfJ d C 2 C I th d' ." were 20 = 20' 11 = (l-t)+! ,an 02 = 02· n e prece lng expressIOn lor 

Cll , even though the denominator sums to 1, we have written it this way to emphasize 

the structural similarity of this solution to the solution in the general case, presented in 

Section 9. A simple calculation and comparison with the first solution shows that the 

second solution is in fact identical to the first solution. Thus, the second solution, even 

though it is a rationally controlled Bezier curve of degree 2, it is in fact a parametric 
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polynomilil B6zier curve of degree 3. The control points in the rationally controlled 

representation are convex combinations of the user-specified control points from the two 

ends. Moreover, the rational blending functions, in this case simply 1 - t and t, provide 

an intuitive way to blend the incompatible control points specified by the user. 

In the general case of the interval filling problem, where the interval filling curve meets 

the surrounding curves with CBk continuity from the two ends for k = 1,2, a rationally 

controlled B6zier curve of degree d ~ max( aI, a2) can be constructed. 

Theorem 1 Let the control points Cf with the distance gli) :5 ak for k = 1,2 of a 

Bizier curve of degree d'~ max(al,a2) be prescribed at both ends. Then there exists a 

rationally controlled Bizier curve of degree d, which solves the interval filling problem; 

that is, it meets the surrounding curves with CBk continuity. 

Proof: This is an immediate consequence of the more general Theorem 2, proved in 

Section 9. An ,explicit solution is given in Section 10. 0 

8 Rational Blending Functions 

This section describes certain rational blending functions, which play a crucial role in 

constructing a solution to the problem of filling n-sided holes. We shall consider the 

general case where the n-sided hole, surrounded by polynomial patches as shown in 

Figure 3, meets the surrounding k-th patch with CBk order of continuity. Thus, the user 

will be required to prescribe ak layers of control points across the k-th boundary. Given 

an edge k and a multi-index i, we associate rational blending functions f:(p), which are , 
then used to blend the user-specified control points Cf as follows: 

n 

C;(p) = L ff(p)Cf (4) 
k=l 

Let us introduce the set s(0 = {klgA:(i) :5 ak}. In other words, S(i) is the collection of 

indices of those edges across which the user has prescribed control points associated with 

the multi-index i. Also, let h~(p) = U:k+1-9k(i)(p). Recall that Uk = 0 is the equation of 

the edge Ek. Therefore, the functions h~ are chosen to be suitable powers of the equations 

of the edges, where the power depends upon ak, the prescribed number of cross-boundary 

derivatives across the k-th boundary and gA:(i), the distance of the i-th control point from 

the k-th boundary. We define the rational blending functions for ktS(i) as follows: 

(5) 
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it(p) = z~(p) II ht(p) 
• i<S(t}-k' 

(6) 

where the weights z;(p) are chosen to be user-specified positive functions. 

Let us consider the example of a 3-sided hole, which is required to meet the sur­

rounding patches with C2 continuity on all the three sides, as shown in Figure 9. The 

objective is to construct a rationally controlled quartic triangular Bezier surface patch. 

Since gl(211) = 1, g2(211) = 2, g3(211) = 1, and ak = 2 for k = 1,··· ,3, h~l1 = uL 

h~l1 = U2, and h~l1 = u5. Moreover, S(211) = {1,2,3}. If the weight functions z;(p) 

are chosen to be constant unit functions, then j~l1 = U2U~, fil1 = u5u~, and fil1 = U~U2. 
Therefore, the rational blending functions are: 

fil1 

ffl1 = 

u2u5 + u5u~ + U?U2 
u5u~ 

U2U5 + u5u~ + U~U2 
U~U2 

(7) 

(8) 

(9) 

Remark: Note that when 9k(T) > ak for all k = 1,···, n, then the control point ct 

associated with the multi-index i has not been specified for any k between 1 to n. In 

this case, the set seT) is empty, and we do not define any rational blending functions. In 

the next section, we will see that the choice of the control points associated with these 

multi-indices does not affect the solution of the n-sided hole problem. 

We introduce the following notation. Given any function f(p), let D~U(p)) denote 

the jth derivative of the function f(p) in the direction ilk, which is normal to the edge 

Ek. In other words, mU(p)) denotes the j-th cross-boundary derivative of the function 

f(p) across the k-th boundary. Also, let f(p)IEk denote the value of the function f(p) 

evaluated along the edge Ek • 

Lemma 1 The rational blending functions defined above satisfy the following properties: 

1. H(p) 2: 0 V pfP. 

2. L,k<S("0 H(p) = l. 

3. H(p)IEk = l. 

4. D~Uf(p))IEk = 0 for 1 ::; j ::; ak - gk(i), and 1 ::; l::; n. 

Proof: (1) and (2) follow immediately from the definition of the blending functions 

above. 
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(3) follows from the observation that j~IEk = 0 for jEs(i) - k . • 
(4) follows from the observation that for k ,j=" I, ff(p) contains the factor h~, that is, 

U~k+!-9.(i). Since, by assumption, ak - gli) :2: j, f}(p) contains at least the factor ui+!. 

Therefore, by differentiating ff(p) only j times, there still remains at least a linear factor 

of Uk, which vanishes along Ek. 

For k = I, observe that H(p) is of the form ~(:) (i') , where A(p) and B(p) 
I A(p)+u:k ••• B(p) 

are functions of p. A simple calculation shows that the first cross-boundary derivative 

of J?(p) contains a factor of u~k-9k(i). Therefore, by differentiating the blending function 

J?(p) at most j times, where j ::; ak - 9k(i), there still remains at least a linear factor of 

Uk, which vanishes along Ek • 0 

The first property states that the rational blending functions are positive inside the 

polygon. The second property states that they sum to unity. These two properties 

together guarantee that the rationally blended control points in equation 4 are formed 

by taking convex combinations of the user-specified control points. The third property 

states that the k-th blending function is 1 on the k-th boundary. The fourth property 

states that the j-th cross-boundary derivatives of the rational blending function J? vanish 

along the k-th boundary, whenever gk(D ::; ak - j. The third and the fourth property 

together ensure that the hole-filling patch meets the surrounding patches smoothly across 

the boundary, as proved in the next section. 

Lemma 2 The rationally blended control points Cr(p) in equation 4 satisfy the following 

properties: 

k -:' 1. Cr(p)IEk = Cr for gk(Z) ::; ak· 

2. D{(Cr(p))IEk = 0 for 1 ::; j ::; ak - gk(D. 

Proof: This is an immediate consequence of the lemma above and the definition of 

the rationally blended control points as given in equation 4. 0 

Referring to the example, discussed in this section earlier, the rationally blended 
U2u2C1 +u2 u 2 C2 +11.2 11.203 

control point C2ll is given by C2ll = 3 211 2+ ~ 1.+ 2! 211 , where the rational blending 
U2U3 11.3 ttl 'U 1 11.2 

functions fill' fill' and f:ill are described in Equations 7 to 9. It is clear that these 

blending functions satisfy the properties (1) and (2) of Lemma 1. Moreover, lilliE, = 1, 

fill IE2 = 1, and fill IE3 = 1, so that they satisfy the third property of Lemma 1. This in 

turn implies the first statement of Lemma 2. For k = 1 and k = 3, the fourth property of 

Lemma 1 states that D~ (J~11) IE, = 0 and Di(J~Il)IE3 = 0 for I = 1, ... ,3. This is easily 

verified. For k = 2, since a2 - g2(211) = 0, the fourth property of Lemma 1 is vacuously 

true. This in turn implies the second statement of Lemma 2. 
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9 General Solution 

This section presents a solution to the problem of filling n-sided holes by a single rationally 

controlled S-patch using the rationally blended control points, defined in the previous 

section. Let ak layers of control points, that is the control points Cf with the distance 

gk(!) ::; ak, of an S-patch of depth d be prescribed across its kth boundary for k = 1, ... , n, 

where ak 2: 0, and d 2: maxk=l ak. We prove the theorem that there exists a rationally 

controlled S-patch H of depth d which solves the n-sided hole problem; that is, the first 

ak cross-boundary derivatives of the patch H across the k-th boundary are the same as 

those given by the prescribed ak layers of control points across that boundary. 

Theorem 2 Let the hole-filling patch H(p) be defined as follows: 

H(p) (10) 

C;(p) L: H(p)Cf (11 ) 
k<S(l) 

In equation 10, the summation is to be taken over only those multi-indices i for which 

there exists at least one k such that gk(!) ::; ak. In equation 11, the rational blending 

functions satisfy properties 1 to 4 stated in Lemma 1. Then, for k = 1,···, n and for 

j =O,···,ak, 

Dt(H(p))\Ek = L: cfDt(BIC!l(p),'" ,l'n(P)))\Ek 
g.(l):5j 

Proof: The proof depends upon the following lemma: 

(12) 

Lemma 3 The j -th cross-boundary derivative of the i-th Bernstein polynomial evaluated 

at C!l(P),'" ,l'n(P)) is 0 if the distance of the i-th control point from that boundary is 

greater than j. In other words, 

(13) 

Proof: By the definition of l'i(p) as given in equations 2 and 3, every l'i(p) except 

I'k(p) and l'k+l(P) contains a factor of Uk(p). Therefore, it follows from the definition 

of BIC!l(p),··· ,l'n(P)) that this Bernstein polynomial contains a factor of u~.(l). After 

differentiating BI j times, there still remains at least one factor of Uk common to every 

term, because gk(i) > j. However, Uk = 0 along Ek; hence the result follows. 0 



u = 0 
1 

Figure 6 The n-sided hole problem: general case 

The proof of Theorem 2 is as follows: 

D{(H(p))IEk 

D{( L Cy(p) Btbl (p), ... ,/'n(P)))IEk by Lemma 3 
9k(t)$i 

L t (j ) Di(cy(p))IEkD{-I(Bt(p))IEk 
9.{t)$i 1=0 I 
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For 1 ::; I ::; ak - 9k(i), it follows from Lemma 2 that the first term D~(Ci'(p))IEk on the 

right hand side vanishes. On the other hand, for ak - 9k(i) < I::; j, which implies that, 

9k(t) > ak - I 2: j - I, it follows from Lemma 3 that the second term Drl(Bt(p))IEk 

on the right hand side vanishes. Therefore, the only contribution on the right hand side 

comes from the terms when 1= 0. However, for I = 0, the first term on the right reduces 

to ct by Lemma 2. Hence the following desired result is obtained: 

D{(H(p))IEk = L ct D{(Btbl (p)," . ,/',,(P)))IEk fOI' j = 0," . ,ak' (14) 
9k(t)$j 

This concludes the proof of the theorem. 0 

Remarks: 

• We have not assumed any compatibility conditions whatsoever on the position or 

derivative information of the surrounding patches. However, it is inherent in the 

n-sided hole filling problem that the surrounding patches meet at corners. This 
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ensures that there are no cracks between the surrounding patches. These corner 

compatibility condition can be expressed as 

Ck - 1 Ck 
ne1 = ne1 for k = 1"" ,n 

Also, in most practical situations, one assumes the derivative compatibility condi­

tions along the boundary of the curve. In other words, the boundary control points 

are the same irrespective of the side from which they have been prescribed, that is, 

Cr = Cf if 9k(i) = 0 for any k = 1"" ,n 

However, we certainly do not assume any twist compatibility conditions, such as 

C!-l = C~ if 9k-l (i) * 9k(i) #- o. . . 
• By Lemma 3, the control points Cf, where 9k(i) > ak for every k, do not affect 

the desired ca. continuity with the surrounding patches. Therefore, these control 

points can be chosen completely arbitrarily. Moreover, the weights z1 appearing in 

expression 6 provide additional flexibility in constructing these patches . 

• The proposed solution solves the n-sided hole filling problem, for any number of 

prescribed cross-boundary derivatives when the domain is a regular convex n-gon 

in R2. Using generalized barycentric coordinates [War92], the solution is easily 

generalizable for any number of prescribed cross-boundary derivatives when the 

domain is a convex polytope in arbitrary dimension. 

10 Examples 

This section presents several applications of Theorem 2 for the case of 2-, 3-, 4- , and 

5-'sided hole filling problems. 

1. 2-sided Hole Problem: 

(a) General Case: 

An explicit solution for the 2-sided hole problem, described in Theorem 1, can 

be given as follows: 

H(t) E Cr(t)B1(t, 1 - t) 

Cr(t) 
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-:. ... ~ .. ~ -.~/ - ---

Figure 7 The 2-sided hole problem: C2 quadratic case 

The particular case of a solution with C2 continuity from both ends by a 

rationally controlled quadratic Bezier curve is illustrated in Figure 7. In th,is 

case al = a2 = 2 and gl(20) = 0, gl(l1) = 1, 91(02) = 2, g2(20) = 2, 

92(11) = 1, and g2(02) = o. Therefore, an explicit solution is given by 

H(t) = l: CrBf 
1i'1=2 

h C - (l-t)C~Q+t3CiQ C - (1-t)2C!I+t2Cf, d C _ (l-t)3C~2+tC52 
were 20 - (l-t)+t3 , 11 - (l-t)2+t2 ,an 02 - (1 t)+t3 

(b) Particular Case: 

The objective is to construct a rationally controlled Bezier curve of degree 3, 

which meets the surrounding curves with C2 continuity. An explicit solution 

is given by 

H(t) = l: CrBf 
171=3 

h C - C1 C - (l-t)C~,+t2q) C - (l-t)2C:2+ tq2 d C - C2 
were 30 - 30' 21 - (l-t)+t2 , 12 - (l-t)2+t ,an 03 - 03' 

Note that in the above solution, since the denominators of the expressions for 

C21 and C12 are different, the solution after expansion is a rational curve given 

by a ratio of polynomial of degree 7 to a polynomial of degree 4. 

An alternative representation can be obtained by choosing the weights ZJ1 = 
1 - t, Z~1 = 1, Z~2 = 1, and Z;2 = t. The solution is now described as 

1 (l-t)2C' +t2C2 (1-t)2C' +t2C2 2 
follows: C30 = C30' C21 = (1 ti~+t2 2), C12 = (1 t\3+t2 12, and C03 = C03 ' 

Since the denominators for the expressions C21 and C12 are the same, this 
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solution has the advantage that it represents a rational curve given by a ratio 

of polynomial of degree 5 to a polynomial of degree 2. We shall refer to 

this technique of choosing weights to make the denominator common as the 

common denominator technique. 

2. 3-sided Hole Problem: 

(a) C1 Cubic Case (Nielson-Foley Patch): 

The objective is to construct a rationally controlled cubic triangular Bezier 

surface patch which meets with the surrounding patches with C 1 continuity. 

The nine boundary control points are prescribed to be compatible. The only 

remaining interior control point is prescribed from each of the three sides, as 

shown in Figure 8. Since ak = 1 and 9k( 111) = 1 for k = 1,· .. ,3, an explicit 

solution by Theorem 2 is given as follows: C = U2U3C!II+U3U1Cf!l+U1U2CTII 
111 U2 U3+U3'I.Lt+UI'U2' 

which agrees with the solution proposed by Nielson [Nie87] and Foley [Fol91]. 

(b) C2 Quartic Case: 

The objective is to construct a rationally controlled quartic triangular Bezier 

surface patch, which meets with the surrounding patches with C2 continuity. 

The twelve boundary control points are prescribed to be compatible. The 

remaining three interior control points are prescribed from each of the three 

sides, as shown in Figure 9. Following Theorem' 2, an explicit solution is 

given by setting: C211 = U2U~C~!! +2u~ulc;JJ 1uiu2C~!!. The expressions for the 
U2 U3 +U3 tit +U1 'l.L2 

Figure 8 The 3-sided hole problem: Nielson-Foley patch 
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Figure 9 The 3-sided hole problem: C2 quartic Case 
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other two interior control points can be derived by symmetry. An alternative 

new solution using the common denominator technique is given by setting 
u2 u2 C 1 +u2 u2 C2 +u2 u2 C3 C = 2 3 211 3 1 211 1 2 211. In this case the weight functions have been 

211 u2u~+u3ui+ufU~ , 
chosen as follows: zJn = U2, z;n = 1, and z~n = U2. 

3. 4-sided Hole Problem: A 4-sided hole is filled with a rationally controlled 4-sided S­

patch. Since 4-sided S-patches are generalizations of tensor product Bezier surface 

patches, we will use the notation for rationally controlled tensor product Bezier 

" " 

o 6 
C~ •...•••• -0~""""'" ;·0······· '1D 

. . 
U = 0 C4 ~ : 

4 11 : 
(~ ........ ·0;··········· .:.(} ....... (~ 

o ~ 

~ C~ 1 : 

...:.. ...:.. 

Figure 10 The 4-sided hole problem: Gregory patch 
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i'"··.·····~·.· .. ···.o:···········9&········?-o········ 

U = 0 ~ C4 ~ ~ ~ 
4 ~ 22 ~ ~ ~ 

········Q;·········o'············;Q········:·O········ o 0 9 0 

; ! C~! ! 
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Figure 11 The 4-sided hole problem: Barnhill-Worsey patch 

surface patches to describe the solution to the 4-sided hole problem. A rational 

tensor product Bezier surface patch of bidegree (8, i) is represented as follows: 

"i;=s "j=t G BS ( ) Bt ( ) S( ) = L..,i=O L..,j=o Wij ij i Ul j U4 

P "._s ,,3-t B8( )Bt( ) 
L..,i=O L..,j=o Wij i Ul j U4 

where Gij are control points, Wij are weights, Bt(uJ) = (;)ui(1 - Ul)s-i are the 

univariate Bernstein polynomials, and (Ul' U4) are the coordinates of the point p 

inside the domain rectangle 0 ::::: Ul, U4 ::::: 1. A tensor product Bezier surface patch 

has a rationally controlled representation of bidegree (8, i), when the coefficients 

Gij are rational functions of p instead of constants. 

(a) G1 Cubic Case (Gregory Patch:) The objective is to construct a rationally 

controlled bicubic tensor product Bezier surface patch which meets the sur­

rounding patches with G1 continuity. The twelve boundary control points are 

prescribed to be compatible. Each of the remaining four interior control points 

are prescribed from only two sides as shown in Figure 9. Following Theorem 

2, an explicit solution is given by setting: Gll = u,ch!u,Ci" which agrees 
U4 Ul 

with the solution described by Chiyokura and Kimura [CK83] for the Gregory 

patch [Gre83a]. The expressions for the remaining three interior control points 

can be derived by symmetry. 

(b) G1 Cubic Case (Brown's Square:) An alternative solution for the same problem 

can be obtained using the common denominator technique. This gives the 
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U2 U2 C 1 +u2u 2 G4 [ solution: Cll = 4 22 J~+ ~ ! 11, which is known as Brown's square Gre83a]. 
u41l2 1£3 U1 

Note that in this case, all the interior control points have the same common 

denominator. 

(c) C2 Quintic Case (Barnhill-Worsey Patch:) The objective is to construct a ra­

tionally controlled biquintic tensor product Bezier surface patch, which meets 

with the surrounding patches with C2 continuity. The twenty boundary con­

trol points are prescribed to be compatible. Moreover the first order twists are 

prescribed to be compatible, so that the four control points diagonal to the 

corner control points are also 3.lso uniquely determined by the user-specified 

control points. The remaining eight control points on the first layer can be 

derived using Theorem 2, which agrees with the solution proposed by Barn­

hill [Bar83]. Each of the remaining four interior control points are prescribed 

from only two sides as shown in Figure 11. Following Theorem 2, an explicit 

solution is given by setting: C22 = U.C~2!Ul C~2, which agrees with the solution 
U4 Ul 

C1 
20001 

Figure 12 The 5-sided hole problem 

• C;0001 
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described by Worsey [Wor84] and is an improvement over the original solution 

proposed by Barnhill [Bar83]. The express.ions for the remaining three interior 

control points can be derived by symmetry. 

4. 5-sided Hole Problem: The objective is to construct a rationally controlled 5-sided 

S-patch of depth 3, which meets the surrounding patches with Cl continuity. All 

the boundary control points are prescribed to be compatible. Moreover, the tangent 

plane compatibility from the two sides at each corner forces the remaining control 

points to be uniquely determined except for the five control points C2000h C 12000, 

C01200, C00120, and C00012 as shown in Figure 12. Following Theorem 2, an explicit 

solution is given by setting' C - u.cJOOO\ +u\ c~OOO\ The expressions for the • 20001 - u.+u, . 

remaining four interior control points can be derived by symmetry. 

11 Conclusions 

This paper described a novel mathematical technique for filling an n-sided hole by a 

single rationally controlled S-patch. This compact representation is constructed by tak­

ing the convex combination of user-specified control points using a judicious choice of 

rational blending functions. This representation can be used for efficient computation 

including the deCasteljau algorithm for evaluation, the depth elevation algorithm, and 

the representation conversion algorithm. The technique unifies several known solutions 

and provides some insight into the construction of the solution to the problem of filling 

n-sided holes. 
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Algebraic curves and surfaces are commonly used in geometric modeling. Parametric 
curves and surfaces are those that can be represented using rational parametric equa­
tions, and are particularly important. In geometric modeling applications, the parametric 
equations are restricted to some bounded portion of the domain, yielding a segment of a 
curve or a patch of a surface. However, the algebraic curve or surface is an image of the 
entire infinite parameter domain. Attempting to map the entire curve or surface using 
very large regions of the parameter domain is not a solution because some finite points 
may be images of infinite parameter values. 

Thus a natural question arises: can one cover an entire curve or surface, using only a 
finite number of bounded regions of the parameter domain ? This is indeed possible, and 
two methods are described in this paper. 

In the first method, a given rational parameterization is replaced by several bounded 
parameterizations that together generate all the points that the original one did, including 
points that correspond to infinite parameter values. Projective linear domain transfor­
mations (reparameterizations) are applied that map the unit simplex of each parameter 
domain onto an entire octant of the original parameter domain space in turn. This ap­
proach for the special case of real parametric curves and surfaces in the Bernstein-Bezier 
form, is similar to the technique called homogeneous sampling (DeRose, 1991) used to 
sample finite and infinite domain points of a parameterization equally. One application 
of our work is displaying entire real parametric curves and surfaces. Another application 
is the first step towards representing an entire real parametric curve (surface) by a col­
lection of curves (surfaces) in Bernstein-Bezier form, each with positive weights (Farin, 
1991; Lucian, 1991). 

In the second approach, it is shown that a single projective reparameterization suffices 
to map all finite and infinite parameter values of the old parameterization, using only finite 
values of the new parameter domain. In this case the reparameterization is quadratic and 
the region of the domain space that suffices is the unit hypersphere of the new domain 
space. Because of the higher degree and the non-linear boundary of the domain region, 
this approach is less practical, but it can be used to compute normal parameterizations 
of curves and surfaces - that is, parameterizations that map all points of the curve or 
surface, without "missing" any (Gao and Chou, 1991). Normal parameterizations for conic 
curves and some quadric surfaces have been given (Gao and Chou, 1991); the problem of 



348 

computing normal parameterizations for three important quadric surfaces was open, and 
we shall give the solutions here. 

Since the results generalize to higher dimensions, our discussion will be in terms of 
real parametric varieties of any dimension. The problem can be stated as follows. Given 
a real parameterization of a parametric variety, we would like to compute an alternate 
set of bounded parameterizations that together generate all the real points of the variety: 
those that correspond to finite parameter values, and those that correspond to infinite 
parameter values (in the original parameterization). 

This paper is organized as follows. In the next section some preliminary definitions 
and terminology are given, and the issue of "missing points" is discussed in some detail. 
In section 3, we show how to finitely represent a real parametric variety of dimension n 
using 2n pieces. In section 4 it is shown that a single reparameterization is sufficient, and 
in section 5 we make some concluding remarks and indicate directions for future work. 

2 Finite parametric representations 

The set of solutions of a set of polynomial equations with real coefficients in m variables 
forms a real algebraic set in nm, where n is the field of real numbers. A real algebraic 
set that cannot be properly represented as the union of two real algebraic sets is called a 
real variety. A parametric variety is one whose points can be given as the image of a map 
over some domain space. We restrict our attention to maps defined by rational functions. 

Let the points of a variety V of dimension n in R:" (n < m) be given by a rational­
function map in n parameters: 

Si E (-00,+00) 

The rational functions Xi(Sl, ••. , sn) constitute a parameterization of the variety and 
are assumed to have a common denominator. Methods exist for computing rational 
parameterizations of various classes of varieties (Abhyankar and Bajaj, 1987ab,1988,I989; 
Golub and Van Loan, 1983; Levin, 1979; Schicho and Sendra, 1991; Sendra and Winkler, 
1991; Sederberg and Snively, 1987). All these algorithms generate parameterizations of 
curves and surfaces over infinite domains. 

We view the map as one from the real projective space of n dimensions to the real affine 
space of m dimensions, i.e. V(s) : npn -t nm. By doing so, we allow each parameter Si 

to take on any value in n as well as the value 00. It is often the case that a finite point 
(one in nm) of the variety given by rational functions is mapped by an infinite parameter 
value in npn. 

For example, a I-dimensional real variety in n2 is defined by the bivariate polynomial 
equation X2 + y2 - 1 = O. The points are in the image of the univariate rational functions 

2s 
X(S) = s2+I' 

S2 - 1 
y(s) = S2 + 1 ' S E (-00,+00) (1) 

Notice that the point (0, 1) E n2 of the variety is the image of the parameter value 
S = 00 E np. 

2.1 Missing points of parameterizations 

There are two categories of potential missing points of a real parametric representation 
of a variety. 
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Figure 1: Missing points due to infinite parameter values 

First, a parametric variety may have finite points that correspond to infinite parameter 
values. There are methods, though computation intensive, for proving whether or not a 
given parameterization has such missing points and to compute them (Gao and Chou, 
1991; Wu, 1984). Two different solutions are provided in this paper for dealing with 
missing points and generating new parameterizations which do not have missing points. 

Examples. A simple case is the unit circle, whose parameterization (1) and missing 
point were given earlier. Figure 1 shows two surfaces, an ellipsoid and a Steiner sur­
face. A point is missing on the ellipsoid, and a curve from the Steiner surface. The 
parameterizations of the ellipsoid and the Steiner surface are given in Table 1. For each 
parameterization we show the image of a rectangular domain region centered at the origin. 
All such images show a "hole" or gap (the clover-leaf on the ellipsoid is a hole). 

Increasing the area of the domain region will shrink the gap but never close it. Further­
more, if the domain region is discretized uniformly to generate a piecewise-linear mesh 
approximating the surface, the pieces tend to be large away from the gap, but small and 
dense near the gap; curvature-sensitive approximation techniques are necessary. 

Second, parametric varieties of dimension greater than 1 can have base points, which 
are points in the parameter domain at which all numerators and (common) denominator 
of a parameterization vanish. For surfaces it has been shown that a domain base point 
corresponds to an entire curve on the surface (Hartshorne, 1977). For example, consider 
the variety defined by x 2 + y2 - z2 - 1 = O. A parameterization for it is 

( u2 - v2 + 1 2uv 2U) 
(x(u,v),y(u,v),z(u,v))= u2 +v2 -1' u2 +v2 -1' u2 +v2 -1 

which has the base points (u,v) = (O,±l); it can be shown that these points map onto 
the lines (x(s),y(s),z(s)) = (-l,s,s) and (x(t),y(t),z(t)) = (-l,t,-t) on the surface. 
Essentially, approaching the domain base point from two different directions leads to 
different surface points, in the limit. 
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Domain base points cause "pseudo" missing points on the variety that are the image of 
finite parameter values. These points on the variety are only missing in that the rational 
map itself is ill-defined, when specialized to the domain base points. We don't present a 
reparameterization solution to this problem but leave it open for future research. 

One way for surfaces is as follows: besides reparameterization, one may augment the 
existing parameterization with parameterizations of the image points corresponding to 
base points (Chionh, 1990). Such space curves on the surface are called seam curves, and 
are known to be rational. Algorithms for computing rational-map parameterizations of 
these curves have been given but they are not practical at this time (Manocha, 1992). A 
more practical approach might be to numerically approximate the seam curves. 

2.2 Problem statement 

We wish to replace a parameterization over an infinite parameter domain with a finite 
number of parameterizations, each over a fixed, bounded parameter domain. Suppose 
we are given a parameterization V(s) : npn -+ n'" of a variety. We wish to compute 
maps QI, ... ,Qk, with Qi: nn -+ n"', such that Uf=IQi(nn) = V(np"). That is, the 
new maps restricted to finite values together yield the same set of points that the given 
one does, even though the latter maps both finite and infinite domain values. To derive 
a finite representation we also find a bounded region D c nn to which the Qi can be be 
restricted, i.e., Uf=IQi(D) = V(npn). 

2.3 Main results 

Given one parameterization of V, it is possible to compute a finite representation of it, 
and we show two ways below. 

In the first way, an affine variety of dimension n is finitely represented using 2" pa­
rameterizations, with the bounded domain D being the unit simplex in n". In the second 
way, only one parameterization suffices, but its degree is twice that of the original, and 
the bounded domain D is the unit hypersphere in n". The second approach can be used 
to compute parameterizations of real parametric varieties that are free of missing points. 

3 Piecewise finite representation 

Suppose we are given a real parametric variety V of dimension n and a parameterization 
V(s) for it. We compute 2n parameterizations, each restricted to the unit simplex of the 
parameter domain n", that together give all the points that V(s) did for s E np". 

We use linear projective domain transformations (reparameterizations) to map, in turn, 
the unit simplex D of the new parameter domain space onto an entire octant of the original 
parameter domain space. The reparameterizations are specified in affine fractional form 
for convenience, but in practice they would be applied by homogenizing a parameterization 
and then substituting polynomials. 

These particular linear reparameterizations are chosen to ensure that the piecewise 
representation is not an overlapping: the pieces meet along sets that are of lower dimension 
than the variety itself. This is useful for certain applications such as surface display, in 
which overlappings can cause unsightly artifacts due to aliasing. 
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Figure 2: Piecewise finite representations 
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THEOREM 1 Consider a real parametric variety in nm of dimension n, n < m, which 
is parameterized by the equations 

Si E (-00,+00) 

Let the 2n octant cells in the parameter domain nn be labelled by the tuples < 0"1, .. . O"n > 
with O"i E {-I, I}. Then the 2n projective reparameterizations V (t<Ul , ... ,Un» given by 

Si == O"i 1 _ tl - t2 - ... - tn' 
ti 

i = 1, ... ,n (2) 

together map all the points of the variety V(S),Si E (-00,+00), using only parameter 
values satisfying ti 2: 0 and t1 + t2 + ... + tn S 1. 

PROOF. We must show that every point in the old domain np" is the image of some 
point in the new domain nn. In particular, we show that the hyperplane t1 + ... + tn = 1 
bordering the unit simplex in nn maps onto the hyperplane at infinity in npn, and the 
rest of the points of the unit simplex are mapped onto a particular octant of the original 
domain space, depending on the signs of the O"i. 

Let S'= (CS1, ... ,Csn,CSn+1) E npn, where C E n is a non-zero constant of pro­
portionality and Sn+1 = 0 is the equation of the hyperplane at infinity in npn. Let 
t = (t 1, ... , tn) E nn. Since (2) is a map from nn --+ npn, the following relationship holds 
between the Si and tj, under one of the 2n transformations < (Tb •.. , (Tn >: 

CS1 

Let sign(a),a E n be -lor +1 according to whether a < 0 or a 2: 0, respectively. 
First we show that every s E npn on the hyperplane at infinity is the image of some 

point t = (t1, ... , tn) E nn under one of the transformations, and additionally that ti 2: 0 
and t1 + ... + tn = 1. 

Since s is on the hyperplane at infinity, Sn+1 = 0, and hence 

i = 1, ... ,n 

Then a solution (tb ... , tn) is derived by setting 

(Ti sign(si) 
1 

c 
2:;=10"iSi 

ti 
O'iSi 

Ei=lO'iS i 

Noting that (TiSi 2: 0 and not all of the Si, i == 1, ... n can be zero, it follows that t; 2: 0 
and 2:;'=1 ti = 1. 
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Second" let s E nn c npn, i.e. Sn+I =I o. We show that s is the image of some t E nn 
under one of the transformations, and additionally t lies in the unit simplex of nn. 

We can set Sn+1 = 1 w.l.o.g. and the following system of equations for the ti is derived: 

We can solve this linear system by setting 

O'i sign(si) 

c 
1 

1 + 2::;'=1 O'iSi 
(TiSi 

i = 1, ... ,n 

and since O'iSi ;::: 0 it follows that ti ;::: 0 and tl + ... + tn < 1, hence this point t is in the 
unit simplex in nn, but not on the hyperplane tl + ... + tn = 1. 

We have thus proved that all of npn is mapped by the transformations (2), restricting 
each to the unit simplex of nn. 0 

COROLLARY 1 Rational curves given by a parameterization C(s) = (XI(S), ... , Xm(S))T, 
t -t 

s E (-00, +(0) can be finitely represented by C (1 _ t) ,C (1 _ t)' using only 0 ::; t ::; l. 

COROLLARY 2 Rational parametric surfaces S(s1, 052) = (XI(S1, 052), ... , Xm(SI, S2)f, 
051, 052 E (-00, +(0) can be finitely represented by 

S( tl t2) 
1 - tl - t2' 1 - tl - t2 

-tl -t2 
S( , ) 

1 - tl - t2 1 - tl - t2 
using only t l , t2 ;::: 0 /\ tl + h ::; 1. 

Examples. Figure 2 shows several piecewise representations of surfaces using corollary 
2. Points on a surface that are correspond to a particular quadrant of the parameter 
domain space np2 are given a color unique to that quadrant, and the entire surface is 
trimmed to some bounding box of n3 • The upper left shows a Steiner quartic variety, 
whose quadratic parameterization is given in Table 1. In the upper right is an "elbow" 
cubic variety, whose parameterization is 

( 4t2 + (S2 + 6s + 4)t - 405 - 8 4t2 + (_052 - 605 - 20)t + 2052 + 8s + 16 
2t2 - 4t + 82 + 48 + 8' 2t2 - 4t + 82 + 48 + 8 ' 

(28 + 6)t2 + (-48 - 12)t - 82 - 48) 
2t2 - 4t + 82 + 48 + 8 

A singular cubic surface appears in the lower left; its parameterization is 

( t3 + 2t + 83 - 782 + 1 2t3 + 2t2 - 782t + 283 + 2 28t - 783 ) 

t 3 + 8 3 + 1 ' t 3 + 8 3 + 1 ' t 3 + S3 + 1 

An arbitrary quartic variety whose parameterization is quadratic is given in the lower 
right; its parametric equations are 

( 2s 4ts 1 - 8 2 - t2) 
82 + t2 - 2' 82 + t2 - 2' 82 + t2 - 2 
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Figure 3: Single finite representations 

4 Single finite representation 

We now consider the problem of finitely representing a real parametric variety using only 
one parameterization. Put another way, can we find parameterizations of varieties that 
have no missing points? Such normal paramete7·izations have been given for ellipses and 
some quadric surfaces (Gao and Chou, 1991); the method for proving a parameterization 
normal involves elimination-theoretic computations based on the method of characteristic 
sets developed for geometric theorem proving (Wu, 1984). The method is general, but 
lengthy machine computations are involved and the authors were unable to find normal 
parameterizations for three important quadrics, namely the ellipsoid, hyperboloid of one 
sheet, and hyperboloid of two sheets; they pose it as an open problem to either find such 
normal parameterizations or to prove they don't exist. It is also shown that the lowest­
degree normal parameterization of an ellipse is of degree 4, which hints that normal 
parameterizations for the above quadrics will also need to be of degree 4, at least. 

We can achieve the same results simply by using projective reparameterizations to 
bring points at infinity in the parameter domain to finite distances. Instead of using 
linear projective reparameterizations, however, we now use quadratic projective reparam­
eterizations to solve this problem. 

THEOREM 2 Consider a real parametric variety of dimension n in nm , n < In, which 
is parameterized by the equations 

V(s) = Si E (-00,+00) 
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The single' projective quadratic reparameterization given in fractional affine form as 

ti 
Si = 2 2 , 

1 - tl - t2 - ... - t~ 
i = 1, ... ,n (3) 

yields a finite representation Vet) of the rational variety V(s), restricting ti + .. . +t~ :5 1. 

PROOF. In this case, the proof consists of showing every point in the old domain nP' 
is the image of some point in the new domain nn, using only the single transformation (3). 
We will show that the unit hypersphere in the new domain space maps onto the hyperplane 
at infinity of the old domain space, and every other point in the old parameter domain 
space is the image of a corresponding point in the new domain, which lies in the interior 
of the unit hypersphere. 

Once again let s = (CS1,"" CSn+1) E npn, c E n, c =1= 0 and we fix Sn+1 = 0 as the 
hyperplane at infinity. Let t E nn. The equations (3) are a map from n" --+ npn: 

CSi ti 

cSn tn 
1 - (t~ + ... + t?,) 

First, consider points s on the hyperplane at infinity, i.e. Sn+1 = O. Then (3) yields a 
system of equations 

CSi ti 

o 1 - (t~ + ... + t?,) 

which has two real solutions, given below: 

c 

ti 

± 1 

lEi=1 s~ 
SI 

CSi = ±---.===== 
VEi=1 s~ 

i = 1, ... ,n 

For either solution, ti + ... + t~ = 1, showing that t lies on the unit hypersphere in n". 
Second, consider affine points s E nn c np'. We can set S,,+1 = 1, w.l.o.g., and then 

(3) yields the system of equations 

CSi ti i = 1, ... ,n 
C 1 - (t~ + ... + t?,) 

This system also has two real solutions, given by 

C 

ti 

-1 ± VI + 4 Ei=1 s~ 
2 Ei=1 s~ 

CSi 

Gh ' -1+yl+4!::_, s~ • I I b h h 2 2 oosmg C = 2L~=1 ~ , some sImp e age ra sows t at tl + ... tn < 1. 

Thus if s is on the hyperplane at infinity, there is a point t on the unit hypersphere 
that maps it; otherwise, there is a point t in the interior of the unit hypersphere that 
maps it. Only the single map (3) is necessary. 0 
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I VaTiety Equation Parameterization and Missing Points 

Ellipse 
x' y' (a(s~-1) ~) -+--1=0 
a2 b2 052 + 1 'a2 + 1 

Missing: 
(a,O) 

Ellipsoid 
x~ y~ z~ .( 2as 2bt C(.5' + t2 - 1)_) 
-+-+--1=0 

~2 :+- t2 + 1 ' 052 + t2 + l' 05 2 + t2 + 1 a2 b2 c2 

Mlssmg: 
(0,0, c) 

Hyp/1S 
x' y'l. z' res. -t2 + 1) 2bts 2CS.) -+----1=0 

052 + t2 - 1 '052 + t2 - 1 ' .52 + t2 - 1 a2 b2 c2 

{,:?ingy, I} 
a2 + b2 -1 = O,z = ° \ {(-a,O,O)} 

Hyp/2S 
x2 y2 Z2 .( 2as 2bt c( 052 + t'l. + 1 ~ ) -+---+1=0 

~2 :+- t2 _ 1 ' 052 + t2 - l' ,52 + t2 - 1 a2 b2 c2 

Mlssmg: 
(0,0, c) 

Steiner x2y2 + y2z2 + x2Z2 - 2xyz = ° (~S ~t ~st) 
052 + t2 + 1 ' 052 + t2 + 1 05 2 + t2 + 1 

Missing: 
(0,0,1'),1' E (-1,1),1' i= ° 

Table 1: Real parametric varieties and their missing points 

Given a parameterization of a variety, an application of theorem 2 yields a normal 
parameterization of the corresponding variety. Thus we can compute normal parameter­
izations of the ellipsoid and one- and two-sheeted hyperboloids, settling the open issue 
(Gao and Chou, 1991) of whether normal parameterizations for these varieties exist. 

COROLLARY 3 Using theorem 2, we can compute normal parameierizations for the 
ellipse, ellipsoid, hyperboloid of one sheet, and hyperboloid of two sheets. 

The equations of several varieties are given in Table 1. A rational parameterization for 
each variety is listed, as well as the missing points of each parameterization. The missing 
points can be computed either using general machine computations (Gao and Chou, 1991), 
but for these particular varieties direct, elementary arguments suffice (Royappa, 1992). 

In Table 2, normal parameterizations of these varieties are given. That of the ellipse 
has already been found (Gao and Chou, 1991); all those for surfaces are new. For the 
ellipse, the parameters can be restricted to lui:::; 1, and for the quadric surfaces they can 
be restricted to u2 + v 2 :::; 1. The parameterizations map these bounded domain regions 
onto the entire variety, without missing any points. 

Examples. The left half of Figure 3 shows a normal ellipsoid parameterization graphed 
over the parameter region u 2 + v 2 :::; 1. Likewise, the right half shows a normal Steiner 
surface parameterization. The parameters of both are restricted to the unit disk in n2 . 

Each figure is un shaded to emphasize that no parts of the surface are missing (compare 
these to Figure 1). 
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Variety' Normal Parameterization 

Ellipse 
l-alu~ - 3u~ + 1), 2blu - u")) 

u4 - u2 + 1 

Ellipsoid 
l2au(1 - u~ - v~), 2bv(1- u~ - v'), -c(v + 2u~v~ - 3v~ + u~ - 3u' + In 

v4 + 2U2V 2 - v2 + u4 - u2 + 1 

Hyp/IS 
(a{v4 + 2u'v' - 3v~ + u" - u~ + 1), 2buv, 2cu(1 - u' - v')) 

_(v4 + 2U2v2 - 3v2 + u4 - 3u2 + 1) 

Hyp/2S 
(2au(1 - u" - v"), 2bv(1 - u" - v"), c( v4 + 2u"v" - v" + u4 - u~ + 1)) 

-(v4 + 2u2v2 - 3v2 + u4 - 3u2 + 1) 

Steiner 
(2u(1 - u~ - v~), 2v(1 - u~ - v~), 2uv) 

v4 + 2U2V 2 - v2 + u4 - u2 + 1 

Table 2: Normal parameterizations of some varieties 

5 Conclusions and future work 

In this paper we have presented two ways by which infinite parameter values can be 
avoided when dealing with parametric curves and surfaces. The results were presented 
for parametric varieties of any dimension, and were used to solve the open problem of 
computing quadric surface parameterizations that do not have any missing points. 

These results have been applied as a first step in the robust display of arbitrary real 
parametric curves and surface (Bajaj and Royappa, 1992). Another application is a first 
step towards exactly representing a arbitrary real parametric curve or surface in piecewise 
rational Bernstein-Bezier form, with positive weights. 

Future directions for research include examining the other "missing points" problem 
(due to domain base points) in more detail, and also considering the issue of computing 
those real points on a real parametric variety that do not correspond to any real parameter 
value, but to a complex parameter value. 
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Interproximation using Cubic B-Spline Curves 
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ABSTRACT. An algorithm for the construction of a non-uniform cubic B-spline curve that 
interpolates a set of 2D data {Di } is presented. Each Di is either a point or a region. If Di is 
a point, the curve interpolates it. Otherwise, the curve passes through the region specified by 
Di . The curve is constructed based on minimizing the energy of each of its components. The 
parametric knots of the curve are parametrized using the centripetal model. These processes 
facilitate the geometric smoothness and fairness of the curve. The new technique allows a 
user to design a curve with more flexibility and fewer trial-and-error iterations than conven­
tional approach. This work is a continuation of the paper "Interproximation: Interpolation 
and Approximation Using Cubic Spline Curves" published in 1991. 

Keywords and phrases. B-splines, interpolation, approximation, uncertain data, interproximation 

1. Introduction 

Modeling the shape of an image or an object usually requires the technique of 
parametric curve and surface interpolation, i.e., constructing a parametric curve or surface 
that interpolates, or passes through, a given set of points, called interpolation points or data 
points. The result of the interpolation process depends on two factors: the interpolation 
points and the interpolation method. 

A good interpolp.tion method should generate a curve or surface that faithfully reflects 
the shape of the desired image or object using a relatively small number of interpolation 
points. Given the interpolation points, this is usually achieved through the selection of an 
appropriate curve/surface representation and interpolating parametric knots (parameter spac­
ing). Spline curves and surfaces are frequently used in the interpolation process due to their 
local control proper,y,3-5 small energy,7 and numerical stability.3,5 The first property enables 
local modification of the resulting curve or surface while the second one facilitates its 
geometric smoothness. Actually, the geometric smoothness of the resulting interpolating 
curve and surface depends on the parameter spacing as well. Appropriately spaced 
parametric knots not only reduce the energy of the resulting curve or surface, but also avoid 
the occurrence of "oscillations" and "loops". It is generally believed that the knots should be 
chosen as proportional to the cumulative chord lengths of the data polygon.! However, 
according to a recent paper by E. T. Y. Lee,9 a more appropriate way would be to use the so-
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called "centripetal model" to define the knots. The resulting interpolating curves usually are 
"fairer" (closer to the data polygon) than those obtained with the uniform or the chord length 
parametrization, see Figure 1. 

(a) uniform (b) chord length (c) centripetal 

Figure 1. Cubic B-spline interpolating curves obtained with (a) uniform, 
(b) chord length, and (c) centripetal parametrization. 

Interpolation points also have a major impact on the shape of the resulting curves and 
surfaces. These points, either sampled from existing objects or determined by some design 
criteria, should be selected so that shape of the data polygon would be close to the shape of 
the desired image or object. On the other hand, the number of interpolation points should be 
kept low to avoid extensive computation cost. A rule of thumb is to choose more points in 
regions with large curvature and fewer points in regions with small curvature. Unfortunately, 
no precise criterion has yet been given on this particular issue. 

A problem commonly encountered in the selection of interpolation points is uncer­
tainty.6 This is especially true in the reconstruction of natural phenomena or digitized images, 
motion detection, and CAD applications. For instance, in sampling data from a digitized pic­
ture, one usually gets only a range of the data points, instead of the exact locations and 
numerical values. Inithe design process (using fitting techniques) of 2D and 3D shapes, it is 
also quite common that the designer knows the location of only a few critical points with just 
a rough idea about the possible range of the remaining points - a process that is usually 
accomplished through trial-and-error. Consequently, the fitting data appear in two forms: 
points and regions. The regions specify the possible ranges of the uncertain data. 

Typical curve and surface interpolation techniques are not appropriate for these applica­
tions because they only deal with exact data points. Data fitting methods such as least­
squares approximation may be used to approximate uncertain data points (or, interpolate per­
turbed data points, by backward error analysis). However, these methods do not guarantee 
that the resulting curve or surface would pass through specific data points, nor would the 
curve or surface pass through specific regions. What is desirable here is a method that will 
interpolate the exact data points and approximate the uncertain ones by passing through the 
regions that specify the range of the uncertain data points, see Figure 2. We call such a pro­
cess as interproximation because it is a cross between interpolation and approximation.6 The 
resulting curves or surfaces of the interproximation process should be relatively smooth so 
that not too many trial-and-error iterations are required to generate an expected shape. 
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Figure 2. A curve that interproximates the given data. 

Previous work in this area has been done by Ritter,13 who presented a solution to the 
generalized Hermite-Birkhoff interpolation problem in Sobolev space for spline functions. 
Simply stated, his solution allows both the function itself and its derivatives to interproximate 
the given data at the given knots. Ritter's solution is general. However, for applications in 
computer-aided geometric design and related areas, fitting derivatives to given data usually is 
not required. We recently presented a more specific algorithm for the construction of a cubic 
spline curve that interproximates the given data.6 The curve is generated based on minimizing 
the energy on both the x and Y components of the possible interproximating curves, which is 
then converted to a minimization problem for some quadratic form. Therefore, geometric 
smoothness of the curve is guaranteed. One advantage of the algorithm over the ordinary 
curve interpolating techniques is that it can be used to design a curve with desired shape in 
fewer steps. It can also be used to remove undesired oscillations generated on an ordinary 
interpolating curve.6 frhis is achieved by specifying a few extra regions between consecutive 
interpolation points to bound the behavior of the interpolating curve. 

In this paper, we study the interproximation problem for B-spline curves and present an 
algorithm for the COl].struction of a non-uniform cubic B-spline curve that interproximates a 
given data set. The new technique improves our previous wor~ in several aspects: (1) better 
parameter spacing technique, (2) more efficient and numerically stable computation process, 
(3) requiring no input on boundary conditions, and (4) allowing more flexibility in shape 
modification. The new technique is also easier to be integrated with other modeling systems. 
Details of the work will be given in the subsequent sections. We will start our work with a 
formal definition of the problem. 

2. Definitions and Problem Formulation 

Let {Di I i=I,2, ... ,n+m } be a set of 2D data. Di could either be a point or a region. 
Say, Dij =Pj = (Xj,Yj) for j=1,2, ... ,n and Di• = AkxBk = [at> bk]x[ct> dk] fork=1,2, ... ,m. 

Our goal is to construct a cubic B-spline curve to fit Di in the order indicated. The fitting 
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proce$s is perfonned in the following fashion: The curve should interpolate Dj if it is a point. 
Otherwise, it is required to pass through the specified region only. In addition, the curve 
should have the smallest energy (smoothest shape) among all the cubic B-spline curves that 
satisfy the above fitting condition. 

We will follow the ordinary case to construct such a cubic B-spline curve, i.e., represent­
ing it as a piecewise curve of n+m-i cubic B-spline segments and using the n+m endpoints 
of the segments to fit the given data. The representation of a cubic B-spline curve with 
n+m-l segments requires n+m+2 cubic B-splines and, consequently, n+m+6 interpolating 
parametric knots. The n+m+6 knots are denoted by 't = ('t_2' 't_1, ... , 'tn+m+Y with param­
eter range 'tl ~ U ~ 'tn+m' The knots are defined as follows: 't_2 = 't_l = 'to = 'tl = 0 

2~i ~n+m-l (2.1) 

and 'tn+m = 'tn+m+1 = 'tn+m+2 = 'tn+m+3 = 1 where Qj equals Pj if i = ij for some 1 ~ j ~ n 
and Qj equals the center of AkxBk if i = ik for some 1 ~ k ~ m. Equation (2.1) is based on 
the centripetal model developed by Lee.9 A knot sequence constructed this way has the 
advantage, of bringing the resulting interpolating curve closer to the data polygon, and it gen­
erally produces curves that are fairer than those obtained with the unifonn or the chord length 
parametrization.!! A 2D cubic B-spline curve defined on [0, I] with respect to the knot 
sequence 't can be represented as 

n+m-i 
S(u) = L C i+2 Ndu ), 

i=-2 
U E [0, 1] (2.2) 

where C j are 2D control points and N j ,3(U) are B-splines of degree 3 (order 4) defined by the 
following recurrence relation. 

{
I, 

Ni,o(u) = 0, 

and 

'tj ~ U < 'tj+l 

otherwise 

for k ;?: 1. 

If we set H to be the set of all cubic B-spline curves defined by (2.2) and, for each 
S E H, define the energy** of S to be 

** The energy definition used here follows that of Kjellander.8 More discussions on the definition of energy 
can be found in Lee. \0 
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(2.3) 

where Sx and Sy are the x - and y -components of S, then our problem can be formulated as 
follows. 

Problem 1. Find SE H such that 

S(tij)=Pj , j=I,2, ... ,n 

S('ti.) E AkxBk, k=I,2, ... ,m (2.4) 

and 

IISII=min{IISII! SEH,SsatisfieS(2.4)} 0 

Since our work will be performed on the basis of individual components and the technique 
involved for each component is the same, it is sufficient to consider this problem for the first 
component only, i.e., cubic spline functions. A B-spline function defined on [0, 1] with 
respect to 't can be expressed as 

n+m-l 
f(u)= L ei+2 Ni,3(U), U E [0, 1] (2.5) 

i=-2 

where ei are real numbers. By defining F to be the set of cubic B-spline functions defined 
by (2.5) and, for each f E F, defining the energy of f to be 

where f (2) is the second derivative of f with respect to u, we can rewrite our problem as fol­
lows: 

Problem 1'. FindJ E F such that 

f'('t· ) =x- j·=1,2,oo.,n 
Ij J' 

J('ti,) E Ako k=1,2,oo.,m (2.6) 

and 

IIJII =min{llflll f E F,f satisfies (2.6)} 0 

The dimension of F is n+m+2 and we have only n+m fitting conditions. As in the ordi­
nary case where two extra end conditions are added to solve for a cubic B-spline curve 
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interpolating n +m points, we shall also impose two extra end conditions on the B-spline 
function defined by (2.5). We adopt the "natural" conditions. Namely, the second derivatives 
off at the endpoints of the parameter range are set to zero. 

(2.7) 

Note that 

= 0 , elsewhere 

(~_U)2 ('t]-u)(tru ) ('t]-U)2 
N_1,3(u) = (U-'1:I)[---3 + 2 + 2 ], 1:1 Su <1:2 

(1:2-'1:1) (1:3-'1:1)(~-'1:1) (1:3-'1:1) (1:2-'1:1) 

(1:3-U)3 

= 0 , elsewhere 

(~-U)(U-'1:I)2 (1::oU)(U-'1:I)2 (1:4-U)(U-'1:I)2 

N O,3(U) = (1:3-'1:1)(1::r't1)2 + ('t]-'1:1)~1:2-'1:1) + (1:4-'1:1)(1:~1)(1:2-'1:1)' 1:1 S U < ~ 

('t]-u )2(U-'1:I) (1:4-U )(U-'1:I)(1:3-U) (1:CU )2(U~ 
= 2 + + , ~Su <1:3 

(1:3-'1:1) (1:3-'1::z) (1:4-'1:1)(1:3-'1:1)(1:3-'1::z) (1:4-'1:1)(1:4~('t]-t:z) 

(1:4-u )3 = 't]Su<~ 
(1:4-'1:1)(1:4-t:z}(1:4-'tJ) , 

= 0 , elsewhere 

and, for 1 ~ i ~ n+m-4, 

(U-'1:I)3 
N1,3(u) = , 1:1 S U < 1:1+1 

(1:I+~1 )(1:I+:r't1 )(1:/+1-'1:1) 

(U-'1:I)2(1:I+:<U) (U-'1:;)(1:1+3-U )(U-'1:I+I) = +...,........:--=..:.c...:.;:=-...:..,:...,--:.:.::.-,-
(1:I+~1 )(1:1+2-'1:1 )(1:1+2-'1:1+1) (1:I+~1 )(1:1+3-'1:1+1)(1:1+2-'1:1+1) 

(1:I+4-U )(U-'1:I+1l 
+ , ~+1SU<~G 

(1:I+4-'tI+I)(1:I+~I+1)(1:I+:r'tI+I) 
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= 0 , elsewhere 

Since N8) ('t1) = 0 for i ~ 1, it is easy to check that 

f (2)('t1) = eoN ~~3 ('t1) + e 1 N ~1~3 ('t1) + e2 N d~l ('t1) 

6 't3+'1:2-2't1 'tr't1 
--=-~(eo- e1 + --e2) 
('t2-'t1)2 ~-'t1 't3-'t1 

Hence, the first condition in (2.7) gives that 

(2.8) 

Similarly, the second condition in (2.7) gives that 

Based on (2.8) and (2.9), a cubic B-spline function defined by (2.5) and satisfying the natural 
conditions (2.7) can be expressed as 

n+m 
f(u)= L ej Wj(u) (2.10) 

i=1 

where 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
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If we define F as the set of all cubic B-spline functions defined by (2.10) then the prob­
lem that we are in a position to solve is 

Problem 1". FindJ E F such that (2.6) is satisfied and 

II JII = min {lif II I f E F,f satisfies (2.6)}. D 

This fonnulation has a major problem, i.e., the indexing of the fitting condition (2.6) 
would lead to sparse matrices which are not numerically stable and efficient when performing 
Gaussian elimination in the computation process (this point will become clear when we 
present the solution in the next section). We shall rename 1: to be 
(ul,u2' ... ,un,v 1,v2' ... ,Vm } where 

for j=1,2, ... ,n 

and 

for k=I,2, ... ,m. 

We also rename (Wi(U)} defined by (2.11) through (2.15) to be (gl(U), ... ,gn(u), 
hI (u), ... ,hm (u )} with 

j=I,2, ... ,n 

and 

hk (u) = Wi, (u) , k=I,2, ... ,m 

If we rewrite (2.10) as 

11 m 
f(u)= ~aj gj(u)+ :E~k hk(u) (2.16) 

j~l k~l 

and define F to be the set of cubic B-spline functions defined by (2.16) then Problem I" is 
equivalent to 

problem 1'''. FindJ E F such that 

J(Uj) =Xj , 

J(Vk) E Ak , 

j=I,2, ... ,n 

k=I,2, ... ,m 

(2.17) 

(2.18) 
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and 

lIill = min {lIfll If E F,f satisfies (2.17) and (2.18)}. 0 

It is this problem that we intend to solve in this paper. The solution to this problem will be 
presented in the next section. 

3. The Solution 

We will first convert the fitting conditions in (2.17) and (2.18) into matrix form. Define 

a= (al'~' .. ' an)t, ~ = (~l' ~2'··' ~m/' x= (Xl,X2' .. ,xn)t, 

where 

m 
A = IT Ak 

k=l 
and 

The fitting conditions in (2.17) imply that 

or 

while those in (2.18) imply that 

or 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.5) shows that the value of a depends on 13. Therefore, the essential work is to find ~ such 
that II ill is minimum subject to constraint (3.6). 
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Define 

G 1 =[g··J ' <,} nxn 

Q=[q .. J ' l,j JJXJn 

1 

gi,j = fg/2)(U) gP)(U )du, 
o 

1 

h· . =fh.(2)(U) h'(2)(u)du 
< ,} < } , 

o 

1 

qi ,j = fg/2)(U) h Pl(u )du , 
o 

1 ~i,j ~n 

l~i,j~m 

Note that Gland G 2 are symmetric. According to the definition of 111 II, we have 

1 n In 

11111 = f (:EuigF)(u) + :E~ih/2)(u))2du 
o i=1 i=l 
1 n 1 m 

= f (:E u igF)(u))2du + f (:E~ihF)(u))2du 
o i=l 0 i=l 

1 n m 
+ 2 f (:E Uig/2)(U)) (:E~ihF)(u))du 

o i=l i=l 

nn mm nm 
= :E :EUiUjgi,j + :E :E~i~jhi,j + 2:E :EUi~jqi,j 

i=1j=1 i=lj=1 i=1j=1 

Combining (3.10) with (3.5), we get 

where T =N11M 1. Through simple algebra it can be shown that 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

where C = (Nl1x)tG1(Nl1x) is a constant. The fact that G 1 being symmetric has been 
used in the above derivation. Therefore, to minimize 111 II it is sufficient to minimize 

where 
W = G2 - 2Q t T +TtG1T 

Z =Q -G 1T 

(3.11) 

(3.12) 

(3.13) 
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with constraint (3.6). This is the well-known quadratic programming problem in nonlinear 
programming.2 Standard optimization routine can be used to solve this problem. 

The matrix T = N 11M 1 can be computed easily. Indeed, if we perfonn block Gaussian 
elimination on 

to get 

which corresponds to 

[1 0] t _ [Ni M~] 
LIN - 0 Ul 

(3.14) 

with L containing the multipliers, then since LNi + Mi = 0, it follows that 

The block Gaussian elimination process also gives us the value of N2-M2N11Ml in 
(3.6) as it is easy to see now that its value is equal to the submatrix U contained in (3.14). 

The block Gaussian elimination process can be perfonned in a very efficient and stable 
manner since N 1 and N 2 are both banded square matrices and M 1 and M 2 are sparse matrices 
with the non-zero entries concentrated on a banded neighborhood of the diagonal line (the 
number of non-zero entries within each row of these matrices is at most 3). 

Based on the above observation, the solution to Problem C can be computed as fol­
lows: 

1. Compute N 1, M l' M 2, N 2, G I, G 2 and Q defined by (3.1), (3.2), (3.3), (3.4), (3.7), (3.8) 
and (3.9), respectively. 

2. Solve N 11= x to gety=N11 x. 

3. Perfonn block Gaussian elimination on 
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4. Compute W and Z defined by (3.12) and (3.13), respectively. 

5. Minimize 

subject to 

6. Compute a defined by (3.5). 

4. Implementation 

The algorithm has been implemented in C on a Sequent multiprocessing machine, Bal­
ance 20000. Input and output are performed in an interactive X Window Systems environ­
ment. A Postscript file has also been generated for each test case so that the results can be 
output in hard copy as well. 

The construction of the matrices N l' M l' N 2 and M 2 may be performed by using the 
corresponding expressions of Wi in (2.11) - (2.15) to find the values of gj or hj at the given 
knots. These matrices are all banded matrices with a band width of at most 3. The construc­
tion of the matrices G 1, G 2 and Q may be performed by first applying the technique of 
integration by parts to the expressions in (3.7) - (3.9) to find the following expressions: 

gij = gP)(l)gP>(1) - gP\l)gj (1) - gP)(O)gP)(O) - gP)(O)g/O) 

hi .j = hP)(l)hP>(1) - hP)(1)h/l) - hP)(O)hP)(O) - hP)(O)hj(O) 

qij = gP)(l)hP>(1) - gP)(I)hj (l) - gP)(O)hP>(O) - gP)(O)hj(O) 

and then computing their values at the given knots. Gland G 2 are also banded matrices. 
Since the values of gi' hj and their first, second and third derivatives at the knots will be used 
several times in the construction of these matrices, one should build a look-up table for these 
values and reference appropriate entries of the table to construct these matrices. 

The Gaussian elimination process required in Steps 2 and 3 is performed by exploiting 
the fact that N 1, M 1, N 2 and M 2 are banded matrices. This fact allows us to perform the 
Gaussian elimination process in linear time. 

The minimization problem of the quadratic form (3.11) with constraint (3.6) is carried 
out by calling the NAG FORTRAN Library Routine, E04NAF.12 This routine requires 29 
parameters as input. In our algorithm, however, only 8 of them are variables; the remaining 
ones are constants. 

The program has been tested on several data sets; some of the test results are shown in 
Figures 3 and 4. In Figure 3, the data sets used in Figures 3b, 3c and 3d of our previous 
work6 are used to generate the profile of a human head (Figure 3a). A non-uniform cubic B-
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spline curve whose parametric knots are parametrized using the centripetal model is first con­
structed to interpolate 22 points (Figure 3b) taken from the profile shown in 3a. The shape of 
the curve is then improved by adding a few regions between some of the interpolation points 
(Figure 3c) and further confined by reducing the sizes of and adjusting some of the regions 
(Figure 3d). The new algorithm is used in all three cases with the number of regions in case 
3b being zero. The resulting non-uniform cubic B-spline curves in all three cases are fairer 
than the previous examples. But they do not faithfully reflect the shape of the original profile 
in areas such as the nose, the lips, area around the chin, and area around point A (Figure 3d). 
This is because in our previous work6 the interpolation points were not selected to completely 
reflect the shape of these areas. Rather, they were selected to accommodate the possible 
oscillation of an interpolating uniform spline curve so that the resulting curve would match 
the shape of the original profile (otherwise, one would have to select more interpolation 
points in these areas). For a non-uniform B-spline curve whose knots are parametrized using 
the centripetal model, since the shape will closely reflect the shape of the data polygon, one 
should choose interpolation points and regions from areas with high curvature. 

The improvement process of these areas is shown in Figure 4. By removing the point at 
B (Figure 3d) and putting a region C at the tip of the nose, one immediately gets a good 
approximation of the original shape of the nose (Figure 4a). The improvement of the lips, the 
chin and the arya around point A is then performed by replacing the interpolation points at E 
and F with two small regions, G and H, adding one region below F, and putting a region 
below A. These were the areas of the original profile with high curvature. A point in region 
C has been selected as interpolation point to fix the shape of the curve in this area. The result 
is shown in Figure 4b. 

5. Conclusions 

The problem of interproximating uncertain data using non-uniform cubic B-spline 
curves has been studied. An algorithm is presented for the construction of a non-uniform 
cubic B-spline curve that interpolates specific data points at some parametric knots and passes 
through specific rectangular regions at some other parametric knots, with minimum energy at 
each of its components. This approach allows a user to design a curve with more flexibility 
and fewer trial-and-error iterations than conventional approach. 

The algorithm presented in this paper improves our previous work6 in four aspects. (1) 
The parametric knots are parametrized using the centripetal model9 instead of uniform 
parametrization. This approach gives fairer interproximating curve than those obtained with 
the uniform or the chord length parametrization. (2) B-splines, instead of reproducing ker­
nels, are used in the computation process. The construction of the matrices and the Gaussian 
elimination process, hence, can be performed more efficiently and numerically stably, since 
all the involved matrices are banded. (3) The new approach does not require user input of 
boundary conditions. (4) The new approach allows the user to make local modification by 
adjusting the control points of the curve and can easily be integrated with any B-spline or 
NURB based modeling systems. 
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Figure.3. Shape modeling I. 
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Figure 4. Shape modeling II. 
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Abstract 

Description of an interaction of a charged particle with fields is well known, in 

principle. Under some conditions, this system undergoes a very complicated behaviour. Two 

challenging tasks must be met, before the deeper insight into and understanding of the 

dynamics of such a system can be retrieved from the modelling: numerical and 

representational. The former is due to the excessive computer processing times, the latter 

deals with a way to display the large amount of data in a useful way. In this paper, we 

concentrate on the latter and describe some aspects of producing an animated display, within 

the tight budgetary constraint~. 

1 Introduction 

Most frequently, the description of a dynamical system is given in terms of differential 

equations. These equations are set up using the governing physical principles, and then solved 

numerically. A number of algorithms is available, and their adoption depends on the stability 

considerations as well as efficiency demands. When dealing with dynamical systems, which 

may give rise to chaotic motion, a particular attention must be paid to the chosen integration 

scheme. Data used for this presentation were obtained with the fourth order Runge-Kutta 

method and checked for consistency with the Bulirsch-Stoer method [Press et al, 1986]. 

Problems begin to arise, when one attempts to interpret the large sets of data, obtained 

in such simulation. In practice, the number of dimensions describing all but the very simplest 

of systems require well above 3 dimensions - a case that is not readily handled by display 



380 

devices. A number of approaches exist that implement various ways to display higher 

dimensional entities on a screen. Currently very prominent in this area of research is volume 

visualization [Kaufman, 1991]. In this paper, an affordable way to represent additional 

dimension is described, by the use of animation. 

There are a number of computer installations, with large budgets and personnel 

assigned to video productions, mainly in the entertainment industry. The need for dedicated 

supercomputers, professional frame-by-frame video recorders and large storage devices soon 

exceed the budget of many academic departments. With the emergence of fast networks, the 

use of national academic centres may provide the services required for the motion displays, 

however, a number of logistic problems makes this option not always the most convenient. 

It is shown below that an acceptable animated display can be produced on a modest 

departmental· budget. Although the resulting motion video is somewhat inferior to that 

produced by the top installations, nevertheless, such a recording still fulfils most needs of a 

working scientist as it provides additional and very important insight into the nature and 

evolution of the system under observation. In addition to helping with the research, such a 

video provides excellent pedagogical material. 

This contribution is divided into several distinct sections. We begin by setting up a 

physical system, in section 2, data from which are then used to create the animation. In 

section 3 some details of the associated image generation are presented, together with the 

main steps needed for successful video production. Section 4 briefly comments on some 

findings. In concluding part, the main results are listed. 

2 Description of a dynamical system 

The dynamical system that is considered in this paper deals with the charged 

elementary particle, such as electron, placed inside a static magnetic field, B. This system is 

further influenced by a plane electromagnetic wave that travels in the direction perpendicular 

to the B-field, with its magnetic field parallel to the direction of the B-field. The mutual 

orientation of static and travelling fields is important and greatly affects the final outcome. 

For the sake of clarity, the static B-field points in the z-direction, the polarization vector of 

the travelling wave is parallel to the y-direction, while the wave travels in the x-direction. 

Several different approaches to describe such a system are possible - here we select the 

Hamiltonian formalism [Barut, 1980] that naturally lends itself to the relativistic 

generalization. 
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The interaction is described using the vector potential A, which is assumed to be of 

the form 

A = (By, f sin(kx - cot), 0) (1) 

where f is the amplitude of the travelling wave, k and co are the wave vector and frequency, 

respectively. The associated magnetic field contains z-components only, while the electric 

field vector has only a single nonvanishing component, along the y-axis. The Hamiltonian H 

describing the dynamics of this systems is given by 

(2) 

where P is the generalized momentum, m the mass of the particle, e is its charge, and c is 

the velocity of light. The canonical equations of motion can now be written in the form 

r - ..£(P-eA) 
H 

. e.aA 
P- -r­

c ar 

(3) 

where the dot above the letters denotes the time derivative, and r is the generalized position 

vector. As there is no z-dependence in the vector potential (1), the z-component of the 

generalized momentum is constant, here conveniently set to zero. The x and y components 

of equations of motion then have the form 

i- ;(Pz -eBy) 

j_..£(P -ejSin(kt-wt) H y 

. C 2A! 
Pz- H(efkPy-e J ksin(kt-wt»cos(kt-wt) 

p __ ceB(eBy_PJ 
y H 

(4) 

In the absence of the travelling wave, f=O in (1), the particle moves in a circle with the radius 

proportional to the ratio of momentum and the static magnetic field. When f is nonvanishing, 

the interaction between the rotational motion (due to the static magnetic field) and 

translational motion (due to the travelling wave) gives rise to the complicated dynamics. In 
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this paper we look at the effect of initial conditions, for a given set of values for x, Px, and 

Py, on the final particle's momentum. It is found that at low energies particle executes regular 

motion, represented by elliptical regions in the phase space. Slight changes in the initial 

conditions have virtually no effect on the final momentum. As the energy of the particle 

increases, the regions of regular motion get distorted and soon disintegrate, giving rise to new 

division of the phase space. In the relativistic domain, the sensitive dependence on the initial 

conditions indicates that the dynamics has become chaotic. The transition boundary is not 

smooth and displays self-similarity, typical of fractal objects. In the realm of higher energies, 

the particles momentum increases stochastically, almost without a bound. Similar situation for 

stochastic heating is observed, when the amplitude of the travelling wave is large. Then, 

regular motion is largely suppressed, even in the domain of small energies. 

This relatively simple system displays intricate behaviour that is difficult to infer from 

static display. The situation gets even further complicated as the need for the inclusion of 

more dimensions increases. To provide the tool to analyze the formation of patterns in the 

parameter space, thereby allowing for a direct increase in the display dimensionality, the use 

of simple animation techniques is adopted. 

3 Data generation and video production 

Bearing in mind the assumption of this paper, the set (4) is represented by four 

coupled differential equations. In order to increase the numerical efficiency, the trigonometric 

functions occurring in (4) are replaced by the difference equations, resulting in noticeable 

decrease of the processing time. In order to establish the stability of patterns, several runs 

were needed. These used different step sizes, until an optimal value was determined. In order 

to avoid transients, integration over 100 periods was performed, before accumulation of 

results began. This apparently short time interval was sufficient, as all the values have by now 

settled, as was established through numerous simulations. Integrations were performed on a 

regular 128 x 128 grid, representing the values of the initial x-position and Px momentum. At 

a specified time, the value of the resultant momentum is stored for further processing. On 

completion of the calculation, a large number of datasets (575), one for each initial value of 

Py, contain encoded information that reflect the relation between the initial conditions and the 

final value of the momentum. As already indicated, two different integration schemes were 

used to ascertain the validity of the calculations. These are very computationally intensive, 

with processing times of the order of days on Unix workstations. For regular production runs, 

access to supercomputers is mandatory. 
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Having accumulated the data from integration of the set (4), graphical rendering and 

animation are performed next. For more sophisticated images, this step was performed on the 

workstation, using the PHIGS [ISO, 1987] library with extensions. However, in the production 

of the accompanying video, relatively simple images were used, which were well suited for 

processing on a PC equipped with a 486 processor. Restriction to somewhat low resolution 

of 128x128 grid cells was justified in view of the production of a moving display. The 

gradual changes in the pattern formation take over and the eye inertia makes the resultant 

movement quite acceptable. 

Each of the files produced on a workstation is character encoded and occupies about 

16K. Its content reflects the values of the final momentum of the electron. Each of the 

characters corresponds to one of the 64 colours, selected for this video production from a 

range of 255 that were available. Each of the files contains the results of the calculations for 

different values of the initial momentum Py• The static analysis of the structures embedded 

in the data is perfonned using in-house developed visualization tools. These allow for a direct 

viewing of each file separately as well as the ability to construct 3D solid objects. Various 

operations can then be performed, such as arbitrary dissection, contours, thresholding, volume 

extraction, and others. 

Numerical work is done on Unix workstation and sent to the recording site via a local 

area network. This step is needed as, at present, the workstation cannot generate PAL 

compatible signal, required for the video recorder. Once on a 486 hard disk, each file is 

individually processed and compressed using a board specific run length encoding algorithm. 

For complicated images with low coherence, this step generates larger files than the original, 

however, the speed of subsequent display is dramatically increased - and this is clearly of 

paramount importance in animation. 

The graphics SVGA card, used to generate the display, was based on VESA protocol 

and could produce 256 colours in 640x480 resolution. This is more that ample, as the video 

is recorded in the VHS format, which stores only 240 lines per frame. Although the image 

deterioration of individual frames is quite noticeable during this stage, the overall motion 

retains all the essential features of the dynamics. The recording format was selected in view 

of the available resources. The scan converter, required to transform monitor image into the 

form suitable for recording is able to handle also the better SVHS format, that would be used 

in the future. Although, ideally, a frame editing video recorder is needed to produce smooth 

animations, such an equipment was not available. The video recording was done in real time, 

by replaying the prerecorded images and achieved about 11 frames per second. This rate is 
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far b,elow the 25 frames/sec needed to convey the continuous motion. In spite of this 

weakness, the resultant animation is acceptable, does not require days of video production and 

is readily accessible. 

4 Evaluation of the results 

The length of the animation depends on the number of files that is available from the 

simulation and on the display rate. Each file representing a fixed value of Py has to be 

encoded initially, to speed up the display process. This step requires approximately 3 seconds 

per frame. Prior to the recording, all the processed frames can be previewed on the computer 

monitor, in sequence and individually. Unlike the first, compressing stage, the final display 

runs in real time. The overall quality of the animation depends on the access time of the hard 

disk and the speed of the graphics card. In the current production no blending between the 

frames has been used, although currently, the Utah raster toolkit [Petersen et all is being 

investigated. If successful, only the key frames would have to be computed, thus yielding 

substantial saving in the generation of data. 

When viewing the animation, a realization of the mixing in the phase space is vividly 

demonstrated. Low energy particles experience regular and coherent motion, represented by 

colour homogeneity, when the amplitude of the travelling wave is small. As the initial energy 

increases, regions of the phase space become fragmented, and adjacent points display very 

different behaviour. This is the clearest indication that the system has undergone a transition 

to the chaotic state. 

5 Conclusion 

Numerical modelling of the parameter space requires excessive processing times. 

Unfortunately, faster but less accurate methods cannot be used, as these would introduce 

numerical artifacts. The nature of this problem is such that it is ideally suited for parallel 

computation. On sequential computers, faster algorithms exploiting the coherence properties 

should yield considerably improved processing times. 

Animation results are acceptable, particularly as the motion involves unreal, 

mathematical objects propagating in the parameter space. The purpose of the video presented 

here is to show the valuable technique that can be readily exploited even on a modest budget. 
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This paper describes methods for acquiring and analyzing in real-time the motion 
of human faces. It proposes a model based on the use of snakes and image 
processing techniques. It explains how to generate real-time facial animation 
corresponding to the recorded motion. It also proposed a strategy for the 
communication between animators and synthetic actors. 

Keywords: facial analysis, facial animation, snake, muscles 

1. Introduction 

There has been extensive research done on basic facial animation and several 
models have been proposed. Early methods proposed by Parke (1975, 1982) are 
based on ad-hoc parameterized models. Platt and Badler (1981) introduced facial 
expressions manipulated by applying forces to the elastically connected skin 
mesh via underlying simplified muscles. Their system is based on the Facial 
Action Coding System (FACS) developed by Ekman and Friesen (1975). Waters 
(1987) developed a face model which includes two types of muscles: linear/parallel 
muscles that pull, and sphincter muscles that squeeze. Nahas et al. (1988) 
proposed a method based on B-splines; motion of the face is obtained by moving 
the control points. Magnenat-Thalmann et al. (1988) provided another approach 
to simulate a muscle action by using a procedure called an Abstract Muscle 
Action (AMA) procedure. . 

Terzopoulos and Waters (1990) proposed a physics-based model three layered 
deformable lattice structures for facial tissues: skin, subcutaneous fatty tissue, 
and muscles. Parke (1991) reviews different parameterization mechanism used in 
different previously proposed models and introduces the future guidelines for 
ideal control parameterization and interface. Kalra et al. (1991) introduced a 
multi-layer approach where, at each level, the degree of abstraction increases. 
They also described another approach to deform the facial skin surface using 
rational free form deformations (Kalra et al. 1992). DiPaola (1991) proposed a 
facial animation system allowing the extension of the range of facial types. We 
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may. also mention efforts for lip synchronization and speech automation by 
several authors (Lewis and Parke; 1987; Hill et al. 1988; Magnenat-Thalmann et 
al. 1987; Lewis 1991) . 

Recently several authors have proposed new facial animation techniques which 
are based on the information derived from human performances. The information 
extracted is used for controlling the facial animation. These performance driven 
techniques provide a very realistic rendering and motion of the face. Williams 
(1990) used a texture map based technique with points on the surface of the real 
face. Mase and Pentland (1990) apply optical flow and principal direction analysis 
for lip reading. Terzopoulos and Waters (1991) reported on techniques for 
estimating face muscle contraction parameters from video sequences. Kurihara 
and Arai (1991) introduced a new transformation method for modeling and 
animating the face using photographs of an individual face. Waters and 
Terzopoulos (1991) modeled and animated faces using scanned data obtained 
from a radial laser scanner. Saji et al. (1992) introduced a new method called 
"Lighting Switch Photometry" to extract 3D shapes from the moving human face. 
Kato et al (1992) use isodensity maps for the description and the synthesis of 
facial expressions. These techniques do not process the information extraction in 
real-time. However, real-time facial animation driven by an interactive input 
device was reported by DeGraf(1989). 

This paper describes a model for real-time analysis and synthesis of facial 
expression and emotion recognition. Section 2 explains the basic principles of the 
real-time analysis based on snakes and image processing techniques. Section 3 
describes the way of recognizing simple expressions and emotions. The synthesis 
of facial animation from information extracted during the analysis phase is 
developed in Section 4. Section 5 proposed the use of our approach for the 
communication between an animator and synthetic actors. Finally 
implementation issues are discussed in Section 6. 

2. The analysis method 

2.1 The use of snakes 

Our recognition method is based on snakes as introduced by Terzopoulos and 
Waters (1991). A snake is a dynamic deformable 2D contour in the x-y plane. A 
discrete snake is a set of nodes with time varying positions. The nodes are 
coupled by internal forces making the snake acting like a series of springs 
resisting compression and a thin wire resisting bending. To create an interactive 
discrete snake, nodal masses are set to zero and the expression forces are 
introduced into the equations of motion for dynamic node/spring system. The 
resulting equation for a node i (1 = 1, ... ,N) is as follows 

dx· 
Y· _I +U· +R. = f· 

I dt I l-'l I 

where 'Yi is a velocity-dependent damping constant, Ui are forces resisiting 
compression, 13i are forces resisting bending and fi are external forces. To turn the 
deformable contour into a discrete snake, Terzopoulos and Waters make it 
responsive to a force field derived from the image. They express the force field 
which influences the snake's shape and motion through a time-varying potential 
function. To compute the potential, they apply a discrete smoothing filter 
consisting of 4-neighbor local averaging of the pixel intensities allowed by the 
application of a discrete approximation. 
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Our approach is different from Terzopoulos-Waters approach because we need to 
analyze the emotion in real-time. Instead of using a filter which globally 
transforms the image into a planar force field, we apply the filter in the 
neighborhood of the nodes of the snake. We only use a snake for the mouth; the 
rest of the information (jaw, eyebrows, eyes) is obtained by fast image-processing 
techniques. 

For the mouth snake, we use the method illustrated by Fig.I. On this figure, we 
may see the snake working around the mouth. The small lines starting from the 
nodes show the direction of the forces generated. Because of the elasticity of the 
snake, if there is no force, the snake tends to contract and becomes a single point. 

Fig.1 Visualization of the recognition system 

To generate the forces, we extract a 6x6 matrix Ml around the node P as shown in 
Fig.2. The node's coordinates are converted into integer values. 

Ml 

V 
M2 

I.-I--

~3 
pX ~ 

Fig.2. Computation of the filter 
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To compute the potential, we first transform the RGB information into intensity 
information; for example, red contributes 30%, green 59% and blue 11%. 
Secondly, we apply on the matrix a discrete smoothing filter followed by a 
discrete approximation to the gradient operator. The first filter is applied on the 
4x4 square matrix M2 included in Ml. The second filter is applied on the 2x2 
square matrix Ma at the center of the matrix. With these 4 points, we can 
interpolate bilinearly the force vector. 

The snake we used has the same tension constant for all the springs. The rigidity 
constant is less at the corners of the mouth. 

Because of real-time constraints, the snake can have some difficulties following 
the mouth's edges with good accuracy. The main problem is guiding the snake on 
the x-axis because the mouth has no strong vertical edge. 

In our system, the snake is forced to stay at the center of the head. On Fig.l, we 
may see two circles near the edges of the neck. These two circles have the same y 
positions as the endpoints of the snake. 

As shown in Fig.3, to determine the x position for the left circle (abscissa ofT), we 
start at the left of the image (S) and scan to the right until an edge is detected. To 
detect the edge, we first calculate an average of the intensity of the right point 
and its 4 neighbors: 

s: starting point 
T: target point 

Fig.3. Computation of distance d 

Secondly, we compare the result with the point where we are, and if there is not 
an important difference of intensity, we go right of 1. point. 

We then use the information provided by the snake to find the distance d. 

We perform the same processing for the right side. We then compare the distance 
d with the same distance do stored during the initial procedure described later on. 
If d is less than do, we apply some forces to the extremum of the snake and reduce 
the difference. The magnitude of the generated force is computed as follows: 
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2.2. Image processing methods 

For the jaw, we consider that the lower part of the lower lip (using information 
given by the snake) is moving with the jaw i.e. if the law opens, the lower part 
goes down with the jaw. On Fig. 1, we may see a circle which uses its y coordinate 
to find the position of the jaw. 

For the nose, we use the center point of the upper part of the mouth (also using 
the snake) and we scan upwards until an edge is detected. As we assume that the 
illumination is very strong, the edge should belong to the shadow of the nose. The 
circle on the nose on Fig.1 indicates the position found by the program. 

For the eyebrows, we use the same principles as the nose. We start from the 
forehead and scan downwards until we detect an edge. This should be the 
eyebrow. On Fig.1, we show two circles on the forehead (the starting points) and 
under them, the two circles indicating the positions for the eyebrows. 

For the eyes, we define a rectangular region around the eyes (using the position 
of the nose and eyebrows) and we count the number of white points in the region. 
If the number of white points is under a threshold value, we consider the eye as 
closed. On Fig. 1, we show rectangles defining the region. In order to process the 
analysis in real-time, we only consider one point out of two. 

A first step is always necessary to store information when the person has a 
neutral expression. To determine the intensity of an expression, we compare the 
information of the current frame with the corresponding information for the 
neutral expression. For example, if the distance between one eyebrow and the 
nose is larger than the initial distance, we know that this eyebrow has a higher 
position. A more general methodology for expression and emotion recognition is 
explained in the next section. 

3. Emotion recognition 

In order to recognize expressions and emotions for a new person, the system first 
needs to know the values of parameters corresponding to the neutral expression. 
This reference data capture is performed using the snake technique; the person 
should keep hislher face very quiet and then push the INIT button on the control 
panel of the program to record these reference parameters. Typical reference 
parameters are: 

the reference left eyebrow height: leo 
the reference right eyebrow height: reo 
the reference mouth width: mwo 
the reference mouth height: mho 

FigA shows the extracted information. 
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Fig.4. The extracted information 

The expression/emotion recognizer compares values obtained in real-time to the 
reference values to decide the type of expression/emotion. The rules are generally 
too simple but they may be easily changed. For example, we give six rules using 
the following notations for the current parameter values: 

the reference left eyebrow height: Ie 
the reference right eyebrow height: re 
the reference mouth width: mw 
the reference mouth height: mh 

examples of rules: 

1) open mouth: 
if mwlmh < 2 then "mouth in 0" 

2) lowered eyebrows: 
if Ie < O.9*leo and re < O.9*reo then "not happy" 

3) open mouth but especially horizontally 
ifmw*mh > 2*mwo*mho and 2 < mwlmh < 2.5 then "laugh" 

4) open mouth but not circular and eyebrows lightly raised: 
ifmw*mh > 2*mwo*mho and mwlmh < 2 and O.9*leo < le < 1.1*leo and O.9*reo 
< re < 1.1 *reo then "strong laugh" 

5) mouth in 0 and high eyebrows: 
ifmw*mh> 2*mwo*mho and mwlmh < 1.8 and Ie> 1.1*leo and re> 1.1*reo 
then "afraid" 

6) half open mouth and high eyebrows: 
if mw*mh > 1.5*mwo*mho and mw*mh < 2*mwo*mho and mwlmh < 1.8 and 
Ie > 1.1 *leo and re > 1.1 *reo then "surprised" 
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4. Synthesis of facial animation 

One of the first application of the face analysis is the generation of the same 
expressions on a synthetic actor (see Fig. 5). For this purpose, we work at the low 
level of minimal perceptible actions as defined in our multilayered Facial 
Animation system SMILE (Kalra et a!. 1991). Only 8 minimal perceptible actions 
are used: 

openJaw 
raise_left_eye, raiseJighCeye 
close_left_eyelid, closeJighCeyelid 
raise_upper _lip, raise_lower _lip 
pull_mid_lips 

This is enough to control the main changes of the face, but not to copy exactly the 
expression of the real face, but again, our purpose is real-time processing more 
than accuracy. The facial deformations are performed using Rational Free-Form 
Deformations as defined by Kalra et al. (1992). 

Fig.5. Example of real time recognition/synthesis process 

5. Communication actor-animator 

Based on the model described in this paper, we are developing an animator-actor 
communication as described in MagnenatThalmann- Thalmann (1991). 

As shown in Fig. 6, the system is mainly an inference system with facial and 
gesture data as input channels and face and hand animation sequences as output 
channels. The input data is captured in two ways: the methodology described 
previously for face expressions and datagloves for hand motions. 
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Fig.6 Organization of the proposed system 

The development of the inference system is divided into three subsystems: 

i) a subsystem for the recognition of emotions from facial expressions, head-and­

shoulder gestures, hand gestures and possibly speech 

ii) a subsystem for the synthesis of facial expressions and hand motions for a 

given emotion and speech 

iii) a subsystem for the dialog coordination between input and output emotions 

This last subsystem is a rule-based system: it should decide how the virtual actor 
will behave based on the behavior of the real human. The dialog coordinator 
analyzes the humor and behavior of the user based on the facial expressions and 
gestures. It then decides which emotions (sequences of expressions) and gestures 
(sequence of postures) should be generated by the animation system. For the 
design of correspondence rules, our approach is based on existing work in applied 
psychology, in particular in the area of non-verbal communication. 

6. Implementation 

The recognition program is working on any SG IRIS workstation, but real-time 
(about 10 frames/sec) is obtained on the 4D/440 VGX for simple emotions as 
discribed here. The video input is obtained using a professional camera connected 
to the SG Living Video Digitizer. The program has been developed in C using the 
Fifth Dimension object-oriented toolkit (Turner et a1. 1990). The program 
interface only uses buttons and panels. 
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The SMILE system and the recognition program work on different UNIX 
processes. As the animation of the virtual face should be done at the same time as 
the recognition, both programs should exchange information. We use the UNIX 
inter-process communication protocol (ipc) which allows processes to send and 
receive messages. 

7. Conclusion 

This paper has shown that recognition of emotions in real-time is possible. This 
recognition may be used for generation of expressions by synthetic actors with 
same expressions or for truly communication between animators and synthetic 
actors. The main weakness of our program is that it uses techniques which 
require information from the previous frame to analyze the next one. This means 
that if the program does not succeed in extracting information from one frame, it 
cannot later extract information from the next ones. Only a tool analyzing 
frames independently could solve this problem, but in this case, real-time 
processing could not be possible any longer. 
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Abstract 

This paper describes an approach to use artificial reality techniques for real-time 
interpersonal visual communication at very low bitrate. A flexible structure is suitably 
adapted to the specific characteristics of the speaker's head by means of few parameters 
estimated from the analysis of the real image sequence, while head motion and facial mi­
mics are synthesized on the model by means of knowledge-based deformation rules acting 
on a simplified muscle structure. The analysis algorithms performed at the transmitter to 
estimate the model parameters are based on feature-oriented operators aimed at segment­
ing the real incoming frames and at the extraction of the primary facial descriptors. The 
system performances have been evaluated on different "head-and-shoulder" sequences and 
the precision, robustness and complexity of the employed analysis/synthesis algorithms 
have been tested. Promising results have been achieved for applications both in video­
phone coding and in picture animation where the facial mimics of a synthetic actor is 
reproduced according to the parameters extracted from a real speaking face. 

1 Introduction 

The idea of using object-oriented approaches for efficient coding of images and se­
quences has inspired almost all the so-called "second generation" techniques (Gilge, Engel­
hardt and Melhan, 1989; Hoetter and Thoma, 1988; Musmann, Hoetter and Ostermann, 
1989; Kunt) Benard and Leonardi, 1987; Kunt, Ikonomopoulos and Kocher, 1985; Mus­
mann, Pirsh and Grallert, 1985) based on the shared opinion that any effective video 
compression necessarily relies on a p'reliminary good image segmentation. The standard­
ization process, both in real-time t CCITT, 1990) and interactive (MPEG, 1990) visual 
communication, has strongly recommended the universality of the proposed techniques 
leadin~ to block-oriented DCT-based schemes where the intrinsic characteristics of the 
scene (real edges, 3D objects structure, texture-homogeneous regions, etc.) are substan­
tially ignored. 

On the other hand, application-oriented approaches are drawing more and more at­
tention to very low bitrate communications where the specific visual information can 
be efficiently formalized, modelled and predicted. Videophone sequences, in particular, 
identify an easy-to-model class of images, suitable to object-oriented processing for high 
compression coding. Different methodologies have been proposed to exploit the a priori 
knowledge and to design the appropriate scene model, depending on the aimed compres­
sion, complexity and quality. These methodologies include image classification into high 
and low priority blocks within conventional schemes (Badique', 1990; Pereira and Masera, 
1990), to complex object-oriented approaches (Buck and Diehl, 1990; Buck, 1990) and 
highly sophisticated 3D models (Aizawa, Harashima and Saito, 1989; Nakaya, Chuah and 
Harashima, 1991; Parke, 1982). 

Modelling a videophone scene basically means modelling a human head, that of the 
speaker, paxing particular accuracy to the reproduction of the time-varying somatic details 
ofthe face tMagnenat-Thalmann, Primeau and Thalmann, 1988; Waters, 1987) and to the 
synchronization of the lip movements with speech (Morishima, Aizawa and Harashima, 
1988; Yuhas, Goldstein Jr. and Sejnowski, 1989). Different data structures and algo­
rithms have been proposed both for what concerns head modelling and analysis-synthesis 
coding techniques. Among the many approaches, those based on flexible structures (Choi, 
Harashima and Takebe, 1991; Forchheimer and Kronander, 1989; Lavagetto, Grattaro­
la, Curinga and Braccini, 1992; Terzopoulos and Waters, 1990) have yielded the most 
promising results in terms of computational complexity and rate-distortion performances. 
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The approach described in this paper is based on a flexible wire-frame structure suit­
ably adapated to the face of the speaker (Lavagetto, Grattarola, Curinga and Braccini, 
1992), capable to reproduce mimic expressions by means of knowledge-based rules (Ek­
man and Friesen, 1977). The wire-frame structure can be animated either by means of 
synthetic parameters or, conversely, through true parameters estimated by analyzing a 
real videophone sequence. On the other hand, these true parameters can be employed to 
actually animate the modelled speaker's face or, alternatively, to animate the generic face 
of a synthetic actor. 

In the next Section a brief description of the modelling-synthesis procedures is pre­
sented while the analysis algorithms, performed at the transmitter to estimate the model 
parameters, and the achieved experimental results are discussed in details in Sections 3 
and 4, respectively. 

2 Image modelling and synthesis 

Human faces are modelled, as shown in the example in Figure 1, through a flexible 
wire-frame structure suitably adapted to their somatic characteristics with increasing re­
solution in correspondence of high detail features like eyes and mouth. The wire-frame 
structure is organized in a set of subregions, each of them affected by predefined defor­
mation rules producing time-varying variations to simulate muscle contraction. 

The human face is modelled as a system whose internal variables, called status or 
synthesis parameters, express the strength of the contraction stimula actually applied to 
its muscles: with reference to the wire-frame model, this corresponds to the deformation 
rules which are applied to each specific subregion. The system observable variables, called 
output or analysis parameters, are conversely associated to the external face appearing 
and are basically linked to facial primary somatics as described in Figure 2. 

Figure 1: Flexible wire-frame structure adapted to "Miss America". 

Differently from a previous approach (Lavagetto, Grattarola, Curinga and Braccini, 
1992), where synthesis parameters were estimated through iterative procedures, a straight­
forward estimation is here obtained by means of an inverse outputs-to-status mapping 
function. 

As the modelled object is a human face, the key problem of translating the observ­
able variables, estimated through the analysis of the input image, into suitable synthesis 
parameters, can be performed efficiently by taking into account a priori knowledge con­
cerning facial muscles and facial mimics. Through a learning procedure applied to a 
representative set of facial image sequences the system has been suitably trained and a 
lookup table has been constructed for the straightforward conversion from the vector of 
the analysis parameters, used to address the lookup table, to synthesis parameters used 
for the model adaptation. The mapping function is implemented by means of a code­
book obtained by clustering a training set of analysis and s.ynthesis vectors collected from 
different sources (i.e. from different facial image sequences). 
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The definition of the deformation rules acting on the wire-frame structure and the 
characteristics of the affected model subregions depend on the specific image class. Full­
screen facial images are usually rather easy to be analyzed as somatic features extend over 
an appreciable image area and can be successfully extracted: in this case facial mimics can 
be effectively reproduced by means of the full set of deformation rules. On the other hand, 
within different image classes where the face region extends over a small area, only coarse 
mimics can be reproduced as only a few analysis parameters can be reliably extracted: 
in this case a basic set of deformation rules is used, capable to synthesize only eyes and 
mouth opening/closing. 

3 Image analysis and model parameter estimation 

The estimation of the analysis parameters is performed through the following steps: 

l. estimation of the face symmetry axis; 

2. eyes detection; 

3. mouth contour detection; 

4. chin and jaw contour detection. 

The face symmetry axis is estimated by minimizing a suitable functional within an 
image window internal to the head silhouette extracted through interframe segmentation. 
The symmetry functional is computed, for each column k of the window, as follows: 

2 y X/2 

S(k) = Xy E?: Ilx(j, k - i) - x(j, k + i)11 
)=01=1 

(1) 

where x(j, i) is the luminance value of the pixel corresponding to the j-th raw and i-th 
column within the X . Y pixel window. 

The estimation of the face symmetry axis is rather sensitive to the particular image 
window used for the computation of the functional S(k): as shown in Figure 3, the eyes­
and-nose region usually exhibits more axial symmetry than other face regions where less 
somatic morphology is available. Depending on the image format and typology, also the 
window size represents a rather critical parameter as shown by the plots in Figure 4. 
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Figure 3: Symmetry axis estimation computed within different image subregions: the 
correct estimation is evaluated within the eye-nose region. Simulation results are referred 
to the sequence "Miss America", frame n. 20_ 

The luminance distribution is then analyzed orthogonally to the face symmetry axis 
in order to detect the presence of eye-patterns modelled as "dark-bright-dark-bright-dark" 
transitions. Each matching eye-pattern, as shown in Figure 5, is then weighted by means 
of a reliability coefficient proportional to the luminance activity (gradient) integrated 
along the cross-line in correspondence of the pattern itself. The most reliable matching 
pattern is consequently chosen and the central bright-dark-bright transition is used as 
estimation of the iris position, as shown in Figure 7. 

The mouth is then sought within an image window located under the eyes and crossing 
the symmetry axis. The plot in Figure 6 represents the error between the predicted 
position of the mouth and its actual position. The luminance distribution is filtered 
internally to the mouth search window, by means of the following operator H defined 
over a 5x5 pixel matrix: 

( ) '[ ( )] ulm,n) . [255 - x( m, n)J2 
H m, n = H x m, n = 2552 (2) 

where 255 is the highest representable luminance value and ulm,n) is the local luminance 
variance evaluated over the 5x5 pixel matrix. The filter response is therefore maximum 
in correspondence of dark pixels surrounded by highly varying luminance regions corre­
sponding, as far as the mouth area is concerned, to the external lip contour. 

The cumulative pixel difference of the H(m, n) filtered sigual is computed in corre­
spondence of the k-th raw or column as: 

Draw(k) = E{;o IIH(i,k) 

Dcol(k) = Ef:o IIH(k, i) 

H(i - l,k)1I 

H(k,i -1)11 
(3) 

where Draw and Dcol are the cumulative pixel differences evaluated on the k-th raw or 
column, respectively, inside the mouth window of size R . C pixels. 

The mouth search window is resized to the subwindow where Draw(k) and Dcol(k) 
exhibit the highest cumulative values (see Figure 7), yielding the result shown in the 
picture of Figure 8. 

Further processing is then performed inside the resized window to detect the mouth 
contour modelled as the closed curve maximizing the H( m, n) contrast along its boundary. 
This result is obtained by analyzing the H( m, n) -distribution along each column, bottom­
up and top-down, marking the first pixel where it exceeds a given threshold T. Marked 



~.---~r----'----~----~-----r----. 

20 

15 

10 

"window 50· -
"window -30" --
"window -20" ....... . 
"window:::1O" --

/ 
:~ .... <.\ : 

...... / 

5 ~ ____ ~ ____ ~ ____ -L ____ ~ ____ ~~ __ ~ 

100 120 

20 

15 

10 

140 160 180 200 
Colunmn. 

"window 50" -
"window -80" -_ •. 

"window.JOO" ........ 

220 

5 ~ ____ ~ ____ ~ ____ -L ____ ~ ____ ~~ __ ~ 

100 120 140 160 180 200 220 
Colunmn. 

401 

Figure 4: Effects produced bl. incorrectly sizing the subregion for the estimation of the 
symmetry axis: undersizing ttop) and oversizing (bottom). The correct size is 50 pixels 
where the functional presents a smgle sharp minimum. Simulation results are referred to 
the sequence "Miss America", frame n. 20. 
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Figure 6: Simulation performed on the sequence "Miss America". Plot of the error, 
expressed in pixels, between the actual position of the mouth centroid and its prediction 
based on eyes position and face symmetry axis. 
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Figure 8: The window is suitably resized around the mouth. 
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pixels are then connected to each other to form a closed curve c(T) and the contrast 
functional F[c(T)] is computed along its boundary as: 

1 
F[c(T)] = L(T) 

V(m,n)Ec(T) 
[H(mo,n) - H(mi,n)] (4) 

where L(T) is the length of the curve c(T) expressed in pixels while (mo, n) and (mi' n) 
are the pair of pixels adjacent to (m, n) in the same column, outside and inside c(T), 
respectively. In Figure 9 F[c(T)] has been normalized and plotted as a function of the 
threshold value T: its maximum corresponds to a value of T leading to the extraction of 
the optimal mouth contour as shown in the picture of Figure 11. 

The jaw contour is approximated by two parabolic arcs smoothly connected in corre­
spondence of the chin, assumed to lay on the face symmetry axis under the mouth. The 
image luminance distribution is filtered through the following operator V[x(m,n)]: 

V[x(m,n)] = ulm,n) (5) 

The V( m, n) filtered signal is then thresholded with respect to the value S according to: 

v. ( ) _ {V(m,n) if V(m,n) < S 
s m,n - 0 if V(m,n) > S (6) 

and analyzed along the line passing through the mouth extremes to find out the in­
tersection points with the face silhouette. The intersecting points have the following 
characteristics: 

• their V( m, n) value exceeds the threshold S (Vs( m, n) I- 0); 

• they are roughly at the same distance from the face symmetry axis; 

• they lay on the mouth-through-line roughly in correspondence of the projection of 
the external extremes of the eyes (see Figure 2). 

Let us call cx! and CX2 the silhouette intersecting points and p(t) the position of 
the chin constrained to lay on the symmetry axis s(t), expressed as a function of the 
parameter t. For each value of t, the two parabolic arcs a!(t) and a2(t) passing through 
{( cx!, p( t)} and {CX2' p( t)} are computed. The following matching functional W (t) is 
computed: 

W(t) = Vs(m,n) (7) 
V( m,n)Ea,(t),a2(t) 

The value of t for which W(t) is maximum, identifies the point p(t) taken as an 
estimate of the chin position. In Figure 10 W(t) is plotted as a function of the variable t: 
its maximum corresponds to a value of t leadmg to the optimal chin and jaw extraction 
shown in Figure 11. 

4 Experimental results 

The above described analysis-synthesis algorithms have been applied for coding stan­
dard "head-and-shoulder" monochrome videophone sequences like "Miss America" and 
"Claire" (256x256 pixels, 8 bpp, 10 frame/sec.) achieving an average rate of 0.5 Kbit/sec 
for facial parameters coding. The analysis algorithms have proven to be precise and ro­
bust both for the estimation of the face symmetry axis, as described in Figure 12, and 
for the extraction of the somatic features. As illustrated in Figure 13, facial mimics is 
synthesized from the model very effectively, providing appreciable reconstruction quality 
with very low decoding complexity. On-going research, oriented at the exploitation of the 
acoustic information to integrate the visual analysis, is presently opening new promising 
perspectives in lips synchronization (Morishima, Aizawa and Harashima, 1988; Yuhas, 
Goldstein Jr. and Sejnowski, 1989). 
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Figure 9: Normalized contrast functional F[c(T)] plotted as a function of the threshold 
value T. Its maximum, just before the discontmuous transition from positive to negative 
values, corresponds a value of T leading to the extraction of the mouth contour shown in 
Figure 11. 
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Figure 11: Chin and jaw contour have been extracted. 
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Figure 13: Examples of synthesized facial expressions showing the achievable reconstruc­
tion quality. 
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The development of solid modeling has been motivated primarily by its potential for 

supporting automated applications. Analytic applications have been addressed successfully, and 

algorithms are available for visualization, mass property calculation, static interference analysis, 

kinematic simulation of mechanisms, and simulation of manufacturing processes such as 

machining. Work on automatic meshing for Finite Element Analysis (FEA), simulation of 

semiconductor fabrication operations, and electronic packaging is progressing nicely. 

But automation of applications that involve synthesis or spatial planning remains an 

elusive goal. This paper discusses recent research at USC's Programmable Automation Lab on 

three problems that involve reasoning about solid mechanical parts and physical processes that 

act upon them: numerically controlled (NC) machining, dimensional inspection, and flXturing. 

Numerically Controlled Machining 

The problem addressed by machining-planning research may be stated as follows. Given 

solid models of the desired part and the raw material, plus tolerancing, material and other 

ancillary specifications, generate automatically a plan for manufacturing the part, and actual 

instructions to drive NC machine tools and other manufacturing equipment. Automatic 

machining planning may be decomposed into the following subproblems or tasks, illustrated in 

Figure 1. 
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Recognition of machinable features such as holes, slots and pockets. For example, a 

planner must "know" that a certain surface or surfaces are associated with a hole feature, 

otherwise it will not be able to infer that a drilling and a reaming operation are needed. Although 

some feature information can be captured directly at the design stage, recognition is needed 

because manufacturing features differ from those used in design. For example, a web is a 

design feature that is machined indirectly, typically by removing pockets that share portions of 

their boundaries with the web. As shown in the figure, we favor systems in which design is 

accomplished through design features and perhaps other means, and the design data are used 

both to construct a geometric model of the part and to facilitate the operation of a feature 

recognizer. We defer discussion of OOFF, USC's feature fmder, to the end of this section. 
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Process selection for each individual feature of a part. The RTCAPP planner developed 

at USC by Prof. Khoshnevis and his students provides an example of a state of the art system 

[Park 1990]. It is a rule-based expert system that manipulates "symbolic geometry", i.e., sets of 

geometric attributes and predicates. For example, a hole is represented by a data structure 

containing the feature type, plus attributes such as diameter and tolerances. A typical process 

selection rule stipulates that "if the size tolerance is less than a prescribed value T the hole must 

be drilled and then reamed". The process selection system does not perform geometric 

computations (e.g., intersections), and it does not even have a global model of the part and its 

environment It assumes that all the necessary features and attributes have been pre-computed or 

are entered manUally. Choice among competing alternative processes involves search, guided 

by cost considerations. On-going research by Dusan Sormaz at USC seeks to couple the 

process planner with OOFF, so as to use the geometric information produced by the feature 

recognizer to derive the attributes needed by the planner. 

Process ordering. Selected processes must be partially ordered to reflect precedence 

relations. Process selection and ordering are closely related. Systems such as RTCAPP address 

both subproblems. Features contain predicates such as "intersects slot S", and sequencing rules 

stipulate, for example, that "if the depth of hole H is larger than a threshold T, and H intersects 

slot S, then H must precede S". 

Setup planning, which involves the selection of part orientation and location with respect 

to machine tools, as well as the selection and placement of clamping devices and other fixtures. 

This is perhaps the least understood and most complex aspect of machining planning. We 

discuss setup planning for inspection (which is a related problem) in the next section, and 

address clamping in the section on Fixture Design and Assembly. 

Cutter and machine selection. Process planning systems such as RTCAPP select tools 

by using rules and tables, using methods largely independent of solid modeling concepts. 

The outcome of the tasks just described is usually called a process plan, which is a list (or 

perhaps a graph including precedence information) of machining and setup operations, plus 

associated resources such as tools and machines. Existent systems other than feature 

recognizers make essentially no use of solid modelers, and operate primarily on feature data and 

associated attributes. Whether this is desirable or not is unclear at present 

The process plan must be expanded, through operation planning, into executable 

instructions for machine tools and human operators. Operation planning consists of two main 

tasks. 
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Parameter and strategy selection. This involves the choice of parameters such as feeds, 

speeds, depth of cut, and so on, as well as strategies for plunging into the material and for 

cutting it. For example, one might decide to clear a pocket by using either a ziz-zag or a spiral 

cut. These parameters and strategies, together with geometric data about the features to be cut, 

constitute the information that must be passed to NC code generation modules. At USC we 

have an on-going project to automate the generation of such information, in collaboration with 

EDS/Unigraphics. 

Cutter-path generation. This task produces the actual code for driving the NC 

machinery, and often involves expensive geometric computations. Traditional cutter-path 

generation, implemented in most of the current commercial CAD/CAM systems, is not based on 

solid models. It uses surface or wireframe models, is based on iterative surface-following 

methods or offset computations, and requires extensive user intervention. Feature-based 

machining systems were demonstrated in Chan's thesis at the University of Rochester, and are 

beginning to appear commercially. Such systems operate on solid models of features and parts, 

can ensure program correctness, and do not require user intervention. At USC we are 

attempting to couple our feature finder output, plus process information added by Sormaz' 

planner, and strategy and parameter data, to Unigraphics NC software. 

Let us now focus on OOFF (Object-Oriented Feature Finder), which was developed 

by Jan Vandenbrande in his 1990 PhD thesis [Requicha & Vandenbrande 1989, Vandenbrande 

1990, Vandenbrande & Requicha 1990, 1993]. The recognizer uses a rule-based approach for 

generating clues or hints about potential features from partial information gathered from several 

sources-nominal and toleranced geometry, attributes (e.g. threads), and functional features 

specified by a designer. (One could use most of the methods proposed in the extant feature 

recognition literature as additional hint generators.) Hint validity is assessed by using geometric 

tests based on criteria closely associated with machinability constraints such as accessibility and 

non-invasive machining. Complex interactions among features are accommodated because the 

search process does not rely on complete information, and missing portions of a feature are 

inferred by growing (or "completing") the feature volumetrically. This strategy is reminiscent of 

some computer vision systems, which also must deal with incomplete data, because of 

occlusion phenomena. 

The "generate and test" cycle continues until the recognized features are sufficient to 

transform the raw material into the desired part. The final output of the feature finder is a 

decomposition of the volume to be removed into a set of volumetric (solid) features that 

correspond to manufacturing processes typically performed in 3-axis machining centers. Solid 

features are crucial for performing geometric tests, and should prove very useful to process 

planning systems for calculating intermediate workpieces, testing for potential collisions, 

determining feeds and speeds from the volumes to be removed, and so on. The features may 
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overlap in 'common regions, which are classified as "optional", and alternative feature 

decompositions may be produced. Adjacent features with common properties are grouped 

together into composite features. Accessibility and adjacency information are provided to 

facilitate reasoning about precedences and process sequencing. 

The feature recognizer is implemented in our AI/SM (Artificial Intelligence/Solid 

Modeling) test bed, which consists of the KnowledgeCraft (KC) AI environment, tightly 

coupled to the P ADL-2 solid modeler. (Our latest version uses the Parasolid modeler instead of 

PADL-2.) In the current experimental implementation the boundary representations of the stock 

and the delta volume (which equals the difference between the stock and the desired part) are 

enhanced with adjacency links and other useful information, and converted into a frame-based 

structure in KC. This structure is processed by OPS-5 rules which fire when certain face 

patterns and geometric conditions are satisfied. Some of these conditions are checked by calls to 

the modeler. Most of the computation is associated with feature completion, growing and 

verification, which involve geometric tests performed by the modeler and additional processing 

in KC. 

~ Composit. Hoi. 

~ - Automaticaly-generated feature decomposition. 

Figure 2 shows a feature decomposition for a deceptively simple object that involves 

complex interactions. (The figure was generated directly from the recognizer output; not shown 



416 

are alternative interpretations of the slots as "open pockets", and slabs that correspond to face 

milling operations used to "square" the stock.) The decomposition consists of one composite 

hole (a cylindrical hole adjacent to a conical hole) and three slots. Slot 3 is embedded in Slot 1, 

both of which cross slot 2 and the composite hole. The features are extended towards the stock 

because of the feature completion process. For Slot 3 this is most noticeable because its volume 

extends upwards through Slot 1. The volume common with Slot 1 is considered "optional" 

because it can be removed by machining either Slot 3 or Slot 1. This extended volume implies 

that there is no strict ordering between Slot 3 and Slot 1 because both are accessible. It may not 

be as efficient to make Slot 3 before Slot 1, but both sequences produce correct results. The 

feature fmder currently does not output precedence information, but a process planner should be 

able to reason about precedence from the volumes produced by the finder. For example, it 

should be possible to infer that the composite hole must be machined before the adjacent 

features by analyzing the interaction of the volumetric hole and slot features. 

Dimensional Inspection 

Dimensional inspection is a quality control task that consists of measuring a mechanical 

part so as to determine whether it meets its nominal and tolerancing specifications. Coordinate 

Measuring Machines (CMMs), which, in essence, are very accurate 3-D digitizers, are versatile 

and well suited for automated dimensional inspection. 

We are developing an inspection system with the architecture shown in Figure 3. The 

input is a solid model of the part to be inspected, together with a set of surface features and 

associated tolerances. (A surface feature here is simply a set of "faces" of the part.) The high­

level planner produces a partially-ordered collection of setups, and a partially-ordered set of 

operations for each setup. A setup is characterized by a fixed workpiece orientation with 

respect to a CMM, and by the associated fixtures and clamping equipment. An operation 

essentially consists of inspecting a surface feature, and has one or more generic probes and 

probe directions associated with it. The low-level, operation planner takes into consideration the 

available machines, probes and fixtures, determines appropriate sampling points to inspect each 

feature, and produces probe paths and specific part-positioning information. Probe paths are 

translated into actual commands for the CMM, and part positioning information is 

communicated to a human operator (or, eventually, to a robot). Measured points are interpreted 

by a soft gaging module, which determines if a part meets its tolerance spec. (Additional output 

information may also be useful to determine, for example, why a part is out of spec.) 

We think that accessibility is a major concern in high-level planning for inspection. It 

strongly influences the part orientation in each setup, which features may be inspected in a 

setup, and the probe orientations. We developed an accessibility analysis module, whose 
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underlying theory is based on semi-infInite line models for probes, and on the properties of 

direction cones, which represent the sets of accessible directions - see [Spyridi and Requicha 

1990,1991]. The algorithm may be summarized as follows. To compute the global accessibility 

cone (GAC) for a face of a solid, (i) sweep a shrunk version of the face over the boundary 

elements (faces, edges and vertices) of the solid, (ii) compute the "silhouette" or "shadow" of 

the sweep as seen from a reference point in the face, (iii) union all the cones that correspond to 

the silhouettes, and (iv) complement the result. To compute the sweeps, or Minkowski sums, it 

suffices to calculate the contributions from those solid's faces, edges and vertices whose normal 

vectors (Gaussian images) overlap those of the face (Plus its bounding edges and vertices) 

being considered. Importantly, all of the required sweeps can be computed in the plane and 

produce polygons, rather than 3-D sets. 

CMM 

Figure 3 - CMM Inspection 
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,When the intersection of the GACs of all the features is non-empty, any direction within 

the intersection cone may be used to inspect all the features. Usually, however, the intersection 

is empty, and one must arrange the cones into clusters, so that the cones in each cluster have a 

non-empty intersection. A minimal number of clusters is desirable, to ensure that a small 

number of probes and setups are used. 

Our current work is centered on the design of the high-level planner. Our approach casts 

the planning problem as search in a space of partially-completed plans. Plans evolve towards 

completion through the effects of operators that map plans into plans. The state is represented 

by sets of 4-tuples (SF, PG, PD, SU), where SF is a (possibly compound) surface feature to 

be inspected, PG are the acceptable probe geometries (selected from a given set of physical 

probes), PD are the accessible directions represented by cones, and SU are the setup 

orientations. We follow a least-commitment strategy, and attempt to reason about all the 

possible solutions, gradually narrowing their range by applying constraints such as 

accessibility, same-setup (for related features), and so on. Results will be reported in a 

forthcoming PhD thesis by Tonia Spyridi. 

Fixture Design and Assembly 

Setup and fixturing are amongst the least automated of all the production activities for 

mechanical components and assemblies, and yet they contribute significantly to overall factors 

such as cost and lead time. We have just been awarded a NSF Strategic Manufacturing 

Initiative grant to study fixturing. This is a collaborative project whose principal investigators 

are Ari Requicha, George Bekeyand Ken Goldberg of USC/IRIS and Lucy King of the GMI 

Management and Enginering Institute, and involves the Rocketdyne Division of Rockwell 

International as industrial partner. No results are available yet. The following is a description of 

what we intend to do. 

Mechanical parts must be fixtured by using clamps and other devices to ensure that part 

poses (positions and orientations) do not change while manufacturing, assembly, and 

inspection operations take place. The fixtures depend on the specific operations or tasks to be 

performed. For example, a machining fixture must resist the cutting forces, and must ensure 

that the volumes to be removed are accessible to the cutting tools. Thus, the input to the 

proposed fixturing design and assembly system includes solid models for the parts to be 

fixtured, plus a description of the task or tasks to be performed while the parts are attached to 

the fixture. Part models must contain tolerances, surface finishes, and other ancillary 

information required for fixturing. Tasks will be expressed in a task-description language, 

which is likely to be based on geometric features such as solids, surfaces and curves. 
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We decompose the fixturing design and assembly process as shown in Figure 4. A 

fixture specification generator reasons about the input data so as to produce an abstraction or 

high-level, functional description of the fixture. We call such an abstraction a fixture 
specification. We envision fixture specifications that contain information on the relative 

orientation between part and fixture, estimates of the forces and torques to be applied to the part 

by the fixture, surfaces available for clamping, surfaces that must be kept clear, and so on. 

Fixture specification generation involves accessibility analysis, recognition of fixturing features, 

tolerance analysis, and perhaps other activities not yet identified. 

Solid Models 

Task Descripllon 

Fixture Hardwere 
Primitives 

Fixture Spec: 
Part Orientation. 

Available Surfaces. 
Restricted Zones. 

Forces. Moments .... 
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~ - Fixture design and assembly process 
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.The fixture configuration generator produces (a representation for) a set of suitably 

positioned devices that constitutes an embodiment, or physical realization, of the abstract fIxture 

specifIcation. The devices are selected from a fInite list of modular fIxturing components, or 

hardware primitives. Here we perform a kinematic analysis of form and force closure, 

consider the problem of loading the part into the fIxture, and use cost/performance criteria such 

as minimal number of modular components. We also attempt to ensure that the fixture 

configuration isJoolprooJ, i.e., that the part can only be loaded in the fIxture in a unique pose. 

This facilitates correct loading, whether done by humans or robots. 

If the generator cannot synthesize an acceptable fIxture configuration, it exits with a 

failure message, and a custom fIxture must be designed manually. Failures may stem from the 

non-existence of solutions (e.g., because of a lack of suitable hardware primitives), or 

(infrequently, we hope) from the generator's own reasoning limitations. 

Finally, the assembly planner fInds a sequence of operations for assembling the chosen 

fIxture confIguration. The operations can either be executed by humans, or converted into 

programs' for robots. 

Each step of the process---specifIcation generation, confIguration generation, or assembly 

planning-may produce feedback information for the part designer. The feedback reflects the 

Jixturability of the part. It can range from a simple estimate of how diffIcult or costly the 

fIxture is, to elaborate advice on how to modify the part so as to improve its fIxturability. This 

feedback is important in a concurrent engineering scenario, in which a part designer seeks 

advice from a fIxturing expert-in our case, an automaton. 

The ability to learn from previous experience and to re-use proven fIxture designs should 

significantly enhance the effIciency of a fIxture design system, and also lead to higher-quality 

designs. A previous design must be augmented with information on intent and rationale, so that 

it can be retrieved and modifIed in situations for which the design is relevant. Describing 

function, behavior, intent, or rationale of mechanical products is a wide open and difficult 

research area We think that fixture design may provide a relatively simple instance of the more 

general problem of automatic design, and that there are good chances to make progress in such 

a restricted domain. Successful fIxturings will be encoded and stored so as to allow case-based 

reasoning in the evaluation of new fIxturing requirements. Reasoning about shape and function 

will generate information on design modifications necessary to achieve the new requirements. 

A system can either attempt to carry out these modifications automatically, or can provide them 

as re-design advice to a designer. 
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Summary and Conclusions 

Total automation of a wide range of design and manufacturing activities has proven more 

difficult than expected in the pioneering times of solid modeling. Analytical applications have 

been tackled successfully but applications that involve synthesis or planning have progressed 

slowly. 

This paper describes recent research on spatial planning for machining, inspection and 

fixturing. The key characteristic of this work is the use of a hybrid approach that brings together 

concepts and techniques from computational geometry and artificial intelligence. Three planners 

under development at USC are discussed. One extracts features from a solid model of a part and 

plans the removal of the associated volumes. Another produces a high-level plan for for the 

dimensional inspection of a part with a coordinate measuring machine. It selects part and probe 

orientations, and plans measurement operations for each setup. The last has just begun to be 

developed, and is intended to produce designs for fixtures, and assembly plans for constructing 

them from modular components. 

One thing we have learned from our research of the past few years is that spatial 

reasoning is hard! Solid modeling is but one of the technologies needed to fully automate design 

and production activities. It is especially relevant to issues of collisions, gouging, precedence, 

accessibility, and in-process workpiece modeling. In addition to the usual Boolean operations, 

computational support is needed for Minkowski operations and other configuration-space 

manipulations. Geometric information also is important for other tasks such as cutter path 

generation for numerically controlled machining, but surface or wireframe models often suffice, 

once accessibility has been established through analysis based on solids. Non-geometric 

information, for example on material and available resources, also plays a crucial role. 
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Abstract 

Features are real existing constituencies of product parts that associate 

engineering significance with shapes. A feature-based representation 

of product models is an essential prerequisite to the development of a 

new generation of Computer Aided Design systems. 

In this paper, we propose a system architecture for feature-based 

modeling which is founded on the integration of two approaches: 

feature extraction from existing solid models and design-by-features. 

This integration is obtained through the definition of a common 

feature library and a Unified Model, which plays the role of 

communication link between the geometric model and the feature­

based modeL This system should enable the user to mix the two 

modes of definition allowing him to design an object directly with 

features or to start with a geometric model and to extract a feature 

model from it. 

1 Introduction 

The current state of Computer-Aided Design (CAD) can be identified as a 

transition state from traditional geometry-based design systems to Computer­

Aided Engineering (CAE) systems in which pure geometric information is not 

the only basis of the entire design enterprise. For instance, the design of complex 
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mechanisms requires information on material properties, cinematic joints, 

neighbour relationships and functional conditions in addition to shape 

properties. 

Future CAD systems, therefore, must be equipped with facilities expressive 

enough to incorporate various kinds of information, beside geometric 

information. Thus, comprehensive models, called product models are being 

widely investigated as a uniform modeling basis for CAD [Wilson 1990] [ISO 

1992]. Activities of the product modeling process are concerned with representing 

and supporting all information about the product in a way that allows to capture 

the whole design, analysis, manufacture, test, inspection and maintenance 

sequence, with no loss of information at any stage. 

Recently, features have been discussed in the engineering community as the 

elements which provide a convenient language for modeling product parts in 

order to include non geometric information. Feature-based models allow each 

application to have its own view of the product. 

Two distinct approaches have been considered by researchers to incorporate 

features into a part model, namely design-by-features and feature extraction from 

geometric models. 

The purpose of this paper is to outline a system architecture for feature-based 

modeling which integrates these two strategies. This system should enable the 

user to design a part using features, or to start with a geometric model and create 

a feature-based model from it. Also, it should allow the user to mix the two 

modes of definition and to extend the feature library. To this end, we propose a 

unified feature-oriented model as communication link between design-by­

features and feature recognition, together with some mechanisms to map a 

geometric model into the unified model, and from this intermediate 

representation to a context-dependent feature-based model and viceversa. 

2 Generation of Feature Information 

Features are high-level semantic data which provide a concise description 

of the part characteristics. Since there is no real consensus in the definition of 

what a feature is, an attempt to unify them leads to the following definition: 

features are real existing elements constituting parts that associate engineering 
significance with shapes [CAM-I 1988]. 

The main advantages of features include, firstly a vocabulary which is more 

natural for expressing the product part than geometric models; secondly the 

possibility of using features as a basis for modeling product information in 
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different phases and thirdly an increase in the designer's productivity and cost 

effectiveness. 

A feature based model can be created by following two different approaches: 

design-by-features and feature extraction. 
Using the first strategy, the feature-based model is created during the design 

stage, when features are used as primitives constituting the object. The main 

advantage of this approach is the possibility of building the model immediately 

including the information available to the designer. On the other hand, the 

problem with design-by-features systems is that the user needs definitions of 

features prior to design which are oriented to specific applications. In this way, 

the set of features used in design is limited. Moreover, the resulting feature­

based model is strictly context-dependent and it cannot be shared between 

different application viewpoints [Cunningham Dixon 1988], [Shah Rogers 1988]. 

In feature recognition, features are extracted from the geometric model of the 

part. In this way no restrictions are imposed to the designer who defines the 

object shape by using geometric primitives. This approach can be adapted to 

different application contexts, but here the key problem is that it is possible to 

recognize only what is already implicitly stored in the database, since features are 

extracted after the completion of design [Falcidieno Giannini 1989], [Requicha 

Vandenbrande 1989], [Sakuray Gossard 1990], [Joshi 1990]. 

As a consequence, both design-by-features and feature recognition approaches are 

inadequate when performed alone or strictly in sequence. Thus, the solution to 

efficient feature-based modeling seems to be a combination of both. 

Some attempts in this direction have been already proposed [Sreevalson 1990], 

[Dixon, Libardi 1990], [Falcidieno, Giannini, Porzia, Spagnuolo 1992], [Lakko, 

Mantyla 1992]. 

A feature modeler joining recognition and design approaches would combine 

the positive aspects of both methods. A system based on an integrated approach 

should give the possibility of generating features during design evolution, 

creating application specific feature taxonomies and mapping feature sets 

between different application contexts, so that the user can design part of the 

model directly with features and part of it with the underlying solid modeler. 

Let us give an example. Suppose we want to define a simple part like the object 

in figure la. How this part is modeled in terms of features varies from one 

context to another. For example, it can be interpreted as having a slot, a step and 

an array pattern of four through-holes, or two ribs and the same pattern of holes 

(see figures lb and lc). 
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(a) 

(0) (c) 

Figure 1 : A simple part (a) and two different interpretations (b and c) 

If the part is modeled with features the application context must be a priori 
chosen, thus using the array pattern of through-holes and either the slot and the 

step features (see figure 2 a), or the two ribs (see figure 2 b). 

block 

'---C -----,,0 
block 

aeate 
slot &: step 

(a) 

creOle fib ,reall rib 

~JJ~ 
(b) 

Cf4!ale Array PaJlt!TII 

Rib Rib 

~."'. 
o 0 
o 0 

creme Array Palurn 

Figure 2: The part of figure 1 designed by features in two different ways 

On the other hand, if a recognition approach is adopted, the decision on the 

application context may be postponed and it is possible to recognize both the two 

ribs and the step and the slot, by using different sets of rules. 

More difficulties may arise in the identification of the compound feature "array 

pattern of four through holes" that was already known to the designer. 

In this case, a more efficient solution seems to be a mixed approach which allows 

the designer to create the model of the object partly with the underlying solid 

modeler and partly with a design-by-features approach. In figure 3 the object of 

figure 1 is built by using both a sweeping function of the solid modeler and the 

"make pattern" function of the design-by-features system. Successively, and 
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according to the specific task, the model can be interpreted, as depicted in figures 

Ib or lc. 

Figure 3: The part of figure 1 defined by using a mixed approach 

3 Various Levels of Modeling in Integrated Systems 

One of the main difficulties in integrating design-by-features and feature 

recognition is that in the first approach the user creates context-dependent 

representations specific and rich enough to meet the requirements of a given 

application, while in the second one the user builds the geometric model of a 

part which is successively extended to a feature-based model through a 

recognition process. The information content of the two representations is 

different since, in its broadest sense, a feature-based model not only encapsulates 

information about geometric form, but also about engineering meaning and 

function. As figure 4 shows, the geometric model is only the kernel of the 

product model and, in particular, of all the possible feature-based models created 

for every application context. 

Figure 4: The increasing information content in the various representations 

From a theoretical and algorithmic point of view there is no problem in deriving 

a geometric representation from the higher level model, since each feature is 
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associated with a solid model defined in terms of dimensional parameters. What 

is more difficult is the inverse transformation: to map a geometric model into a 

feature-based representation. To go towards this direction requires the modeling 

of the perception, understanding and synthesis performed by the expert. The 

problem here is not only modeling parts, but also modeling their context of use. 

Thus, for integrating a design-by-features system with an automatic recognition 

system, both the representation model of the object and the description of the 

context must be consistent. 

The solution seems to be the definition of an intermediate representation, which 

should be an explicit evaluated model containing all the geometric and 

topological information about features which can be derived from a feature­

based model or can be extracted by interactive or automatic recognition. 

In our integrated system, this intermediate model is called Unified Model and 

plays the role of communication link between the geometric model and the 

feature-based model (see figure 5). The Unified Model is considered the 

framework of the feature-based model, expressly built to hold additional 

information which describes the context of application. 

Figure 5: The Unified Model as an intermediate representation between the 

Geometric Model and the Feature-based Model 

The Unified Model, though feature oriented, is still a geometric model, which 

benefits from the use of representations having a hybrid nature rather than 

traditional solid models (B-rep or eSG). 

At present the Unified Model is expressed as a hierarchical graph where each 

node corresponds to a shape feature volume represented in a boundary form and 

the arcs represent connections between volumes expressed by their common 

boundary elements, i.e. overlapping faces. Every non root component represents 

a shape feature of the object. More details on it can be found in [Falcidieno, 

Giannini 1989]. 

A qualifying aspect of the Unified Model is its dynamic structure which can be 

updated through two different mechanisms: simplification and subdivision. By 

simplification we can merge some components, thus reducing the complexity of 
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the representation, while subdivision is the dual operation. Figure 6 shows how 
these operations can act on the feature graph. The object depicted in figure 6(a) 
could be represented like in figure 6(b) as the result of a design process, then the 
representation can be adapted either for an assembly task by a simplification 
operation on the graph, see figure 6(c), or for a manufacturing application by 
applying successively a subdivision operation, as figure 6(d) shows. 

(a) 

Simplification Subdivision 

(b) (c) (d) 

Figure 6: Updating the feature graph through simplification and subdivision 
operations 

4 The System Architecture 

To make the definition of design features compatible with the feature 

description in the recognition system, the user should be allowed to define a 

library where every feature has to be formalized and archived in a way consistent 
with both processes. Also the geometric model and the feature based descriptions 
of the parts should be strictly correlated and manipulated. 

Based on these two main requirements, an ideal architecture like that in figure 7, 
could be devised. Here the user interacts with the system in three ways: through 
the Feature Editor, the Feature Modeler and the Solid Modeler. 

The user can create the solid model of an object through the Geometric Modeler 
or he can design the object parts directly by features using the Feature Modeler. 

The Feature Library is created through the Feature Editor by specifying a set of 
parameters for pre-defined features, or by using the Geometric Modeler 

depending on the feature shape complexity. 
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Geometric 
Modeler 

USER INTERFACE 

Feature based Model 

Unified Model 

Geometric Model 

Figure 7: The proposed system architecture 

In this architecture, the keys for the integration between design-by-features and 

automatic recognition are the Unified Model and the common feature library. If 

the user creates the solid model of the part, this model is automatically 

converted into the Unified Model through the recognition mechanism and then 

transformed into a feature-based model by using a data-driven mechanism 

which interprets the model for a specific application context. If the user directly 

creates the model by features, the set of data defined within the feature model is 

linked to the elements of the solid model via the Unified Model. 

The mapping of feature-based models between different application contexts is 

performed by the recognition module which makes use of context-dependent 

feature libraries, and works on the Unified Model of the part. 

At present, prototypes of some parts of this architecture exist: a parametric 

feature modeler [Ovtcharova, HaBinger 1991], an automatic recognition module 

from a geometric model (B-rep) to the Unified Model [Fa1cidieno Giannini 1989] 

and a mechanism allowing users to define their own feature library to convert 

the Unified Model into a feature-based model [De Martino Falcidieno Giannini 

1991]. 
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4.1 The Feature Library 

The feature library is primarily used to store the description of design 
features. Here, two types of features are distinguished: (1) pre-defined features 
which are always available and define the fixed part of the library, and (2) user­
defined features which complete the previous set and allow a dynamic 
management of the library. 
The set of pre-defined features consists of standard design features, such as 
cylindrical holes, rectangular pockets, simple slots. Each pre-defined feature is 
implicitly described by a set of parameters and the user can model the part by 
instancing features from the library. The feature description includes a name, an 
identifier, the type of the corresponding form feature (depression, protrusion), 
the type of representation (explicit or implicit), a list of parameters and some 
constraints on these parameters, a set of attributes which are application 
dependent and a set of procedures which are necessary for creating and 
manipulating the feature. 
In figure 8 an example of a pre-defined cylindrical hole is shown. In order to 
define an instance of such hole from the library the user has to call the procedure 
create_cylindrical_holeO specifying a value for each parameter. Then the system 
automatically updates the Unified Model, inserting the defined feature in the 
graph structure. Transformations and modifications of the feature model can be 
provided by the procedure manipulate_cylindrical_holeO, while the consistency 
checking is performed by the procedure validate3ylindricaCholeO. 
If the set of pre-defined features is not sufficient, the designer can specify his own 
set of features, which will be included in the feature library. 
User-defined features can be created by means of the feature modeler or of the 
solid modeler, depending on their geometric complexity. The feature modeler 
can be used when it is possible to describe a design feature as composition of pre­
defined features. The stepped hole described in figure 9 is an example of feature 
defined by the user through standard design features. 
If the description of a feature as composition of standard features is too complex 
or impossible to be defined, the user can create his own-features by means of the 
solid modeler. He has to define the feature volume which affects the main shape 
of the object. The shape feature is then explicitly represented by the geometric 
model in the library but the information describing this type of feature is not 
complete as for pre-defined features: implicit representations are not considered 
and manipulations cannot be provided. The user can only associate a name and a 
set of technological attributes to the part. 
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TYPE: 

IDENTIFIER: 

o 

cylindrical_hole 

0001 

FORM FEATURE TYPE: depression 

REPRESENTATION TYPE: implicit 

PARAMETERS: r, d /* radius, depth *f 
CONSTRAINTS: 

POSITION: 

ATTRIBUTES: 

PROCEDURES: 

r, d > 0 

location (point C! and orientation (normal and reference directions) 

surface finish 

crea teJyli nd rical_hol e() 

delete Jyli nd rica I_hoi e() 

manipu late _cylindrica'-hole() 

validateJylindrical_hole () 

Figure 8: An example of pre-defined features: a cylindrical hole 

TYPE: 

IDENTIFIER: 

FORM FEATURE TYPE: 

REPRESENT A TION TYPE: 

PARAMETERS: 

CONSTRAINTS: 

POSITION: 

ATTRIBUTES: 

PROCEDURES: 

stepped_hole 

0011 

depression 

implicit 

r, h /* first hole radius and depth *f 
R, H f* second hole radius and depth *f 

r, R, h, H > 0; r=2R; h=H 

location ( point C! and orientation (normal and reference directions) 

surface finish 

crea te _s tepped _ho le() 

delete_stepped_hole( ) 

manipulate_stepped_hole() 

validate_stepped_hole () 

Figure 9; A stepped hole defined as composition of two cylindrical pre-defined 

holes 
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Figure 10 shows an example of a feature defined by the user through the solid 
modeler, and the corresponding description stored in the library. 

(bl 

TYPE: pocket 

IDENTIFIER: 0111 

FORM FEATURE TYPE: depression 

REPRESENT A TION TYPE: explicit 

PARAMETERS: NULL 

CONSTRAINTS: NULL 

POSITION: location <point C) and orientation (normal and reference directions) 

ATTRIBUTES: surface finish, ... 

PROCEDURES: create_feature< ) delete-feature( ) 

Figure 10: The complex shaped pocket in (a) as an example of feature defined by 
the user through the solid modeler (b) and its representation in the library 

4.2 The Design by Features System 

The design-by-features system allows the user to design a product part 

directly with features. The two main modes in which the system operates are: 
creating and manipulating instances of predefined features from the library and 

updating the library with user-defined features which are mostly application 
specific [Ovtcharova HafSinger 19911. 

The design-by-features system follows the top-down and bottom-up approach of 

design using a hierarchical data scheme, which makes it possible to trace from 
design features specification (application-oriented) to form features definition 
(generic) and their representation and geometric evaluation [Ovtcharova 19921, 

[Ovtcharova Pahl Rix 19921. 

The central idea is that the design features defined on the top level and instanced 

from the feature library are used to model a product part in a concrete application 
context. Their description derives specific meaning from the view of the 

function of the product part, including shape data as well as non-shape data. 
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At the second level, the shapes of design features are usually expressed by form 

features defined in parametric way. The parametric definition is provided in 

terms of positive feature volumes (protrusion, connection) and negative feature 

volumes (depression, passage) which are specified by a cross section. The cross 

sections can be pre-defined such as circular, rectangular, racetrack, or used­

defined cross section, stored in the feature library. 

At the third level, form features are represented in two main forms: implicit and 

explicit. The implicit representation (for example, by sweeping) can be considered 

as consistent, but not detailed. For example, a racetrack depression might be 

represented by giving the width and length parameters of the racetrack sweep 

profile, as well as the sweep depth, rather than a racetrack surface. The explicit 

representation allows referencing of feature constituencies. If feature parameters, 

such as depth, are needed, however, they must be derived. 

Feature representations are typically used in association with geometric models. 

At the fourth level, form features are geometrically evaluated using the solid 

modeler. The feature data at different levels are linked by mapping in top-down 

and bottom-up fashion, such as "have as shapes" and "are shapes of", or "are 

represented by" and "are representations of". 

As a consequence, in the design system, features are always represented by 

explicit detailed descriptions which are associated with implicit and concise 

descriptions through a set of parameters. Two descriptions of each design feature 

are considered: an ideal version which is of the implicit type and is associated 

with a canonical feature volume, and the real version which explicitly describes 

the real feature volume in boundary form. The real volume is obtained taking 

into account any interaction of the ideal feature with the main part or with the 

other interacting features. An example may help to clarify the feature volume 

creation. Figure 11 shows the generation of a rectangular slot on a prismatic 

object. In figure 11 (a) the canonical feature volume is depicted while in figure 

11(b) its real volume is represented. 

(a) (b) 

Figure 11: (a) The ideal volume associated to a slot feature and (b) its real 

representation 
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4.3 The Feature Recognition System 

In the design by features approach the description of the object is connected 

to the application context. In the recognition approach the shape model of the 

object and the description of the context are not related. Thus the problem to 

solve is their correlation in a consistent way. To do this the recognition module 

is structured in two parts: the Shape Feature recognizer which converts the object 

geometric model into the Unified Model, and the Shape Feature Interpreter, 

which maps the Unified Model into a specific context. How these two modules 

act on the data is shown in figure 12. 

Feature based Model 

Unified Model 

GeometriC Model 

Figure 12: The Feature Recognition System 

The Shape Feature Recognizer is based on context independent rules which 

identify shape features by analyzing adjacencies between faces in the boundary 

representation and classify them as Protrusions or Depressions. 
The set of faces recognized as protrusions and depressions are then completed in 

order to obtain the corresponding positive and negative volumes by using the 

solid modeler. Eventually, these volumes are organized in the Unified Model. 

Details on this module are described in [Falcidieno, Giannini 1989]. 

Shape features, recognized and extracted by this set of rules, independent of the 

context, not always meets the specific requirements of the application. Then, the 

Shape Feature Interpreter performs the necessary transformations on the Unified 

Model, applying context dependent rules. These rules are not expressed as code 

inside the system, but given by the user through a "teaching by example" 

technique [De Martino, Falcidieno, Giannini 1991]: the user shows an example of 
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a specific feature to the system, thus creating the link to the application. In this 

way the user can specify which features have to be represented in the model, and 

how to represent them. 

Once the user has indicated the feature example, which can be selected from the 

feature library or created through the available solid modeler, the system 

automatically extracts the feature graph of the example and analyzes the object 

model searching for subgraphs which could correspond to instances of the 

feature examples. Then, the user specifies the kind of operation to perform on 

each recognized subgraph. 

Consequently, the geometric description satisfies the application requirements 

and the Unified Model is ready to be completed with application specific 

information in order to become a Feature Based Model. 

5 Summary and Conclusions 

In this paper we have discussed the need of feature-based modelers as a 

prerequisite to more complete product modeling systems. Such systems need to 

be able to support different points of view, and this can only be provided by 

feature-based representations. 

A system architecture for integrating design-by-features and automatic 

recognition has been proposed. This integrated approach to feature-based 

modeling seems to be an ideal way to give the user the possibility of directly 

dealing with features, storing them in the data base and relating them to a 

variety of engineering applications. It can be successively used for concurrent 

engineering activities and computer integrated manufacturing applications 

where downstream activities are performed simultaneously, not sequentially. 

One key to such a flexible system seems to be the development of more 

intertwined data structures which associate the geometric model of a part with its 

feature-based description. 

Another key is related to the possibility for users to define their own features and 

to support the necessary procedures to convert these descriptions into the 
different contexts. 

At present the proposed architecture has not yet been fully tested and the 

integration between design-by-features and feature recognition is performed 

conceptually through the definition of a common Unified Model. 
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Abstract 

In traditional CAD and solid modeling, 3D objects are represented in terms of their 

geometric components. In contrast, in volume graphics 3D objects are represented by a 

discrete digital model, which is stored as a large 3D array of unit volume elements (vox­

els). The rapid progress in hardware, primarily in memory subsystems, has been 

recently transforming the field of volume graphics into a major trend which offers an 

alternative to traditional 3D surface graphics. This paper discusses volume graphics and 

several related modeling techniques. 

1. Introduction 

This paper introduces a discrete representation scheme that is different from the surface 

or solid representation schemes traditionally used in 3D computer graphics. This discrete 

representation employs a volume buffer, that is, a 9D raster of unit volume elements (in 

short, voxels) to store the 3D digital representation of the 3D objects. A voxel is the 3D 

counterpart of the 2D pixel; in the same way that a pixel represents a unit of area, a 

voxel represents a unit of volume. Each voxel has a numeric value associated with it, 
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which represents some measurable properties or independent variables (e.g., color, opa­

city, density, coverage proportion, time) of the real object intersecting that voxel. The 

aggregate of voxels tessellating the volume buffer forms the volumetric dataset which 

represents all the regions in the 3D volume, whether in the interior or on the boundary 

of the objects. Volume graphics is an emerging subfield of computer graphics concerned 

with the synthesis, manipulation, and rendering of 3D objects represented by a volume 

buffer (Kaufman, Cohen, and Yagel 1993). 

Volume graphics employs a conventional 2D frame-buffer and a raster screen for display 

purposes, but employs a volume buffer as a medium for the representation and manipu­

lation of 3D scenes. The 3D scene is pre-discretized, and the resulting 3D discrete form 

is used as a database of the 3D scene for manipulation and rendering purposes, which in 

effect decouples discretization from rendering (viewing and shading). Furthermore, all 

objects are converted into one uniform meta-object - the voxel, where each voxel is 

atomic and represents the information about no more than one object that resides in 

that voxel. 

Volume graphics offers the same benefits as surface graphics, with several advantages. 

The volume data is viewpoint independent, that is, it is generated once, and can be ren­

dered under changing viewing parameters. The rendering phase in volume graphics is 

insensitive to scene complexity, that is, the performance of the volumetric renderer 

depends only on the constant resolution of the volume buffer and is independent of the 

number of objects in the scene. Similarly, the performance of the renderer is insensitive 

to object complexity since it renders only voxels regardless of the complexity of the 

source object, whether simple (e.g., polygon, sphere) or complex (e.g., fractal, algebraic 

surface). Volume graphics supports a variety of modeling techniques, such as Boolean 

and block operations and constructive solid modeling, as described later. When 3D sam­

pled and simulated data are available, such as those generated by medical scanners (e.g., 

CT, MRI) or scientific simulations (e.g., computational fluid dynamics), they too can be 

accommodated by volume graphics. We later describe the capability of volume graphics 

to represent amorphous phenomena and to have information on both the interior as well 

as exterior of 3D objects. 

Several disadvantages of this approach are related to the loss of geometric information 

and to the discrete nature of the representation, namely, aliasing artifacts, discrete 

transformations, and shading performed in discrete space (Yagel, Cohen, and 

Kaufman 1992a). In addition, this approach requires substantial amounts of storage 

space and processing time. Finally, since objects are represented by a finite grid, accu­

racy is also restricted to the grid resolution. However, these problems echo similar prob­

lems encountered when 2D raster graphics emerged as an alternative technology to 
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vector graphics and can be alleviated in similar ways. For example, antialiasing tech­

niques, which have been developed to alleviate discretization artifacts in 2D rasters, can 

be extended to ease the same problem in 3D voxel space. 

The same appeal that caused the migration of the computer graphics world from vector 

graphics to raster graphics, once the memory and processing power became available, is 

starting to drive a variety of applications from surface-based representation of 3D scenes 

to voxel-based representation. Naturally, this trend first appeared in applications 

involving sampled and computed 3D data, such as biomedical and scientific visualization 
in which the datasets are in volumetric form. Volume graphics when applied to empiri­

cal imagery is usually termed volume visualization. The diverse applications of volume 

visualization still provide a major driving force for advances in volume graphics. Some 

examples of these applications are medical imaging, biology, geoscience, industrial test­
ing, meteorology, computational fluid dynamics, computational chemistry, and molecu­

lar systems (see (Kaufman 1990) Chapter 7). 

Although 3D raster representation seems to be more natural for empirical imagery, the 

advantages of this representation are also attracting traditional surface-based applica­

tions that deal with the modeling and rendering of synthetic scenes such as CAD and 

flight simulation (see Figures 2-4). Furthermore, in many applications involving sam­

pled data, like surgical planning and radiation therapy planning, the data need to be 

visualized along with synthetic objects that may not be available in digital form, such 

as prosthetic devices, scalpels, injection needles, isodose surfaces, and radiation beams. 

These objects can be voxelized and intermixed with the sampled organ in the volume 

buffer and then rendered to the screen (Kaufman, Yagel, and Cohen 1990). 

We describe next the relationships between volume graphics, surface graphics and 

volume visualization. We then survey some basic definitions in 3D discrete topology 

which are essential to the understanding of the nature of discrete objects. Finally, we 

describe several modeling techniques that find a particular attractive implementation in 

volume graphics. 

2. Taxonomy of Volume Graphics 

Volume visualization is a method that facilitates the interpretation of volumetric 

datasets by supporting visually-based exploration using interactive graphics and imag­

ing. Its objective is to provide mechanisms for peering inside the volumetric objects and 

for probing into the voluminous and complex structures and their dynamics. It 
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encompasses an array of techniques for extracting meaningful information from a 

volumetric dataset and for displaying it in a visual manner ((Kaufman 1990) Chapter 

1). Volume graphics employs a volume buffer for object representation, and it consists 

of a set of techniques for representing, synthesizing, manipulating, and rendering of 3D 

objects in a volume buffer. However, unlike volume graphics, which deals with volume­

represented imagery generated from 3D geometric models, volume visualization focuses 

on sampled or simulated datasets, does not necessarily use regular voxel grids, and is 

not necessarily limited to the volume buffer representation or volume rendering. In 

many cases, effective visualization of datasets is achieved by other means, including 

traditional surface rendering. Furthermore, volume graphics is concerned with handling 

synthetic scenes as an alternative to surface graphics and has the potential to greatly 

advance the field of 3D graphics by offering a comprehensive alternative to surface 

graphics in many applications. 

Figure 1 presents the dataflow for volume visualization and volume graphics. The two 

major sources of volumetric data are sampled/computed data (top left) and geometric 

models (top right). The sampled data is 3D reconstructed to fill in gaps of missing infor­

mation and then stored in the volume buffer. The geometric model, represented by a 

geometric formula, has to be converted (voxelized) into a set of voxels that is stored in 

the volume buffer. We later discuss this. process, called voxeiization, in more detail. The 

combined volume is then rendered to the screen by employing a volume rendering algo­

rithm. Volume rendering involves both the viewing and the shading of the volume image 

and can be accomplished by forward projection (Drebin, Carpenter, and Han­

rahan 1988), by ray casting (Levoy 1988), or by discrete ray tracing (Yagel, Cohen, and 

Kaufman 1992b). Alternatively, the sampled data can be converted into a geometric 

model by fitting geometric primitives to surfaces detected in the volume. This set of 

primitives is then rendered to the screen by employing a traditional surface rendering 

algorithm. 

The volume graphics dataflow is marked with solid arrows in Figure 1. The primary 

source of volume data for volume graphics is a 3D continuous geometric model. Such a 

geometric model is 3D scan-converted (voxelized) into a set of voxels that "best" 

approximates the synthetic model within the discrete volume buffer (see (Kauf­

man 1990) Chapter 5). Once converted, the digital synthetic model may be intermixed 

with a sampled dataset to form a hybrid voxel model. The fundamentals of voxelization 

and the related 3D discrete topology issues are presented in the next section. In order 

to visualize the dataset in the volume buffer, the volume primitives are directly pro­

jected using volume rendering. 
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Figure 1: Dataflow for volume visualization and volume graphics. 

3. 3D Discrete Topology 
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One way to model 3D scenes is by using traditional surface modeling techniques. The 

resulting geometric components can then be converted into voxel representation (voxel­

ized). Intuitively, one would assume that a proper voxelization simply "selects" all vox­

els which are met, even partially, by the object body. Although this approach could be 

satisfactory in some cases, commonly the entities it generates are either too coarse and 

may include more voxels than are necessary or are too thin and do not properly 

"separate" the two sides of the surface. 
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One practical meaning of separation is apparent when a voxelized scene is rendered by 

casting discrete rays from the image plane to the scene. The penetration of the discrete 

ray traversing background voxels through the voxelized surface causes the appearance of 

a hole in the final image of the rendered surface. Another type of error might occur 

when a 3D flooding algorithm is employed either to fill in an object or to measure its 

volume, surface area, or other properties. In this case the non-separability of the surface 

causes a leakage of the flood through the discrete surface. 

Unfortunately, the extension of the 2D definition of separation to the third dimension 

and to surfaces is not straight forward since voxelized surfaces cannot be defined as 

ordered sequences of voxels and a voxel on the surface does not have a specific number 

of adjacent voxels. Furthermore, there are important topological issues, such as the 

separation of both sides of a surface, which cannot be well defined by employing 2D ter­

minology. The theory that deals with these 3D topological issues is called 3D discrete 
topology. We sketch below some basic notions and informal definitions used in this field. 

For more information see (Cohen and Kaufman 1991). 

The 3D discrete space is a set of integral grid points in 3D Euclidean space defined by 

their Cartesian coordinates (x ,y ,z). A voxel is the unit cubic volume centered at the 

integral grid point. The voxel value is mapped onto {0,1}: the voxels assigned "I" are 

called the "black" voxels representing opaque objects, and those assigned "0" are the 

"white" voxels representing the transparent background. Outside the scope of this 

paper are non-binary approaches where the voxel value is mapped onto the interval 

[0,1], representing either partial coverage, variable densities, or graded opacities. 

Two voxels are 26-adjacent if they either share a vertex, an edge, or a face. Every voxel 

has 26 such adjacent voxels: eight share a vertex with the center voxel, twelve share an 

edge, and six share a face. Accordingly, face-sharing voxels are defined as 6-adjac e nt, 

and edge-sharing and face-sharing voxels are defined as 18-adjacent. The prefix N is 

used to define the adjacency relation, where N E{6, 18, 26}. We say that a sequence of 

voxels having the same value is an N -path if all consecutive pairs are N -adjacent. A 

set of voxels A is N-connected if there is an N -path between every pair of voxels in A . 

An N-connected component is a maximal N -connected set. 

Assume that a voxel space, denoted by E, includes one subset of "black" voxels S. If 

E-S is not N -connected, that is, E-S consists of at least two white N-connected com­

ponents, then S is said to be N -separating in E. Loosely speaking, in 2D, an 8-

connected black path that divides the white pixels into two groups is 4-separating and a 

4-connected black path that divides the white pixels into two groups is 8-separating. 

There are no analogous results in 3D space. 
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Let A be 'an N -separating surface. A voxel pEA is said to be an N -simple tloxel if 
A -p is still N -separating. An N -separating surface is called N -minimal if it does not 

contain any N -simple voxel. A cover of a continuous surface is a set of voxels such 

that every point of the continuous surface lies in a voxel of the cover. A cover is said to 

be a minimal cover if none of its subsets is also a cover. The cover property is essential 

in applications that employ space subdivision for ray tracing (Glassner 1984), where the 

subspaces (voxels) which contain objects have to be identified by the rays. Note that a 

cover is not necessarily separating, but on the other hand, as mentioned above, it may 

include simple voxels. In fact, even a minimal cover is not necessarily N -minimal for 

any N. When voxelizing a surface, one should strive to generate an N -separating, N­
minimal, and covering set of voxels. 

4. Volume Based Modeling 

We now turn.to describe the volumetric approach to several common modeling tech­

niques. We describe the generation of object primitives (voxelization), texture and 

photo-mapping, solid-texturing, modeling of amorphous phenomena, modeling by block 

operations, and constructive solid modeling. For each of the techniques, we identify the 

advantages of the volume graphics approach. 

4.1. Voxelization of Geometric Objects 

An indispensable stage in volume graphics is the synthesis of voxel-represented objects. 

This stage, which is called tloxelization, is concerned with converting geometric objects 

from their continuous geometric representation into a set of voxels that "best" approxi­

mates the continuous object. As this process mimics the scan-conversion process that 

pixelizes (rasterizes) 2D geometric objects, it is also referred to as 3D scan-conversion. 
In 2D rasterization the pixels are directly drawn onto the screen to be visualized, and 

filtering is usually applied to reduce aliasing artifacts. However, the voxelization process 

does not render the voxels but merely generates a database of the discrete binary digiti­

zation of the continuous object. Nevertheless, non-binary antialiased voxelization can 

be employed as an alternative to binary voxelization, which may support superior 

rendering. 

In the past, digitization of solids was performed by spatial enumeration algorithms 

which employ point or cell classification methods in either an exhaustive fashion or by 

recursive subdivision (Lee and Requicha 1982). However, subdivision techniques for 
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model decomposition into rectangular subspaces are computationally expensive and thus 

inappropriate for medium or high resolution grids. Instead, objects should be directly 

voxelized, preferably generating an N-separating, N-minimal, and covering set, where N 

is application dependent. The voxelization algorithms should follow the same paradigms 

as the 2D scan-conversion algorithms; they should be incremental, accurate, use simple 

arithmetic (preferably integer only), and have a complexity that is not more than linear 

with the number of voxels generated. 

The literature of 3D scan conversion is relatively small. Danielsson (Danielsson 1970) 

and Mokrzycki (Mokrzycki 1988) developed similar 3D curve algorithms, where the 

curve is defined by the intersection of two implicit surfaces. Voxelization algorithms 

have been developed for 3D lines, 3D circles, and a variety of surfaces and solids, includ­

ing polygons, polyhedra, and quadric objects (Kaufman and Shimony 1986). Efficient 

algorithms have been developed for voxelizing polygons using an integer-based decision 

mechanism embedded within a scan-line filling algorithm (Kaufman 1987b), for 

parametric curves, surfaces, and volumes using an integer-based forward differencing 

technique. (Kaufman 1987a), and for quadric objects such as cylinders, spheres, and 

cones using "weaving" algorithms by which a discrete circle/line master sweeps along a 

discrete circle/line base (Cohen and Kaufman 1990). 

The voxelized representation is especially attractive when dealing with very complex 

models, due to the insensitivity of the volumetric representation to the scene complex­

ity. Some examples are fractals (Norton 1982), terrain models (Cohen and Shaked 1992; 

Wright and Hsieh 1992), and other complex models (Snyder and Barr 1987). Figures 

2-3 show volume rendering of terrain models which have been voxelized from a 

geometric model and have been used in flight simulations. 

4.2. Texture and Photo Mapping 

One of the attractive attributes of volume graphics is its insensitivity to object complex­

ity. One type of object complexity involves objects that are enhanced with texture­

mapping, photo mapping, environment-mapping, or solid texturing. Texture-mapping is 

commonly implemented during the last stage of the rendering pipeline, and its complex­

ity is proportional to the object's complexity. In volume graphics, texture-mapping is 

performed during the voxelization stage, and the texture color is stored in each voxel. 
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Figure 2: A voxelized landscape that has been mapped with aerial photos. 

We have also implemented a photo-mapping technique where six orthogonal photo­

graphs of the real object are projected back onto the voxelized object (see Figure 4). 

Once this mapping is applied, it is stored with the voxels themselves during the voxeli­

zation stage, and therefore does not degrade the rendering performance. Texture and 

photo-mapping are also viewpoint independent attributes implying that once the texture 

is stored as part of the voxel value, texture-mapping need not be repeated. This impor­

tant feature is exploited by voxel-based flight simulators (see Figures 2-3) and in CAD 

systems (see Figure 4). 

4.3. Solid Texturing 

A central feature of volumetric representation is that, unlike surface representation, it is 

capable of representing inner structures of objects, which can be revealed and explored 

with appropriate manipulation and rendering techniques. This capability is essential for 

the exploration of sampled or computed objects. However, synthetic objects are also 

likely to be solid rather than hollow. One method for modeling various solid types is 

"solid texturing", in which a function or a 3D map models the color of the objects in 
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Figure 9: A volumetric model of an airport enhanced with photo-mapping of satellite im­

ages. The buildings are synthetic voxel models raised on top of the terrain. 

3D. During the voxelization phase each voxel belonging to the objects is assigned a value 

by the texturing function or the 3D map. This value is then stored as part of the voxel 

information. Again, since this value is view independent, it does not have to be recom­

puted for every change in the rendering parameters. 

4.4. Amorphous Phenomena 

While translucent objects can be represented by surface methods, these methods cannot 

efficiently support the modeling and rendering of amorphous phenomena (e.g., clouds, 

fire, smoke) that are volumetric in nature and do not have any notion of tangible sur­

faces. A common modeling and rendering approach is based on a function that, for any 

input point in 3D, calculates some object features such as density, reflectivity, or color. 

These functions can then be rendered by ray casting, which casts a ray from each pixel 

into the function domain. Along the passage of the ray, at constant intervals the func­

tion is evaluated to yield a sample. All samples along each ray are combined to form the 

pixel color. Some examples for the use of this or similar techniques are the rendering of 



Figure ,/: The space shuttle. A voxel-based model of the shuttle was generated by voxeliz­

ing a polygon mesh model. The voxels were photo-mapped during the voxelization stage 

using six orthogonal photographs of a physical model of the space shuttle. 
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fractals (Hart, Sandin, and Kauffman 1989), hypertextures (Perlin and Hoffert 1989), 

fur (Kajiya and Kay 1989), and gases (Ebert and Parent 1990). 

The process of function evaluation at each sample point in 3D has to be repeated for 

each image generated. In contrast, the volumetric approach allows the pre-computation 

of these functions at each grid point of the volume buffer. The resulting volumetric 

dataset can then be rendered from multiple viewpoints without recomputing the model­

ing function. AB in other volume graphics techniques, accuracy is traded for speed, due 

to the resolution limit. Instead of accurately computing the function at each sample 

point, some type of interpolation from the precomputed grid values is employed. 

4.6. Block Operations 

An intrinsic characteristic of rasters is that adjacent objects in the scene are also 

represented by neighboring memory cells. Therefore, rasters lend themselves to various 

meaningful grouping-based operations, such as bitblt in 2D, or voxblt in 3D (Kauf­

man 1992). These include transfer of volume buffer rectangular blocks while supporting 
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voxel~by-voxel operations between source and destination blocks. Block operations add 

a variety of modeling capabilities which aid in the task of image synthesis and form the 

basis for the efficient implementation of a 3D "room manager", which is the extension 

of window management to the third dimension. 

4.6. Constructive Solid Geometry 

The volume buffer lends itself to Boolean operations that can be performed on a voxel­

by-voxel basis during the voxelization stage. This property is very advantageous when 

Constructive Solid Geometry (CSG) is the modeling paradigm. Subtraction, union, and 

intersection operations between two voxelized objects are accomplished at the voxel 

level, thereby reducing the original problem of evaluating a CSG tree during rendering 

time down to a ID Boolean operation between pairs of voxels during a preprocessing 

stage. Once a CSG model has been constructed in voxel representation, it is rendered in 

the same way any other volume buffer is. This makes discrete ray tracing of construc­

tive solid' models straightforward (Yagel, Cohen, and Kaufman 1992b). 

5. Conclusions 

We have explored modeling by volume graphics, which is based on the employment of a 

volume buffer for 3D scene representation. Modeling with volumes has advantages over 

modeling with surfaces because it is viewpoint independent, insensitive to scene and 

object complexity, and being suitable for the representation of sampled and simulated 

datasets and mixtures thereof with geometric objects. It supports the visualization of 

internal structures such as solid textures, and lends itself to the realization of block 

operations, surface texturing, amorphous phenomena, and CSG modeling. The prob­

lems associated with the volume buffer representation, such as discreteness, memory 

size, processing time, finite resolution, and loss of geometric representation, echo prob­

lems encountered in 2D raster graphics, and can be aIIeviated in similar ways. The pro­

gress so far in volume graphics, in computer hardware, and memory systems guarantees 

that volume graphics will develop into a major trend in computer graphics. It has the 

potential to supersede surface graphics for handling and visualizing volumes as well as 

for modeling and rendering synthetic scenes composed of surfaces and solids. 
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Abstract 
We present a simple, effective, and efficient technique for approximating arbi­
trary polyhedra. It is based on triangulation and vertex-clustering, and produces 
a series of 3D approximations (also called "levels of detail") that resemble the 
original object from all viewpoints, but contain an increasingly smaller number 
of faces and vertices. The simplification is more efficient than competing tech­
niques because it does not require building and maintaining a topological 
adjacency graph. Furthermore, it is better suited for mechanical CAD models 
which often exhibit patterns of small features, because it automatically groups 
and simplifies features that are geometrically close, but need not be topologically 
close or even part of a single connected component. Using a lower level of detail 
when displaying small, distant, or background objects improves graphic per­
formance without a significant loss of perceptual information, and thus enables 
realtime inspection of complex scenes or a convenient environment for animation 
or walkthrough preview. 

1. Introduction 
The interactive 3D navigation through scenes defined by millions of polygons is 
vital for industrial CAD applications, such as the design reviews for large me­
chanical assemblies. Yet, it cannot even be supported on emerging multi­
processor high-end graphic servers (see [Garlick et aI., 1990] for recent progress). 
Since the galloping hardware developments will only stimulate the demand for 
support of even larger data-sets, a distinction must be made between (1) the ac­
curate geometric models necessary for representing mechanical parts and (2) 
specialized representations of these parts tailored for efficient graphics. 

Previously developed graphics performance improvements that deal with scene 
complexity by quickly eliminating objects that do not project on the screen, or by 
displaying crude approximations of objects whose projection is very small, are 
insufficient and exhibit important short-comings. Pre-computed hierarchical spatial 
directories [Airey et aI., 1990] [Teller and Sequin, 1991] help to quickly prune 
portions of the model lying outside of the viewing space, but have no effect when 
the entire scene fits in that space. The graphics performance increases achieved 
by rendering isolated dots, mini-max boxes, or other geometrically simple bounds 
instead of distant or small objects are often offset by a significant loss of visual 
information and by distracting abrupt shape changes that occur when objects 
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slowly approach the viewer. Geometric approximations with minimal rendering 
cost and a close resemblance with the original solids from all directions are the 
key to an acceptable solution for realtime graphics of complex scenes [Clark, 
1976] [Crow, 1982]. Furthermore, a sequence of approximations offering different 
trade-offs between visual accuracy and graphic performance will prove effective 
for revealing details as objects approach the viewpoint, only if the transitions be­
tween one approximation and the next are barely noticeable. 

Since a major factor of the shading cost for a polyhedron is the number of vertices 
that must be processed by the graphics pipeline when rendering the object's 
faces, approximations should strive to reduce the number of vertices and faces 
while preserving the overall aspect of the model. 

We present here a new simplification technique that operates on boundary re­
presentations of an arbitrary polyhedron and generates a series of simplified 
models with a decreasing number of faces and vertices. The resulting models do 
not necessarily form valid boundaries of 3D regions-for example, an elongated 
solid may be approximated by a curve segment. However, the error introduced by 
the simplification is bounded (in the Hausdorf distance sense) by a user-controlled 
accuracy· factor and the resulting shapes exhibit a remarkable visual fidelity con­
sidering the data-reduction ratios. 

2. Alternative solutions and related work 

Most polyhedra are used to approximate more general shapes and are con­
structed as tesselations of curved faces. Approximations with fewer vertices and 
faces can thus in principle be produced by using coarser tesselation parameters. 
Indeed, emerging high-end graphic architectures support adaptive tesselation for 
trimmed NURBS surfaces [Rockwood et aI., 1989]. However, in practice, 
polyhedral representations often result from Boolean operations (poorly sup­
ported for curved geometries) or from procedural models which are not available 
to the graphics system and are too expensive to regenerate in realtime. Conse­
quently, re-tesselation of curved surfaces is not always an acceptable alternative 
for simplifying the vast majority of existing polyhedral models. The simplification 
process should be made independent of the design history and should be auto­
matic [Crow, 1982]. 

Recursive difference techniques [Kim, 1990] replace a solid S by the difference, 
H - D, between its convex hull H and a delta solid, D = H - S, and apply 
recursively this process to (a subdivision of) the connected components of D. The 
resulting CSG tree may be truncated, replacing all delta solids at a given recursion 
depth d by their convex hull. The truncation removes cavity or protrusion details, 
depending on the parity of d. Unfortunately, this process does not simplify convex 
objects; tends to increase the number of faces; and, for small values of d, 
produces approximations whose overall shape considerably differs from the ori­
ginal solids. 

Line simplification algorithms (also called "line generalization") used in 
Cartography [McMaster, 1987] apply recursive subdivision to approximate a plane 
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polygonal curve by a small number of vertices lying on that curve. The maximum 
deviation between the curve and an "anchor-floater" line joining the end-points is 
evaluated. If the deviation exceeds a given threshold, the curve is split at the 
maximal deviation point for further iterations, otherwise, the curve is replaced by 
the line segment. We have designed a 3D extension of this approach requiring the 
construction and coarse triangulation of the topology of the object's boundary. 
After considering its algorithmic complexity and storage requirements, we have 
opted for the simpler and more efficient solution described in the remainder of this 
paper. The approach is however very effective for models with a regular (mesh) 
topology [Williams, 1983]. 

Surface fitting techniques to regularly spaced scanner data points [Schmitt et aI., 
1996J may also be used for producing levels of detail polyhedral approximations 
[DeHaemer and Zyda, 1991]. These techniques have been recently extended to 
unorganized data points [Hoppe et aI., 1992J [Scarlatos and Pavlidis, 1992J 
[DeRose et aI., 1992J and to new sparse points automatically distributed over an 
existing triangulated surface (either evenly or according to curvature) [Turk, 
1992]. 

Several simplification techniques of dense triangular meshes approximating 
smooth surfaces have been proposed. Flat vertices (defined in terms of the 
normals to abutting triangles [Kalvin et aI., 1991J or in terms of the distance to a 
locally approximating plane [Schroeder et aI., 1992J) may be removed and the so 
created hole triangulated. The process may be repeated by progressively in­
creasing the tolerance until a sufficiently low number fo vertices is reached. 

The approach presented here is aimed at very complex and fairly irregular CAD 
models of mechanical parts. It has several advantages over the methods briefly 
mentioned above: 

• The computation of the simplification does not require the construction of a 
topological adjacency graph between faces, edges, and vertices. It works of a 
simple array of vertices and of an array of triangles, each defined in terms of 
three vertex-indices. 

• The algorithm for computing the simplification is very time efficient. In its 
simplest form, it needs to traverse the input data (vertex and triangle tables) 
only once. 

• The tolerance (i.e. bound on the Hausdorf distance between the original and 
simplified model) may be arbitrarily increased reducing the triangle count by 
several orders of magnitude. 

• To further reduce the triangle count, the simplification algorithm may produce 
non-regularized models. Particularly, when using the appropriate tolerance, 
thin plates may be simplified to "dangling" faces, long objects to isolated 
edges, and (groups of) small solids into isolated points. 

• It is not restricted by topological adjacency constraints and may merge fea­
tures that are geometrically close but are not topologically adjacent. Partic­
ularly, an arbitrary number of small neighboring isolated objects may be 
merged and simplified into a single point. 



458 

Figure 1 illustrates the result of one simplification pass on a small assembly of 
mechanical parts. 

Figure 1: Example of simplification. The solids are triangulated (left) and simplified (right). Note that 
the simplification of regular solid that are either flat or elongated generates lower-dimensional ele­
ments. 

Below, we describe the algorithm for producing such a single simplification. Sec­
tion 4 discusses how the algorithm may be used for producing level of detail re­
presentations. Section 5 presents various rendering modes that exploit the level 
of detail models to significantly increase the graphics performance. 

3. Single simplification process 
The original model of each object is represented by a vertex table V containing 
vertex coordinates and a face table F containing references to V, sorted and or­
ganized according to the edge-loops bounding the face. The simplification involves 
the processing steps presented below and summarized in Figure 2. They manipu­
late the data-structure of Figure 3. 

Figure 2: Overview of the simplification process. The vertex table V and face table F are processed 
by three independent steps: triangulation of faces, clustering of vertices, and grading of vertices as 
to their visual importance. 
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3.1 Grading 

A weight is computed for each vertex of V and stored in the W table. The weight 
defines the relative perceptual importance of the vertex. The subjectivity of our 
approach is confined to the choice of criteria for weight evaluation. We favor (1) 
vertices that have a higher probability of lying on the object's silhouettes from an 
arbitrary viewing direction and (2) vertices that bound large faces that should not 
be affected by the removal of small details. The first factor may be efficiently esti­
mated using the inverse of the maximum angle between all pairs of incident edges 
on the candidate vertex. The second factor may be estimated using the length of 
the longest among all of the edges incident upon the vertex. 

-_.0··.-'.-.-.-_ ... -

T 
It r z 

I i Original i 
t::::::::::::::::::;·;:·· .. :::::::::·········::::::::::::: .. :::::::::: .. : 

~'lmlliltY 
Work arrays Simplified 

Figure 3: Data-structures and their interdependencies. Given the input arrays of vertices V and tri­
angles T, the algorithm computes auxiliary structures, R, W, and C and produces the resulting 
vertices, SV, triangles, ST, edges, SE, and points, SP. There is one entry per initial vertex in V, R, 
and W. There is one entry per resulting vertex ill C and SV. 

3.2 Triangulation 

Each face is decomposed into triangles [Edelsbrunner et aI., 1990J supported by 
its original vertices. Because CAD models typically contain faces bounded by a 
large number of edges, a very efficient triangulation technique is used which does 
not require the a priori decomposition of the face into monotonic or convex re­
gions [Ronfard and Rossignac, In preparation. 1993.]. 

The resulting T table contains 3 vertex-indices per triangle. 

3.3 Clustering 

Based on geometric proximity, the vertices of V are grouped into clusters. Clusters 
are numbered by the order in which they are created. The R table indicates, for 
each vertex of V, the corresponding cluster number. Conversely, the C table con-
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tains, for each cluster, a list of references to the vertices falling into that cluster. 
We have opted for a simple clustering process based on the truncation of vertex 
coordinates. A box, or other bound, containing the object is uniformly subdivided 
into cells. Vertices falling within one cell form a cluster and will be replaced by a 
unique vertex. The clustering procedure takes as parameters the box in which the 
clustering should occur and the maximum number of cells along each dimension. 
The solid's bounding box or a common box for the entire scene may be used. 

The list of vertex indices stored in the cluster table C is used in the synthesis stage 
(below) for computing an "optimal" vertex representative for each cluster. For ex­
ample the vertex closest to weighted the average. This list may be omitted if one 
decides to compute the representative vertex for each cluster in an incremental 
manner. For example, one could use the first vertex encountered for the cluster 
or the running weighted average. These only require storing three vertex coordi­
nates (and possibly a vertex count) for each cluster. The restriction permits to 
compute the cluster representative vertices without reading the input data twice, 
which leads to important performance improvements when the input vertex table 
is too large to fit in memory. 

3.4 Synthesis 

For each cluster, a representative vertex is computed using the C, W, and V tables 
and is stored in the SV table of simplified vertices. For data smoothing, the repre­
sentative vertex may be defined as the center of mass of all the vertices of the 
cluster weighted with the values stored in W. For removing details without per­
turbing retained faces, the vertex with maximal weight may be selected. The syn­
thesis maps each vertex, V(i), into the representative vertex, SV(R(i)), of the 
corresponding cluster. The mapping is typically many-to-one and thus reduces the 
total number of vertices. 

3.5 Elimination 

Table R maps the vertices of the original triangles into new representative 
vertices. When all three representative vertices are equal, the triangle degenerates 
into a point. When exactly two representative vertices are equal the triangle de­
generates into an edge. Such edges and points, when they do not bound any other 
triangle of the simplified object, are stored in SE and SP tables, and rendered as 
part of the solid's approximation. Significant graphics performance improvements 
are obtained by removing, from the simplified model, all triangle-duplicates, all 
edge-duplicates, all point-duplicates, all edges bounding a retained triangle, all 
points bounding a retained edge, and all points bounding a retained triangle. The 
elimination process performs these tasks and produces three tables: the simplified 
triangles, ST; the dangling edges, SE; and the isolated points, SP. They respec­
tively contain three, two, and one reference to entries in the SV table. 

The search for duplicates uses a temporary data-structure, which associates, with 
each cluster, a list of incident edges and, with each edge, a list of triangles. Tri­
angles are stored only once in this data-structure using their lowest-index vertex 
for locating the cluster, using the intermediate-index vertex for locating the edge 
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incident upon that cluster, and using the last vertex for locating the triangle. Dan­
gling edges are implicitly defined as edges with empty triangle-lists. Isolated 
points are defined as clusters with empty edge-lists. 

3.6 Adjustment of normals 

A final step computes new normals for all the triangles in ST using its simplified 
vertex coordinates. The normals are only used for rendering. Normals of back­
facing triangles are automatically inverted by the graphics processor. 

4. Series of increasing simplification 
Approximate models of the same objects with increasing degree of simplification 
may be obtained by executing the above process several times, with decreasing 
clustering resolutions. 

A more efficient approach performs a first simplification with the highest resol­
ution, then recursively merges adjacent clusters into new ones to produce the 
other simplified models. An octtree used to store the representative vertices for 
all the clusters of the first simplification provides a convenient data-structure for 
merging adjacent clusters. 

A series of models with different degrees of simplification is shown Figure 4. 

5. Rendering modes 
Simplified models may be used in different ways, depending on the application 
and the type of user interaction. 

5.1 Preview on simplified models 

If the full precision model does not fit in the graphic workstation's memory and 
paging from disk is expensive, a simplified version may be loaded and used to 
specify interactively viewing angles or walkthrough trajectories for a camera. Full 
precision images or walkthrough animations may be computed in batch mode and 
viewed later. 

5.2 Simplified models during mofion 

If the full precision model fits in memory and can be displayed at acceptable but 
non-interactive rates, a crude simplified model is constructed and stored. (It typi­
cally only increases the storage requirements by a few percents.) The user may 
then toggle between the full resolution original data and a crude approximation 
of all the objects, used mainly for realtime feedback during interactive navigation. 

5.3 Simplified background 

In the above scheme, selected details of the scene may be rendered with full pre­
cision, while the other objects, considered as background information are ren­
dered using simplified models (see Figure 5). 
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Figure 4: Increasing levels of simplification. The original solid (top) has 4804 triangular faces. The 
two approximating models below have respectively 218 faces plus 1 dangling edge and 1 face plus 
9 dangling edges. 

5.4 Dynamic selection 

Simplification levels may be selected adaptively depending on the viewpoint. 
Models that are further away from the viewer are displayed with less details. The 
distance to the viewer may be estimated using precomputed spherical or other 
simple bounds for each object. Figure 6 shows the same parts as in Figure 4, but 
with different degrees of approximation selected automatically according to the 
distance from the viewer. 
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Figure 5: Simplified background. Only one table and its set of chairs are rendered with full preci­
sion, the others sets are rendered using simplified models (top) , which reduces the rendering time 
by 80%. A detailed view comparing the approximated and the original models is shown (below). 

5.5 Continuous evolution 

When the more simplified models are derived from less simplified ones, one can 
produce parametric models, which simulate the metamorphosis between two con­
secutive simplification levels. We use the technique described in [Kaul and 
Rossignac, 1992J, where each vertex of the polyhedron is replaced by a linear 
parameterized trajectory. As the object moves closer to the viewer, the common 
parameter for computing all the vertices is smoothly adjusted . The result simulates 
the migration of all the vertices towards the representative vertex of their clusters. 
As the model, moving towards the viewer, traverses a threshold between two 
consecutive simplification levels, the system automatically switches between con­
secutive interpolating models at their common limit shape. 
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Figure 6: Levels of detail. Five instances of the same assembly (top) are shown using different levels 
of approximation that depend on their distance to the viewer. For comparison, the five approxi­
mations are shown with the same scale (below). 

6. Conclusion 
Although the performance of state of the art hardware graphics is growing rapidly, 
price constraints and the growing needs to industrial customers call for algorith­
mic improvements that improve the visualization speed of complex 3D scenes . 
We have presented a new technique, which automatically computes one or several 
simplified graphics representations of each object. These representations may be 
used selectively in lieu of the original model to accelerate the display process 
while preserving the overall perceptual information content of the scene. The de­
scribed method clusters vertices of the model and produces an approximate 
model where original faces are approximated with fewer faces defined in terms of 
selected vertices. Several simplified representations with different simplification 
factors may be stored in addition to the original model. Actual viewing conditions 
are used to establish automatically for each object which representation should 
be used for graphics. 
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Volume Tracing Soft Objects 

ABSTRACT 

Masa Inakage 
The Media Studio Inc. 

2-24-7 Shichirigahama-Higashi 
Kamakura, Kanagaw 248 JAPAN 

This paper presents a volume rendering technique called the volume tracing. Volume 
tracing is an extension to ray tracing rendering technique. ill this paper, we focus 
on the rendering of soft objects. Soft objects include implicit surfaces which are 
called "the metaballs". The visualization of volume data defined by soft objects is 
achieved by the use of volume tracing. 

Keywords: fuzzy objects, implicit surfaces, metaballs, stochastic metaballs, volume 
rendering, volume tracing 

1. INTRODUCTION 

Three dimensional computer graphics modeling and rendering technqiues have 
achieved photo-realistic image synthesis of objects with solid surfaces. ill many 
cases, the techniques assume surface models in which only the surfaces of objects are 
defined. Hence, the surface models cannot visualize the internal data of objects. 
Solid models are used in CAD/CAM applications. The shape of objects defined by 
solid models are limited to combinations of geometric functions such as spheres and 
cones. There are many objects such as fuzzy objects that are inadequate to be defined 
by the surface models or solid models. It is necessary to use special modeling and 
rendering techniques for image synthesis of fuzzy objects. 

Several researches in modeling and rendering the fuzzy objects have been reported. 
Blinn[l] and Nishimura[5] used ray tracing to render the soft objects. Since the soft 
objects are defined by high order functions, both papers adopted quadric functions 
to approximate the modeling of soft objects. Wyvill[8,9,lO] used polygonal 
approximations so that traditional rendering techniques can be used. Karla[ 4] and 
Wyvill[ll] have presented techniques to accurately render the soft objects by ray 
tracing. However, these techniques are mathematically complicated. Reeves [7] 
described a modeling technique called the particle systems to model fuzzy objects. 
The particle systems are effective for modeling a group of particles such as 
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fireworks, splashes. However, the particle systems are not suitable for modeling 
clouds and flames. Perlin[6] describes texture synthesis techniques using soft 
objects of iso-surfaces. Volume tracing is used to render the synthesized textures. In 
Inakage[3] , laminar flames are modeled by an anisotropic density function. Volume 
tracing is used to render the flames. However, it does not describe general features 
of soft objects such as the blending effects. 

In this paper, we first present the volume tracing technique, in section 3.1 we apply 
the technique to render the soft objects of iso-surfaces. The technique is extended 
in section 3.2 to account for soft objects with opacity and stochastic particles. In 
section 4, examples of the technique are shown. 

2. VOLUME TRACING 

Volume tracing extends the notion of ray tracing to account for the volume model. 
In ray tracing, screen sampling is used to calculate the intensity of the screen pixel. 
This screen sampling determines the eye ray. Each screen sampled eye ray is tested 
for an intersection with objects. The intersecting surface is analytically calculated. 
Ray tracing ignores all the volume data between the surface intersection and the 
screen because ray tracing assumes a vacuum space. When the space is filled with 
gas particles or any scalar fields, the fundamental assumption of the ray tracing 
technique fails. 

The volume sampling process is a sampling process performed along a given ray. The 
eye ray is extended incrementally until it is clipped by the maximum distance 
(clipping volume) or it intersects with an opaque object, as shown in figure 1. It is 
noted that the sample volume of a ray is not dependent on the voxel vertices. 

E 

SCREEN 
EYE 

Figure 1 illustration of the volume sampling 
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Once the sample volume is obtained, a scalar value that occupies the sample volume 
must be calculated in order to apply an appropriate shading model for the volume. 
The algorithm accounts for volume data of both voxel and functional models. Scalar 
value can be directly calculated if the volume data are functionally defined. To 
determine the scalar value of a voxel-based sample volume, numerical interpolation 
is used. First, the distances between the sample point and the neighboring voxels are 
calculated. The distance is used to determine the weight factor for averaging. The 
weighted averaging technique is applied to calculate the scalar value of the sample 
volume. 

3. SOFT OBJECTS 

In this section, we first describe iso-surfaces or metaballs. Then, the extensions of 
soft objects to model flames and other fuzzy objects are presented. 

3.1 Metaballs 

Metaballs are defined by iso-surfaces of the density function. It is a spherical 
function that has a center point with maximum influence. The influence factor 
decreases as a function of the distance from the center point. A suitable density 
function is proposed in Wyvill [11]. The density functionF() we used in this paper 
is 

F(a) = -0.4444 (a6 / b6) + 1.8888 (at / b4 ) - 2.4444 (a2 / bl) + 1.0 

where a is the distance from the center point of the spherical density function to a 
given point P, and b is the maximum distance which the density function influences. 
Hence, b defines the amount of influence at the center point. To obtain the iso­
surfaces, we define the surfaces by all points that satisfy F( a) = val. Wyvill [9] found 
that val = 0.5 provides a good set of points to constitute the metaballs. For multiple 
metaballs, the summation ofF(a) for all the metaballs defines the iso-surfaces. This 
summation results in the blending effects of metaballs. Anegative value ofb implies 
that the amount of influences by the surrounding metaballs is decreased. This 
subtraction operation creates holes in the iso-surfaces. 

In order to volume trace the metaballs, we render all the points in the density function 
that satisfy F( a);?val, as shown in figure 2. The algorithm can be summarized as 
follows: 
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1. Obtain an eye ray from screen sample. 
2. Obtain a point P by volume sample the eye ray. 
3. Calculate F(a) for each metaballs, and sum them. 
4. If (F(a)~va~ then 

4-1. Calculate the surface normal. 
4-2. Calculate the intensity of light at point P. 
4-3. 90to 1. 

else 
5. While (point P < maximum distance) 90to 2. 

metaballs 

Figure 2 Volume tracing metaballs 

3.2 Extensions 

3.2.1 Anisotropic Density Function 

The density function can be modified to an anisotropic density function. The basic 
primitive of the function becomes the ellipsoids. For a given point P(x,y,z), the 
anisotropic density functionFO is written as 

F(a) = -0.4444 (a6 / e6) + 1.8888 (et / eI) - 2.4444 (a2 / e2) + 1.0 

a~e 

where 
e = f(b, q, (1)) 

Function fO defines the anisotropy which is dependent on the anglesq, 0 in polar 
coordinates. 
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3.2.2 Fuzzy Volumes 

The density function may be used to control the opacity and color. Instead of 
thresholding at F( a)'?:.val, we use f(F( a) ) to be the opacity factor. At f(F( a) )= 0.0, 
we assume that it is transparent. The same method may be used to manipulate the 
colors of soft objects. 

Another modification to the density function is the use of stochastic factors. As an 
example, we apply the particals technique. In Inakage[2], the particals technique is 
presented to stochastically break the spherical surfaces into small segments. We 
apply the particals to create stochastic metaballs. 

For a given point P(x,y,z), the stochastic density functionFO is expressed as 

F( a) = -0.4444 (a6 / c6) + 1.8888 (at / c4) - 2.4444 (a2 / elJ + 1.0 

a'S,c 

where 
c = noise(b) 

Note that the noise function is dependent on the volume sampled point P. It does not 
have frame-to-frame coherency. 

4. EXAMPLES 

Figure 3 shows the blending effects of soft objects by volume tracing. As two 
metaballs are placed close together, they start to merge. Figure 4 is an example of 
5 blended metaballs. Figure 5 uses the same set of data that is used to render figure 
4. In this example, metaballs are given stochastic factors to generate fuzzy particles. 
Figure 6 is an example of fuzzy volume in which the opacity is controled by the 
density function. 

Examples were rendered on NEC PC980 1 VX2 16-bit personal computer with 8087 
floating point accelerating chip. Images are rendered in 24 bits full color. Compu­
tation time for figure 3 was approximately 1 hour at 160 x 100 x 250 sampling 
resolution. 
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(a) (b) 

(c) (d) 

Figure 3 (a)-(d) illustrates the changes in the blending effect with 2 metaballs. 
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Figure 4 The blending effect with 5 metaballs 

Figure 5 5 stochastic metaballs 

Figure 6 Opacity controled by the density function 
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5. FUTURE WORKS 

Volume tracing is a computationally expensive technique. Techniques to improve 
the rendering performance is necessary for production environment. Anti-aliasing 
of volume sampling is appreciated for rendering curved surfaces such as surfaces of 
soft objects. The algorithm is currently modified to adaptively supers ample the 
volume. We are investigating various density functions that produce visually 
interesting shapes. 
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