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Preface

In the history of technology, many fields have passed from an initial stage of
empirical recipes to a mature stage where work is based on formal theories and
procedures. This transition is made possible through a process called “modeling”.
Also Computer Graphics as a separate field of Computer Science makes extensive
use of formal theories and procedures of modeling, often derived from related
disciplines such as mathematics and physics. Modeling makes different
application results consistent, unifying varieties of techniques and formal
approaches into a smaller number of models by generalizing and abstracting the
knowledge in Computer Graphics.

This volume presents a selection of research papers submitted to the conference
“Modeling in Computer Graphics : Methods and Applications” held at the
Research Area of the National Research Council in Genoa, Italy, on June 28 - July
1, 1993. This meeting was the ideal continuation of a previous conference
organized in Tokyo, Japan, in April 1991. The success and the variety of research
themes discussed at that meeting suggested to promote a new working
conference on methods and applications of modeling to be held in Italy two years
later.

In response to the call for papers, 45 high-quality original research papers were
submitted from 16 different countries, 1 from Australia, 1 from Canada, 3 from
China, 5 from France, 3 from Germany, 3 from Israel, 5 from Italy, 6 from Japan, 1
from Macedonia, 1 from the Netherlands, 2 from Portugal, 1 from Romania, 2
from Spain, 1 from Switzerland, 2 from the UK and 8 from the USA. The
amount and distribution of the proposals shows the wide international coverage
of research in this area.

After extensive and thorough review, 27 papers were selected for presentation at
the conference and also for printing in this book. To highlight areas of particular
importance, 3 additional papers were invited.
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This volume is divided in two parts: Methods of Modeling and Modeling for
Applications. The first part includes new advances in modeling tools derived
from closely related disciplines. It contains the first 6 chapters: Mathematical
Modeling for Vision and Graphics (Chapter 1), Modeling with Constraints
(Chapter 2), Modeling of Dynamic Objects (Chapter 3), Geometric Modeling
(Chapter 4), Surface Modeling as a Creative Tool (Chapter 5), Curve and Surface
Modeling (Chapter 6).

Part 2 on Modeling for Applications presents modeling techniques devised for
specific applications. It includes three chapters: Modeling for Animation (Chapter
7), Modeling for CIM Applications (Chapter 8) and Modeling for Rendering
Complex Objects (Chapter 9).

The conference was promoted by IFIP WG 5.10, under the auspices of TC5 and
organized by the Institute for Applied Mathematics of the C.N.R. with the
cooperation of the Research Area of Genova.

Many people have contributed to the preparation of the conference. First of all we
would like to thank the authors who submitted papers and the invited speakers,
secondly we want to thank the members of the conference committees and the
external reviewers for their efforts in setting the standard for the quality of papers
in this volume. Our special thanks are due to Marinella Pescaglia and Sandra
Burlando for running the conference secretariat so effectively and to all assistants
and students of the LM.A. Computer Graphics group for their collaboration to
the conference organization.

Bianca Falcidieno Tosiyasu L. Kunii
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Mathematical Modeling for Vision and Graphics



Area Guide Map Modeling by Manifolds and
CW-Complexes

Tosiyasu L. Kunil and SHIGEO TAKAHASHI
Department of Information Science, Faculty of Science
The University of Tokyo, Tokyo, 113 Japan

ABSTRACT

From ancient times, area guide maps have been drawn intuitively without appropriate
modeling. Understanding such maps and developing guide map CAD require clear mod-
eling. This paper presents the model of area guide maps using manifolds and CW-
complexes. The process of drawing an area guide map is modeled as that of creating
a manifold. First, we represent the surface shape of an area as a CW-complex. Then,
we glue the CW-complexes representing the areas into a manifold. Surface shapes in the
overlaps are blended by a partition of unity. The mechanism to project a surface shape
from multiple views is installed. Finally, the area guide map is generated automatically.

Keywords: area guide map modeling, CW-complexes, manifolds, partition of unity

1. INTRODUCTION

In drawing the area guide maps, what features are extracted to characterize the land un-
dulations? We will first extract the characteristic points such as mountain tops, mountain
passes, and lakes. These characteristic points can be regarded as peaks, passes, and pits,
which are called singular points. With singular points, the land surface can be described
as a CW-complex (Shinagawa, Kergosien and Kunii 1991) . The guide maps feature these
characteristic points.

Further, the area guide maps are not described by the projection from only one view
point, but by the projections from multiple view points. For example, a mountain is
usually described as seen from the foot to show the mountain skyline clearly. Lakes are
described as seen from heights not to get the scene barred by the surrounding mountains.
In this way, the areas are described separately with the different views, and then put
together into a guide map in a way similar to gluing charts together to obtain a manifold.
Each area can be considered as an open neighborhood, and the gluing process can be
considered as a coordinate map. In the following, this paper assumes that area guide
maps are constructed by these processes.
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When.we model area guide maps by CW-complexes and manifolds, first, we code the
surface shapes of the individual areas separately. In this part, we use the Morse the-
ory (Milnor 1963) and the Reeb graph (Reeb 1946) to code each surface shape as a
CW-complex. Then, we glue these surface shapes together to construct the whole map.
In the overlapping areas, the surface shapes are blended in an appropriate way with a
partition of unity. The projection from multiple views are also realized for both the
perspective projection and the parallel projection. Finally, the area guide maps are auto-
matically generated.

2. IMPLEMENTION OF MANIFOLDS IN COMPUTERS

In this section, we explain how to implement the concept of manifolds in computers.

2.1 Concept of Manifolds

Let’s have-a review on the definition of manifolds(See Fig. 1). Readers can also refer to
some books (Wasserman 1992) . A manifold consists of an atlas that is a set of charts.
A chart is a pair of an open neighborhood and a coordinate map. These notations are
indicated in Fig. 1. We denote the open neighborhood and the coordinate map as U;
and @; respectively, where ¢ is the index number. The charts are represented as (U;, ¢;),
and the atlas is the set {(U;,;)|¢ € I} where I is a set of integer numbers. Each
open neighborhood U; is mapped from the global coordinate system to the local by the
coordinate map ;.

2.2 Implementation of Manifolds

‘We explain how to implement the manifolds in computers. Since manifolds are constructed
from open neighborhoods and coordinate maps, we first consider how to implement these
two elements.

The open neighborhood U; is represented as an inverse image of a 3-D local coordinate
system. The surface shape in the local coordinate system ¢;(U;) is expressed by the
surface equation z; = f;(x;,¥;). The surface equation is assumed to be continuous and
differentiable. There exists a mapping from a point p; on the local (z;,:)-plane to a
height value f;.

The coordinate map ; is represented as a 4 x 4 matrix M; in the homogeneous coordinate
system. A 4 x 4 matrix includes a translation with a scale transformation and a rotation.
We also assume that we can change the charts smoothly over the global coordinate system.
Later, this is defined as C"-compatibility formally. This assumption enables us to define
an atlas as a collection of charts.



global coordinate system

Xi

local coordinate system

Fig. 1. The concept of a manifold

Atlas
index | surfaces in neighborhood | coordinate maps
0 50 = fol¥o, %0) o (M)
1 21 = filan, ) o (M)
2 22 = fo(Za. 1) w2 (Ma)

Table 1. An atlas represented as the array of charts in computers

Now we are ready to define the data structure of a chart and an atlas. An atlas, a set of
charts, is stored as an array in computers. Table 1 illustrates an atlas in array structure.
The elements of the atlas as the array correspond to the charts. Each array has the surface
equations of individual local coordinate systems, and the coordinate maps represented as
4 x 4 matrices.

2.3 Coordinate Transformations

First, we define the C"-compatibility as follows (Wasserman 1992) .

Definition 1 (C"-Compatibility) A pair of charts (U;, ;) and (U;, ;) are said to be
C"-compatible if the following conditions are satisfied.



-1
MiMi

Fig. 2. The coordinate transformation in U; N U;

LU NU;#0.

1

2. The coordinate transformations p; o p; " and @; o (pj'l isC"onU; N U;.

Thus, to realize the compatibility among charts is equivalent to implementing the coordi-
nate transformations. In our system, the product of two corresponding matrices represents
the coordinate transformation. Fig. 2 illustrates the coordinate transformation in U; N Uj.
The coordinate transformation @; o ;" is represented as M;M; . The same is true for
the reverse transformation. In this way, the coordinate transformation in the overlapping
area of two open neighborhoods is implemented.

3. SHAPE DESCRIPTION IN THE CHARTS

In describing the land undulations in each area, we pay attention to the characteristic
points such as peaks, passes, and pits. These points are called the singular points. This
section describes the surface codings by singular points. From the Morse theory, we can
regard the surface of the area under consideration as a CW-complex.

3.1 Morse Theory

First, we introduce the Morse theory as a tool of surface coding with singular points.
Readers can refer to the book (Milnor 1963) for more details.



Morse function
2 q apeak
! \ a peak
-

Yok s

a pass

AR
\/ @a virtual pit

(a) (b)

Fig. 3. (a) The example of a mountain shape and (b) its Reeb graph

Theorem 2 (Morse Theory) Let M be a compact, smooth, and closed manifold, and

f be a Morse function of M. If the indices of singular points are ry, T2, ---, and ri
respectively, M is homotopy equivalent to the finite CW-complex that is decomposed into
a ry-cell, a ra-cell, ---, and a ri-cell. In other words, the following is satisfied;

M~erUe?U---Ue™,

Consider a mountain shape with a virtual pit and put the Morse function as illustrated
in Fig. 3(a). Along the direction of the Morse function, we can scan the singular points
whose indices are 2, 2, 1, and 0. Hence, the surface can be decomposed into two 2-cells,
one 1-cell, and one 0-cell according to the Morse theory. Based on the Morse theory, the
compact smooth surface can be regarded as a CW-complex.

3.2 Reeb Graph

The Morse theory tells us the number of decomposed cells and their dimensions, but
cannot tell us how to glue the cells. To fill the lack of this information, we use the Reeb
graph. The definition of the Reeb graph is as follows (Reeb 1946) .

Definition 3 (Reeb Graph) Let f : M — R be a function on a compact manifold M.
The Reeb graph is the quotient space of the graph of f in M x R by the equivalence relation
given below :

(X1, f(X0)) = (X, f(X2)),

which holds if and only if f(X;) = f(X3) and X, X are in the same connected component
of f71(f(X1))-

Fig. 3(b) presents the Reeb graph of the mountain shape. With the Reeb graph, the
structure of the cells is determined.
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3.3 Morse Theoretical Coding

The Morse theoretical coding is presented by (Shinagawa, Kergosien and Kunii 1991) .
In this coding, a simple height function is used as a Morse function. Along the height
function from the top to the bottom, we can describe the dimensions of cells and a way to
glue them to the existing surface. Since the cross sectional structure of the surface changes
at the singular points, the Morse theoretical coding is sufficient to describe the changes
of cross sectional contours. The Morse theoretical coding represents also the inclusion
relations of the contours by tree structures. To visualize the topological structure of
surfaces, the Morse theoretical coding uses the icon representation of the Reeb graph. In
this way, cells are glued along the height function to construct the whole surface. This
paper uses this surface coding to describe the surface shapes of the charts.

4. HOW TO OVERLAP THE CHARTS

As mentioned earlier, the process of drawing area guide maps amounts to creating an
atlas from the charts. Since the surface shapes are described individually in the charts,
different surface shapes can exist in the overlapping areas. Hence, our next problem is
how to overlap the surface shapes in the charts.

4.1 The Partition of Unity

-

To solve this problem, we blend the surface shapes in the overlapping areas. Here, surface
shapes must change smoothly over the whole global area. For this blending, we use the
partition of unity.

The definition of the partition of unity is as follows (Hirsch 1976) .

Definition 4 (Partition of Unity) We define the support Supp f of a continuous real
valued function f to be the closure of f~'(R —0). Let M be a C" manifold, 0 < r < o0,
and U = {Ui}ica be an open cover. A C™ partition of unity subordinate to U is a family
of C™ maps A : M — [0, 1], i € A such that the following conditions hold:

Supp ;i CU; (i €A),
{Supp A;}ies s locally finite,

and
Y x@)=1  (zeM).

i€A

The following functions are examples of the partition of unity.
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zi= hi(p;)

A® B(®)

i ,

0 /‘ 0 /1 t e, ity
(a) (b) @

Fig. 4: The blending functions for the partition of unity: (a) the shape of the blending
function A(t), (b) the shape of the blending function B(t), and (c) the shape of the
blending function h;(p;)

o Bernstein basis function

e B-spline basis function

o Gaussian basis function

The next step is to construct the partition of unity in our case.

4.2 Blending of Surface Shapes

The approximations for blending of surface shapes are explained in (Hirsch 1976) . First,
we define the exponential function A(t) indicated below.

0 t<0
Alt) = { et 0<t

The shape of this function is shown in Fig. 4(a). You can see that this function is C*.

We define the second function B(t) from the first as follows.

0 t<0
_ Alt)
B(t)— ADTAI=D O<t<1
1 1<t

The shape of this function is shown in Fig. 4(b). After simple calculations, we can see
that this function is C*.

Then, we define the function C;(t) in each local coordinate system ¢;(U;),

b —t

Gi(t) = B(b- s

)
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where the real numbers a; and b; are defined in each local coordinate system and satisfy
the condition 0 < a; < b; < 1. We also define the areas V; and W; as

Vi {(zi, w, &) € Uilyz? +9f < ai}
Wi = {(zi, yi, ) € Uily/2? + 37 < bi}

Let p; be a point on the (z;, y;)-plane in the local coordinate system. The function h; is
defined as

il

1 Di € V;
hi(p:) ={ Ci(y/a?+y?) peW:-V
0 otherwise

in each local coordinate system. The shape of h; is shown in Fig. 4(¢). With this definition,
each point p; on the local coordinate system has the weight h;(p;) for surface blending.

We are now ready to consider how to blend the surface shapes in the charts. Let p be a
point on the (z,y)-plane in the global coordinate system, and let I, be a set of indices
{i|p € U;}. If the open neighborhood U; includes the point p, the set I, includes the
index ¢. The equation of the surface in the global coordinate system can be defined as,

Yier, hilzi, y) - fili, vi)
Tier, hi(%i, y:) '
where z; = @;i(z), ¥; = pi(y). Fig. 5(a) helps us to comprehend this overlapping. As you

see, the equation of this surface is C*°. In this way, the surface shapes can be blended
with the partition of unity.

f(xvy) =

Actually, the blending defined above is homotopic. The homotopy of the blending is
defined in Fig. 5(b). Thus, the partition of unity among the charts is defined as the
homotopy among the charts.

4.3 Weight Assignment

Our method still gives the same weights to all of the charts. We can assign different

weights to the charts for the control of the height values. Let w; be the weight parameter

of the chart (U;, ¢;). The equation of the surface in the global coordinate system can be

modified as follows.

Tier, Wi - hi(xi, yi) - filwi, yi)
Yier, Wi - hi(zs, v)

flz,y) =

’

where 1 = ¢i(z), ¥ = @i(y).

The weight parameters give us flexibility to blend surface shapes. For example, we suppose
that each chart has the different reliability in the exactness of the parts of the chart. We
can assign the larger weights to the more reliable parts of the chart for more accurate
blending.
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overlap

fi(xi,yi

B
fi(x5,¥9 g
@ =F(t, 1)

(a) (b)

g

Fig. 5. (a)The blending of the surface shapes, and (b) the homotopy of blending
4.4 Restrictions in the Overlapping Areas

In blending the surface shape in the overlapping areas, it is possible that new singular
points appear or existing singular points disappear. Since we code the topological struc-
ture with singular points, we need to maintain the singular points in any glued surface.
For this purpose, we show that it is sufficient to keep the sign of the gradient in the fixed
direction in the overlapping areas. If this condition is satisfied, no singular points appear
in the overlapping areas because the sign of the partial derivative in this direction does
not become 0.

To satisfy this restriction, we define rules as followings.

1. Any point on the (z,y)-plane in the global coordinate system is covered with three
or less open neighborhoods(See Fig. 6(a)).

2. There exists a partial order between the two charts that have the overlapping area
with each other. This paper denotes the partial order between the two charts
as (Ui, i) > (Uj, ;). Fig. 6(b) represents the example. In this case, the par-
tial order relations are (Ui, ¢1) > (U2, ¢2), (Ui, v1) = (Us, ¢3), (Ui, ¢1) >
(Usy 4), (U2, p2) = (Us, ©4), and (Us, @3) > (Us, @4).

3. Let U; and U; have the partial order (U;, ¢;) > (Uj, p;). We define one direction in
the overlapping area U; N U;. The following rules are satisfied in this overlapping
areas.

o (Ui, ¢;) and (Uj, p;) have the same sign “~” of the gradient.
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possible impossible

(c)
(U1, Q1)

(U2, 92) (U3,93)

(Ug, Pg)

Hasse diagram

Fig. 6. The rules for restrictions in the overlapping areas.

e Let p = (r,y) be a point of the (z,y)-plane in the global coordinate system.
Here, fi(p) > f;(p) is satisfied where f;(p) and f;(p) is the height values in the
open neighborhoods U; and Uj respectively. Fig. 6(c) indicates this rule.

These rules satisfy the initial restriction in the overlapping areas. Our system supports the
interface to satisfy these rules for gluing the charts with fixed gradient in the overlapping
areas.

5. PROJECTIONS FROM MULTIPLE VIEWS

Area guide maps are generally drawn based on the projections from multiple views. Moun-
tains are seen from the oblique views. Lakes are seen from the top. From such consider-
ations, each chart has its own view point or direction. Hence, our next problem is how
to define the continuous and differentiable views between the charts. In the following, we
will discuss this problem in the following two cases. One is the perspective projection and
the other is the parallel projection.
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Fig. 7. View blending in perspective projection
5.1 Perspective Projection

In the case of perspective projection, the view point and the reference point are crucial
because these two points determine the view line. First, we make some assumptions.

e The reference point is on the blended surface in the global coordinate system.
o Each chart (U, ;) has its own view point v;.

o The view plane is parallel to a plane = = 0 and has an intersection point with the
view line.

Then, we can find the desired view point in the same way as blending the surface shapes
of the charts. In Fig. 7, given a reference point ¢, let p be the vertically projected point
on a plane z = 0 from the reference point ¢. By the partition of unity, the view point v
of the reference point ¢ is defined as

v(z,y) = E_’E_I_p_hl_(w
Eie{p h"'(‘Tivyi)
where I, = {i|p € Ui}, z; = pi(z), and y; = pi(y).

Fig. 7 represents this blending of view points in perspective projection. Since edge points
are continuous and differentiable, we can find the desired view point through this equation.

We can also assign the weight parameters to the view points. Let the chart (U;, ;) have

the weight parameter w; of perspective projection. The view point is modified as

Yier, i~ ha(zs,y:) - v;
Eiezp w! - hi(Ti, y:)

’U(.’L’,y) =

3

where I, = {i|p € U}, 2: = gi(z), and y;: = ¢;i(y).
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view vector

ui

Fig. 8. The angle with two parameters in parallel projection
5.2 The Parallel Projection

Once the view direction is fixed, the way of parallel projection is determined. Hence,
our concern is only the direction of the view line. In order to determine the direction of
parallel projection, the unit vector from the origin to the unit sphere is considered. We
make some assumptions as followings.

e Each chart (U;, ¢;) has its own direction u;, which is the above unit vector.
e The unit vector u; has the form
u; = (cos ©; cos ;, sin O; cos ¥;, sin ¥;),
with two parameters ©; and ®;(See Fig 8).
The problem left is how to find the continuous and differentiable functions of these two

parameters ©; and ®;. We can also use the partition of unity to find the desired angles.
The view direction u is defined as

u = (cos© cos @, sin © cos @, sin P),

where
o Yiel, hi(zi, y:) - ©;
Tier, hilzi, u)
> Tier, hi(Ti yi) - ¥

Yier, hi(zi, ¥i)
Let w” be the weight parameter of the chart (U;, ¢;) of parallel projection. With this
parameter, the angles © and ® are represented as
Zie], wf - hi(xi,y:) - ©;
Tier, Wi - hi(xs, v:)
Zier, Wy - hi(wi, y:) - ©s
Yier, Wi - hi(i, yi)

0 =

® =
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] 5 Km

Fig. 9. The map around the Lake Ashinoko

As we have seen, we can find the desired view, and surface shapes are projected from
multiple views.

6. EXAMPLES

We apply our model to the automatic generation of area guide maps. Fig. 9 shows the
map around the Lake Ashinoko, which is a famous tourist area having a scenic crater lake.
Fig. 10 and Fig. 11 are the results of the generation as the candidates of the basic image
to draw the area guide maps around the lake. Fig. 10 shows the images of perspective
projection with one view point and with multiple view points. Fig. 11 shows the images
of parallel projection with one direction and with multiple directions. In Fig. 10(a) and
Fig. 11(a), the mountain obstructs the lake because the land shape is projected from one
view point or direction. In Fig. 10(b) and Fig. 11(b), on the contrary, the whole lake can
be seen because the area including the lake has a different view point or direction.

7. CONCLUSIONS

This paper presents the model of area guide maps based on the concept of manifolds.
The shape description of the charts with CW-complexes and manifold is explained. The
blending method of surface shapes and views is represented. Automatic generation of
area guide maps is also implemented.



18

(b)

Fig. 10: The image of the perspective projection with (a) one view point and (b) multiple
view points
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(b)

Fig. 11: The image of the parallel projection with (a) one view direction and (b) multiple
view directions
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QOur research directions are as follows:

e Reconstruction of the global Reeb graph from the local
In gluing the charts, we set the restrictions of fixed gradients. Under this condition,
it is possible to reconstruct the global Reeb graph from the local.

o Application of this model to the non-Cartesian coordinate system
In area guide map modeling, the global coordinate system is a simple Cartesian
coordinate system. For example, the modeling of facial expressions needs the curved
coordinate system to represent a human face properly.

e Animation with blended views
The view blending enables us to animate the change of the vision. Projections of

teeth from multiple views are good examples, because front teeth and back teeth
have the different views.
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The Elementary Equation of the Conjugate
Transformation for the Hexagonal Grid

Z.J. Zheng and A.J. Maeder
Victorian Centre for Image Processing and Graphics, Department of Computer Science,

Monash University, Clayton Vic. 3168, Australia

ABSTRACT: In this paper the conjugate transformation of the hexagonal grid is described
and its elementary equation is defined. Two strategies are used to extend a matrix morphology
into the conjugate transformation. First, the conjugate classification represents 128 structuring
elements of the kernel form of the hexagonal grid to a tree of six levels. Each node of a given
level is a class of structuring elements with a calculable index. Two conjugate nodes of the same
level with the same index can be distinguished by two conjugate sets of 2+ n classes respectively.
Second, by considering each element which has six neighbours as a state for any Boolean matrix
of the hexagonal grid, it can be transformed into an index matrix relevant to a specific level of
the classification. From the index matrix, two sets of Boolean matrices (feature matrices) can
be constructed with the same number of classes on the level. Depending on simpler algebraic
properties of feature matrices, dilation and erosion can be unified to one operation, reversion,
in the elementary equation. The reversion has a self-duality property with a space of 22*"
functions in which only a total of 2"+ functions are dilation and erosion. In addition, several
images generated by applying morphological operations using an implemented prototype of the
conjugate transformation and their running complexities compared with a matrix morphology,
are illustrated. Owing to the class representation, the new scheme has more than a 4-8 speed-up

ratio for the general applications.

Key words: cellular automata, matriz mathematical morphology, matriz Boolean algebra,
image analysis, structuring elements, elementary equation, conjugate classification, conjugate

transformation

Introduction

In the past three decades, mathematical morphology has been developed and a number of basic
theorems have been proved by Hadwiger (1957), Matheron (1975) and Serra (1982). A con-
cise treatment of the algebraic properties of erosion, dilation, opening and closing for binary
and gray-scale N-dimensional sets, has been taken placement by Haralick et al.(1988) and more
recently, a matrix morphology has been defined and developed by Wilson (1992). From the
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algebraic point of view, a matrix morphology is an extensive Boolean matrix algebra relative to

a state set of structuring elements.

It is well-known that dilation and erosion are two elementary equations of the mathematical
morphology. Depending on the two elementary equations and structuring elements, other func-
tions of mathematical morphology can be constructed, for example opening and closing. There
is a duality relationship between dilation and erosion in the form of the complementary and
transpose operations. Under traditional schemes of mathematical morphology, if we decompose
a complex operation, then it can be reduced to a sequence of dilations and erosions and a state
set of structuring elements. In such schemes, dilation or erosion will increase or decrease the
number of 1-elements in the matrix monotonicly for any Boolean matrix and a given structuring
element. If we let X be a matrix of a binary image, 0 be a 0 matrix and 1 be a 1 matrix, then
the convergent ranges of dilations and erosions can be shown in Figure 1.

0 Erosions X Dilations 1

Figure 1: Convergent Ranges of Dilations and Erosions

From the linguistic point of view, dilation and erosion are preferable for describing the oper-

ations related to 1-elements rather than 0-elements which are usually regarded as background.

In this paper, a new scheme for describing matrix morphology, the conjugate transformation,
and its elementary equation are defined and investigated on the hexagonal grid. The conjugate
transformation is an extended structure of a matrix morphology. It manages a state set of
structuring elements as two conjugate class sets, each set containing the same number of classes.
If a state of structuring elements is in the k-th class, then its conjugate state (reversing all
elements of the state from 1 to 0 or 0 to 1) must be in the k-th conjugate class of structuring
elements. Using Boolean matrix operations, for any matrix, each class of structuring elements
can decompose the matrix to be a feature matrix. Two class sets of structuring elements are
represented to two sets of feature matrices. Depending on the feature matrices and the original

image, Boolean matrix operations can be carried out.

For the conjugate transformation, we would like to restrict our representation to the hexag-
onal grid since we have already established the conjugate classification of the kernel form of the
hexagonal grid (Zheng and Maeder 1992). Comparable representations for other regular plane
lattices also exist (Zheng 1993 thesis).
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We use two strategies to extend the Boolean matrix scheme of mathematical morphology to
the conjugate transformation. Firstly, for any Boolean matrix X of the hexagonal grid, an el-
ement of X has the kernel form composed of the given element and six neighbouring elements
around it. The kernel form is a structuring form, the given seven elements are a state of the
kernel form, and the state is a structuring element (a total of 128 states in the kernel form).
Because each element and six neighbouring elements of X can correspond to the centre element
and six neighbourings of the kernel form, each element of the matrix has a state and the matrix
is extended to a state matrix. The state matrix can be organised by a classification. Then,
each class of the state matrix can be transformed to a Boolean matrix (or a feature matriz)
with the same domain as X. Since centre elements of the kernel form of X can be assigned to
0 or 1, there are two fundamental greups of feature matrices: a matrix (or a conjugate matrix)
corresponds to a feature matrix of a class of the state matrix in which their centre elements are
equal to 1 (or 0). Using matrix representation, one class of structuring elements on X maps
correspond to one feature matrix. Therefore, whole classes of the conjugate classification on X
correspond to two feature matrix sets. Secondly, we combine dilation and erosion to be a unique
operation: reversion. In order to reverse a class (or classes) of structuring elements from X, it
is convenient to use the elementary equation to reverse each element of X corresponding to a

matrix (or matrices) of two feature matrix sets on X.

The elementary equation has self-duality and balanced representation for both 1 and 0 structur-
ing elements. Since the elementary equation can increase and decrease both 0 and 1 elements of
X, besides typical monotonic functions of dilation and erosion, other functions of the elementary

equation have recursive or cyclic properties.

This paper is composed of five sections. In section one, the essential relations between the
conjugate classification and respected matrix representation for each class are explained and
defined. In section two, the basic algebraic properties of feature matrices are investigated. In
section three, the elementary equation of the conjugate transformation is defined and analyzed.
In section four, several sample cases of applications, their timing measurements and speed-up
ratios (such as the edge detections, noise filters and dynamic patterns generated by an im-
plemented prototype of the conjugate transformation based on the elementary equation and a
matrix morphology), are illustrated; and in section five the main contributions of the paper are

summarised.
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1 Matrix Representations of the Conjugate Transformation

The hexagonal grid plays a significant role in two dimensional image domains. How to represent
the fundamental grouping of seven adjacent grid points (the kernel form) for the hexagonal grid
is a key issue of any descriptive and analytic task on such images. In order to satisfy differ-
ent circumstances (such as cellular automata, mathematical morphology and parallel Boolean
logic computation), several representations for the kernel form of the hexagonal grid applica-
ble to the binary images, have been developed. Examples are Boolean logic (look-up table),
symmetric function (Gardner 1971), crossing number (Preston and Duff 1984, pp43-44), Golay
transformation [Golay 1969] and conjugate classification (Zheng and Maeder 1992).

1.1 The Conjugate Classification of the Kernel Form

The kernel form of the hexagonal grid is a point with six neighbouring points around it. When
each point is allowed to assume values of only 0 or 1, there is a total of 128 states corresponding
to unique instances of the kernel form. From the state set of 128 states and the inclusion relation
of set theory, we can use a tree of six levels to represent the conjugate classification. Each level
contains the same of the 128 states and each node is a subset of states. Any two nodes in the
same level do not contain the same state. If we let the 128 state set be the root, then the first
level can be divided into one state set G and one conjugate state set G dependent on the value
of the centre point (1 or 0). The second level of 14 nodes {,G,, G } can be distinguished by p,
the number of connections, 0 < p < 6, that is, the number of six neighbouring points with the
same value of the centre point. The third level of 22 nodes {G'} and {;’,é} is related to ¢ which
is the number of branches, 0 < ¢ < 3 (the number of runs of the six neighbouring points with
the same value of the centre point in each state). The fourth level of 28 nodes {G*} and {;’,és}
has the property of rotational invariant in which any two states in a node can be congruent by
rotation, s denotes the number of spins, s € {0,1}. The fifth level of 128 leaves {4G3} and {gé’ﬁ}
has the simple relation to the respected state, and r denotes the number of rotations 0 < r < 6.
In short, the conjugate classification is a tree of six levels: one root, 2 nodes, 14 nodes, 22 nodes,

28 nodes and 128 leaves. Each node of the tree is a class of states with 1-5 calculable parameters.

We would like to restrict our investigation to what we term the fundamental structure of the
conjugate classification: that is, the substructure of the tree from root to the third level of 22
nodes {JG} and {gé} We would expect the entire tree structure would have similar algebraic
properties to the fundamental structure. The fundamental structure of the conjugate classifica-
tion is shown in Figures 2 and 3, where each node contains one state from a rotation invariant

class as a representative.
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Figure 2: The 11 classes of the Fundamental Structure of the Kernel Form

1.2 The Feature Matrix of the Conjugate Classification

Since the conjugate classification is only a representation for the kernel form of seven points, it
is necessary to extend the relations from the kernel form to provide two sets of feature matrices.

This is done by following the two steps discussed below.

First, let X be a Boolean matrix on the hexagonal grid, X[s,5] € {0,1} be an element at
position [z, j] of X, and X ; be a state in which X[, 5] is the centre element of the kernel form.
If all seven elements of X; ; have defined positions in X and fixed values (they are well-defined
in X) then X, ; is a regular kernel form. However, if X[z, j]is well-defined and one of its neigh-
bouring elements is not well-defined (i.e. does not have a defined position in X and a fixed

value), then it is a border element of X and X, ; is an irregular kernel form.
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Figure 3: The 11 conjugate classes of the Fundamental Structure of the Kernel Form

Definition 1.2.1 For any irregular X, ;, if X[k,l) € X;; and X[k,l] is not a well-defined
element of X then for VX[k, ], let

0 i X[i,jl=1;

1 if X[i,j]=0.

X[k, 1} =
From the above extension, each X;; € X becomes the regular kernel form.

Second, let {G,‘}:;('(',) and {é]};i’g be two node sets in a v-th level of the conjugate classifi-
cation and let a node G; have a conjugate node G; and vice versa. Having selected an element
(anode) from {G;} or {G;} as a class of structuring elements, it is natural to establish a Boolean

feature matrix to represent a class of structuring elements as follows.

For any X, let Gx(X) (or Gi(X)) be a feature matrix of Gt (or Gi) and Gi(X)[s,7] (or
Gr(X)[i, 7]) be the [4,7]-th entry (element) of the feature matrix. (Definition 1.2.2)
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Definition 1.2.2 For any [i, j] entry of Gx(X) or Gi(X), let

L if X;; € Gi;
Gk(x)[t’.]] = 7 .
otherwise;
or
- o if Xij € Gy;
Ge(X)i, 4] = "
otherwise.

Given the definition of a feature matrix, all elements of the hexagonal grid are assumed to have
proper values even for any entry of an uncertain element beyond the border of X. It is convenient

to describe two constant matrices to be Go(X) = 0 and Go(X) = 1 respectively.

Proposition 1.2.3 For any X on the hezagonal grid, there are two feature matriz sets for each
level in which one matriz set is composed of 2,8,12,15 or 65 feature matrices corresponding to

1 through 5 levels of the conjugate classification respectively.

Proof: By the classification, there are two n(v) classes on the v-th level, n(v) = {1,7,11,14,64},
1 < v < 5 corresponding to the same number of non-constant matrices that is,
{G,‘(X)}?S? or {é,(X)}ﬁg),n(v) € {1,7,11,14,64} respectively and only one constant matrix

can be put in a feature matrix set. O

2 Algebraic Properties of the Feature Matrices

2.1 Operations of the Feature Matrices

In order to carry out Boolean matrix operations, it is necessary to extend three elementary

Boolean operations ( = ,N,U or NOT, AND, OR) to matrix descriptions.

Definition 2.1.1 For three Boolean matrices X,Y and Z,

X = =Y, if Vi, 5], X[, 5] = = Y[i, 5]
X = YnNZ, Vi, i, X6 5] = Y[, 510 2[5, 5
X = YUZ, ifV[i,j], X[, 5] = Y[i, j]U 2[5, 5].

For a given level, the number of the feature matrices, n(v), is constant so this is simply denoted

by n.

Proposition 2.1.2 For any matriz X, suppose G(X) = UL ,G:(X) and G(X) = N2,Gi(X),
then

o X[2,7] if X[¢, ] can be well-defined;

G(X)[i, 4] =

otherwise;
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é(X)[i,j] _ X[i, 5] if X[4, 7] can be well-defined;
otherwise.

Proof: {Gi(X)}}, (or {ék(X)}Ll) is made of a complete set of feature matrices for all 1-

elements (or 0-elements) of X. For any element X[3, j], if the state of X; ; € G (or Gj), then

there is one 1-element (or 0-element) on G(X)[i, 7] (or Gr(X)[4, 4]), since all 1 elements (or 0

elements) of X have this property and so they can be regenerated by applying the OR operation

(or AND operation) on feature matrices of Gx(X) (or Gx(X)), 1 < k < n. For any entry of a

non-well-defined element, it has been assumed to be 0 in each entry of Gx(X) or to be 1 in each

entry of Gi(X). O

Corollary 2.1.3 For any X, G(X) and G(X), 0 c G(X)C X C G(X) C 1. i.e.

G(X) = GX)nG(X);
X = XUG(X)
= XnG(X);

GX) = G(X)uG(X).

Corollary 2.1.4 For any X, if we ignore all elements beyond the border of X, or all elements

of X each element can have the regular kernel form, and so
X = G(X) = G(X).

Corollary 2.1.5 For a general condition, if we have to determine an element beyond X on the

grid or X, there is an irregular kernel form then
X £ G(X) # G(X).

To generate any Boolean matrix from its feature matrices is a useful property. It makes it pos-
sible to use two conjugate sets of feature matrices to represent a Boolean matrix equation in a

more convenient form to satisfy multi-requirements of applications.

Using three operations of Boolean matrix, the conjugate operation ~ can be investigated in

detail.

Proposition 2.1.6 For two forms of feature matrices Gy(X) and Gy(X), the conjugate symbol

~ reverses both a feature matriz and the original matriz,

GiX) = -Gi(-X); (1)

GiX) = -Gi(-X). (2)
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Proof: Because each 0 element of G;(X) describes the i-th class of a 0 element in X, the
operation of -X changes all 0 elements of X to be 1 elements on which the feature matrix of
the i-th class of 1 elements, can be calculated. Since each 1 element of G;(—=X) describes a
corresponding 0 element of ég(X), another - operation has to be performed. The conjugate
operation reverses both a feature matrix and the original matrix and so it is a double reversing

operation. O

2.2 The Properties of the Feature Matrices

Using the elementary operations on Boolean matrices, more detailed operations of feature ma-
trices can be investigated. To illustrate the operations on two feature matrices, we have four

groups of equations.

Proposition 2.2.1 For any G;(X) end G;(X),

cx)nex) = 4% 1#1 o
G,’(X), 1=17
Gi(X), i#7;
Gi(X)N~G;(X) = { (X), i#] Y
0, i=7j;
0’ 1=7;
-Gi(X)N-G;(X) = { i 1#1 ©
_‘Gi(x)’ t=17;
? P
Gi(x), 1=7;
Gi(X)U-Gj(X) = { G5(X), z:sé J "
L, i=j;
-Gi(X), i#7;
-G{(X)UGj(X) = { (X) .;éy' o
L, i=j;
SGAX)U-Gj(X) = { 1 i#J; w0
ﬂGIA(:)()) 1 = j.
Proposition 2.2.2 For any (:‘,-(X) and G’j(X),
X)) = 4 b iEE o

Gi(X), i=j;
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Gi(X)U-G;(X) =

-Gy{(X)UGj(X) =

SGi(X)U-Gi(X) =

G:(X)nG;(X) =

Gi(X)n-Gj(X) =

-Gy(X)NGi(X) =

ﬂé,’(X) n —léj(X)

S e, e e, e e, s e, e e et e, e e,
[ N :

Proposition 2.2.3 For any Gi(X) and G’j(X),

Gi(X)n G;(X)
Gy(X) N -G;(X)
~Gi(X)nG;(X)

~Gi(X) n-~Gj(X)

Gi(X) U Gj(X)
Gi(X) U ~G;(X)
~Gy(X) U G;(X)

-Gi(X) U=G(X)

Proposition 2.2.4 For any Gi(X) and G;(X),

Gi(X)n G5(X)
-Gi(X) N Gj(X)
Gi(X)n-Gj(X)

~Gi(X) N ~G;(X)

Gi(X)U G;(X)
~Gi(X) U Gj(X)

1, i=j;

£ 5
(X), i=173;
~Gi(X), i# 3
o, 1=
=Gi(X), i#35;
9, 1=

0, i# 7

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)

(27)
(28)
(29)
(30)
(31)
(32)
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Gi(X)U~Gj(X) 1; (33)

~Gi(X) U ~G;(X) =G;(X). (34)

I

There is a total of 32 equations(3-34) and two groups of equations-(3-10 and 11-18) and (19-26
and 27-34)-have the duality property. If we simply exchange each item of < Gx(X),N,U,0 > to
< ék(X), U, N, 1> respectively, then one group of equations can be directly changed to another

group of equations.

We call an equation of two matrices an independent equation, if it cannot be reduced to one of

two constant matrices or one of two selected matrices. Otherwise, it is a dependent equation.

Corollary 2.2.5 For any two feature matrices, only eight independent equations under {-,N,U}

operations can be established. They are

~G(X)N-G;(X) = Gi(-X)nG;(-X);
Gi(X)UG;(X) = =Gi(=X)U-G;(-X);
~Gi(X)U-G;(X) = Gi(-X)UGj(-X);
Gi(X)NG;(X) = -Gi(-X)N-G;(-~X);
SGi(X)NGi(X) = -Gi(X)N-G;(-X);
Gi(X)U-Gi(X) = Gi(X)UG;(-X);
Gi(X)N=Gi(X) = -Gi(~X)N-G;(X);
SGi(X)UGi(X) = Gi(-X)UG;(X).

It is interesting that only 8 equations are independent, while other equations are dependent.
Considering the number of equations in a general condition for four groups of two Boolean
matrices under {—,N,U} operations, there must be 32 independent equations. It is obvious that

the conjugate structure has a simpler organization than a general structure of Boolean matrices.

3 The Elementary Equation of the Conjugate Transformation

Since two feature matrix sets are generated from the original matrix, each feature matrix keeps
the site information for a class of structuring elements being a Boolean matrix and three Boolean

matrix operations can be performed.

Let the conjugate transformation be an extensive Boolean matrix structure in which, for any X
on a given domain, it uses X as an original matrix, {G;}%o, {Gi}%o as two class sets of struc-

turing elements to represent two sets of feature matrices. Using algebraic language, a conjugate
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transformation C7 can be defined as:
CT = (X,C,~,Nn,U).
Where X is a fixed domain of Boolean matrices on a specific grid, C is a conjugate classification

of structuring elements and {—,N,U} are the elementary operations of Boolean matrices.

The simpler algebraic properties of feature matrices make it possible to establish a more efficient
scheme for changing the relevant parts of the original image. For convenience of descriptions to

the conjugate transformation, we use the following notations:

Let I = {0,1,---,n} be the index set of the feature matrices, A, B C I be two index sets.
For any given < A,B >,
< A,B >= {Gi}iea U {Gj}jen-

The first parameter of < A, B > is an index set of feature classes for 1 elements and the second

one is an index set of feature classes for 0 elements.

For example, if A = {0,2,4} and B = {1,6}, then
< A, B >= {Go,G2,G4,G1,Ge}.
For any matrix X, < A, B > (X) is a feature matrix set
<4, B > (X) = {Gi(X)}iea U {Gi(X)}sen-

From the notations above, it is possible to define a new operation called reversion (denoted by

i) to reverse selected parts from the original image on a Boolean matrix structure.

Definition 3.0.6 For a Boolean matriz X and a feature matriz set of < A,B > (X), F(<

A, B > |X), the elementary equation of the conjugate transformation is defined as:

F(<AB>|X) = Xi<A,B>(X) (35)

X N (Niea=Gi(X)) U (Ujes~Gi(X)). (36)

Il

Proposition 3.0.7 The elementary equation is a Boolean matriz equation. It reverses the

selected parts of < A, B > (X) and keeps other elements of X invariant.

Proof: The equation (36) is a Boolean matrix equation. It is composed of Boolean matrices
and connected by three Boolean operations. Let Y = F(< A, B > |X) be an output matrix, if

X[k,1] is an element of the i-th class and i € A, then only the operation of N-G;(X) makes the
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[k,1] element of Y from 1 to 0. However, if X[k,!] is an element of the j-th class and j € B,
then the operation of U~G;(X) changes the [k,l] element of Y from 0 to 1. For an element
X[k, 1] not in selected classes, ~Gy(X)[k, 1] = 1 and ~G;(X)[k,!] = 0 the value of Y[k, I] is equal
to X[k, 1]. O

Proposition 3.0.8 The elementary equation is a self-duality equation. It can keep the invariant

form under — operation. For any X and < A, B >, the duality variables are X and < B, A >.
-F(< A,B>|X) = F(<B,A>|-X). 37

Proof: From the definition of the elementary equation and basic operations of Boolean matrices,

we have the following: (the rule of the deduction is indicated by ** - -- **)

I

-F(< A, B> |X) -(Xh < A,B > (X))
= (XN (Miea~Gi(X)) U (Ujen—Gi(X)))
** de Morgan’s law **
= ("X U (UieaGi(X)))N (N;eBGi(X))
** Distributive law **
= ~XN(N;esG;(X) U (UieaGilX)) N (NjenG3(X)))
** Equation (19) **
= ~X0(NjenGi(X)) U (UieaGi(X))
** Equations (1) and (2) **
= =X N (NjeB~G;(-X)) U (Uiea~Gi(-X))
= -Xh< B,A> (-X)
= F(< B,A>|-X).0
Proposition 3.0.9 For a given < A, B >, if A= {0} (or B = {0}) then F(< A,B > |X) isa

dilation equation (or an erosion equation) for < A, B > (X).
Proof:
F(<{0},B>|X) = XN-Go(X)U (Ujen~G;(X))
= XU (Ujen~G;(X));
F(< A {0} > |X) = Xn(NeanGi(X))U~Go(X)
= XN(MNeaGi(X)).0
Proposition 3.0.10 For any X in the same conditions of Corollary 2.1.4, then four extreme

matrices, {X,1,0,-X}, can be generated from the elementary equation. These correspond to

< A,B >=<{0},{0} >, < {0},I >,< I,{0} > or < I,I > conditions respectively.
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Proof: Under the condition of the corollary, we have the following:

F(< {0},{0} > |X) X N —Go(X) U ~Go(X)

= XN1uo

= X;

F(< {0},1>|X) X N =Go(X) U -G(X)
= XNn1uG(-X)

= Xu-X

= 1

F(< I,{0} > |X) X N=G(X) U ~Go(X)

= Xn-XUo

F(< I,I>|X) X N-G(X)U-G(X)
= XN-XUG(=X)
= ou-X

= =X.0

Proposition 3.0.11 For any X and a given n, we can generate a set of 22" functions from

the elementary equation of the conjugate transformation.

Proof: For a total of 2+(n+1) feature matrices, two constant matrices with dependent properties
cannot be selected independently. For the other 2 * n matrices, there are two possibilities, they

can either be selected or not selected. Each selected condition corresponds to a function. O

4 Sample Pictures and Measurements

Using the feature matrices and the elementary equation, different operations can be constructed.
We have implemented a prototype of the conjugate transformation and a matrix morphology for
binary images on the hexagonal grid in an X-windows environment. In order to illustrate some
operations based on using the conjugate transformation, we use four sets of sample pictures of
binary images (Appendix A). It is more convenient to see the effects of the operations directly
from these pictures than from an abstract algebraic equation. Three kinds of applications of the

four sets of sample pictures are:
1. Two sets of pictures for edge detections (Figure 4 and Figure 5);

2. One set of pictures for smoothings (Figure 6);
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3. One-set of pictures for dynamic patterns (Figure 7).

Let? =<9 111 112223>=<1,2,3,4,5,6,7,8,9,10,11 >, then three groups of processed

functions can be described by the form of the elementary equation as:
A={1,2,3,5,6,7,8,9,10,11}, B= {0}; Picture (b)

A={1,2,3,4,6,7,8,9,10,11}, B = {0}; Picture (c)
A=1{1,2,3,4,5,8,9,10,11}, B= {0};  Picture (d)

Figure 4 =
A ={1,2,3,8,9,10,11}, B = {0}; Picture (e)
A={2},B={0}; Picture (f)
A= {47 516)7},B = {0}; Picture (g)
A={0},B=1{1,2,3,5,6,7,8,9,10,11}; Picture (b)
A={0},B={1,2,3,4,6,7,8,9,10,11}; Picture (c)
A A ={0},B = {1,2,3,4,5,8,9,10,11}; Picture (d)
Figure 5 =
- A={0},B={1,2,3,8,9,10,11}; Picture (e)
A={0},B={2}; Picture (f)
A ={0},B={4,5,6,7}; Picture (g)

Figure 6 (b)-(e) A= {1,3,4},B = {1,3};
Figure 7 (b)-(g) A={1,2,3,7},B = {5,8,9,10,11}.

As a basis for comparison, it is helpful to use the language of ‘the game of life’ to describe the

function of Figure 7(b)-(g) as follows:

Death conditions: For 1-elements,
1. Less than two 1-neighbour; (4 = {1,3})
2. More than four 1-neighbours. (A = {2,7})
Birth conditions: For 0-elements,
1. Three 0-elements; (B = {5,9,11})
2. Two branch states. (B = {8,9,10})

A comparison of Figure 7 (f) and (g) reveals that a colony of pictures does not grow infinitely
to the outside, their borders of the colony are restricted by envelopes and its inner structure
keeps changing dynamicly. The function has more invariant properties than the original game of
life [Kunii and Takai (1989)]. Depending on the elementary equations, more detailed dynamic

patterns of the cellular automata, can be constructed.
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Table 1: Time Measurements of Two Schemes

Function Class | State | CT(unit) | Morph(unit) | Speed-up | Figure

Full Edges 1 1 86 38 0.44 | Figd & 5(f)
One Feature 1 6 86 230 2.6 Fig.4 & 5(b)(c)
Two Features 2 12 105 470 4.4 Fig.4 & 5(d)
Block Edges 4 24 142 968 6.8 Fig.4 & 5(e)(g)
Smoothing 5 20 167 805 4.8 Fig.6(b)
Dynamic Pattern 9 52 256 2269 8.8 Fig.7(b)

Note: Where Class is the minimized number of relevant classes for the function; State is the
minimized number of involved states; CT is the average number of time units by the Conjugate
Transformation; Morphis the average number of the time units by the Mathematical Morphology
and Speed-up is equal to Morph/CT. The unit of the measurement time is 1/60 second and the
number is the sum of CPU and system CPU units measured by the standard function ‘times’.

Figure declares the processed pictures.

In the mentioned functions, each function can be described as a unique < A,B > scheme
or a form of feature matrices corresponding to a specific operation. From the computational
viewpoint, it is more economical for some applications to use feature matrices themselves
representing the functions directly. Figures 4 and 5 are good examples. Figure 4(b), F(<
{1,2,3,5,6,7,8,9,10,11}, {0} > |X) = }G(X), is equivalent to a single feature matrix.

Because of the capability of the class representation to states, the conjugate transformation of
the hexagonal grid has significant speed-up ratios compared with the same function performed
by the standard implementation of mathematical morphology. The measuring results are listed
in Table 1 which illustrates the numerical measurements of the speed-up ratio of running times

of two compared schemes on IRIX 4.0.5 System V, Silicon Graphics.

5 Conclusion

In order to overcome two weaknesses of mathematical morphology, a new scheme of matrix
mathematical morphology, the conjugate transformation and its elementary equation, are de-
fined and investigated on the hexagonal grid. The conjugate transformation manages a state
set of structuring elements as two conjugate class sets (each set contains the same number of

classes). Since the conjugate classification is a hierarchical structure, it is possible to establish
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a connection from a class of structuring elements on a certain level of the classification to a
calculable index of the class. Related to the index set, for any matrix, each class of struc-
turing elements can decompose the matrix into a feature matrix. Two conjugate class sets of
structuring elements are transformed to two sets of feature matrices. Depending on the feature
matrices and the original matrix, Boolean matrix operations can be constructed. The greatest
advantage of the conjugate transformation is that it can process all 1-elements and 0-elements
equivalently and the elementary equation has the self-duality properties. Another advantage is
that the transformation can be divided into different levels from one class contained in half of
the structuring elements to a class contained in only one of the structuring elements. Since the
index function is not a Boolean function, our structure has a more extensive framework than
previous structures. The universal form of the elementary equation provides a space of 22*"
functions to support different applications. As shown in various examples, each function for an
application can be expressed in a simple and concise form with clearly geometric and topolog-
ical meanings. The class representation guarantees a higher efficiency for common conditions
involving multi—stmcturing elements. Furthermore, it is a general structure for image analysis

operations on binary images.
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Appendix A.
SET ONE: Figures 4.

Figure  4: Edge  Detections  for
Black Elements(1l-elements) (a)-(g). (a) orig-
inal images (256 x 256); (b)-(g) sample images
and (e) = (b) U (¢) U (d); (g) = (a) N~ (e)-
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SET.TWO: Figure 5.

Figure  5: Edge  Detections  of
White Elements(0-elements) (a)-(g). (a) origi-
nal images (256 x 256); (b)-(g) sample images
and () = (b) N (¢) N (d); (g) = (a) U~ (e)-



SET THREE: Figure 6.

Figure 6: Smoothing Operations (a)-(e). (a)
original image 256 x 256; (b) once, (c) twice,

(d) five and (e) ten recursions.
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SET FOUR: Figure 7.

Figure 7: Dynamic Patterns (a)-(g). (a) origi-
nal image 256 x 256; (b) 1, (¢) 2, (d) 5, (e) 20,
(f) 100 and (g) 180 recursions to (a).
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Abstract

Computer vision and graphics applications involve generating views of 3D ob-
jects. We present a scheme for generating views of objects from viewer-centered
representations. In this scheme an object is modeled by a small number of views
with the correspondence between the views. Novel views of the object are generated
by linearly combining the model views. The scheme handles rigid objects accurately
and was extended to handle objects with smooth bounding surfaces and articulated
objects. To construct models for this scheme, the correspondence between the model
views should be recovered. The paper concludes with an algorithm to achieve such

correspondence.

1 Introduction

Computer vision and graphics applications involve generating views of 3D objects. Com-
puter vision applications often are required to recognize objects seen at some previously

unseen view. A common approach to recognition identifies an object if a view of the

OThis report describes research done in part at the Massachusetts Institute of Technology within the
Artificial Intelligence Laboratory and the McDonnell-Pew Center for Cognitive Neuroscience. Support
for the laboratory’s artificial intelligence research is provided in part by the Advanced Research Projects

Agency of the Department of Defense under Office of Naval Research contract N00014-91-J-4038.
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object that matches the observed image can be generated (e.g., Basri and Ullman, 1988;
Chien and Aggarwal, 1987; Faugeras and Hebert, 1986; Fischler and Bolles, 1981; Hutten-
locher and Ullma,n‘, 1990; Lamdan et al., 1987; Lowe, 1985; Thompson and Mundy, 1987;
Ullman, 1989). In graphics applications, views of objects are generated to illustrate the
appearance of the objects from different perspectives or to create a sense of continuous
motion between isolated frames (e.g., Poggio and Brunelli, 1992). This paper presents an
efficient and simple scheme for generating views of 3D objects from small sets of their

images.

Existing approaches for generating views of 3D objects handle the problem by storing
and manipulating detailed 3D descriptions of the objects. A common approach represents
an object by a set of volumetric (Bajcsy and Solina, 1987; Binford, 1971; Brown, 1981;
Nevatia and Binford, 1977; Requicha and Voelcker, 1977; Marr and Nishihara, 1978),
surface (Brady et al, 1985; Sederberg et al., 1984), or wire (Baker, 1977) primitives. To
generate d view, the primitives are translated and rotated in 3D and then projected to
the image plane. Recognition systems often store only the identifiable features (such as
corners and line segments) of the object (e.g., Fischler and Bolles, 1981; Huttenlocher and
Ullman, 1990; Lamdan et al., 1987; Lowe, 1985). The assumption in these systems is that
objects in the world are sufficiently different, and therefore such compact representations
would suffice to identify the objects uniquely. These representations are all called object-

centered since they model an object independent of view.

Viewer-centered representations propose an alternative approach for generating views
of 3D objects. In this approach an object is represented by a set of its views. Additional
information (such as depth) may or may not be stored with the views. Other views of the
object are obtained by manipulating the model views. Viewer-centered representations
are generally less concise than object-centered descriptions, but they generally are easier
to construct and manipulate. An example for a viewer-centered representation is found
in (Thompson and Mundy, 1987). In this system an object is modeled by 5184 (72 x 72)
views obtained by rotating the object about the vertical and the horizontal axes by 5°
intervals. Other views of the object are obtained by selecting one of the images, and then

rotating, translating, and scaling the image in 2D.

The scheme presented in this paper also uses viewer-centered representations, but it
requires only a small number of views. In this scheme an object is modeled by a small

set of views with the correspondence between the views. Novel views are generated by
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applying linear combinations to the stored views. The method has several advantages
over existing methods. First, it requires only a small number of views to represent an
object. Second, the process of generating views is computationally simple. Third, explicit
3D representations are not used. Fourth, as is shown below, the method handles rigid
(polygonal) objects accurately under weak-perspective projection (orthographic projec-
tion followed by a uniform scaling). Finally, the system can also handle rigid objects with

smooth bounding surfaces and articulated objects.

The rest of the paper proceeds as follows. In Section 2 the method for generating
views by combining model views is presented, and in Section 3 the problem of model

construction is discussed.

2 Generating Views by Combining Model Views

The scheme for generating views of 3D objects is based on the following observation. If
a view is represented by vectors that contain the position of feature points in the image,
then the novel views of objects can be generated by linearly combining small numbers
of the objects’ views. In Section 2.1 we show that using this scheme correct views of
rigid (polygonal) 3D objects can be generated. Extensions to rigid objects with smooth
bounding surfaces and to articulated objects are briefly mentioned in Section 3.2. A

detailed description of the scheme can be found in (Basri, 1993; Ullman and Basri, 1991).

2.1 Rigid Objects

We begin with the following definitions. Given an image I containing n feature points,
p = (1,41), v Pn = (Tn,Yn), @ view Vj is a pair of vectors &,§ € R", where I =
(21, 22)T and ¥ = (y1,...,9s)T contain the location of the feature points, pi, ..., Pus
in the image. A model is a set of views {V,....,Vi}. The location vectors in these
views are ordered in correspondence, namely, the first point in V] is the projection of the
same physical point on the object as the first point in V;, and so forth. The objects we
consider undergo rigid transformations, namely, rotations and translations in space. We
assume that the images are obtained by weak-perspective projection, that is, orthographic

projection following by a uniform scaling.
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Below we show that the novel views of a rigid object can be expressed as linear
combinations of a small number of its views. The proof proceeds in the following way.
First, we show (Theorem 1) that the set of views of a rigid object is contained in a four-
dimensional linear space. Any four linearly independent vectors from this space therefore
can be used to span the space. Consequently, we show (Theorem 2) that two views suffice
to represent the space. Any other view of the object can be expressed as (two) linear
combinations of the two basis views. Finally, we show (Theorem 3) that not every point in
this 4D space necessarily corresponds to a legal view of the object. The coefficients satisfy
two quadratic constraints. These constraints depend on the transformation between the

model views. A third view can be used to derive the constraints.

Theorem 1: The views of a rigid object are contained in a four-dimensional linear

space.

Proof:  Consider an object O that contains n feature points P, = (Xy,Y1,2;), ..y
P, = (X, Ys, Z,). Let I be an image of O obtained by a rotation R, translation i, and
scaling s, followed by an orthographic projection, II. Let p1 = (z1,¥1), - Pn = (TnyYn)

be the projected location in I of the points Py, ..., P, respectively. For every 1 <:<n
pi = sI(RP: +1) (1)
more explicitly, these equations can be written as

T

s(ruXi +r2Yi +ri3Zi 4+ t,)
s(raXi + rnYi + r93Z; + t,)

Il

(2)

i

Yi
where {r;;} are the components of the rotation matrix, and ¢, ¢, are the horizontal and
the vertical components of the translation vector. (Under weak-perspective projection
the depth component of the translation vector, ¢, affects only the value of s.) Since these
equations hold for every 1 < i < n, we can rewrite them in a vector notation. Denote
X =Xy X)), ¥ = Yy V)T, Z = (Z1y00y Zo)T, T = (1,0, 1), & = (21, 00y 2)T,
and § = (Y1, -, ¥n)¥, we obtain that

aJ? + (1,2? + a3Z+ a4f
b X 4+ 0,V + 637 + byl

-
z

I

(3)

<y
Il
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where
a; = 8™ by = sry
a; = S8Tig by = sry @)
az = Sris bs = sro3
ay = sty by = st,

The vectors ¥ and ¥ can therefore be expressed as linear combinations of four vectors,
X s }7, Z, and T. Notice that changing the view would result merely in a change in the

coefficients. We can therefore conclude that
Z,7 € span{X,Y,Z,T} (5)

for any view of O. Note that if translation is omitted the views space is reduced to a

three-dimensional one. O

Theorem 2: The views space of a rigid object O can be constructed from two views of

o

Proof:  Theorem 1 above establishes that the views space of a rigid object is four-
dimensional. Any four linearly independent vectors in this space can be used to span the
space. The constant vector, I, belongs to this space. Therefore, only three more vectors
are remained to be found. An image supplies two vectors. Two images supply four, which
is already more than enough to span the space (assuming the two images are related by
some rotation in depth, otherwise they are linearly dependent). Let V; = (Z1,#1) and
Va2 = (&2, %) be two views of O, a novel view V' = (&',¥) of O can be expressed as
two linear combinations of the four vectors Z;, #, &2, and T. The remaining vector, ¥,

already depends on the other four vectors. O

Up to this point we have shown that the views space of a rigid object is contained in
a four-dimensional linear space. Theorem 3 below establishes that not every point in this
space corresponds to a legal view of the object. The coefficients of the linear combination

satisfy two quadratic constraints.

Theorem 3: The coefficients satisfy two quadratic constraints, which can be derived

from three images.

! This lower bound was independently noticed by Poggio (1990)
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Proof:  Consider the coefficients ay, ..., a4, by, ..., by from Theorem 1. Since R is a
rotation matrix, its row vectors are orthonormal, and therefore the coefficients satisfy the

following quadratic constraints

aij+di+aj =b}+b]+0b3 ©)

arby + azby +azbz = 0
Choosing a different basis to represent the object (as we did in Theorem 2) will change
the constraints. The constraints depend on the transformation that separates the model
views. Given an object O = (X, ?,Z), let Vi = (24, 41) and V, = (T, ¥2) be two model
views of O such that #; = e ,h = )7, and V; is obtained by a rotation U, translation #',
and scaling s’. According to Theorem 2, a novel view V' = (z',y') of O can be expressed

as

g1
|

1% + apft + asdy + asl
= Pid1+ Boifi + BTy + Bul

for some ﬁl, vy Q4 P, ..., By. Plugging the value of T,

(7

=y

S,(UI1X + ulzf} + ulsi + t;)

8
™)
I

' (un X 4 uga¥ + upsZ + t,)

&
Il

into Eq. 7, we obtain

(a1 + azs'uin) X + (03 + ass'urg)Y + (ass'uz)Z + (o + st

Al
. . . . )
(B1 + Bas'u11) X + (B2 + Basurz)Y + (Bas'ui3)Z + (Bs + Bas'tl)]

&

Il

which contains the explicit values of the coefficients ay, ..., a4, by, ..., by from Eq. 6. Substi-

tuting these values into Eq. 6, we obtain the following constraints on oy, ..., a4, Bi, ..., f4:

of +af 4+ of — 7 — B3 — B3 = 2(B1Bs — cras)unr + 2(B2fs — azas)usz (10)

o181 + a2z + a3fs + (1 B3 + azPi)uin + (@afs + azf)uia =0
where uq; and uy, are the two upper left components of U. To derive the constraints,
the values of uy; and u;, should be recovered. A third view can be used for this purpose.
When a third view of the object is given, the constraints supply two linear equations in
u11 and uqz, and, therefore, in general, the values of uy; and 41, can be recovered from
the two constraints. This proof suggests a simple, essentially linear structure from motion

algorithm that resembles the method used in (Huang and Lee, 1989; Ullman, 1979), but

the details will not be discussed further here. O

The scheme therefore is the following. An object is modeled by a set of views, with

the correspondence between the views, together with the two constraints. Novel views of
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Figure 1: Generating views of a pyramid. Top: two model pictures of a pyramid. Bottom: two of their

linear combinations.

the object are generated by linearly combining the model views. Applying the quadratic
constraints to the coeflicients guarantees that the novel views in fact represent a rigid
transformation of the object. In recognition applications, the obtained views are com-
pared with the actual image, and if a satisfactory match is achieved the object’s identity
is determined. Figure 1 shows the application of the linear combination scheme to an

artificially made object.

Although two views are sufficient to represent an object, in order to reduce noise and
occlusion one may seek to use additional views to improve the accuracy of the model.
The problem is then the following. Given [ view vectors @, ..., ¥}, recover the nearest four-
dimensional hyperplane to these vectors. The obtained hyperplane is the linear sub-space
that best explains the view vectors. The nearest hyperplane can be found by applying
principal components techniques. A detailed algorithm can be found in (Ullman and

Basri, 1991) (see also Tomasi and Kanade, 1991).

For transparent objects, a single model is sufficient to predict their appearance from
all possible viewpoints. For opaque objects, due to self occlusion, a number of models
is required to represent the objects from all aspects. These models are not necessarily
independent. For example, in the case of a convex object as few as four images are
sufficient to represent the object from all possible viewpoints. A pair of images, one from

the “front” and another one from the “back” contains each object point once. Two such
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pairs contain two appearances of all object points, which is what is required to obtain a
complete representation of all object points. For concave objects additional views may be

required.

Note that positive values of the coefficients (“convex combinations”) correspond to
interpolation between the model views, while extrapolation is obtained by assigning one
or more of the coefficients with negative values. This distinction between intermediate
views and other views is important, since if two views of the object come from the same
aspect (namely, include the same parts of the object), then intermediate views are likely
to also come from that aspect, while in other views other aspects of the objects may be

observed.

A method that approximates the space of views of an object from a number of its views
using Radial Basis Functions (Poggio and Girosi, 1990) was recently suggested (Poggio
and Edelman, 1990). Similar to our method, the system represents an object by a set
of its famﬂiar views with the correspondence between the views. The number of views
used for this approximation, between 10 to 100, is much larger than the number required
under the linear combinations scheme. The system, however, can also handle perspective

views of the objects.

2.2 Extensions

We have shown in the previous section that the linear combinations scheme accurately
handles rigid (polygonal) objects under weak-perspective projection. The scheme can
also handle objects that undergo general affine transformation in 3D, rigid objects with
smooth bounding surfaces, and articulated objects. This is achieved by changing the
number of model views, or by changing the functional constraints. A brief description is

given below.

The scheme can be extended to handle objects that undergo general affine transforma-
tion in 3D (including stretch and shear) simply by ignoring the quadratic constraints. In
this case two views are required to span the space, and every point in this space represents

a legal view of the object.

The scheme can also be extended to handle rigid objects with smooth bounding sur-
faces. The problem with such an object is that its contours appear in different locations

on the object at different views. Using three rather than two views (the space of views
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for such objects is six- rather than four-dimensional), the curvature of the points along
the contour is (implicitly) taken into account, providing a better prediction of the contour
position following rotation. For details see (Basri and Ullman, 1988; Basri, 1992; Ullman
and Basri, 1991).

Finally, articulated objects can also be modeled by our scheme. An articulated object
is a collection of links connected by joints. Each link is a rigid component. It can move
independently of the other links when only its joints constrain its motion. The space
of views of an articulated object with [ links is at most (4 X [)-dimensional. The joints
contribute additional constraints, some of which may be linear, and they reduce the rank
of the space, others are non-linear, in which case they are treated in the same way the
quadratic constraints are treated in the rigid case. For example, an object with two rigid
links connected by a rotational joint can be modeled by a six-dimensional linear space
(Basri 1993). Three views can be used in these cases to span the space. Articulated
objects with different numbers of links or with different types of joints require different
number of views. Advance knowledge of the number of links and the type of joints,
however, is not required. When sufficiently many views are presented, the correct rank of

the views space can be recovered using principal components analysis.

Figure 2 shows the application of the scheme to several objects with smooth bounding
surfaces and to articulated objects. The figure shows views of the objects generated by
combining several model views and the matching of these views to actual contour images

of the objects.

In our implementation we considered only the contour points of the object. The
method, however, can be used in conjunction with other methods to obtain richer ap-
pearances of the objects. For instance, texture mapping can be applied to the surfaces
between the contours or illumination patterns can be constructed on these surfaces. A
scheme that recovers the illumination in lambertian surfaces by linearly combining three

gray-level images was recently proposed (Moses, 1992; Shashua, 1991).

3 Model Construction

To use the scheme for generating views of 3D objects, models for the objects first must

be constructed. As is mentioned above, objects are modeled in our scheme by sets of
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Figure 2: Generating views of a VW car and a pair of scissors. Top: matching the model to a picture
of the VW car. A linear combination of model images (left), an actual edge image (middle), and the two
images overlayed (right). Bottom: matching a model to a picture a scissors. A linear combinations of
model images (left), an actual edge image (middle), and the two images overlayed (right). The prediction

images and the actual ones align almost perfectly.

their views with the correspondence between the views. The difficult part of constructing
object models, therefore, is resolving the correspondence between views. This difficulty
exists also in schemes that use object-centered models, since correspondence is required

for recovering the 3D shape of the objects from sets of 2D images.

In this section we outline an algorithm for recovering full point-to-point correspondence
between images. Given two images of an object, the algorithm proceeds in three steps.
First, the epipolar lines in the two images are computed. This can be done either by
calibrating the camera externally or by tracking the position of four identifiable points in
the images. (Under weak-perspective projection four non coplanar points are sufficient
to recover the epipolar lines (Huang and Lee, 1989; Lee and Huang, 1990).) Next, the
correspondence between contours is resolved. At this stage topological criteria, such as
whether the contour is long or short, closed or straight, can be used. Also, if the object
is opaque the order of the contours along the epipolar lines is preserved. Finally, point-
to-point correspondence is resolved by intersecting the contours with the epipolar lines.

This procedure would work unless the contours coincide with the epipoles.

The epipolar constraint is the following. Given two images I; and I; of an object

obtained by applying a rigid (or even affine) transformation to the object, it is possible
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to slice the images into straight lines {I}} and {I?} respectively, such that every point on
1! corresponds to a point on {7 and vice versa. Consequently, once the epipolar lines are
recovered, the process of resolving the correspondence between the images is reduced to

resolving the correspondence within pairs of epipolar lines.

Under weak-perspective projection, epipolar lines are parallel to each other, and four
pairs of corresponding points can be used to recover the epipoles (Huang and Lee, 1989;
Lee and Huang, 1990). This can be derived directly from Theorem 1. Since the views of a
rigid object are embedded in a four dimensional space, two images I; and I; provide four
vectors Zi, ¥, Z2, and ¥, which, together with the constant vector T, must be linearly

dependent. In other words, there exist nonzero scalars a;, az, b1, b2, and ¢ such that
a7y +a2§1+blfz+bzgz+CT=0 (11)

The coefficients are determined (up to a scale factor) by four non coplanar points. The
epipolar line are immediately derived from this equation. If we fix some point in the first

image we obtain a line equation for the corresponding point in the second image.

The epipolar lines break the transformation that relates the images into its planar
components and its non planar ones. The planar components can be recovered from the
epipolar lines, while the non planar ones cannot be determined from two images. Suppose
the two images are related by a rotation R, translation £, and scaling s. The translation
component perpendicular to the epipolar line is given by c. (The translation components
can be discarded altogether if we consider differences between points rather than their

actual location.) The values of the other coefficients are given below.

ay = 8ra3
ay = —S8T31
(12)
by = 13
bz = —Ti3

The scale factor is therefore given by the ratio

2 .2
] + a3

- 1
b2 + b2 (13)

The relative angle between the epipolar lines determines the planar parts of the rotation,
as explained below. Rotation in 3D can be decomposed into a sequence of three successive

rotations: a rotation about the Z-axis by an angle «, a second rotation about the Y-axis by
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Figure 3: Epipolar lines in two orthographic projections of a VW car. Note the fact that corresponding

points lie along the epipolar lines.

an angle 3, and a third rotation about the Z-axis by an angle 4. Under this decomposition

the following identities hold

r3a = sinasinf
r3; = —cosasinf (14)
re3 = sinfsiny
r1i3 = sinfFcosy
We therefore obtain that
a = tan~l&
. (15)
7 = —tan7i(—3)

while 8 cannot be determined.

We can visualize this decomposition in the following way. After compensating for
the translation and scale changes, we first rotate the image P; by a. Consequently, the
epipolar lines in P; point to the horizontal direction. Next, we rotate the second image,
P,, by —v. As a result, the epipolar lines in P, also point horizontally. The images
obtained in this process are related by a rotation about the vertical axis, which is a
rotation in depth. Following such a rotation the points move horizontally, namely, along
the (rotated) epipolar lines. This motion cannot be recovered since it depends both on

the angle of rotation, 3, and on the depth of the points.

Figure 3 shows the epipolar lines in a pair of VW images. It can be seen that, in
general, using the epipolar lines, when the correspondence between contours is given,

point-to-point correspondence is uniquely determined.
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4 Summary

We have presented a scheme for generating views of 3D objects. An object is modeled in
this scheme by a small set of its views with the correspondence between the views. Novel
views of the object are generated by linearly combining the model views. The scheme
handles rigid objects accurately and was extended to handle rigid objects with smooth

bounding surfaces and articulated objects.

To build models for the scheme, full point-to-point correspondence between the model
views should be recovered. This can be done by matching the contours in these views

using topological criteria and then intersecting the contours with the epipolar lines.

The scheme can be used for object recognition and graphics applications. In recog-
nition, given an image, a system would attempt to generate a view of the object that
matches the image. In graphics applications, the scheme can be used for presenting an
object from several perspectives and for generating interframe views for creating a con-
tinuous sense of motion. Unlike in existing schemes, explicit 3D representations of the
objects are not used. Additional research is required here for effectively handling the

different aspects of the objects.
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ABSTRACT

The paper discusses proposed solutions for constraint-based modelling, with special emphasis
on constructive approaches. A new constructive scheme that overcomes a number of the
present limitations is proposed. 1t is based on a non-evaluated, constructive solid model. The
proposed approach supports instantiation of pre-defined models, parametric geometric
operations in 1D, 2D and 3D, variable topologies, and operations with structural constraints.
The EBNF specification of the model definition language is presented and discussed through

several examples.

Keywords: Geometric modelling, solid modelling, CAD, constraint-based modelling,

parametric design.

1. INTRODUCTION

Present CAD systems can be very useful for the design and representation of specific, final
products. However, they still have a number of drawbacks that must be solved in order to
use them in practical design applications. There is a need for facilities for conceptual design,
and better tools for the generation of the design are required. On the other hand, the use of

previous designs in a new one is not always supported. Finally, in most CAD systems it is
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necessary to define the exact size and location of every geometric element and/or part. This
is of course too rigid in many applications, where the interest of the user is to generate a
prototype model from a number of shape specifications, and then adjust it through shape

modification tools in order to optimize the performances of the product.

Parametric CAD systems can design general objects that represent a family of different
objects, sharing the same topological cdnstraints but having different geometry [CFV88].
Given a set of specific parameters, particular components of the family are obtained.
Parametric models store the geometry of the object together with variable dimension
parameters [RSV89], [Rol91a]. Parametric design increases the flexibility in the design
process, by defining the geometry and geometric constraints without specifying the set of

concrete dimensions of the object.

Parametric design [Rol91a] is becoming a useful methodology for conceptual design,
tolerance analysis, efficient design of families of parts, representation of standard parts and
features in libraries, kinematics simulations, and assemblies design. Several parametric

design approaches have been proposed that will be reviewed in section 2.

The present paper proposes a constructive definition of the object model that overcomes a
number of the present limitations of parametric systems. It supports instantiating of pre-
defined models, parametric geometric operations in 1D, 2D and 3D, variable topologies and
operations with structural constraints. Next section discusses some of the well-known
approaches for parametric design, focusing on constructive schemes and comparing their
performances and limitations. The proposed constructive scheme is then presented in section
3. Section 4 presents and discusses several connected examples, introducing the definition

language of the object models.

2. PROPOSED SCHEMES AND CONSTRUCTIVE APPROACHES IN PARAMETRIC
DESIGN

Roller [Rol91a] proposes a classification of parametric design approaches into variants
programming, numerical constraint solvers, expert systems and constructive schemes. In

variants programming, the user must write a procedure in a certain programming language
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whenever he wants to define a parametric object. Variants programming is widely used in
CAD systems through macro definition languages, mainly for the definition of parts
libraries. The main drawback of this approach however is, that it is not practical for non-

expert users.

The numeric constraint solver approach or algebraic method, translates all the dimensional
constraints into a set of equations. The shape of a part can be defined and modified based on
a set of characteristic points of the geometric model. An algebraic system of equations
relates the characteristic points to the constraints. The geometry of a specific part is computed

by solving the system of equations with an iterative numerical method.

Several versions of this approach have been proposed [HiB78] [LiG81] [LiG82] [LeA85]
[Nel85] [Owe91] [Ser91].In this method the number of equations and variables grows fast
with the number of geometric elements and constraints involved. The numerical resolution

needs good starting points in order to converge and the computational cost is expensive.

From the user’s point of view, it is difficult to express a design in terms of a system of
equations that reflects the relationship between the geometric entities of the design.
Furthermore, the user doesn’t have any feedback about inconsistent shapes or unexpected

solutions.

Another approach in parametric design, is the use of an expert system in order to create a
geometric model based on a set of constraints. The constraints are thus expressed as rules or
predicates [A1d88] [Sun88] [SAK90] [Yak90]. Given the constraints and the starting points,
an inference engine is used to determine sequentially the unknown positions of the geometric

elements.

This method allows to use more complex constraints. However it needs a large number of
predicates for simple shapes [Yak90]. The expert system approach doesn’t seem to support
incremental design. Moreover, it doesn’t support cyclic constraints and it is expensive in

memory and computations.

In the constructive approach the sequence of interaction performed by the user in order to

define an object is recorded by the system. The design sequence is described interactively
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and graphically by the user. The previous works using this method can be classified into two
main groups according to the way the user’s actions are recorded. In the first group the
interactive design generates a procedural description of the modelling operations of an object
[RBN89] [Emm89] [Emm90] [Kon90] [Rol90] [Rol91b]. In the second group the design
sequence is used for the management of a data structure that reflects the relationships

between the geometric elements [Ros86] [CFV88] [GZHS8].

There are many aspects that characterize a constructive method, however the most significant

ones are:

- Whether the method generates a procedure or manages directly a data structure.

- The dimensionality of the method (2D/3D).

- The existence of mechanisms to detect inconsistencies.

- The need to specify all constraints.

- The possibility of instantiating other objects during the building of a new object
(instantiating previous models).

- The existence of a mechanism to validate the parameters of an object or to fix their
range of validity.

- The ability to detect and support topological changes.

- Whether it is possible to parametrize modelling operations.

Table 1 discusses these aspects in relation to the most representative methods in the

constructive approach.

The result of the interaction with the user, together with an accurate set of parameters can
be used in order to generate any object of a specific family. In general, this approach is based
on the idea of programming with example [GPG90]. The user defines an example which is
recorded by the system. It is thus necessary to keep the history of the design [YKH87] and

this can be performed by recording the modelling operations and constraints.

The design of an object is incremental. The design is a sequence of states that converges
towards the final object. Every state is characterized by a set of geometric elements and
constraints. The evolution between states is done through modelling operations and by adding

new constraints.
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CFves8 Emm30 GZH88 Kon80 RBNBA Rol3a
Kind of method estruct. proc. estruct. proc. proc. proc.
Dimensionality 2D 3D 3D 2D13D 2D 2D
Inconsis.detection ? yes ? yes yes yes
All constraints yes no no yes ? yes
Inst. previous model no yes no no yes no
Validate parameters no yes no no yes no
Parametrize mod. op. no yes ? ? yes yes
Detect topol.changes ? ? yes ? yes yes

The designer uses modelling operations and constraints while he is building the object in a
natural way. The constructive approach preserves the user’s traditional working enviroment
and encourages his hability to decompose a problem into subproblems. In this sense it can
be said that the system assists the user in the design of a solution. The geometric elements
on which the system is based are simple user sketches whose exact sizes and positions are
not needed. It is only necessary to define constraints. Under this perspective, the system
doesn’t need expert users and the user interface plays an important role. When the interactive
design is finished, it can be immediately evaluated in order to modify the design sequence or
to perform a new design of a part. Unfortunately, the classical constructive approach doesn’t

support circular constraints, that must be solved simultaneously.

3. THE CONSTRUCTIVE PARAMETRIC SOLID MODEL

A constructive parametric solid model (CPSM) can be defined as the procedural description
of the sequence of modelling operations and constraints performed by the user during the
interactive design of a parametric object. It must be observed that the constructive parametric
solid model is transparent to the user; the user simply interacts with the system through the
graphical user interface in order to generate a particular object that will become the

representative of the parametric family. The CPSM can be considered as a generic model of
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the whole family of objects. The CPSM is a procedural description with a set of formal
parameters. Instances - specific object models - of the CPSM are obtained by fixing the
values of its formal parameters. The design process when using a constructive parametric

solid model involves the following steps:

- A particular object of the parametric family of objects is designed through a
graphical user interface and using available modelling operations and constraints.
Dimensions and operation parameters can be either constant, related to other
dimensions through constraints, or defined as a function of the formal parameters of
the model. Constraints can be introduced at any moment during the design process.
The corresponding constructive parametric solid model which tracks the design
process is automatically generated. The contructive parametric solid model is
represented by a sequence of statements from a definition language [SoB92].
Modelling operations and contraints are expressed through procedure calls in the
language. This kind of ERep (Editable Representation) has the advantage of being
editable, suitable for archival and transmission, it supports both generic and specific
designs, and records the conceptual construction steps [RBN89] [HoJ92]. The formal
description of the constructive solid model in a simple case with a limited set of basic

geometric elements is presented in the appendix.

- The constructive parametric solid model can be evaluated in order to generate specific
objects. Different sets of parameter values generate different specific objects, all of

them from the same parametric family.
Therefore, the proposed parametric system consists of two modules:

- The module that generates the constructive parametric solid model depicted by a
sequence of avalaible modelling operations and constraints. Figure 1 shows the generic
structure of this module. The user chooses the modelling operations and constraints
through a grafical user interface. A model generator translates it and generates the

CPSM that represent the generic object.
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Figure 1. Generation of the Constructive Parametric Solid Model.

The evaluation module which generates specific object models with a particular

geometry and topology given a set of parameter values. This module (figure 2)

includes a translator that generates an internal model representation. The validation

and evaluation of the CPSM is done on this internal model representation model. With

specific parameter values, the evaluation module produces a particular object model.

Q Transhator |

Internal
model
rep.

==| Validation
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Figure 2. Evaluation of the constructive parametric solid model.

It is possible to define assemblies using instances of previously defined parametric models,

which are available through a models library. In addition to the representation of a generic

object through modelling operations and constraints, the constructive parametric solid model

includes information on the explicit geometry of the element which was generated during its

design phase. As a consequence, the system can automatically deal with underconstraint

situations.

The domain of the proposed constructive parametric solid model is obviously limited by the

power of the underlying language. On the other hand, it presents the following advantages:
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- It represents the conceptual construction steps, in an incremental way.

- Intermediate models can be stored in generic object libraries, and they can be
instantiated in later designs.

- It uses a scheme based on the design with example. Having always the default
geometry of the specific object designed by the user, it automatically supports
underconstraint cases.

- The system is structured three independent modules: the interaction module, the
internal model representation, and the validation and evaluation module.

- The generic model CPSM is an editable representation, able for archive and
transmission.

- The CPSM has a uniform representation for geometries of different dimensions. It is
therefore a global approach involving 2D and 3D parametric design.

- It supports structural parameters, that is, parameters in geometric operations (2D to
2D, 2D to 3D or 3D to 3D operations).

The present approach is in some sense parallel to that of [HoJ92], [RBN89], [Emm90].
Hoffman-Juan presents a general framework for ERep languages in solid modelling,
Rossignac et al. and Van Emmerick propose an specific language for the representation of
the model. Rossignac et al. proposes to record the parameterized sequence of design
operations. However, his approach is oriented to intensional model and feature-based design.
Van Emmerick’s approach works directly in 3D, but the user can only interact with a set of
characteristic points of the model (geometric tree). Our approach is adressed to the design of
generic objects in terms not only of modelling operations but also constraints. The user can
interact with the whole geometry of the specific object being designed. The presented model
covers both 2D and 3D parametric design.

3.1. USER INTERACTION AND MODEL GENERATION

The user interacts with the system through a graphical user interface. The user interface is
an independent proces that manages and parses the operations provided by the user.
Furthermore, the user interface manages the visualization of the model in progress. From the
user operations the system generates the statements of the representation model through the

following steps:
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- The user interacts with the already designed geometry, and defines new operations and
constraints.

- The system automatically generates the language description of the new designed
features, and assigns symbolic names to any new geometric element.

- In parallel, an specific object model is stored with the explicit geometry given by the

user interaction, in order to visualize it during the next interactive design steps.

The set of basic geometric elements that can be used in modelling operations and constraints
include OD elements (points), 1D elements (lines and edges), 2D elements (planes, polygons
and circles) and 3D elements (polyhedra, etc). All of them must be instantiated and are
parametrically defined. They act as primitives within the final constructive parametric solid
model. Modelling operations can either keep the dimension of the operands (for instance, in
the case of boolean set operations between 3D elements) or increase it (like in sweep
operations that transform a 2D element onto a solid). Modelling operations can be parametric
operations, that is, the result depends not only on the operands but also on the value of a

number of formal parameters.

Both the interaction process and the structure of the constructive parametric solid model can
be clarified through the design of a simple object. A family of "L-shaped’ solids is to be
generated. Being L the edge size of the square faces, figure 3, the heigh of the part must be
2*L and its length must be 2*L*F, F>0.5 (figure 3-a). Different specific objects from the
same parametric family can be obtained by giving particular values to the parameters L and
F. The design process starts by instantiating a square (one of the supported 2D parametric
objects) and performing a sweep operation in order to generate a parametric prism with a
general heigh H. The system automatically generates the corresponding constructive
parametric solid model of the prism (see appendix) according to the following sequence of

user’s actions:

- select ’define new model’ and enter its name.

- select define a regular polygon’.

- enter the parameters involved.

- select *generate solid by parallel sweep’ and define the parameters as:
- select the polygon just generated

- define the value of the sweep as a parameter of the model.
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Figure 3. Example of object design.

The result generated by the system is:

model square_prism (L,H) {
A:= Reg_pol (4, L, point(0., 0., 0.) )
B:= Paral_sweep ( A, H)

When the user chooses an avalaible modelling operation or constraint, he has to define the

involved parameters. Thus can be done by,

- an specific value. It is the case of the number ’4’ in the previous sequence.

- a symbol that identifies a formal parameter of the model wich will appear on the
heading of the CPSM. In the previous example the parameter "L’.

- a function or expression that computes and returns the parameter value. It is the case

of the function ’point’ that creates a point located by the user on the graphic screen.

The following options are therefore possible in the previous example:

- A:= Reg_pol (4, 16, point(0.0, 0.0, 0.0))
where the length of the polygon edge has been fixed to 16.

- A:= Reg_pol (4, 2*L-H, point(0.0, 0.0, 0.0))
in this case the number of sides is 4 and the polygon edge size is the evaluation of
2*L-H.
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The parameter A in the Paral_sweep operation indicates that the polygon to be operated is the
result of the Reg_pol invocation. Now, the user can simply ask for two instances of
square_prism and define in a graphic way a number of constraints in order to fix the relative
location of both prisms. The final object is generated by means of a boolean union operation.
The constructive parametric solid model that will be obtained for the final L-shaped object

will be,

model L_object (L,F) {
A:= square_prism (L, 2*L)
B: = square_prism (L, 2*L*F)
Equal_normal (A.F2, B.F1)
Coincident 2P (A.PS5, B.P1)
Coincident 2P (A.P6, B.P2)
C:= Union (A, B)

In this second step, three constraints have been introduced. First, the user selects the top
faces of both prisms, figures 3-b and 3-c, and asks for coincidence of the normal vectors.
Then, coincidence of the point 5 of prism A with point 1 of prism B is required, and the
same with point 6 of prism A and point 2 of prism B, figures 3-b and 3-c. The user works
by graphically selecting the points to be coincident, and the system generates the
corresponding constraint sentences in the model description by using the point ordering in
the data structure associated to the square prism model, figure 3. The set of imposed
constraints produces the relative location of the prisms indicated in figure 3-d, while the final
union operation generates the model of the parametric object in figure 3-a. It must be
observed that the spatial location of the generated object is irrelevant in most cases. Both
prisms have been designed in a general location, but the right assembly has been obtained

by means of the imposed constraints.

3.2. INTERNAL MODEL DATA REPRESENTATION AND EVALUATION

Given a set of defined parameter values, the CPSM can be evaluated to an specific object

(fig.2). The evaluation process includes the following steps:
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- . An internal model representation is generated automatically from the CPSM. This
representation keeps both the default geometry of the object and the constraints
between geometric elements.

- The internal model representation is validated in order to detect inconsistencies and
overconstraints.

- Finally, a numerical evaluator generates the specific object model from the internal
representation and the parameter values. The evaluator first deals with non cyclic

constraints, and solves the remaining nonlinear equations from cycles in a second step.

The internal model representation consists of a graph containing all points that have appeared

in the CPMS design process. Nodes of the graph contain:

- The point coordinates (Initially they contain the default geometry of the points).
- A list of constraints concerned with the point. Every constraint includes pointers to

other graph nodes involved in it.

More specific aspects of the internal model representation are presented in a forecoming

paper.

4. EXAMPLES AND DISCUSSION

In this section we present both the design process and the generation of the constructive
parametric solid model of the family of objects shown in figures 5 and 6. The first step
consists on the generation of the parametric polygon indicated in figure 4-a. The model
depends only on a single parameter, the heigh H. The user directly draws the closed polygon
using a graphical user interface, and afterwards indicates several constraints on the vertical
dimensions. The resulting constructive model of the parametric polygon includes both the

input polygon with the specific coordinates input by the user, and the distance constraints,

Model bell_poly (H) {

A:= Closed_pol (Hor_edge (Point(0.,0.,0.), Point(3.,0.,0.) ),
Ver_edge (Point(3.,0.,0.), Point(3.,2.,0.) ),
Hor_edge (Point(3.,2.,0.), Point(2.,2.,0.) ),
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2P_edge (Point(2.,2.,0.), Point(0.,16.,0.) ),
2P_edge (Point(0.,16.,0.), Point(-2.,17.,0.)),
Ver_edge(Point(-2.,17.,0.),Point(-2.,18.,0.)),
Hor_edge (Point(-2.,18.,0.), Point(-4.,18.,0.)),
Ver_edge (Point(-4.,18.,0.), Point(-4.,15.,0.)),
Hor_edge (Point(-4.,15.,0.), Point(-2.,15.,0.)),
2P _edge (Point(-2.,15.,0.), Point(0.,0.,0.)) )

Y_dist (A.PT2, A.PT7, H)

Y _dist (A.PT2, A.PT3, .1*H)

Y_dist (A.PT3, A.PTS, .8*H)

Y _dist (A.PT7, A.PT10, .15*H)

Y_dist (A.PT6, A.PT7, .05*H)

X_dist (A.PT6, A.PT10, 0.)

X_dist (A.PT1, A.PTS, 0.)

0.05%H pT4
PTg PTS PT3 -

0.8%H H

L1
PT4 pr3
0.4 - pr2 |
PT1 PT2
L2

Figure 4. Parametric polygons.

It must be observed that the use of primitives like Hor edge and Ver_edge in the input
process of the polygon adds a number of implicit constraints between consecutive points of
the polygon. Every geometric element has a default explicit geometry. In this way, edge sizes

not forced by constraints will keep their input values.
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Now, .the 3D solid ’bell’ can be generated by means of a rotational sweep. A rotation axis
must be supplied, and the distances from certain polygon points to the axis must be
incorporated to the model in the form of constraints. However, when more than two distances
from points to the axis are indicated, they act as additional constraints that force the shape
of the swept polygon. In the present example, the user instanciates a bell_polygon with 2*D
heigh and gives two extra constraints in order to shape the width of the bell. The generated
model will be,

Model bell (D) {
e:= 2P_axis ( Point(0.,0.,0.), Point(0.,30.,0.) )
A:= bell_poly (2*D)
Point_axis_dist (A.PT1, e, D)
Point_axis_dist (A.PT9, e, D/3.)
Point_axis_dist (A.PT6, e, .66*D)
Point_axis_dist (A.PT2, e, 1.25*D)
B: = Rotation_sweep (A, e, 360.)

A second solid will be generated through a parallel sweep operation from the parametric
polygon in figure 4-b. The initial parametric 2D polygon is designed in the same way as
bell_poly, being the only difference that, now, the polygon includes three straight edges plus
an arc. Corresponding constraints include dimension constraints, simmetry of the central point
A.PT4, specification of the slant angles at both sides, and tangency of the arc. This last

constraint is finally represented in the model in terms of trigonometric functions,

Model 2D_window (L1, L2) {

A:= Closed_pol(Hor_edge(Point(0.,0.,0.), Point(6.,0.,0.)),
2P_edge(Point(6.,0.,0.), Point(4.5,12.,0.)),
3P_arc (Point(4.5,12.,0.), Point(3,13.5,0.), Point(1.5,12.,0.)),
2P _edge (Point(1.5,12.,0.), Point(0.,0.,0.)))

X_dist (A.PT1, A.PT2, L2)

Y dist (A.PT2, A.PT4, L1)

Y_dist (A.PT4, 2P_point(A.PT1, A.PT2, .5), 0.)

Edge_angle (A.ED1, A.ED2, 80.)
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Edge_angle (A.ED1, A.ED4, 80.)

Y _dist (A.PT3, A.PTS, 0.)

Y_dist (A.PT4, A.PT5, (A.PT3.X, A.PT5.X)*.5%(1/cos(80.)-1/tan(80.)))

}

Now, the swept object 3D_window is generated by a simple instatiating operation of the

previous model plus a parallel sweep,

Model 3D_window (L1,L2) {
B:= 2D_window (L1,L2)
C:= Paral_sweep (B, 10.*L1)

Finally, the generation of the final object is performed through the difference between
instances of the bell and 3D_window. Specific values of the parameters are supplied to the
operating objects, as functions of the formal parameters of final_object. Locating both
objects in the right place for the boolean difference involves a graphical selection of the
bottom faces of each objects - the corresponding faces in the associated data structure are
A.F2 and B.F3 -, and a selection of the top face of the bell. The constructive parametric
solid model which results for the final object is,
Model final_object (D,L) {

A:= bell (D)

B:= 3D_window (L,.25*L)

Equal_normal (A.F2, B.F3) /* bottom faces */

P1:= Centroid (A.F2)

P2:= Centroid (B.F3)

P3:= Centroid (A.F4) /* top face of A */

Coincident_2P (P2, 2P_point (P1, P3, .12) )

C:= Difference (A, B)

All intermediate models are stored on a model library, and can be instantiated in different
applications. Several models, like bell_poly and 2D_window, are 2D models, while bell or
3D_window represent parametric solids. Any model is a non-evaluated representation of the

parametric family, and can be evaluated by means of a geometric interpreter, figure 2.
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Figure 5. The boolean difference between the objects generated in figure 4 defines a family
of parametric objects.

5. CONCLUSIONS

A new constraint-based modelling scheme has been proposed, based on the definition of
constructive parametric solid models. A non-evaluated procedural model of the parametric
family is automatically generated during the design process of a single object of the family.
General modelling operations together with geometric constraints can be mixed with no

restriction during the design step.

Constructive parametric solid models support instantiating of predefined models, variable
topologies, parametric geometric operations in 1D, 2D and 3D, and operations with structural
constraints. A specification of the model definition language has been presented and discussed

through several examples.
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Figure 6. Several real objects from the parametric family defined in figure 5.

Future work will involve the analysis of constraints consistency, the generation of specific
tools for the detection of overconstraints, efficient mechanisms for deletion and editing of
geometric parts, and aspects related to the validity and range of the parameters. On the other
hand the set of supported modelling operations and geometric constraints will be extended

beyond the kernel that has been presented in the appendix.
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APPENDIX
CONSTRUCTIVE SOLID MODELLING LANGUAGE.

In this section we present part of the formal speciﬁcation of the constructive solid modelling
language. For a full definition see [SOB92].

A model is defined as a sequence of statements. The model has a name given by an identifier
and a list of formal parameters that are used in order to evaluate the model. Every statement

can be a modelling operation or a constraint.

model :: = Model model_id "(" formal_parameter_list ")" "{" statement_list "}".
formal_parameter_list :: = parameter_id { , parameter_id }.

statement_list :: = statement { "<CR>" statement }.

model_id :: = identifier.

parameter_id :: = identifier.

Every statement in the model is a modelling operation or a constraint:
statement ::= operation
| constraint.

identifier :: = letter { letter | digit }.
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The modelling operations supported can be unary or binary:

operation ::= unary_op

| binary_op.

Unary operations involve one geometric element:
unary_op ::= creation

| geometric_transf

| section

|

I

copy.

Binary operations involve two geometric element:

binary_op ::= boolean_op.

Some possible operations in order to create geometric elements are:
creation :: = identifier ": =" cr_geometric_element
| model_instantiating.
cr_geometric_element ::= cr_OD_element
| cr_1D_element
| cr_2D_element
| cr_3D_element.
cr_OD_element ::= cr_point.
cr_1D_element :: = cr_edge
| cr_line
| cr_axis.
cr_2D_element ::= cr_polygon
| cr_cercle
| cr_arc
| cr_plane.
cr_point ::= Point "(" real_exp, real_exp, real_exp "}"

ny

2P_point "(" point_exp, point_exp, real_exp

!

| Centroid "(" polygon_exp ")"

| Paint_edge "(" edge_exp, real_exp ")"

| 4P_point"("point_exp, point_exp, point_exp,

point_exp,real_exp,real_exp,real_exp,real_exp")".

cr_edge ::= 2P_edge "(" point_exp, point_exp ")"

| Hor_edge "(" point_exp, point_exp ")"

| Ver_edge "(" point_exp, point_exp ")".
cr_line ::= 2P_line "(" point_exp, point_exp ")"

| Hor_line "(" point_exp ")"

| Ver_line "(" point_exp ")".
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nyn

| Para_line "(" line_exp, point_exp
| Perp_line "{" line_exp, point_exp "}".
cr_polygon ::= cr_regular_polygon

| cr_close_polygon.

cr_regular_polygon :: = Reg_pol "(" sides_num, long, point_exp ")".
cr_closed_polygon :: = Closed_pol "(" edge_list | point_list ")".
cr_arc ::= 3P_arc "(" point_exp, point_exp, point_exp ")".

cr_axis ::= 2P_axis "(" point_exp, point_exp ")"

| Edge_axis "(" edge_exp ")".
cr_polyhedron :: = regular_polyh

| paral_sweep

| rotat_sweep.

The geometric elements are expressed as (a non exhaustive list follows):

point_exp ::= identifier
| cr_point
| point_id.
edge_exp ::= identifier
| cr_edge
| edge_id.
polygon_exp :: = identifier
| cr_polygon
| polygon_id.
axis_exp :: = identifier
| cr_axis
| axis_id.
point_id :: = identifier "."PT point_model.

edge_id :: = identifier "."ED edge_model.
polygon_id :: = identifier "."F polygon_model.

The solid object creation could be:

paral_sweep ::= Paral_sweep "(" polygon_exp, real_exp "})".
rotat_sweep :: = Rotation_sweep "(" polygon_exp, real_exp ")".
model_instantiating ::= model_id "(" parameter_list ")".
parameter_list :: = expression {, expression}

expression ::= real_exp

| integer_exp.



Binary operations are defined as:
bool_op :: = identifier ": =" union

| intersection
|
1

difference.
union ::= Union "(" element_exp, element_exp ")".
intersection :: = Intersection "(" element_exp, element_exp ")".
difference :: = Difference "(" element_exp, element_exp ")".

And the presently supported constraints are:
constraint :: = distance
| angle
| coincidence.
distance ::= 2_points_d
| point_axis_d.
2 points_d ::= 2P_dist "(" point_exp, point_exp, real_exp ")"
| X_dist "(" point_exp, point_exp, real_exp ")"
| Y_dist "(" point_exp, point_exp, real_exp ")"
| Z_dist "(" point_exp, point_exp, real_exp ")".
point_axis_d ::= Point_axis_dist "("point_exp,axis_exp,real_exp")".
angle ::= 3P_angle "(" point_exp, point_exp, point_exp,real_exp")"
| Edge_angle "(" edge_exp, edge_exp, real_exp ")".
coincidence :: = points_coincidence
| normals_coincidence.
points_coincidence :: = Coincident_2P "(" point_exp, point_exp "}"
| Coincident_X "("point_exp, point_exp")"
| Coincident_Y "(" point_exp, point_exp ")"
| Coincident_Z "(" point_exp, point_exp ")".
normals_coincidence ::= Equal_normal"(" normal_exp, normal_exp")"
| Angle_normal"("normal_exp, normal_exp,real_exp")"
| Perpe_normal”("normal_exp,normal_exp")"
| Opposite_normal” ("normal_exp,normal_exp")".
normal_exp ::= edge_exp

| polygon_exp.
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Abstract: Constrained optimization is used for interactive surface design in our
new surface editor. It allows designers to modify B-spline surfaces to satisfy their design
intents, expressed as geometric constraints. The restrictions on the set of constraints
are few. In the special case of no constraints a surface can be faired to remove design
flaws.

Introduction

In their introduction to my favorite geometric modeling textbook [Faux & Pratt,
1987|, the authors make the distinction between a “surface fitting system”, which
“performs what a numerical analyst would refer to as two dimensional interpolation”,
and a “surface design system”, which allows the designer to modify it through “an
interactive process, amounting to a dialogue between the designer and the computer.”
A surface fitting system typically has a very rigid template for its input, because it
uses a closed formula to compute the surface. Coon’s formula, for example, requires a
closed chain of 4 curves. Other fitting systems solve linear equations, but that requires
an exact match between the number of interpolation conditions (equations) and the
number of unknowns.

The flexibility offered on the other hand by “surface design” systems is achieved
by allowing the designer to directly manipulate (B-spline or Bézier) control points.
Unfortunately, the effect on the surface of moving a single control point is highly un-
predictable. To make things worse, a surface -computed by a surface fitting scheme
often has hundreds of control points. Modifying such a surface in any useful way must
involve the coordinated manipulation of scores of control points, a hopeless task if done
manually. By exposing the control points to the designer we have forgotten that they
are nothing but the surface’s mathematical coeflicients; they should not be confused
with design tools.

This work presents a new B-spline surface design scheme that combines the flexi-
bility of control point manipulation with the precision of surface fitting. This scheme
accepts the design intent in the form of exact geometric constraints. There is no re-
striction on the number of constraints, and only one restriction on their types: they
must be expressed as linear equations in the surface’s control points. This covers point
and curve interpolation, surface normal direction at a point, etc. If there is no conflict
among the constraints, they will be satisfied exactly, otherwise they will be satisfied in a
least squares sense. By designating the boundaries of the affected region on the surface,
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the designer is free to make the changes as local or global as he pleases. Control points
are kept where they belong: in the engine room.

The key to this flexibility is in treating the equations as the constraints in a con-
strained optimization problem, with a fairing goal function. This eliminates the need for
a fully determined linear system, and allows the scheme to live with as few constraints
as the designer wishes to supply. In fact, the set of constraints may be empty, and then
the surface will be faired, to remove design flaws.

Previous Work

Using optimization in surface design is not a new idea. Unconstrained optimization
has been proposed for curve and surface fairing in [Farin & Sapidis,1989]|, [Hagen &
Schulze, 1987], [Kallay & Ravani, 1990] and [Lott & Pullin, 1988]. Since there is no
exact definition for fairness, it is difficult to decide which goal function should be used
to achieve a fair surface. For comparison, let us recall how curves are faired.

Thin elastic strips of wood were historically used for designing ship hull and air-
planes. Elastic strips tend to minimize their bending energy, and curves of least energy
are considered fair. When computers started to replace wooden splines in curve design,
it was computationally too expensive to minimize the elastic energy, which is propor-
tional to the length integral of the squared curvature. As it turned out, the elastic
energy’s cheaper “cousin”, the integral of the squared second derivative of the curve
mapping, provides an acceptable fairness criterion ([Faux & Pratt, 1987]). This integral
is not a geometric property of the curve, it depends on its parameterization, but the true
curve of least energy is usually outside the space of curves used in CAD, i.e. piecewise
rational curves, while the curve that minimizes the cheaper functional is a cubic spline.

Choosing a goal function for surface fairing, we must again choose between a true
geometric goal function and a cheap parameterization-dependent one. Lott and Pullin
in [1988| chose the purist path, minimizing the elastic energy of the surface, which is
proportional to the area integral of the sum of the squares its principal curvatures. Their
results were good, but the method is computationally too costly for interactive design.
In analogy to using the integral of the squared curvature for fairing curves, integrals of
quadratic functions of the surface’s partial derivatives were explored in [Hagen &Schulze,
1987] and [Kallay & Ravani, 1990], but these methods were implemented only for some
restricted classes of surfaces. Here it is done for the workhorse of CAGD: tensor product
B-spline surfaces with any degrees and knot sequences.

The idea of using constrained optimization for general interpolation schemes has
been suggested in [Ferguson & Grandine, 1990]. The goal function was not specified in
the paper, but it was, as in [Lott & Pullin, 1988], purely geometric. As a result, the
computations were too expensive for interactive design. Using a quadratic functional,
the surface design scheme presented in [Celinker & Gossard, 1991] is sufficiently fast for
interactive design. Its practicality is limited, though, by two factors. First, it restricts
the types of input constraints: Only such constraints are accepted that directly eliminate
some variables. Second, the surface in [Celinker & Gossard, 1991] is represented as a
finite-element mesh, commonly used for structural analysis, but rarely for design and
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manufacture. OQur scheme accepts any number of linear equality constraints of any type,
and works on B-spline surfaces.

The Variables

Suppose we are given a tensor-product B-spline surface

So(u,v) = Z CijNij(u,v), (1)
ij

where N;; are the B-spline basis functions, and C;; their control points. We need to
compute the control points of a new modified surface S(u,v) that satisfies a given set
linear equality constraints in the control points C;j. The designer wishes to restrict all
changes to a specified region on the surface. Let K be the set of indices 5 of those basis
functions that vanish outside the specified region. For i in K, write the coefficients of
the target surface S as C;;+D;;. The modified surface will then be

S(u,v) = So(u,v) + ¥ D Ni(u,v). (2)
keEK
The perturbation vectors D will be the variables of the constrained optimization prob-
lem. Note that the index k ranges in the set K of pairs of integers. The conversion from
the double index (¢, 7) of a control point to a single index k (as required by the solver)
is done by a C macro.

The Goal Function

When a flat thin elastic plate at z = 0 is deformed to the shape of the surface
z(z,y), its bending energy (under some simplifying assumptions) is proportional to the
area integral of (§%)2 + 2( ;;,zy 2y (%fr)z. The first term in our goal function is the
sum of these “thm plate” energies of the coordinates of surface mapping (also used in
[Celinker & Gossard 1991]). The second term is the squared deviation from the original

surface (used in [Lott & Pullin, 1988]). Our goal function is therefore:

628 8%s 8’s  8*S 8*s 9%S
F= [ [ o550+ 2mr s * v g3) + (5= 50) (8~ So)dudo. (3

The weight w is at the user’s diposal, expressing the relative importance assigned to
fairing versus adherance to the original design; a large w represents greater emphasis
on fairing.

We did experiment with some other, somewhat more geometric quadratic goal
functions. For example, the true elastic energy of the surfa,ce (under some simplifying
assumptions) is proportional to the area integral of ( $.N)2 4+ 2( 8‘15” -N)? + (gis N)?,
where N is the surface normal. We tried to minimize the quadratic function obtained
by fixing N in several ways: The normal of the original surface, or its local or global
average. However, the simple-minded (and cheapest) approach, of fairing the sum of the
energies of the surface’s coordinate functions, seems to produce better looking surfaces,

perhaps because it “fairs” the parameterization as well as the geometry.
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Unconstrained fairing: The Equations

Write the first integrand as

5: s s @
ro COu-i0vt Gul-idvi’
where £y = Fy =l and E;, =2

In terms of our optimization variables Dy, the, goal function expands to:

89S, - AN, a So N,
¥ p— D
// LE Ou? vt %_Dkauz o) (Gur 1w Z Far 507

(3 DN - (3 DNy = // (LE’ S0 _0'Se
kTR = v Bu? i0vi  Gu? iov

keK leK
3250 AV[C 9% Nk BZN[
25N E;
Z D 5007 Gut 10wt ZED’“ D 50 Bu-igs)
+Y DD N Ndudy = L AuDpDi+2) beDi +¢, (5)
k,l k
where: ) )
~ 92N, 8N,
Ap = L b‘//“’m%imi soarayt + NeMNidudv, (6)
and " ,
— %S, 2N,
= ; dud
b LE // Fuz-i0vt Guz-igwi (7)

and ¢ doesn’t depend on the variables Dy.

The necessary optimization conditions are the linear equations, one for every [ € K:
Z A Di+b;=0. (8)
k

Since the goal function is quadratic, this condition is also sufficient, and the mini-
mum is global.

Note that 4 is a symmetric matrix of scalars, while the unknowns Dj, and the right
hand side by are columns of 3-dimensional vectors. The matrix 4 is sparse, due to the
compact support of the B-spline basis functions.
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Constraints

The surface S interpolates a given point Q if there exists a parameter pair (u,v)
such that S(u,v) = Q. This equation is linear in the surface’s control points, but not
in u and v. It is therefore common practice in interpolation schemes to apply some
heuristic procedure for assigning a parameter pair (u,v) to Q. In our surface editor
(u,v) is the parameter pair of the point on S nearest to Q. The equations are then

Z D Ni(u,v) = Q — So(u,v). (9)

kEK

If we require S to interpolate a curve R(t), again we need a procedure for defining
a curve (u(t),v(t)) in the surface’s domain, to make the condition S(u(t),v(t)) = R(t)
linear. (iven such a procedure, the problem can be reduced to a multiple point inter-
polation constraint if both curves are B-splines. To see that, raise degrees if necessary,
so that R(¢) and S(u(t),v(t)) have the same degree d, and refine them to make their
knots compatible. If the curves S(u(¢),v(t)) and R(t) agree on d+ 1 points in each span
then the curves must coincide. The curve interpolation condition is therefore equivalent
to d + 1 point interpolation conditions per span.

In our implementation the curve (u(t),v(¢)) in the surfaces domain is defined by
an approximate projection of R on S. In other words, (u(t),v(t)) is computed so that
S(u(¢),v(t)) is an approximation of R(t).

Meeting a prescribed surface normal direction at a given point is equivalent to
the surface partial derivatives being perpendicular to the given normal. This can be
expressed as linear equations in the control points. This type of constraint has not been
implemented in our editor yet.

Once the constraints have been gathered as a list of linear equations
Lpik‘Dk = qi, (10)
k

their origin no longer matters. This allows mixing different types of geometric con-
straints. The resulting equality constraints are handled with Lagrange multipliers A;,
one for every constraint. The constrained problem reduces to the unconstrained problem

min(F + Y A() PyDi - g)) (11)
i k

in the variables Dy, A; (see [Gill, Murray & Wright, 1981]). The minimality conditions
are obtained by equating to zero the partial derivatives of (11) with respect to the
coordinates of Dy and ;. The equations are all linear.

In the presence of conflicting constraints, we must replace these constraints with
the minimality conditions for the sum of the residues

min Z(Z P;-Dy — qi)z- (12)
ik

These conditions are again linear. The resulting linear system may still be singular, but
the equations are no longer conflicting. Our solver returns the least norm solution.
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Implementation and Results

Our surface editor was implemented as a prototype within GM’s Corporate Graph-
ics System (CGS). It seems to produce good looking surfaces, as the following examples
illustrate, and our own color curvature-plots verify. In its unconstrained mode, it very
effectively removes undesired wiggles from a surface. The typical response time is not
longer than a few seconds, even on a Sun SPARC station 1.

First we see the lines of maximum curvature on a bicubic surface of 7 by 8 spans,
modeling a car body surface. The lines are disrupted by a flaw in the surface:

s

i/

After unconstrained fairing, the lines of curvature flow smoothly. Position and the
first two derivatives were preserved along three boundaries, by clamping the three
raws or columns of control points adjacent to those boundaries. The boundary near
the flaw was free to move.
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Next ‘we see the same surface with a single point interpolation constraint.

The modified surface interpolates the point. The entire surface was changed, pre-
serving position and the first two derivatives along all boundaries. The three rows (or
columns) of control points adjacent to the boundaries were not included in the opti-
mization process.
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Finally, here is the same base surface with 7 target curves to interpolate. All the
control points are subject to optimization here, imposing no boundary conditions. Note
that the intersection pattern of the curves is a far cry from the regular mesh required
by most surface fitting schemes: There is a curved quadrangle with its two diagonals,
and an additional arc hovering.

Here is the modified surface. The problem was overconstrained — 462 constraints
were imposed on 330 variables. As a result, the surface looks like a short blanket pulled
over big feet: It visibly misses the boundary in the area marked by the arrow.

7
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1. Introduction

Polyhedral approximation of range data has the advantage of being simple to
obtain from raw data and of being capable of approximating any sampled surface to
the desired precision. Among different possible polyhedral approximation schemes,
surface triangulation is a popular one due to its efficiency in computing and storage.
Surface triangulation has been used to solve many problems, such as definition of the
object shape [BOIS-84], digital terrain modeling [FOWL-79], control of the automatic
machining of surfaces [JERA-89], smooth interpolation between 3-D points [LAWS-
77], approximation of the digitized object surfaces [FAUG-84,DELI-91], and com-
puter graphics. '

Different methods have been proposed to construct a surface triangulation-based
approximation to a set of range data. Faugeras et al [FAUG-84] presented a technique
to approximate 3-D objects without holes. De Floriani et al [DEFL-85] designed an
algorithm to approximate surfaces defined over an arbitrarily shaped domain. Lee et al
[LEE-89] introduced an approximation scheme for visual communication purposes.
Recently, Delingette er al [DELI-91] proposed a deformable model based on surface
triangulation to approximate a set of sampled surface points.

However, all these schemes suffer from a common problem: they cannot reflect
surface characteristics of the objects, i.e., points and edges where the triangular
patches join generally have no physical significance. In this paper, we propose a
method for constructing a polyhedral surface model from a range image constrained to
its surface characteristics. These characteristics are firstly extracted from the range
image. A triangulation-based surface approximation of range data is then constructed
to embed this edge-junction graph, i.e., the polygonal approximation of the extracted
surface characteristics are embedded as edges of the surface triangulation. The con-
struction of this approximation is adaptive in the sense that an initially rough approxi-
mation is progressively refined at the locations where the approximation accuracy does
not meet the requirements.
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We organize the paper as follows: Section 2 presents the general idea of our sur-
face approximation scheme. Section 3 discusses how to extract surface characteristics
from a range image. Section 4 presents an adaptive surface approximation scheme
based on the idea of a constrained surface triangulation. Section 5 gives the experi-
mental results followed by Section 6 which concludes the paper.

2. General Idea

Our aim is to construct a triangulation-based surface approximation of a set of
dense sampled surface data arranged in the form of an image. The main issue
involved in this problem is how to choose from a range image a subset of data points
which allows the construction of a triangulation-based surface approximation to within
a predefined error tolerance. We use an adaptive refinement technique to solve this
point selection problem.

Because surface triangulation is a piecewise representation, the refinement of a
triangulation-based surface approximation can be performed locally. We examine the
approximation error of each triangular patch; if the error for a patch is greater than a
predefined tolerance, we locally refine the surface approximation around this patch.
The refinement can be achieved by adding new points to the triangulation. Thus, the
point selection strategy is as follows: each time the approximation accuracy for a tri-
angular patch is greater than a given tolerance, the data point which is worst approxi-
mated by this patch will be added to refine the approximation. This point selection
strategy is adaptive in the sense that it is only performed at the locations where the
approximation is not satisfactory.

Such an approximation scheme has already been used by several authors to obtain
a triangulation-based surface approximation [FAUG-84,DEFL-85,SCHM-91a]. How-
ever, it has been criticized for its inability to reflect characteristic features of object
surfaces [FAN-90]. Specifically, the points and edges where the approximating tri-
angular patches are joined generally have no physical significance. To remedy this
defect, we propose to first extract from range images the surface characteristics which
reflect significant object shape features. These characteristics are then embedded into a
triangulation-based surface approximation in such a way that the subsequent adaptive
refinement will not destroy them.

We have considered two kinds of surface characteristics: surface discontinuities
and curves of surface curvature extrema. Surface discontinuities of type C° and C!
often indicate physical events on object surfaces. For example, C° discontinuities
often indicate the occlusion of two surfaces or the self-occlusion of a surface; while
C! discontinuities often correspond to a vivid edge on the object surface. The curves
of surface curvature extrema correspond to surface ridge or valley lines and have been
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considered as important shape descriptors. Examples of these three types of surface
characteristics are shown in Fig. 1.

curved plane
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©
Fig.1(a)C 0 and (b) C! surface discontinuities. (¢) Surface curvature extrema.
In the next section, we describe how to extract such surface characteristics from a
range image.

3. Extraction and Organization of Surface Characteristics

Because surface characteristics play a crucial role in the final surface description,
their extraction constitutes a key step in our surface approximation scheme. We expect
that an extraction process will satisfy the following requirements:

1) The localization of edges, especially those corresponding to surface discon-
tinuities, must be as precise as possible.

2) The labeling of edge types must be correct.

In general, there are two kinds of methods for extracting surface characteristics:
region-based or edge-based. Edges detected by region-based methods often do not
correspond to the real surface characteristics, especially when there is an over-
segmentation. In contrast, edge-based methods provide edges which correspond more
closely to the reality. We therefore chose to use edge-based methods.

Although edge-based methods using curvature computation [FAN-87,PONC-87]
satisfy requirement 2, they suffer from an edge displacement problem: the computa-
tion of the surface curvatures is highly noise sensitive, an image smoothing is thus
needed to decrease the effects of noise; however, such smoothing often works blindly
to cross the potential surface discontinuities and thus causes edge displacement.

The quality of today’s range images allows us to use relatively simple techniques
to extract the edges of surface discontinuities without smoothing data [GODI-89]. We
thus adapt a two-step strategy to extract surface characteristics: we first detect the sur-
face discontinuity edges and organize them in such a way that missing edges are
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recovered and spurious edges eliminated. We then smooth range data without cross-
ing these extracted edges. The surface curvatures are finally computed and edges
corresponding to curves of maximum curvature extrema detected. In the following
subsections, we present these steps in more detail.

3.1 Extraction of C° and C! Discontinuity Edges

Geometric model fitting methods have been proposed to detect edges in intensity
images. The basic idea of such methods is to fit predefined edge models to data, and
then make a decision to accept or reject the presence of such models. Geometric
model fitting provides an explicit mechanism for classifying the detected edges. We
have chosen a method proposed by Leclerc [LECL-87] to detect discontinuity edges.

A naive method of using the geometric model fitting to detect a C 0 discontinuity
of a 1-D function at a point p would be as follows: we fit a curve to the points in a
neighborhood left of p, and fit a separate curve to a neighborhood right of p. Then we
compare statistically the limits of these two curves when they approach p. If they are
significantly different, we declare that at p there is a C 0 discontinuity. The same pro-
cess can be used to detect a C' discontinuity. An apparent drawback of this method is
that for a point near a discontinuity, its left- or right-hand neighborhood will overlay
this discontinuity. Therefore, the approximated curve for the points falling in this
neighborhood is not a correct estimate of the underlying function, and the statistical
tests of significance are inapplicable. If we could eliminate those points whose neigh-
borhoods overlay a C® or C! discontinuity, we would be left only with the points
whose two-side estimated curves are correct. The statistical test could then be applied
on them to decide whether they are discontinuity points or not. We have therefore the
following discontinuity detection procedure for 1-D sampled points.

1). Fit a curve to each of the left- and right-hand neighborhoods for every point;
2). Eliminate those points whose neighborhoods overlay a discontinuity;
3). Apply a statistical test on remaining points to see if there is a discontinuity.

To perform step 1, polynomial of degree 1 is fitted to the left- and right-hand
neighborhoods of a given size for every point. The sum of the fitting errors of these
two fits are calculated and stored. The elimination of false points in step 2 is done by
taking into account the fact that when a fitting crosses a discontinuity, the sum of the
fitting errors is generally very high. Thus by performing a non-minimum suppression
on the values of the sum of the fitting errors through the sequence of points, we can
eliminate those false points. For step 3, an F —fest is performed on the two fitted curves
at each point to decide whether there is a discontinuity or not.

This 1-D procedure is applied in two passes to detect surface discontinuities in a
range image: the first pass for each row, and the second pass for each column. Note
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that with this method, detected edge points can be labeled as C 0 or C! type. For C!
edge points, we can further decide whether they are convex or concave by comparing
their fitted curves at their left- and right-hand neighborhoods. Results of applying this
detection method to an example object is shown in Fig. 2.

(@ (b) © (@)
Fig. 2 Edge extraction for an example object. (a) Shaded display of range image. (b)
Joint view of C® and C edge points. (c) C° edge points. (d) C! edge points.

3.2 Organization of C 0 and C! Discontinuity Edges

After the extraction of discontinuity edge points, we can link them into edges of
the same label on the basis of 8-connectivity. This linking is performed in such a way
that the range values of the resulting edges are continuous in depth. Edges are oriented
so that the surface closest to the sensor is to the right of the oriented edges. If two
edges of different types or more than two edges meet together, a junction is created.
An initial edge-junction graph is then obtained. Some faults are often present in such
an initial graph (see Fig. 3(a)). For example, junctions may be lost due to a complex
surface geometry around surface vertices; edges may be fragmented due to the pres-
ence of noise; or spurious edges may appear due the presence of noise or to an invalid
edge model.

The aim of the organization process is to construct from these detected edges a
final edge-junction graph in which missing edges are recovered and spurious edges are
eliminated. Our edge organization process [CHEN-92] builds an edge-junction graph
by using both the knowledge of a junction dictionary [MALI-87] and the principles of
generic geometrical regularity obtained in perceptual organization studies [LOWE-
85,MOHA-92].

The edge-junction graph is a planar undirected graph similar to the one proposed
in [GODI-89]. Its nodes represent junctions while its arcs represent edges. Each edge
is labeled as convex(+), concave(-), occluding(—), or limb(——), the range value and
the image coordinates of its ordered associated points are also stored. Each junction is
labeled according to the junction dictionary, its position and its connection with edges
are stored. We see that such an edge-junction graph encodes the quantitative position
information as well as the qualitative type descriptors of edges and junctions. The
final edge-graph results for the previous object are shown in Fig. 3(b).
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Fig. 3 (a) Faults in edge extraction. (b) Final edge-junction graph with labeled edges.

3.3 Extraction of Curves of Surface Curvature Extrema

Because extrema of the minimum curvature are very sensitive to noise, only the
extrema of the maximum curvature are extracted.

To smooth a range image, we use a binomial mask [BESL-88]. This smoothing is
designed not to cross the discontinuity edges previously detected.

The calculation of the principal curvatures and directions on this smoothed image
is then pefformed by first fitting an orthogonal polynomial surface of degree 2 to a
local neighborhood of each point, and then differentiating the resulting surface to
obtain the partial derivatives necessary for the curvature computation.

To detect edge points corresponding to the curves of curvature extrema, we use
an efficient structural technique [HORA-89] which provides connected edges. A
detection result is shown in Fig. 4(a). The detected edge points are linked and added
into the edge-junction graph (Fig. 4(b)).

(a) (b) © ()
Fig. 4 (a) Edges of maximum curvature extrema. (b) All detected edges. (c) Doubling
of C° edges. (d) Junctions after polygonalization

3.4 Final Organization

So far, for objects in a range image, we have extracted the edges of their surface
characteristics and structured them into an edge-junction graph. However, such an
edge-junction graph cannot be directly used for constructing a surface approximation.
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We still need two special processing steps: the doubling of the C° edge points and the
polygonization of the extracted surface characteristics.

C? edges are caused by the occlusion of object surfaces. Thus, along a C° edge
there are two surfaces meeting it. In the edge-junction graph constructed above, a
detected C° edge belongs to the limit of the surface which is closer to the sensor. We
thus need to double this C° edge in the farther surface in order to provide boundary
limits for both adjacent surfaces. These boundary limits will be used in the surface
construction process presented in the next section. As the detected edges have been
oriented in such a way that the surface closest to the sensor is on their right, we can
easily double a C° edge at its left side when we follow it along the defined orientation
and orient the doubled edge in the reverse direction. If an object is totally contained
inside a range image, we discard the background surface. In Fig. 4(c), two interior C°
edges have been doubled.

For our surface reconstruction process, we also need to polygonize the extracted
surface characteristics. This polygonization is performed on the 3-D coordinates of the
extracted edges. An algorithm for 2-D curve approximation [DUDA-73] has been gen-
eralized for 3-D curve approximation. The algorithm provides a continuous polygonal
approximation in which the extremities of each 3-D line segments lie on the 3-D digi-
tal curves. For extremity, a corresponding junction is created in the edge-junction
graph. An example is shown in Fig. 4(d).

4. Adaptive Approximation by Constrained Surface Triangulation

In order to embed the pre-extracted surface characteristics, a triangulation-based
surface approximation requires the notion of a constrained triangulation. In this sec-
tion, we first define this notion and then present procedures for iteratively constructing
such a triangulation. Based on these procedures, we describe an adaptive method for
approximating digital surfaces.

4.1 Constrained 2-D Triangulation and Surface Triangulation

Since our input is a range image, we can use a 2-D triangulation method to con-
struct a surface triangulation. To construct a surface triangulation constrained to the
pre-extracted surface characteristics then becomes to construct a 2-D triangulation
constrained to the projection in the image domain of these characteristics. Such a set
of projected surface characteristics is represented by D = (S,V) where S is a set of the
2-D projections of 3-D segments and V is the union of the set of the extremities of §
and the set of projections of the isolated characteristic points.

A 2-D triangulation T constrained to a given D = (S, V) is a triangulation in which
segments in § are embedded as its edges and points in V are embedded as its vertices.
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It is easy to see that a given input data D can be triangulated in different ways. How-
ever, it can be shown that for any triangulation of D, the number of triangles
N;=2n —np —2, and the number of edges N, =3n —n, — 3 is fixed, where n = |V |
and ny, is the number of points situated on the convex hull of V.

Now suppose that a constrained triangulation T has been constructed for an input
data D. A surface triangulation is obtained by backprojecting T to the 3-D space using
the range value associated with each data point in V (Fig. 5). In the following, we will
note T a 2-D triangulation, ST the surface triangulation obtained by backprojecting T,
t; a triangle of T, and s#; a triangle of ST.

ST surface triangulation

"
] | |
Il | I

LIS

omain triangulation

Fig. 5 Surface triangulation ST obtained by backprojecting 2-D triangulation T.

4.2 Incremental Construction of a 2-D Locally Optimal Triangulation

Because there are many ways to triangulate a given input data D, we would like
to find a way to decide which one is the best. This needs a global criterion which can
measure the "goodness" of a triangulation. The following idea was originally proposed
by Lawson for 2-D triangulations [LAWS-77] and then adapted by Lee for 2-D con-
strained triangulations [LEE-86].

Suppose o(r) is a numerical measure of the goodness of a triangle ¢. Then associ-
ated with a triangulation T, we can define an index vector a(T) = (ay,...,0y),
where { a; } are obtained from { a(z;) } by puttin% them in increasing order. Note that
the dimension of this vector is fixed because N, remains the same for any triangulation
of D. We can now compare the goodness of two different triangulations by using the
standard lexicographical order of their associated index vectors: a < b means that for
some integer m, we have q; = b; fori =1,...,m-1 and a,, < b,,. So a triangulation T is
said to be an optimal triangulation of an input data D with respect to a given o(r) iff
o(T) 2 a(T”’) for any other triangulation T” of D.

However, it might be difficult to obtain such an optimal triangulation in practice.
In most cases, we will be satisfied with a locally optimal triangulation. We first define
the notion of a locally optimal edge. An edge e is said to be locally optimal with
respect to a measure o.(¢) if one of the following conditions holds: i) e is a constrained
edge; ii) The quadrilateral Q formed by two triangles sharing e is not strictly convex.
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iii) Q is strictly convex, e is not a constrained edge, and o(T) > o(7T’) where T’ is
obtained from T by swapping e with the other diagonal of Q (Fig. 6). Based on this
notion, a triangulation T of an input data D is said to be locally optimal with respect to
a measure o(¢) if all edges of T are locally optimal with respect to o(t).

T/

Fig. 6 Two ways to triangulate a strictly convex quadrilateral.

This swapping technique can be used to iteratively construct a locally optimal tri-
angulation: We first construct an initial but incomplete triangulation which includes
all rest points or segments in its interior. We then update this triangulation by adding
remaining points or segments, and at each iteration apply the swap operation to make
the current triangulation locally optimal. The worst-case complexity of the algorithm
is 0 (n?) [LAWS-T7].

The realization of this algorithm needs two procedures: one for inserting a new
point into an existing constrained triangulation (ADD_POINT), another for inserting a
segment (ADD_SEGMENT). The point insertion procedure can be implemented by
means of a stack in which edges to be tested for the local optimization are placed.

The segment insertion procedure we use is a modified version of the one pro-
posed by De Floriani and Puppo [DEFL-88]. Its basic idea is to first insert two end-
points v; and v, of a segment s by ADD_POINT procedure. Then the segment s itself
is inserted. To insert s, those triangles of T intersected by s are collected which form
an influenced polygon R with s as one of its diagonals. Thus s splits R into two
polygons R; and R, which are then triangulated separately. After this, the swap
operation is applied to the newly generated edges until they are locally optimal. In
[DEFL-88], an algorithm of time complexity O (n?) was used to triangulate R; and
R,. We use instead an algorithm of O (n) [TOUS-82] for the same purpose. The local
optimization step is implemented by means of a stack as in the point insertion pro-
cedure.

To construct an initial triangulation, we can simply use four corners of the image
domain to form two triangles. We now turn to define o(z).

4.3 Triangulation with Different Criteria

Different definitions of a(r) give different criteria for obtaining a locally optimal
triangulation. Many measures have been proposed in the literature [CHEN-92]. We
introduce two of them below. One is in 2-D, the other is in 3-D.
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It has long been recognized that 2-D thin triangles should be avoided because
they can cause a problem for spline approximation or for graphic rendering algo-
rithms. The minimum interior angle of a triangle can be used to measure its thinness.
This leads to the max-min angle criterion of Lawson [LAWS-77] where o(z) is defined
to be the minimum interior angle of ¢. Using this criterion leads to the so-called 2-D
Delaunay triangulation which has also been proved to be a global optimal one with
respect to o(t) so defined.

The above criterion is a 2-D one which uses a numerical quantity defined on the f;
of T. Similarly, we can define a 3-D criterion using a quantity defined on the s#; of ST.
Dyn, Levin, and Rippa [DYN-90] introduced a criterion called the quasi-G ! continuity
criterion. It is based on a numerical measure defined on the common edge of two adja-
cent surface triangles. The index vector for a triangulation is then defined on all inter-
nal edges of T

aT) = (aer)...len,)).

where N, ‘is the number of internal edges equal to N, — n,. Now let e be an internal
edge of T and let 7; and ¢, be the two triangles sharing the edge e. Then
a(e) =180 — 6, where 0 is the angle between the normals of sty and st, (Fig. 7). o(e)
is in fact the angle between the planes supporting these two triangles. Maximizing
a(e) will result in a triangulation in which the normal to the surface triangulation
minimizes its direction changes when crossing the edges of the triangulation.

i

Fig. 7 Angle between two neighboring surface triangles.

4.4 Adaptive Surface Approximation by Surface Triangulation

We now describe an adaptive surface approximation scheme which makes use of
the procedures ADD_POINT and ADD_SEGMENT and the two triangulation criteria
presented above. In this description, the function ERROR(st) returns the approxima-
tion error for a surface triangle st; FIND_POINT(s?) finds the coordinates v of the
point worst-approximated by s7; € is a given error tolerance. Two lists, namely
ACTIVE_LIST and DEFINITIVE_LIST, are used to store the surface triangles which
need or needn’t be refined.
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Adaptive Refinement of a Surface Triangulation

1. Initialization
1.1 construct an initial triangulation T constrained to the
approximated surface characteristics;
1.2 for each triangle #;€T do
if ERROR(st;) > € do Add ¢; to ACTIVE_LIST;
else do Add 7; to DEFINITIVE_LIST;
end for

2. Patch Refinement
while (NOT_EMPTY(ACTIVE_LIST)) do
2.1 t « remove a triangle from ACTIVE_LIST;
2.2 v « FIND_POINT(s?);
2.3 ADD_POINT(T,v);
2.4 for each new triangle ; do
if ERROR(st;) > £ do Add ¢; to ACTIVE_LIST;
else do Add ¢; to DEFINITIVE_LIST;
end for
end while

3. Characteristics Refinement
if REQUEST do
" 3.1 refine the approximation of surface characteristics with new error tolerance;
3.2 remove old constraints of surface characteristics from T,
3.3 for each new refined segment s; do
3.3.1 ADD_SEGMENT(Ts;);
3.3.2 for each new triangle #; do
if ERROR(s?;) > € do Add ¢; to ACTIVE_LIST;
else do Add 1; to DEFINITIVE_LIST;
end for
3.4 goto 2.
else finish.

To estimate the approximation error ERROR(s?;) for a surface triangle st;, we
must define a partition of the image domain with respect to a triangulation 7. This par-
tition is obtained by associating with each triangle #;, the coordinates of the sampled
points which are enclosed by #; (see Fig. 8). Let C; be the set of coordinates associated
with ;. C; may be empty. In this case, the approximation error of st; will be con-
sidered as zero. Otherwise, we define the approximation error of s; as

ERROR (st;) = max g(v).
veC;

€(v) is the error associated with the coordinates v of a point and is defined as
W= lz-4H1

where z, is the range value at v, and f, the value of st; at v (see Fig. 8).

When calculating ERROR(st;), we register the coordinates of the point which is
worst approximated by st;. The function FIND_POINT(s?) is then trivial.

Step 3 is an optional process for refining the approximation of the surface
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characteristics (specified by the logical variable REQUEST). If at a certain refinement
stage, the user requires that the original polygonization of the surface characteristics
be refined, this process can be turned on. The refinement of this polygonization is
realized by just adding new knots. The removal of a previously constrained segment
from the triangulation T is very simple. We just consider this segment as an ordinary
edge of T and apply the local optimization procedure to locally optimize T.

sampled surface

zV‘ -~
- range value
£, — 4~
I 1

1
|
. ! b !
image ° ° o
domain ! o o
| o
(o]

Fig. 8 Partition of image domain with a triangulation and definition of €(v).

Different strategies are possible for choosing the next triangle to refine. For
example, we can sort the triangles in ACTIVE_LIST based on their approximation
error in a descending order. In this way, the worst approximated triangle will be first
refined each time. However, the additional computation cost is needed. In the results
presented below, we used a simple strategy in which the first triangle in list is taken.

5. Experimental Results

The proposed scheme has been applied to several range images from the NRCC
range image database [RIOU-88]. We present some of them as examples to illustrate
various aspects of this scheme. These range images are originally coded in 16 bits and
have been requantized into 8 bits. In the following, we first present the various results
of the adaptive approximation phase for the example image discussed above. We then
present the results on both the characteristic extraction phase and the adaptive approxi-
mation phase for other objects.

Block Image 1

The object of the previous example is a subpart of the NRCC range image "BLOC
27" (Fig. 9(a)). Its extracted surface characteristics have been shown in Fig. 4(b).

Beginning from a polygonization of the surface characteristics with an error toler-
ance of 4 sampling units (61 segments in Fig. 9(b)), the adaptive surface approxima-
tion scheme with the max-min angle criterion was first applied by setting the logical
variable REQUEST to false. This resulted in 160 triangles when € =4 (Fig. 9(e)) or
349 triangles when € =2 (Fig. 9(h)). REQUEST was then set to true with a new
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polygonization error tolerance equal to 2, the approximation scheme was applied and
resulted in 84 segments (Fig. 9(c)) and 205 triangles when € = 4 (Fig. 9(f)) or 373 tri-
angles when & = 2 (Fig. 9(1)).

The adaptive approximation with the quasi-G1 continuity criterion was then
applied with REQUEST = false on the polygonization results shown in Fig. 9(b),
which resulted in 134 triangles when € =4 (Fig. 9(d)) or 273 triangles when € =2
(Fig. 9(g)). We see that the number of triangles was reduced compared to the results
obtained above. We have found that for surfaces having a preferred direction (the
example object has a cylindrical surface), using the quasi-G' continuity criterion
results in less number of triangles. By examining the domain triangulations in Fig. 9,
we see that the shape of the triangulations shown in Fig. 9(d) and (g) follow better the
preferred direction of the example object.

Due to the limited space, we will present only two surface approximation results
for other objects which are obtained by using the max-min angle criterion.

Block Image' 2

This block object is also a subpart of the NRCC range image "BLOC 27". From
Fig. 10(b) and (c), we see that the CY and C! discontinuity edges have been very well
detected. Because the object is composed of only planar surfaces, no curvature
extremum edge is detected. The polygonal approximation of the left- and right-side
edges of the object has resulted in many edge segments (Fig. 10(g)). This is because
the quantization of a strongly slanted surface can result in an aliasing phenomenon.
Telephone Image

This is the NRCC range image "TELE 1". The telephone wire has been masked
out and the background set to zero. Four false C! discontinuity edges have been
detected on the telephone (Fig. 11(c)) The reason is that for a surface curved like a
smooth roof, our detector will detect a false C! discontinuity edge along the roof
when the image resolution is not high enough. Solving such ambiguities necessitates
a priori knowledge of the object surfaces and the image acquisition setup.

Face Image

This is the NRCC range image "FACE 30" (Fig. 12). Because the image consists
of many curved surfaces, we did not use the detected C ! discontinuity edges which
were mostly false. The most interesting results about this image are the edges of max-
imum curvature extrema at the "eye", "nose", and "mouth" parts of the face, which are
meaningful enough for recognizing the face.
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Fig. 9 "BLOCK 1": (a) shaded display of the range image; (b) (c) Polygonization
results with € set to 4 and 2, respectively; (d) (g) triangulation with the quasi-G' con-
tinuity criterion performed on (b) with € set to 4 and 2, respectively; (e) (h) triangula-
tion with the max-min angle criterion performed on (b) with € set to 4 and 2, respec-
tively; () (i) triangulation by max-min angle criterion performed on (c) with € set to 4
and 2, respectively;
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Fig. 10 "BLOCK 2": (a) shaded display of the range image; (b) (c) C 0 and C'! discon-
tinuity edges, respectively; (d) maximum curvature extrema; (e) complete set of
extracted edges; (f) edge-junction graph with labeled edges; (g) polygonization; (h) (i)
domain triangulation with error tolerance set to 4 and 2 units, respectively.
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Fig. 11 "TELEPHONE": (a) shaded display of the range image; (b) (c) C° and C!

discontinuity edges, respectively; (d) maximum curvature extrema; (e) complete set of
extracted edges; (f) edge-junction graph with labeled edges; (g) polygonization; (h) (i)
domain triangulation with error tolerance set to 4 and 2 units, respectively.
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Fig. 12 "FACE": (a) shaded display of the range image; (b) (c) C 0 and C! discon-
tinuity edges, respectively; (d) maximum curvature extrema; (e) complete set of
extracted edges; (f) edge-junction graph with labeled edges, (g) polygonization; (h) (i)
domain triangulation with error tolerance set 10 4 and 2 units, respectively.
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6. Conclusion

In this paper, we have proposed an adaptive surface approximation scheme based
on a constrained surface triangulation. A significant feature distinguishing this scheme
from the other ones [FAUG-84,DEFL-85,LEE-89,DELI-91] is that the constructed
surface model embeds pre-extracted surface characteristics. Such surface models can
be used for many applications. For example, for a face image segmented into its com-
posite subparts like "nose'", "eye'', and "mouth", the extracted subpart boundaries can
be embedded into the constructed face model. This model would be very useful for
face animation where the face models have frequently been constructed manually
[THAL-88].

One possible extension of this work is to use smooth rather than flat surface prim-
itives in the approximation scheme. We have already used a triangular Gregory-Bézier
patch model in a non-constrained surface approximation scheme [SCHM-91b]. A con-
strained piecewise surface constructed with such a patch model can have various
degrees of continuity depending on the locations and the types of the detected surface
characteristics. Preliminary results have been obtained and will be reported elsewhere
[CHEN-92].
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1 Introduction

The preservation of collinearity relationships under geometric operations is important in
computer-graphics applications that manipulate line arrangements in engineering drawings
and geographic information systems. Finite-precision computer implementations of these
operations do not generally preserve these relationships. We show that for a wide class of line
arrangements, any specified collinearity relationships can be preserved, without extending the
precision, at the expense of a bounded displacement of the vertices of the arrangement.

Consider a set of points on the integer grid subjected to a projective transformation. The
transformed points will have rational-valued coordinates. If we wish to store these coordinates
with the same number of digits as the original data, as is customary in most graphics
environments, we must approximate the rational-valued coordinates by integers. This is the
case whether we use "integer" or "floating-point” computer arithmetic. The most common
methods of approximation are truncation and round-off (Figure la). These methods do not
necessarily preserve the collinearity relationships that may have existed among certain subsets
of the original point set. Thus, the primary reason for using projective transformations is lost.

Our objective is to preserve at least some of the collinearity relationships by resorting to a
more refined approximation. The collinearity relationships that we attempt to preserve are
those that are the immediate consequence of the input specifications that postulate that certain
subsets of points lie on a straight line. For instance, the point of intersection of two line
segments will lie on both approximated lines, provided that the intersection point is explicitly
represented as collinear in the original data structure (Figure 1b). Derived relations, such as
those postulated by Pascal’s and Desargues’ theorems [Coxeter 61], may be lost, unless the
vertices resulting from the construction are explicitly specified to be collinear.

Collinearity constraints that intrinsically cannot be represented by discrete points with
rational coordinates do exist. Consider, for example, the sets {AOF, COH, EOJ, GOB, IOD,
ABDE, CDFG, EFHI, GHJA, IIBC}, where the points A...J form the vertices of a five-
pointed star and O is the "center". We do not attempt to approximate overconstrained line
arrangements.

Even rotations can be approximated by rational transformations [Franklin 84]. Collinearity
also plays an important role in Boolean operations that require intersecting pairs of line
segments. The failure of preserving collinearity can often be observed in the output of
drawing software, where the underlying integer grid (the display screen or 300 dpi printer) is
far coarser than the internal 16-bit or 32-bit representation. We are concerned with both
visible distortions and with inaccuracies in the data structure, which may give rise to
inconsistent topology or incorrect answers to geometric queries.
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Our approximation strategy is based on the continued-fraction expansion of the slope of a
line. We have previously applied continued-fraction expansions to vertex approximations
governed by location constraints [Mehta 91, Mukherjee 92b] rather than incidence
constraints. The derivation of the approximation of a single set of collinear points is given in
[Mehta 92], and the graph representation for line arrangements is introduced in [Mukherjee
92a). Here we demonstrate a new back-tracking algorithm for approximating a certain class of
line arrangments, which yields much lower error than our earlier single-pass method and
seems to us eminently practical.

The computational complexity of the algorithm and the bound on the maximum error (i.e., the
error of approximation of the point with the maximum error) are both linear in terms of the
number of vertices in the figure. The bound on the maximum error is also proportional to the
square-root of the largest integer used in the computation. We argue that the class of
geometric figures that the algorithm can approximate corresponds to those that usually occur
in engineering applications.

teapesponecgenpesprspermemecee
soe e e, S

Figure 1. Round-off destroys the collinearity between the end-points of two lines and
their point of intersection (a). The collinearity may be preserved by small displacements
of the end-points (b).

2 Approximation of a set of collinear points

Consider a set of n collinear points pj with rational coordinates. Without loss of generality, we

let the points pj lie on a ray L in the first quadrant. (We can translate any point set or rotate it
by multiples of n/2 without error.) Let the slope of this ray be c¢/d. Thus,

pi = (aj/bi ¢, aj/bi d), i=1,2,...,n

where aj, bj, ¢ and d are all integers smaller than N, the largest representable integer (in
contemporary digital computers, N is typically 216 or 232),

We will approximate ray L by another ray L’ with slope c¢’/d’. Each point pj will be
approximated by point gj, where

gi = (ei’, fi’), where ei’, fi’, are integers smaller than N, and ej’/fi’ =c’/d’.
Therefore the points gj have integer coefficients, and the error of approximation is:

E = max; [ (ei’ - ai/bi ¢)2 + (fi’ - ay/by d)2 11/2
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Figure 2. Successive approximations to a ray with slope ¢/d = 5/7 = 0 + 1/(1 + 1/(2 + 1/2)).
The approximating rays straddle the original ray with increasing offset and decreasing
integer spacing.

3 Continued fraction approximation

Our objective is to choose ¢’ and d’ so as to minimize the least upper bound on E. Consider
the continued fraction expansion of c/d:

c/d = up + 1/QUm1 + 1/(Um2 + 1/....1/u0))

We obtain the slopes for successive approximating lines by omitting terms from the end.
For the example of Figure 2, the slopes of the successive approximating lines are:

c/d =co/do=5/7; ci/di=2/3; ca/d2=1/1; ca/d3=0/1.

As we omit terms by setting successive uj’s equal to infinity, each slope will differ more and
more from the original slope c/d. The final approximation is either the horizontal or the
vertical axis, depending on whether u, is O or not. (Note that we have assumed that
approximating line passes through the origin.) At the same time, the magnitudes of the
numerators and denominators of the successive approximations of the slope decrease,
increasing the density of integers on the approximating ray. On an approximating ray with
slope cy/d;, the distance between integers is (c;2 + dj2)12.

For any point pj, the error E has two components (Figure 3):
1. The distance from pj to the closest point q’j on the approximating ray; and

2. The distance from gj’ to the nearest integer qj on the approximating ray.
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Figure 3. The error of approximation of an arbitrary point on the ray has two
components: the offset |p - q’l, and the distance |q’ - q| to the nearest integer on the
approximating ray.

The first of these components, called offset, increases approximately linearly on successive
approximations (as terms are omitted from the expansion) because of the increase in the
(small) angle between L and L. The offset is also proportional to the distance of pj from the
origin (which is bounded by the length D of the line). The second component is, in the worst
case, inversely proportional to the density (c;2 + dj?)-12 of integer points on the approximating
ray, which increases as the square root of the sine of the angle between the rays [Metha 92].
The key equality, [(c2 + di2)(cj+12 + dj+12)]-12 = sin 16}, - 8], is an immediate consequence of
the unit-area property of lattice cells on the integer grid.

Instead of finding the minimum value of the sum of the two orthogonal components, we
minimize the maximum of the two. The minimum of the maxima occurs when the two
components are equal and can be shown to be O(D1/3), where D is the length of the line in
units of integers. Figure 4 shows the offset oj and the half-spacing sj plotted against the
difference tj between the slopes of the original and the approximating ray, where

0; = (ce? + dg2)12 sin (itan-1 co/do - tan-1 cy/dy),
Sj =12 (Cj2 + djz)lﬂ,
tj = lco/do - ci/djl .

This simple calculation does not take into consideration that the approximation is not
continuous, and that it is therefore possible that the theoretical minimum occurs between
successive approximations. The absolute worst-case error is O(D1/2) [Metha 92]. However,
the worst case applies only to some very special lines.

An algorithm based on the above bound allows us to approximate any line segment L with
only one point fixed (above, it is the origin). We call lines of this type one-constrained.
Regardless of where the collinear points are located on L, the error is bounded by N1/2, The
time complexity of the computation for » collinear points is O(n + log N), because log N is
the maximum number of terms in the continued fraction expansion of a fraction with
numerator and denominator bounded by N [Knuth 81].
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Figure 4. The offset increases and the spacing decreases as a function of the absolute
value of the difference between the slopes of the original and the approximating ray.

4 Approximation of two-constrained line segments

Consider now a line segment L] whose end-points are constrained to lie on two other line-
segments, L) and L3 (Figure 5). We call such line segments two-constrained. The nominal
position of L1 is defined by the best approximations of its end-points, as given by the
approximations of L2 and L3, respectively. To approximate L1, we shift its end-points along
the constraining lines L2 and L3 in either direction from their nominal positions. For each
integer position of either end-point, the deviation of every point on Lj is determined. If the
maximum error is within a preset bound, the algorithm proceeds to the next line to be
approximated.

The maximum deviation of the end points is also governed by the preset bound: once it is
reached without obtaining an acceptable approximation for all the points on L, nothing
further can be done without backtracking to alter L) and L3.

As in the case of a one-constrained line, the maximum error has two components. The offset
in the location of the endpoints is introduced by the approximation of L2 and L3 in the
previous stages, and is bounded by O(N1/2). The other component of the error depends on the
sparsity of integers on L1, which in turn depends on its slope. The slope of L.1 depends on the
constraining integer points on L2 and L3.
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5 Graph representation of a line arrangment

We approximate the lines that form geometric figures in such an order that we never have to
approximate any but one-constrained and two-constrained lines. Line-arragements where such
an order exists are called under-constrained line arrangments. Most engineering drawings,
circuit diagrams, flow charts, etc., are of this type. Meccano constructions also generally
correspond to underconstrained arrangments, since building an over-constrained arrangment
would generally require solving a difficult integer-programming problem! However, see
Figure 6 for the simplest example of an arrangement that is over-constrained, and perhaps try
to construct it with a Meccano set. This arrangement occurs repeatedly in the one mentioned
in the Introduction.

We represent a line-segment arrangement by a graph G(V, E), with V the set of nodes, and E
the set of arcs. Each collinear set is a node in V, and a point shared by two collinear sets is an
arc. If a point is common to more than two collinear sets, we represent it by a hyper-arc. The
graph representation does not have any dangling edges or vertices, neither does it have any
self loops. Line arrangements that can be approximated by successive approximations of one-
constrained and two-constrained lines can be characterized recursively in terms of this graph
representation.

Figure 5. An approximating point with integer coordinates on line L1, whose end-points
are constrained to be incident on previously approximated lines L2 and L3.

Figure 6. The simplest example of an over-constrained line arrangment, and its graph
representation.
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Under-Constrained Graph:
A graph G(V,E) is under-constrained if there exists some node v in V, such that degree(v) <=
2, and G-v is an under-constrained graph.

We now present an algorithm for the approximation of a line arrangement characterized by an
under-constrained graph. This algorithm approximates the two-constrained lines in arbitrary
order. The slope of each line is expanded in a continued fraction, and the integer point on the
resulting line nearest to each vertex on the original line is determined.

1. Obtain the Graph-Representation and sort the nodes according to their degrees.
2. While the Graph contains a node

Find a node of degree <=2
if there exists such a node
push the node on to a stack
else declare: OVERCONSTRAINED and exit.

3. While the stack is not empty

‘Pop a node from the stack
Approximate all points on the line.

6 A back-tracking algorithm for approximation

The above algorithm does a good job approximating line segments in a local sense. It fails,
however, when points on these line segments define further lines, which may also contain
points that lie on still other lines as well. In the simplest instance, the density of integer points
on a line L1 is not taken into account in the approximation of two one-constrained lines L2
and L3, which contain the end-points of L1. Therefore the error of points on L1 may be
unacceptably large.

In the drawings that we have studied to date, the portions that were difficult to approximate
were not uniformly distributed throughout the drawing, but confined to isolated patches. It
makes therefore sense to devote more computing resources to these areas.

Our back-tracking algorithm is similar in spirit to Dobkin’s and Silver’s approximation of
iterated pentagons [Dobkin 88]. We check on approximating each point on a line whether the
error is acceptable. If it is not, we perturb the location of the parentlines, and try again. This
is done recursively, so that all possible configurations - subject to the chosen order of
approximating the lines - are tried. This algorithm tends to distribute the errors uniformly
along all the lines. We have found that a few iterations normally suffice to reduce the error
considerably. The algorithm is given overleaf.
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1. Obtain the Graph-Representation and sort the nodes by their degrees.
2. If it is underconstrained, then obtain the list of lines.
3. Recursively approximate the lines.

recursively_approximate(line)
if(test.condition(line))
if(line->next_line <> NULL)
recursively_approximate(line->next_line)
else "DONE"
else
if(line->previous_line <> NULL)
recursively approximate(line->previous_line)
else "TRY ANOTHER ERROR BOUND"

test_condition(line)
update_slope_list(line);
while (slope_list(line) <> NULL and check_error(line) > Bound
get_next_slope(line)
approximate_all_points(line);

if(done)
return(1)
else
return(0).

7 Experimental results

We show results on two geometric figures, a Howe truss and an airport layout (Figure 7).
Both figures are represented on a 1000 x 1000 grid: any finer grid would preclude visual
observation of the deviations. The maximum diameters of both drawings are between 500 and

600 grid units.

In each case, the figures are represented by a set of infinite lines with rational-valued slopes.
The vertices are then obtained by intersection. The results obtained by round-off are shown in
Figure 8, by the one-pass algorithm in Figure 9, and by the backtracking algorithm in Figure
10. The corresponding maximum deviations are shown in Table I. When the bound is
decreased further than the minimum values shown, the backtracking algorithm does not find a

solution.
Table I - Maximum Error in Vertex Placement
Truss (N = 1000) Airport (N = 1000)
MAX-ERROR MAX-ERROR
One-pass 41 One-pass 65
Bound =45 38 Bound = 30 24
Bound = 30 14 Bound =20 18

Bound = 15 14 Bound = 10 8
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Figure 7. Two line drawings: a Howe truss and an airport layout.

Figure 8. The results of scaling up and down the figures by a factor of 5, using round-off.
The geometric errors introduced by round-off are circled.
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Figure 9. Approximating the figures after scaling, using the single-pass algorithm that
preserves the specified collinear relations.

Figure 10. Approximating the figures after scaling with back-tracking. The
displacements of the vertices are less than in Figure 9.
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8 Conclusion

We have shown that the continued-fraction expansion is a useful tool for preserving
collinearity constraints. Eventually we hope to extend our results to incidence constraints for
parallel and perpendicular lines, and to coplanarity constraints in three dimensions.

Even the absolute worst case bound of O(D1/2) yields a useful engineering approximation.
Few engineering designs require dimensioning tolerances smaller than 1 part in 10,000, i.e., 1
micron in a part with a 1 cm diameter (comparable to the coefficient of thermal expansion).
Suppose that the error of approximation is of the same order as the tolerance:

D1/2/D = 1/104 > 1/216,

Then D < 232, which is a reasonable degree of precision for integer representation in any
contemporary computer.
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Abstract

In this paper, we present the development of an interaction simulation model between
deformable objects which deal with both collisions and prolonged contacts. The model
involves reaction forces (in the normal direction) and friction forces (in the tangential
direction). Friction forces are classified as either kinetic friction when the objects are
slipping on each other, and static friction when the objects are stuck. This model is
developed in the framework of a modular system for dynamic simulations: The Cordis-
Anima system.

In a first part, we will consider the existing physically based methods for movement
generation in computer animation and their capacity to tackle the problem of interacting
objects. These methods are essentially based on a continuous representation of matter.
Then we will present the general context in which our interaction model was developed: a
formalism for discrete structural modelling specially directed towards the representation of
interactions. The third part is devoted to the description of our interaction model. And
finally, we will describe several simulations achieved thanks to the modelor-simulator
Cordis-Anima and using our surface interaction model: several kind of wheel drive
vehicles crossing over various terrains.

Key-Words : Physical modeling - Animation - Robotics

I. The problem of interaction in computer animation

At present the use of movement generation models based on Newtonian mechanics for the
creation of computer animated images is widespread. Models of this type, all designated by the
generic term of physical models have been developed basically for the purpose of creating
sequences of realistic movements automatically.

I.1 Continuous models

For about a century now, engineer mechanics has offered numerical models based on a
continuous representation of matter enabling the explicit calculation of the movements of certain
objects when they are submitted to a set of forces [Bam81, Cia85]. Over the last few years, a
great deal of the work carried out by computer animation researchers has consisted in adapting
and applying these mechanical theories to the computer context. One of the major problems that
arises here is hidden behind the term ‘interaction’. Indeed, the theories of mechanics specify
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how to calculate a movement from a given set of forces, but they generally omit to be more
specific about the way these forces appear in the mechanical system in question.

Today, there are several methods based either on forces or on impulses for the calculation of
the dynamic behavior of interacting rigid objects [Hah88, Dum90, MW88, BB88, Bar89-90].
However, most of them propose distinct models for collisions, i.e. instantaneous (high speed)
collisions and for prolonged contacts, while others merely omit this last case. More recently,
Baraff [Bar91] proposed an analytical method for the calculation of static and dynamic friction
forces during prolonged contacts between non-penetrating rigid objects. But, as a consequence
of choosing the context of purely undeformable objects, Baraff has to deal with indeterminate
and inconsistant contact situations and cannot define a unified model.

These different methods have enabled the production of very satisfactory sequences of rigid
object animation. However they are totally inadequate when the interacting objects are
deformable. In fact, classical mechanics offer no general method for the description of
collisions between two deformable objects. In computer animation, only the case of instant
collisions has been treated in a relatively general manner [MW88, Gas89] (we must point out
that M.P.Gascuel proposed a hybrid model made of a discrete deformable skin surrounding an
articulated rigid body. see §1.2). But, most of the time, the foregoing techniques are limited to
interactions between a deformable object and a rigid polygonal object and are well adapted only
to the specific application they were designed for [GTT89, TPBF87, PB88].

Thus, it appears that, although continuous models can directly access a representation of the
dynamic characteristics of certain classes of objects, they are not well adapted to interacting
objects, and all the less to complex interactions involving subtle phenomena, for example those
relating to the microscopic roughness of the surfaces in contact.

1.2 Discrete models

Discrete models represent a totally opposite approach. In fact, at a first stage, the discrete
model does not deal with the object’s shape. The shape is a result of an interpretation of the
physical model’s behavior. The aim is no longer to superpose an analytic mechanical model on
a given geometrical model but rather to represent interacting physical systems directly from a
spatially dicretized model, i.e. by organizing elementary physical primitives. There are only a
few applications of this type of model for computer animation. In fact, they are used principally
when it is not possible to represent the desired phenomenon with a continuous model, and they
are implemented specifically for a given context [TPF89, Mil88, CHP89, VG91]. An
interesting approach based on a layered model using structured discrete model can be found in
[Gas89]. The proposed method deal with the interactions between articulated bodies having a
more or less thick elastic skin, while taking into account the relative stiffness of the objects and
various propagation modes for the deformation.

Finally, it appears that if certain methods are interested in dealing with non penetrating
objects, none of them has tackled the problem of interaction in general .

II. Cordis-Anima: modular system for animation by
discrete physical models

For about ten years, the researchers of the ACROE have been working on the elaboration of
a general formalism and computation methods for a physical object modeler-simulator [CFL81,
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CLF84, Luc85, LJC91]. The purpose of this work is the development of a complete system for
animation and music synthesis. (This aspect will not be discussed in this paper but both
applications share a large common basis). The major characterisitics of this system can be
summed up by the two following paradigms:

* Modularity : the system must enable the operator to construct all types of objects from a
given set of components (physical primitives). It follows that any sub-object of this
system must have the same communicational properties as the object itself.

* Experimentability : the transition between the specification of the model and the
simulation algorithms that implement it must be as quick and as flexible as possible. In
this way, at any stage of the modelling, the operator can carry out a great number of
simulations in order to refine the model.

The above prerequisites directed the choice of representation towards discrete models, i.e.

towards a discretization of matter as set of material points and an explicit expression of the
interactions between these points.

Y. forces force 1 force 2

position position |  position 2

<MAT > <LIA > Discrete network

Linear and Piecewise Linear

force functions Finite State Automaton

Gue ) =5, CGae2)
DorV ,j&
N g ==

F

figure 1 : Cordis-Anima general formalism

With the Cordis-Anima formalism, all objects are represented by a discrete network
consisting of only two types of components which are idealized representations of basic
physical objects: the matter component (<KMAT>), which represents a punctual mass (no spatial
dimension) and the link component (<LIA>) which represents the interactions between
punctual masses (figure 1). In the simplest case, the link component represents a spring or a
damper (which have no inertia).

The combination of primary viscous-elastic behavior is done in a natural way with the
Cordis_Anima formalism. Two punctual masses can be connected by several link component,
the resulting force being the sum of the forces produced by each link. Moreover, link
components must enable the representation of any type of discontinuity, such as those involved
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in collisions. Therefore, besides linking mass components, they must fulfil another logical
function. This function consists in making these links according to a state automata logic with
or without memory, in order to modify the behavior of the material according to the values of
certain of the system’s variables as distances, relative speeds or forces (figure 1). The model
presented in the following paragraph is based on the foregoing mechanism.

II1. Interaction model taking into account surface
friction

III.1 The standpoint of classical physics
This model involves particularly the microscopic roughness of the surfaces in contact. When

two pieces of matter are in contact, several phenomena may occur, but all raise a common
problem: how to know what is happening on the borderline between the two objects (figure 2).

figure 2: the microscopic roughness of the surfaces

The phenomena that can be observed when the objects are brought into contact result from a
great number of interactions between the different rough patch of the surfaces in contact, and
this all the way to the molecular level. At present it does not exit any characterization of these
miscroscopic interactions called cohesion or ‘adhering’. That is the reason why all these contact
situations have been characterized at a macroscopic level, i.e. by a set of experimental laws.
The most widespread among these laws is known as the Coulomb meodel.

According to this model, there are two states in contact situations: a ‘kinetic state’, in
which both surfaces in contact are slipping on each other, and a ‘static state’ in which they
are not (They stick together). These two states are associated respectively with two friction
coefficients py and pg (for most of the known materials p, is smaller than ).

II1.2 The algorithmic model

The algorithmic model that we have developed from the Coulomb model and that we habve
called “the dry friction model”, follows a previous work on surface interactions involving
viscous friction (damping forces) [JLR91].

The objects in contact are modelled with agglomerates [LJR91]. They are presented as a set
of punctual masses associated with visco-elastic interaction modules (link components) that
define a spatial bulk. In the case of more or less cohesive objects, these masses would be
linked together by cohesive interactions (calculated according to piecewise linear force
functions). The agglomerate is a physical model of matter which enables the generation of fixed
obstacle borderlines as well as mobile and deformable objects of various shapes [JLL 91-92]
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(figure3). Indeed the agglomerate is a model that allows the construction of pieces of
heterogeneous matter presenting non-linear visco-elastic properties, pasty plasticities and
fractures. This is why it is specially suitable for representing various kind of natural terrain.

AN
_\\\\‘\“ o NN

figure 3 : a model of agglomerate : mobile body and rigid (ground type) fixed
obstacles.

The algorithm that we have developed controls the relative position of the bodies and the
interaction forces (should they be free or in contact and should the contact be a collision or a
prolonged contact.) Therefore it is composed of a three state automata defined within the
Cordis-Anima formalism (see preceding paragraph and figure 1). The first state correspond to
the case in which the bodies dont touch each other (according to their specific spatial bulk), the
two others deal with colliding bodies and with bodies in resting contact. In this last case, the
static contact state is involved when the relative splip is small whereas the slipping contact state
correspond to large slip. To each state is associated a specific force calculation (figure 4).

Ehe free state: the bodies are not in contact, the interaction F=0

orce equals zero.

[The state of slipping contact: the bodies are in contact
with a non-zero slipping speed (i.e. Speed > threshold), the
force is composed of a non-penetration-force and of a force
which opposes to the relative motion of the surfaces.

[The state of static contact: the bodies are in contact but
with a slipping speed near zero (the speed will be compared
with a threshold), the force is composed of a non-penetration-
force and of a gripping-force.

F = Non-penetration +
resistance to the
surfaces’ motion

F = Non-penetration
+
adhesion

figure 4: the three state automaton - free, static contact and slipping contact.

The automaton controls the transitions between these different states according to the results
of tests carried out on the system’s variables: the distance between the two interacting masses,
the relative tangential speed at the contact point and the value of the non-penetration-force. It
should be pointed out that the apparent volume of our objects is only a result of the visco-elastic
component set between each couple of interacting mass, and which define a spatial bulk.
Indeed the surface of our objects is no more than an interaction border on which there is no
mass. Therefore, in order to localize the interaction on the surface of contact, it is necessary to
use a material point at the place where this interaction occurs. In order to achieve this, the
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algorithm that we have developed generates a virtual point which is used for the calculation of

the adhesion force in the case the automaton is set to the static contact state.

II1.2.1 Calculation of the non-penetration-force: Fyp

As stated above, a visco-elastic interaction component is set between each couple of masses
which are supposed to interact. In the case of structured (strongly cohesive) agglomerate, this
component is only set between the masses of the skin-deep layer. This interaction component
provides each interacting masses with a non-penetration area. In the simplest case, the forces
which result from this spatial bulk is computed according to an ‘elastic-buffer’ model (figure
5), but we could use piecewise linear approximation of any function (e.g. an exponential-buffer
instead of an elastic one). When prolonged contact occurs between the interacting objects, the

force produced by the ‘elastic-buffer’ corresponds to the normal surface reaction.

N

7

ifDist>T==>F=0
elseF=k*D-T)

Ehd N
e +* F
\ "0 \ N
N N Threshold = R1 + R2
\ > R
mass 1~ - m;1§s 2 i | =
radius = R1 radius = R2 Distance

figure 5: the elastic buffer.

II1.2.2 Calculation of the slipping-force: Fgjip

As the slipping-force opposes the relative slipping of the surfaces in contact, its direction is
the opposite of the tangential speed. According to the Coulomb Model, this force is
proportional to the normal reaction. This slipping-force calculation is illustrated in figure 6.

— —
mass 1: posit Py , speed Sy

— -
mass 2: posit Py , speed S

Let, —_ >
relative speed S = S-S,
— —
and U= BB /[ RB
We have,
N dS _=(S+PP )*U
ormal spee SNO—( ¢ Ple)
T S.=S.-5.
angent speed 6 Sr' No
and finally, - §T
g
FSlip =- uk*”an” *”§> ”
Tg

figure 6: slipping-force calculation
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I1L.2.3 Calculation of the gripping-force (static contact): Fgrip

The algorithm described in this paper only concerns point-surface interactions. With the
Cordis-Anima formalism, this comes down to decide that one of the two interacting masses is
bearing a given (non-empty) non-penetration area while the other is not. With the elastic-buffer
model described above for example (figure 5), it comes down to choose T = R} and Ry = 0.
Let us explain now how to compute the gripping-force in this case.

As stated above, the automaton needs to generate a virtual point when the static contact state
is reached, i.e. when the relative tangent speed of the bodies in contact becomes lower than a
given velocity threshold. In the point-surface case the virtual point’s position is equal to the
position of the point at the time it begins to interact with the surface (figure 7).

—
V=P1P2

virtual point
interaction border line
point/surface interaction component

figure 7: Introduction of a virtual (contact) point

Once the virtual point position is defined, the gripping-force is calculated according to a
gripping (visco-élastic) component, e.g. a spring-damper unit, fixed between the interacting
point and its associated virtual point. The automaton leaves the static contact state, and thus
disables the gripping component, as soon as the gripping-force becomes larger than a force
threshold (the de-grip threshold) whose value is given by the coulomb model:

Force Threshold = ps * Fy

This force threshold and the formula used to calculate the slipping-force Fyy;;, (figure 6)
characterize the Coulomb model.

IIL.3 Application : simulation of wheeled vehicles crossing over
various terrains

The surface interaction algorithm was used to achieve the simulation of the interactions
between vehicle wheels and various terrains composed of fixed and mobile elements.

Several models for the physical simulation of vehicles have already been proposed by
several researchers for the purpose of computer animation [AD92], scientific simulation for
automobile industry [ADH91] and driving simulator systems [DBD88]. In each case the vehicle
was modeled as a set of linked rigid bodies according to modern car manufacturers’
specifications (the model developed for the purpose of animation is a simplified version of the
one used for scientific simulation). To simulate the interactions with the terrain (typically road-
tire interactions) the authors use behavorial laws (i.e. experimental data giving the forces as
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functions of normal reaction, slip angles, etc..) while the vehicle model itself only presents
punctual wheels.

The purpose of the simulation tests that we have realized was rather to assess vehicle
concepts defined in the framework of the development of autonomous planetary mobile robots
intended to progress over little known natural terrain. This work was done within the ‘VAP’
project of the French Spatial Agency (CNES).

In the particular case of a vehicle in a natural environment the interactions with the terrain,
which depend on the latter’s physical characteristics, are of prime importance and moreover
there exists no experimental data about the interactions with natural terrain such as muddy,
sandy or rocky grounds. For that, we need explicit physical models for the wheels, for various
kinds of rocks and deformable grounds, and for multi-punctual interactions between all these
elements. Beside this we used relatively simple models, from a mechanical and functional point
of vue, which correspond to the proposed vehicle concepts.

The model of vehicle presented here has four independant wheels each equipped with a
motor, and an articulated chassis. The wheels are more or less deformable according to the kind
of tires and present a set of masses on their edge (figure 8).

figure 8 : the general structure of the vehicle

The surface interaction module presented above was set between each wheel mass and the
elements making the ground. Figure 9 illustrates the principle of introducing a virtual physical
point in this case. It must be pointed out that this approach correspond to an adaptative
discretization of the surface of the terrain.

N Temporary virtual
physical point

(Q_D sticking interaction
module

figure 9 : Interaction modules set between the wheel mass and the terrain.
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The resulting simulations have been particularly realistic. Notabbly they show that the
wheels spin or skid in extreme situations, i.e. when the slope is too abrupt or when the
accelerations are too sudden. It aslo can be observed how “ightly deformable terrains, e.g. non
cohesive grounds or rigid grounds covered with mobiie pebbles can severely entail the
performance of the locomotion system.This type of behavior can not be represented if the static
part of adhesion friction is not taken into account and of course, even less with behavorial
laws.

IV. Implementation and Experiments

The general approach for animation using dicrete physical model described in this paper is
implemented and tested through the Cordis-Anima modeler/simulator [Luc 91.2]. The working
environment of this system includes a VAX 730, an Evans & Sutherland PS350 graphic
workstation, an array processor AP120, and gestural retroactive devices which have been fully
described in previous papers [Cad 81, Cad 84] . The fast communications between the
simulation processor (AP120), the graphic workstation and the retroactive device are performed
thanks to several dedicated processors. The whole system provides the user with real-time
simulation capabilities and with multi-modal communication tools.

IV.1 2D simulations of various deformable terrains

In these experiments we have used a 2D version of the vehicle presented above which is
composed of two driving wheels and a rigid chassis (figure 10). The model of the wheels
consist of set of punctual masses distributed on the outline of the wheel and connected by
elatic-viscous connectors as shown in the diagram on figure 8. As the wheels and the terrain are
deformables, multi-punctual wheel-ground contacts can occur. The movements are generated
using two independant torque generator with speed command (see the 3D vehicle command law
described in the following paragraph).

We have made experiments involving terrains with complex outline, some of them made of
plane ground littered with various size fixed blocks and others with mobile blocks (figure 11).
Between these two extreme cases, we have experimented several kinds of deformable terrain.
Non cohesive terrain can be characterized by parameters like compacity, internal friction,
resistance to shearing of or pressure-sinking law. According to the Cordis-Anima formalism,
these models are all made of several layers, each ones being made of a network of connected
punctual masses. These layers are characterized by the involved connectors representing the
non-linearities associated to the object boundaries -like internal friction-, or connectors defining
some structural modifications (elastic and plastic deformation properties), see [Luc 91.1]. The
different layers are combined to make up a terrain model capable of deep or superficial
deformations and presenting a given ‘state of surface’.

IV.2 Motion control for the 4-Wheel drive vehicle

As we have said above, the vehicle has four independant driving wheels and is provided
with an anti-rolling articulation on the front axle-tree. This articulated structure allow to
continuously maintain a sufficient number of contact points between the wheels and the ground
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when getting over some natural obstacles (rocks, small hills and hollows ...). This is achieved
by automatically modifying the configuration of the articulated mechanical structure under the
effect of gravity and of reaction forces produced by the wheels/ground interactions (figure 12).
The two axle tree are swivelling in the chassis plane, which allow, as well as the possibility to
apply different speed commands on each wheel, to follow the desired trajectory. But the
counterpart of this great manoeuvrability is the deep complexity of the command to apply to the
locomotion system. As mentionned before, we have apply only constant speed command law
and we have coupled together the pair of torque generator of each axle-tree while the swivel-
articulations was locked. And in fact this is the minimum to do to make the vehicle go straight
ahead (figure 13).
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figure 10: the 2D-version of the wheel-drive vehicle and a mobile block resting on the ground.

a)

b)

figure 11: a) the animated sequence starting from the situation on figure 10. b) the 2D-vehicle
crossing over two successive mobile blocks. (movement from right to left).
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figure 12.a and 12.b: the 4-wheel-drive vehicle and spherical rigid small hills (the chassis
adapts its configuration to the shape of the ground).

figure 13: the movements of the 4-wheel-drive vehicle when getting over the small hills.
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Abstract

I propose a new 4D interference check method among multiple 3D
moving objects. One characteristics of this method is using hexadecimal-
tree as a 4D spatial index. Another characteristics is using 4D polyhedron
to avoid direct treatment of curved surfaces which are boundaries of 4D
motion trajectories. Based on an appropriate 3D geometric modeling
system, I experimented on this method in a very simple case. I report its
results.

1. Introduction

4D interference check is required in many research areas. For
example, the robotics area requires it because robots must not injure
human beings, objects and themselves. Collision-free path planning also
requires it because planning itself is including 4D interference check.
Grasping planning also requires it to obtain the contact positions.
Movability check of mechanical parts and possibility check of mechanical
assembly also requires it. In the computer animation area, 4D
interference check is necessary to avoid physically impossible scenes in
which an object crosses another object [Moor88].

But there are many difficulties in the 4D interference check. At
first, it is very difficult for human to understanding 4 dimensional space.
Second, it is difficult to treat curved trajectories of 3D moving object.
Third, there are few geometric modeling systems which are fit good for
the achievement of 4D interference check. At last, amount of computation
is very large.

I use the 3D geometric modeling system based on the graph-based
tool [Inam89] to experiment on the 4D interference check method.
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2. Related Work

Most current methods for interference check are 3D interference
check [Boys79, Nobo87]. If such 3D interference check methods are
extended to 4D, time will be sampled appropriately and 3D interference
check will be performed at the each sampling point. However, they can
not be said to be a reliable check because such methods may fail to find
the interference between two sampling points. Figure 1 (a) shows this
situation. To perform the reliable check, continuous-time must be
considered as shown in Figure 1 (b).

to t1 t2

(a) Discrete-time (b) Continuous-time

Figure 1 Discrete-time and continuous-time

There are related works in the area of collision-free path planning
[Taka89, Fuji89, Sing87, Kamb86, Loza79]. However, they are
theoretical rather than experimental. Most of them are 2D. Moving
objects in them are usually simple shapes or points. They can not treat
complex shapes which appear in a practical world.

The octree was proposed for a 3D solid approximation [Jack80,
Meag82, Yama84] or a 3D spatial indexing method [Fuji85]. However,
octree is not suitable for rotations which usually often appear in
representative 6-degree-of-freedom robot manipulators. It is because the
octree is a set of cubes.

The concept of S-boundary and active zone [Came89] based on CSG
representation was also proposed for set operations and interference
check. However, they can treat only 3D solids and can not treat moving
objects. :

There had been no reliable (time-continuous) 4D interference check
methods which treat moving 3D complex-shape objects.
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3. A New 4D Interference Check Method

In this section, I explain overview of a new 4D interference check
method. This method is a time-continuous method and treats moving
polyhedral complex-shape objects.

The feature of this method is the use of hexadecimal-treefor a
hierarchical 4D spatial index. The hexadecimal-tree is the extension of an
3D octree [Jack80, Meag82, Yama84] to 4D. Hexadecimal-tree is defined
as follows:

hex = <Homo, X, y, z, t, width, interval>
‘where x,y,z and t mean the hypercube position,
width and interval mean the hypercube size
hex = <Hetero, hexp, ... , hex15>
for each i € [0, 15]; hexj is hexadecimal-tree.

The most significant advantage of hexadecimal-tree is that it makes
interference check time-continuous. Another advantage of hexadecimal-
tree is that hypercube division occurs only if there is collision possibility
in the hypercube. Another advantage of hexadecimal-tree is that it makes
space and time complexity linear about number of elements of objects.

For determining exactly whether interference occurs or not, it is
necessary to solve complex mathematical equations which represents the
boundary surfaces of motion trajectories. Solving such equations is not
practical. To avoid complex equations, the new method uses a set of
hypercubes which may intersect trajectory boundary. For judging the
intersection, the new method uses maximum velocity of moving objects.
At first, I explain mechanism of intersection judgement in 2D and show
how the new method is time-continuous. Figure 2 shows a 2D point
trajectory.



146

X max

X min
B
A
/ E CE =CF =V max (t max-t min)

V max ; maximum velocity

t min t max

Figure 2 A curved trajectory

The moving point is at A when time is tmin. The moving point is at B
when time is tmax. If you create polygon AEBF by using the maximum
velocity, the moving point must be in the polygon AEBF during time is in
the section [tmin, tmax]. If an object does not intersect the polygon
AEBF, the object must not intersect the moving point in the time section
[tmin, tmax]. This is time-continuous check. The length of an error bar
EF is adaptively decreased by division of the time section. In the case of
4D, the problem is more difficult, but the basic concept is the same.

I explain the algorithm of a new method with a hexadecimal-tree
spatial index. The new method checks interference among multiple
moving polyhedral objects. In the algorithm, faces whose trajectories may
intersect a hypercube corresponding to a hexadecimal-tree node are
linked to the hexadecimal-tree node. There is no interference in the
hypercube if no face is linked to the hexadecimal-tree node, or if all faces
linked to the hexadecimal-tree node belongs to the same object. In other
cases, some objects may intersect each other. Initial step of the algorithm
obtains the size of the 4D trajectory box covering all trajectories of all
faces of all moving polyhedral objects, and creates the root node of the
hexadecimal-tree spatial index, and links all moving faces to it. Algorithm
1 shows this step.
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?reate_hexad( world)

S_index = create_node()->self;

for all object in world {

for all 4D _face in motion of object {
" create_arc(S _index , 4D _face),

set sizeto S_index;

Algorithm 1

The function create_node() creates a root of hexadecimal-tree. In the
experiments, motions of objects are described by point-to-point motion.
The point-to-point motions are specified by a sequence of pairs of time
and C-space variables. A variable 4D_face indicates a pair of an object
face and one time section of the object point-to-point motion. The
function create_arc() links all face trajectories to the root node of the
hexadecimal-tree.

When some objects may intersect each other in the hypercube
corresponding to a hexadecimal-tree node, the hypercube is divided into
16 child hypercubes. Interference possibilities between each child
hypercube and trajectories of faces linked to the hexadecimal-tree node
are investigated. When there is interference possibility, the face is linked
to the child hexadecimal-tree node. Algorithm 2 shows this step.

divide_hexad(hypercube ) {
create 16 child hypercubes;
for all child_hypercube in hypercube {
for all 4D _face intersected by hypercube {
if inter_face4D_hypercube( 4D _face ,hypercube) then
} create_arc(child_hypercube,4D _face);

}
for all 4D _face intersected by hypercube {
| delete_arc(hypercube ,4D face);

Algorithm 2

In the case that the size of a hypercube is lower than the division
limit, the algorithm judges that there will be interference in the minimum
hypercube. In the case that there is no interference in all leaf
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hexadecimal-tree nodes, the algorithm judges that there is no
interference. This judgement is reliable. Algorithm 3 shows this step.

inter_check(hypercube ) {
if not exist two objects
such that both objects intersect hypercube then
return NOT_INTERSECT;
if size of hypercube < minimum acceptable distance then
return WILL_INTERSECT;
divide_hexad(hypercube);
for all child_hypercube in hypercube {
result = inter_check(child_hypercube);
if result is WILL_INTERSECT then break;

return result;

Algorithm 3

I explain the method which investigates interference possibility
between a hypercube and a face trajectory. To check interference between
a hypercube and a face trajectory, the method checks' interference
between the hypercube and each edge trajectory of the face, and checks
interference between the face and each cube edge at the first and the end
time of the hypercube. This method will miss the cases such that whole of
the hypercube is in the face trajectory. However, these cases can be
ignored by the following reason: If there is interference, an edge of a
polyhedral object and a face of another polyhedral object must exist such
that they intersect each other at a certain time. The algorithm never miss
the hypercube in which this intersection occurs even if division of the
hypercube is repeated recursively. Therefore, the algorithm is reliable.

I explain the method which checks interference between a
hypercube and each edge trajectory of a face. Generally, an edge
trajectory consists of a complex curved surface. To avoid the direct
treatment of the complex curved surface, the method approximates the
edge trajectory by 6 triangles using the maximum velocity of moving
objects. Figure 3 shows a moving polyhedral object. An edge which is E
at the time tmin is E’ at the time tmax. [tmin, tmax] is the time section of
the hypercube. At the time (tmin+tmax)/2, the start and the end points of
the edge are in the cubes whose size is 2Vmax(tmax-tmin)-
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2Vmax(tmax-tmin)

Figure 3 An edge trajectory of moving polyhedral object

The approximation by triangles is performed as the face trajectory

enlarges. Figure 4 shows how to perform triangulation.

X1
et A
PN
B A
Xo X
€o A
t = tmin 1= tmax

Figure 4 Triangulation of an edge trajectory
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At first, the diagonal XX is selected as the middle point of the diagonal
is outside the face trajectory. Secondary, the triangle X(0X1X is divided
into 3 areas A, B and C. The other triangle is also divided into 3 areas.
The edge trajectory may intersect the hypercube if the following
equations are satisfied:

[Xminki € [(L-){(1-p)x + pleg + A)} + r{(1-p)x + ple; + A} };
[(1-r){(1-p)x + pleg - A} + r{(1-p)x + pley - A} |; < [Xpax ki
(These equations correspond to the triangle A in Figure 4)

Xmink € [(l-f){(l‘P)Xo +pleg + A)} + f{(l-P)Xo + pley + A)} L
[(L-r{(1-p)xg + pleg - A)} + r{(1-p)xg + pleg - A} ; < [X nay )i
(These equations correspond to the triangle B in Figure 4)

[Xmin]i < [(l-r){(l—p)(el +A)+pxo} + r{(l-p)(el +A)+pxi})
[(1-{(1-pXey - A) + pxo} +r{(1-p)ey - &) + px;} |; < [Xpmay )i
(These equations correspond to the triangle C in Figure 4)

wherei =x,y,2, A =vVmax (tmax - tmin), 0<p<1, 0<r<1,

Xmin= <Xmin» Ymin> Zmin> Xmax = <Xmax> Ymax> Zmax>> tmin and
tmax are the ranges of the hypercube. All these equations above have the

same form as shown below:

0<Cyp+Cp+Cippr
02GC3+Cyp+Gopr
(i=x,y,z and Cij is constant.)

Considering that RHS of equations is monotone about both variables p and
1, possibility of existence of p and r is clarified by checking four points
(0,0), 0,1), (1,0), (1,1) and three straight lines p=1, r=0, r=1 on pr-
plane.

Algorithm 4 shows the step of triangulation of an edge trajectory.
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inter_face4D_hypercube(4D_face ,hypercube) {
obtain 4D face trajectory box;
if the box does not intersect hypercube then
return NOT_INTERSECT;
for all edge e in 4D _face {
if e(ty;n) or e(ty.y) intersect Aypercube then
return WILL_INTERSECT;
<v0, vi>=e;
if triangulation <v0 (ty,), VI (tge)> enlarge trajectory then {
if triangle <v0(tg), vO(tnay), vI (tnad)™>
intersect hypercube then
return WILL_INTERSECT;
if triangle <v0(tnn), VI (tnin), VI (tna)™>
intersect hypercube then
return WILL_INTERSECT;
} else {
if triangle <vO(tpin), VI (tnin), VO (tnax)>
intersect hypercube then
return WILL_INTERSECT;
if triangle <vI (tgin), vO(tnax), VI (tnax)>
intersect hypercube then
} return WILL_INTERSECT;

for all edge e in hypercube (ty,) {
if 4D _face(ty,) intersect e then return WILL_INTERSECT;

}
for all edge e in hypercube (tna) {
if 4D _face(tnay) intersect e then return WILL_INTERSECT;

return NOT_INTERSECT;

Algorithm 4

The main advantage of this method is that it makes the check time-
continuous as shown in Figure 1 (b). Another advantages are related to
the characteristics of the hexadecimal-tree. Hexadecimal-tree make time
and space cost linear about the number of elements of objects.
Hexadecimal-tree divides hypercube adaptively only if it is necessary to
divide.

4. Experimental Results

A prototype 3D geometric modelling system was developed about
three years ago [Inam90] based on a graph-based tool [Inam89]. The
characteristics of this system is that the system can treat other data
structures and that directed arcs can be created among all elements such
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as faces, edges etc. Based on this system, 4D interference checker using

hexadecimal-tree is implemented.

Table 1 shows the result of a very simple example. It shows two
motions with two objects. One motion causes collision, and the other is
collision-free motion. In the motion which causes collision, collision is
found by about 2 minutes. In the collision-free motion, it costs about 30
minuets and 1.5 Mbytes memories to authenticate collision-free. The

latter costs more because the latter investigates all 4D spaces.

collision collicion-free

complexity of shapes & motions

number of objects 2 2

number of components 5 5

number of faces 52 52

number of edges 120 120

number of control points 2 4
complexity of 4D spatial index

hexadecimal tree hieght 8 6

hexadecimal tree node 289 1713

number of arcs 1068 8958
complexity of computation

number of checks 6704 116000

number of intersections 1435 16064
time complixity (min.) 2.0 28.9
space complexity (kbytes) 369 1406

Table 1 Experimental results of check between simple two objects

Figure 5 shows 2D projection of 4D hexadecimal-tree and two moving

objects at the collision position and time.
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Figure 5 4D Interference position projected to a 2D plane

5. Discussion

The time-axis is not equivalent to the x,y,z-axes while the x,y,z-axes
are equivalent to each other. Ratio between space width and time interval
of hypercubes must be constant in a hexadecimal-tree. The current system
determines this ratio according to the minimum 4D trajectory box
covering all moving objects. It is considered that efficiency is the best
when this ratio is almost the same with the average velocity of moving
objects and when standard deviation of velocity is very small. If a very
fast moving object exists in the world where movement of most objects
are very slow, it is considered that efficiency of the system decreases
according to the difference of velocities. This fact may be a disadvantage
of the pure hexadecimal-tree.

The implemented 4D interference check system is a prototype, and
have many possibilities of improvement. 1) Maximum velocityis constant
in the current system. If maximum velocity is estimated for each object
and for each time section, 4D trajectory enlarging ratio becomes small. 2)
Required time is proportion to the number of faces in the current system,
and the current system can treat only polyhedron. In the case that there
are objects with many faces, it is better to use simple polyhedron
covering the object instead of complex polyhedron [Dai88]. 3) There are
duplicate calculationsin the current system. For example, the interference
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check is performed both at the inside and at the outside of the boundary.
This futility is eliminated by device of algorithms. 4) Parallel processing
for high speed check is considered. Because divided 4D subspaces are
independent, parallel processing is possible by checking interference for
each subspace independently. When parallel processing is applied, upper
bound of time complexity decreases from O(n) to O(log n) if each
hypercube requires the same order time, where n means number of
hexadecimal-tree nodes. Thus, the log n means the approximated height
of hexadecimal-tree. Space subdivision is also used in ray tracing for fast
check of ray intersection [Glas84, Kapl85, Fuji86]. Parallelism of such
ray tracing is usually about for each ray while parallelism of the 4D
interference check is about for each subspace. Of course, parallelism for
each moving object is considered, however, each process depends on each
other in such a case. In both cases, it is very hard to distribute tasks and
data to hardware elements for realization of parallel processing [Kuni891.

In the algorithm here, only pure geometry (kinematics) is
considered, and dynamicsis not considered. The algorithm uses the value
Vmax At (maximum velocity multiplied by time interval) as the error
range size. The values obtained from force and acceleration can be used
instead of Vmax At. Such methods are regarded as applications of
dynamics and they give better approximation of the range in which
moving objects exist.

In kinematics of robotics, there are concepts of C-space
(configuration space) and W-space (work space) [Loza83, Hayw86]. C-
space is a space of joint variables. W-space is a space of positions and
orientations of an end-effecter. The current system checks the
interference in the time-dependent subspace of the W-space generated by
parameters of the C-space. Usually, the concept of the W-space does not
depend on time. For the purpose of 4D interference check, time must be
added to the W-space because it is assumed that different objects pass
through the same point at the different time. In the 4D interference check
algorithm here, time division is adaptively and automatically determined.

6. Conclusion

A new 4D interference check method was introduced. The
characteristics of this method is that it is using hexadecimal-tree as a
spatial index, and that it is a time-continuous check and reliable. A
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prototype system was implemented, and some experimental results were
obtained.
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Abstract

The great potential provided by the existing 3D hardware and software provide us the tools for
modeling and displaying complete 3D physical objects in computer systems. Despite the
advanced ability to create and display 3D objects, there is a lack of interaction techniques by
which the user can intuitively manipulate these 3D objects and perceive information about them.

GIVEN (Gesture-driven Interactions in Virtual ENvironments) is a 3D interaction toolkit which
aims at aiding in the development of new 3D interaction and dialogue techniques. The user of
the GIVEN toolkit is not dealing any more with a picture of an object. He can directly
manipulate 3D objects using 3D input devices, such as spaceball and dataglove, for grabbing,
pushing and moving them.

With our first application, for virtual environments, we found out that very unnatural object
interactions happen if the collision detection, necessary for-the interaction, is made by using
only bounding volumes. Precise object interactions are required to let users grab, push and
position objects precisely in a 3D world.

For this purpose, a boundary representation was integrated to be used for the implementation of
an advanced collision detection scheme.

This paper describes an algorithm for performing the intersection of two polyhedra. New pre-
processing algorithms are explained in detail that speed up on average the overall performance
of the intersection algorithm. Robustness is achieved by propagating all topological information
immediately to the neighbor faces. The application of this algorithm inside GIVEN is also
presented.

Keywords : Collision Detection, Intersection Algorithms, 3D Interaction Techniques, Direct
Manipulation Techniques, User Interfaces, Human Computer Interaction.



158

1. Introduction

The recent increase of the available power of special purpose 3D hardware and software
provided a new range of 3D applications.

For these applications 2D interaction techniques are no longer adequate. New interaction
devices are also required. Although 2D input devices, such as mice or joysticks, can be
extended to 3D, they are not intuitive and easy to use.

Present human-computer interaction for 3D applications is known to be far from optimal.
Researchers are now looking for new interaction techniques (see also [FOLE87], [KRUE91])
that take full advantage of the 3D nature of these applications.

Our research in interactive computer graphics and search for better 3D interaction techniques led
us to the development of GIVEN, in which 3D interaction concepts and methods are developed
and evaluated.

The user or "visitor" of the GIVEN toolkit can navigate around and directly manipulate 3D
objects. Via intuitive interaction techniques the user is enabled to grab, rotate, move and
position 3D objects [BOHMO2]. Input devices such as dataglove and spaceball are used for
controlling a virtual hand.

For the recognition of interactions between moving and static objects a collision check has to be
done all the time. Our experience with GIVEN showed us that for solid modeling or molecular
modeling applications it is not sufficient to do collision checks using bounding volumes aligned
with the coordinate axes. Users of these applications must be able to identify, grab, push and
position 3D objects very precisely.

The purpose of this paper is to describe how we realize precise interactions with 3D objects.

A boundary representation available through the Topological Data Model (TDM) toolkit
[WUO1] was integrated and a robustness algorithm for performing the intersection of two
polyhedra was implemented. This toolkit was provided to us from FhG-IGD - Darmstadt. The
algorithm for intersecting two polyhedra is well known (see also [HOFF89], [MANTS8]) and
we focus on new developed algorithms that can speed up on average the overall performance.

Finally, results are summarized, conclusions are drawn and directions for further research are
suggested.
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2. GIVEN

In this section a brief overview of the GIVEN system is presented. We will see how collision
detection is important when interacting with 3D objects in virtual worlds.

The GIVEN system is a 3D interaction toolkit which aims at aiding in the development of new
3D interaction techniques.

The visitor of the GIVEN environment uses a small set of hand gestures to manipulate virtual
worlds. Performing gestures previously defined with a functional meaning, such as "fly
forward", "grab object", "release object", and others, the user is able to communicate to the
computer system his intentions. In this way, (s)he is enabled to navigate around and directly

manipulate 3D objects using simple and intuitive interaction techniques.

A dataglove is used as an input device and neural networks interpret the visitor’s gestures that
are produced as different hand positions.

Behaviour is also assigned to objects in the virtual environment. Each object has its individual
behaviour, that is, it knows how to react to various stimuli the environment exerts upon it. As
an example, when an object is released, it falls down following the gravity laws, but it could
also be like a balloon and rise in the air until it reaches the virtual room ceiling.

2.1. GIVEN’'s Architecture

The main components of GIVEN are illustrated in figure 2.1. The Event Handler receives
user's events from device drivers ( Dataglove, Spaceball) and the conventional input devices
(keyboard and mouse). According to the data received from the Event Handler the Cursor
Manager controls the cursor actions. The Renderer draws the current state of world using the
Silicon Graphics GL graphics language. The Collision Detection module checks if any objects
are colliding in the world at any moment. Finally, the System Kernel coordinates the actions
between the Cursor Manager, Renderer and Behaviour Manager.

An interaction takes place as follows. The Event Handler gets an event from a device driver.
The Cursor Manager interprets the gesture information and controls the navigation. Next, the
System Kernel ask the Collision Detection module if there are any collisions taking place. For
objects that do collide, appropriate behaviour has to be determined. The Behaviour Manager
takes care of the individual behaviour of objects. Once the behaviour evaluation is done and
appropriate changes are made to the scene, a new frame can be rendered.
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Figure 2.1 GIVEN's Architecture.

2.2. Collision Detection

Collision detection is one of the most important tasks to be realized when a visitor is
manipulating a three-dimensional virtual world. When he comes near to an object to grab it a
collision check must be done to guarantee that he is close enough. Again, when a ball is falling
we must check if it is colliding with any object in the way to determine what kind of behaviour
should be then executed.

Fortunately, there is no need to check all objects in the scene for collision. For instance, static
objects do not require to be checked for collision against other objects in the scene. Only active
objects ( e.g., those that are moving like the hand cursor, a ball falling), should be checked if
they are colliding with any other object in the scene.

In the first version of GIVEN, the collision detection module is based on bounding volumes
(CDBYV). It is implemented hierarchically with two levels of checking (figure 2.2).
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Figure 2.2 - Collision detection module's architecture.

These collision checks do not use polygon information of objects. They only use bounding

volumes parallel to the coordinate axes. Therefore, we can check very fast if two objects

collide.

Figure 2.3 - An object is grabbed but the virtual hand is not touching the object’s surface.
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Objects can be defined hierarchically in GIVEN. Performance can, therefore, be improved if we
define two levels of tests using worst-case and specific bounding volumes. Specific bounding
volumes are detailed volumes that surround each object; and worst-case bounding volumes
include object s specific bounding volume and the volumes of its descendents. Clearly, if there
is no collision between worst-case bounding volumes of object A and B, there cannot be a
intersection between the descendents of A and the descendents of B.

Using bounding volumes for collision detection is not sufficient to achieve supposed
naturalness interactions in virtual worlds. The main problem stems from the fact that two
objects are considered to collide if their specific bounding volumes do collide. But, the only
relevant information that we could extract after the second level of detection is that objects might
collide but there is no certainty. Therefore further tests should be made. For that reason, very
unnatural object interactions and situations can happen. An example is illustrated in figure 2.3.
Users can never get "real” close to an object because collision is detected between object and
hand's bounding volumes.

3. Precise Collision Detection (PCD)

Collision detection problems and their variations are an important topic of research in
computational geometry. Their importance is mainly due to the fact that two impenetrable
objects cannot share a common region.

Virtual reality applications aim at creating virtual worlds with which the user interacts as if they
were real. The main goal is to give the user the feeling of direct interaction with three-
dimensional "real” objects as naturally as possible. For this reason, the user of such systems
wants to see simulated objects acting as if they were impenetrable and sense limits to his motion
and actions in the same way as when (s)he is manipulating the physical world.

For that purpose, it is necessary to extend the collision detection manager based on bounding
volumes (CDBYV) developed for GIVEN. Bounding volumes can be effectively used to state
that two objects cannot intersect, but we cannot decide that two objects intersect just because
their bounding volumes intersect.

Therefore, a precise collision detection manager was developed [FIGU93]. A boundary
representation was integrated to assist in the implementation of a robustness algorithm for
intersecting two polyhedra and to find out how much one object is inside another.

This section describes the key ideas and algorithms used to implement the precise collision
detection manager. New developed algorithms are presented that can speed up on average the
overall performance.
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3.1. Boundary Representation in GIVEN

The data representation scheme first developed for the GIVEN toolkit was mainly concerned in
realizing fast rendering.

Most of the shading models discussed in the literature, such as constant shading, Gouraud
shading and Phong shading, implement efficient shading algorithms for surfaces defined by
polygons and polygon meshes. For this reason, three-dimensional objects are modeled in
GIVEN as polyhedral, faceted objects and the data model stores the polygons that make up the
object’s surface. The data structure is a very simple polygon modeling scheme [MORT85]
where the object is the basic entity and its geometric shape is defined by cross-referenced lists
of vertices and faces that represent the object's surface.

Our desire of natural and precise interactions on virtual environments generated new ideas and
therefore new questions such as the following :

o Is this moving object colliding with any other ?

o Is this object inside or outside this other one ?

¢ What is the weight, volume, center of gravity, etc. of the object ?

Unfortunately, the GIVEN data structure, which was designed mainly to attain fast rendering,
was not able to give sufficient information for answering these questions. For this purpose a
solid modeling representational scheme was required that guarantees the creation of valid
bounded and connected three-dimensional objects [MANT88].

For this reason, a boundary representation was integrated into GIVEN. We used a non-
manifold boundary scheme because it was the only representation available for us. It was
important for us to have the power of a solid modeling system, which is adequate for
answering arbitrary geometric questions algorithmically. Additionally, the extended domain of a
non-manifold boundary representation would enable the designer of virtual environments that
uses the GIVEN toolkit to exercise his creativity. However, this data structure was available as
a toolkit. Unfortunately, using a toolkit is not as efficient as directly accessing the data
structures. Therefore, this boundary representation was not efficient for rendering, and the
original polygon modeling scheme was still needed.

The GIVEN toolkit is now supported by two representational schemes as illustrated in figure
3.1. The polygon modeling scheme is usually used for rendering. Only when this data structure
is unable to give sufficient information for determining the geometric properties, we access this
information from the boundary model.
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Figure 3.1 - GIVEN's representational scheme.

3.2. Realization of Precise Collision Detection

In this section we describe the precise collision detection algorithm. The main goal of this
algorithm is to find out if two objects are intersecting.

3.2.1. Precise Collision Detection Architecture

The heart of a precise collision detection algorithm is a method for intersecting two polyhedra,
A and B, which requires testing each face-pair for intersection. This is not efficient if it has to
be done for every pair of objects in the scene. Therefore, a preceding calculation that filters out
objects that cannot intersect should be done.

The aim of the collision detection manager based on bounding volumes (CDBYV) (see figure
2.2) is to construct a list of objects whose bounding volumes intersect.

Using this information we can extend the old collision detection pipeline to include then a third
manager, called Polyhedral Intersection Manager (PIM), which will be responsible for
calculating the intersection between two polyhedra (figure 3.2). Maintaining those pre-
processing steps presented in figure 3.2, allow us quickly to filter out those objects that cannot
intersect, and a list is constructed for those objects whose specific bounding volumes do
intersect. Thus, performance of the precise collision detection manager is improved because
only a small set of pairs of objects will be tested by the Polyhedral Intersection Manager.
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Figure 3.2 - Precise Collision Detection Manager’s Architecture.

3.2.2. Intersecting Polyhedral Objects

An algorithm for intersecting two polyhedra, A and B, requires a testing for each face fe A
against each face ge B for intersection. However, a straightforward implementation, which tests
each pair of faces for intersection, leads to a O(nxm) computational complexity (n and m is the
number of faces of polyhedra A and B, respectively). Therefore, a preceding computation that
filters out face pairs that cannot intersect should be done.

These prepossessing steps cannot speed up certain cases of intersecting polyhedra. However,
they do speed up the algorithm on average and therefore they were implemented.

The intersection of polyhedral objects is performed in two steps :

o 1. Filter out face pairs that cannot intersect (advanced filtering faces algorithm). If it is
found that there is no pair of intersecting faces, we do only a containment test and skip
the next step.

e 2. Calculate intersection between pairs of faces and construct the intersection curve
(intersection curve determination).
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3.2,2.1. Advanced Filtering Faces

This pre-processing step should eliminate pairs of faces from polyhedra A and B that cannot
intersect.

A simple way to do this is to enclose every planar face, fe A and ge B, in the smallest bounding
volume that completely contains the face, whose sides are aligned with the coordinate axes.

Then, for each pair of faces, fe A and ge B, we check if their bounding volumes intersect. If the
bounding volumes do not intersect, then the faces inside them cannot intersect and are not
further considered. For those pairs of faces whose bounding volumes intersect we cannot
assume anything about their intersection and therefore they should be stored for further
processement. ‘

This straightforward algorithm for rejecting face pairs that cannot intersect uses every pair of
bounding volumes to check whether they intersect or not. This leads to an algorithm with
worst-case complexity O(nxm), where n and m is the number of faces of polyhedra A and B,
respectively. In situations where objects have many faces and only a few do actually intersect,
this algorithm does not perform well.

To improve the average performance of the face filtering algorithm we developed an Advanced
Filtering Face algorithm. Our approach introduces a pre-prossessing computation that reduces
the set of faces of polyhedra A and B which have to be tested.

This algorithm first calculates the intersection bounding volume of the two polyhedra. This
volume is the intersection of the bounding volumes of the two polyhedra A and B. Second, for
every face, fe A and ge B, we check to see if their bounding volumes intersect the intersection
bounding volume. Those faces that actually intersect the intersection bounding volume are
annotated and two sets of faces, fe A and g'e B, are constructed in this way. Third, only those
faces, f'e A and g'e B, that were selected in the previous step are candidates for intersection and
now we will check to see if their bounding volumes intersect.

This additional pre-processing step introduced in the advanced filtering faces algorithm
provides better performance on average to the overall algorithm. However, we cannot expect
better performance than O(nxm) in special cases of the polyhedra intersection.

An example of the intersection between two faces in 2-dimensions (figure 3.3) shows us this
method.
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Bounding rectangle of P Bounding rectangle of Q

Intersecting Bounding Rectangle of A and B.

Figure 3.3 - The intersecting edges share the region defined by the
common region on the face’s bounding rectangles.

The Advanced Filtering Faces algorithm which filters out face pairs that cannot intersect works
as follows :
o 1. for every face f of A and g of B, determine the smallest bounding volume whose sides
are parallel to the coordinate axis;
e 2. Calculate the intersection bounding volume between the two polyhedra A and B.
¢ 3. Construct the set X of faces, fe A, whose bounding volume intersects the intersection
bounding volume; symmetrically, construct the set Y of faces, ge B, whose bounding
volume intersects the intersection bounding volume;
® 4. Test every face in the set X against every face in the set Y to find out pairs of faces
whose bounding volumes intersect.

This algorithm suggests that before intersecting every bounding volume of faces fe A against
every bounding volume of faces ge B to see if they intersect, we should filter out faces of A and
B which are not in the intersecting bounding volume and therefore cannot intersect any other
faces. This additional filtering process can be done in n steps for one object, and for two
objects it will require therefore n+m checks. On the average it will reduce the number of faces
which has to be later tested, and it will improve the overall performance of the algorithm.

Therefore, this algorithm will perform much better in those situations where A and B have
many faces but only a few of them actually intersect and therefore it was implemented. The
worst-case running time for the bounding volumes intersection cannot be improved, but the
average running time can be significantly improved.

3.2.2.2. Polyhedral Containment Test

After performing the advanced filtering algorithm, we may arrive at a situation where it is found
that none of the faces” bounding volume pairs intersect. Therefore the two polyhedra, A and B,
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cannot intersect. In this case, however, it can happen that one of the polyhedra is inside the
other one and a polyhedral containment! test must be performed.

For this purpose, we have developed an extended version for three-dimensions of the Cohen-
Sutherland line clipping algorithm [FOLE90]. It makes use of faces” bounding volume and
therefore it can be applied to any type of polyhedral object and the containment test can be done
very quickly.

Figure 3.4 illustrates an example in two-dimensions of the two possible situations between
which we want to distinguish when it is found that two objects cannot intersect.

R ——Y
&
NV

Intersection Bounding Rectangle of A and B
~ - Bounding Rectangle of A and B.

Figure 3.4 - Two distinct situations where edge s rectangles of A and B do not intersect.

Considering that we want to perform the polyhedral containment test for polyhedra A against
polyhedra B. In this case, the bounding volume of object A and the faces' bounding volumes of
object B will be used. To perform this test we start by extending the planes of the bounding
volume of polyhedra A to divide three-dimensional space into twenty-seven regions (figure 3.5-

a).

To each of these regions in space a six bit code is assigned, determined by where the region
lies with respect to the outside halfspace of the bounding volume planes. Each bit in the code is
set to either 1 (true) or O (false). The six bits in the code are established according to the
following rule :

» First bit, outside halfspace of top plane, above top plane, Y 2 Ymax
* Second bit, outside halfspace of bottom plane, below bottom plane, ¥ < Ymin
o Third bit, outside halfspace of right plane, to the right of right plane, X 2 Xmax
o Fourth bit, outside halfspace of left plane, to the left of left plane, X £ Xmin

« Fifth bit, outside the halfspace of front plane, to the front of front plane, z2zpax
« Sixth bit, outside the halfspace of back plane, to the back of the back plane, z< zpin.

1A containment check will determine if one object is inside or outside another one.
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Then every faces” bounding volume of polyhedra B is classified according to its spatial position
in relation to the bounding volume of polyhedra A. The code of the region where it lies is
assigned to the two extreme points that define each face's bounding volume of B. Then, we can
annotate the regions where the face's bounding volume are located.

Clearly, polyhedra A will be inside B if it is found that faces’ bounding volumes of B fill all the
twenty six regions in the space around the bounding volume of polyhedra A.

A further improvement can be made if we consider only the fourteen regions illustrated in figure
3.5 -b). In fact, it is sufficient to verify that the faces' bounding volumes of B lie in these
regions to be sure that polyhedra A is inside polyhedra B.

Figure 3.5 - a) Partitioning the 3D space using as Figure 3.5 - b) The fourteen regions which
reference the bounding volume of object A. have to be taken into account are drawn as dash.

3.2.2.3. Intersection Curve Determination

Since bounding volumes intersection can determine only that two faces do not intersect, we
arrived at a situation where we have found all candidates of intersecting face pairs. Now we
have to intersect face pairs and construct their intersection curve.

The implementation of such an algorithm should resolve possible numerical uncertainty
problems rooted in floating point arithmetic. Therefore a boundary representation is used to
achieve a robustness algorithm for the determination of the intersection curve between two
polyhedral objects [MANT88], [HOFF89]. '

It is assumed that the boundary representation that was integrated provides the following
topological information :
o for each vertex, the adjacent vertices, edges and faces are given;
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« for.each edge, the bounding vertices and the adjacents faces are specified;
e for each face, the bounding edges and vertices are given, and they are organized in a loop
locally enclosing the face area to the left.

The geometric information available from the boundary model specifies the equations for the
planes containing faces. The plane normal direction points locally to the solid exterior (figure
3.6). A face is a finite, non zero convex area in a plane, bounded by one loop of vertices and
edges. Edges are directed such that the face area locally lies to the left, as seen from the exterior
of the solid. An edge is defined geometrically as a line segment bounded by two vertices and is
characterized by the line direction. A vertex is a point element defined by a position vector in
R3.

Figure 3.6 - Geometrical and topological convention.

The conceptualized algorithm for intersecting face pairs works as follows :
for each face pair fe A and ge B
if face f and g are coplanar then return;
else
if face f do not intersect the plane o that contains face g then return;
else
if the intersection of face f with plane a is one point P1 then
test if P1 is in face g;
else
Letr be the intersection segment of face f with plane o
Perform a line clipping algorithm for segment r on face g;
Propagate topological information to neighbor faces.

In the presence of coplanar faces this algorithm does nothing. When the two polyhedral objects
have some faces in common, our only interest is in determining their boundary polygon.
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However, their common boundary can be determined from the intersection of non coplanar
faces adjacent to them and therefore it is not necessary to consider coplanar face pairs.

For non coplanar and convex faces, fe A and ge B, we intersect the bounding edges of f with
the plane o containing g (figure 3.7). The intersection will yield zero, one or two intersecting
points. It is important at this point to classify these intersection points and store in a data
structure their classifications. Each plane « is considered to be a slab with thickness 2¢ and
each intersection point is then classified as either coincident to a vertice or belonging to an edge
of face f.

Plane o

W

Figure 3.7 - Intersection of face f with plane o yields the segment r.

If no intersection point was found after intersecting the face f with the plane o then this face
pair do not intersect. In this case, we store only if face f is inside or outside the halfspace
defined by the plane o.

If f is intersecting plane o in one point, we must check if this point is in face g. Therefore, we
must traverse each edge in the loop of face g and classify the point as coincident with one of the
bounding vertices, with the edge interior, or if it is interior or exterior to the face g. These tests
should be performed in this order. Tolerance regions must be introduced for vertex and edge
elements as illustrated in figure 3.8. A vertex has a tolerance region which is a sphere with
radius €. The edge tolerance region is a cylinder with the same length as the edge and radius €.

If the point is exterior to the loop, the pair of faces f and g do not intersect.

Sphere Tolerance
for Vertex Cylinder Tolerance
for edge.

Figure 3.8 - Tolerance regions for vertex and edge elements.
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The intersection of face f with plane o can also be a line segment r defined by two ending
points, P; and P». In this situation, the line segment common to the face pair is calculated using
a line clipping algorithm. We implemented the Cyrus-Beck [HILL91] line clipping algorithm
which is efficient and can be applied to any convex polygon.

Our goal is to determine the part of segment r that lies in the interior of face g (figure 3.9). The
interior of the convex face g is defined as the region in the inside half-space of every edge in the
face. Therefore, segment r is tested against each edge of face g. Pieces lying in outside half-
spaces are "cut". When all edges have been processed, the piece of r that remains, call it r',
must lie in the interior of face g and therefore is the intersection of the two faces.

Face Normal Pl- Point in edge \’2V3 face f.

P - Point in edge ¢ f:
3 oint in edg 3aceg

Figure 3.9 - Clipping the segment r against face g.

Once again, we must classify the bounding vertices of r' as being coincident to any vertice, in
the interior of an edge or inside of face g. For that purpose, we must consider again the
tolerance regions, presented in figure 3.8, for the vertice and edge elements of face g.

Finally, if it was found that the two faces f and g intersect, we must create new points and
edges to propagate the topological information to the neighbor faces. During the calculation of
the intersection curve every point was classified as coincident with a vertice or on an edge. For
those intersecting points classified on an edge we must create a new point and split the original
edge into two new edges to increase robustness. In this way, when analysing neighbor faces,
the new intersecting points which have to be calculated will be "attracted” to these points.

This algorithm presented here proved to be reliable and robust. The only disadvantage that can
be pointed out is the requirement to define faces of polyhedra A and B as convex. Nevertheless,
if a new line clipping algorithm that deals with concave faces is implemented we have a curve
intersection determination algorithm that can be applied to any type of polyhedral objects.
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4. Results

The precise collision detection manager developed for GIVEN allows the users of the GIVEN
environment to interact very precisely with three-dimensional objects.

Now the user is able to get close to objects and has the "feeling” of touching 3D objects. In this
way, the user is directly manipulate three-dimensional objects by pushing, grabbing and
releasing them only when (s)he is touching its surface and not when (s)he is touching its
bounding volumes (see figure 2.3). An example is illustrated in figure 4.1 where the user is
enabled to grab a cone and put it on top of a teapot very precisely.

Figure 4.1 - Precise mampulation of 3D objects.

In the GIVEN toolkit the intersection curve between three-dimensional objects is used to
provide additional depth perception of spatial relationships between objects in complex scenes
(figure 4.2). For example, it can be particularly useful for positioning tasks where one object
must be parallel to another or where adjacent objects must be positioned with their edges
aligned.
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Figure 4.2 - Displaying the interscction curve for attaining depth perception.

Objects Complexity Operation Time
scene 700 polygons navigation 50 msec / frame
scene 700 polygons imprecisc collision 70 msec / frame

detection (specific

bounding volumes)
hand & cube 162 + 6 polygons precisc collision detection 390 msec / frame
thumb#1 & cube 30 + 6 polygons precise collision detection 270 msec / frame
cube & cylinder 6 + 22 polygons precise collision detection 130 msec / frame

Several scenes were constructed and execution time for various interaction tasks were measured
on a Silicon Graphics 4D/320 VGX (table 4.1). The test scene contains 3 objects. The virtual
hand which is a hierarchical object defined by the following parts : hand (162 polygons),
thumb#0 (46 polygons), thumb#1 (30 polygons), index#0 (32 polygons), index#1 (32
polygons), index#2 (30 polygons), middle#0 (32 polygons), middle#1 (32 polygons),
middle#2 (30 polygons), ring#0 (32 polygons), ring#1 (32 polygons), ring#2 (30 polygons),
little#0 (32 polygons), little#1 (32 polygons), little#2 (30 polygons). The two remaining objects

Table 4.1 - Execution speed for grabbing intcractions.

are a cube (6 polygons) and a cylinder (22 polygons).




175

As shown in table 4.1 acceptable speed is achieved when the moving object has a small number
of polygons.

5. Conclusions and Future Work

Experience with GIVEN showed us that very unnatural and imprecise object interactions
happen in virtual environments if collision detection is made by using bounding volumes
aligned with the coordinate axes.

To enable the user of GIVEN to interact precisely with 3D objects, a non-manifold boundary
representation toolkit, called Topological Data Model - TDM, was integrated in GIVEN to assist
in the development of a precise collision detection manager.

Collision detection is now made very precisely by intersecting two polyhedral objects and
determining the vertices, edges and faces where the intersection curve lies. In this way, the user
of GIVEN is enabled to get "close" to objects and to have the "feeling” of touching 3D objects.

We believe that 3D interaction toolkits should be supported by solid modeling representational
schemes.

In the current situation we are using a toolkit where we do not have direct access to the data
structure. In this case, the inquiring of the data structure costs too much time. For this reason,
we are planning to implement a solid modeling representation scheme in the GIVEN kernel.

We would like to use GIVEN in future as a testbed for developing new interaction techniques
for solid modeling. With the precise collision detection manager the user is enabled to identify
topological entities. In this way the user could directly construct 3D models in a complete 3D
environment, using intuitive interaction techniques.
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Abstract

This paper presents a new mathematical representation for modeling robotic systems
based on the use of spherical splines. They can be considered as a generalization of the
spline concept with the introduction of control spheres. Very complex volumes modeled by
spherical splines are described in funtion of a low number of conirol spheres. To modify
the robot configuration, only control spheres must be recomputed. An extended hierarchi-
cal structure with different levels of accuracy including polyhedra, spherical volumes and
spherical splines is explained in the paper. Distance computation for collision detection
between robots results very fast when this structure is used.

Introduction

In the manufacturing and assembly processes of an integrated factory, robots are one of the
main elements. To reach a completely authomatized process, robots must be intelligent
enough to move independently. Therefore, they have to be able to decide its own motion
to avoid any collision with objects in their workspace. To solve collision avoidance, every
element of the manufacturing and assembly area, as well as robots, must be modeled.

Two aspects must be considered in the implementation of a correct collision avoidance
system: the type of volumes used to model objects, usually convex polyhedra (poly-
topes), and distance computation procedures. Distances between polytopes and its com-
putational complexity have been studied deeply during last years [Dobkin & Kirkpatric,
1985], [Gilbert, Johnson & Keerthi, 1988}, [Lin & Canny, 1991].

The type of model chosen has an important effect on collision avoidance. It can make
casier and faster the distance computation, as well as accuracy depends on it. Convex
polyhedra have been the most frequently used model in collision avoidance [Canny, 1986].

*This work was partially supported by Comisién Interministerial de Ciencia y Tecnologia (CICYT)
under the project ROB 91-0362
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Each object can be represented as a convex polyhedron, or union of convex polyhedra.
Many real world objects that have curved surfaces are represented by polyhedral ap-
proximations. The accuracy of the approximations can be improved by increasing the
resolution or number of vertices and edges, but also increasing computational cost.

When modeling robots for path planning, two different approximations are usually
considered: transformating objects in the Configuration Space [Udupa, 1977] and working
on Cartesian Space. The underlying idea of Configuration Space is to represent the robot
in an appropiate space, the robot’s configuration space, and to map the obstacles in this
space. The robot shrink to a point by enlarging the obstacles [Lozano-Pérez & Wesley,
1979]. Some problems can arise with moving obstacles, which must be transformed into
the Configuration Space after every movement.

Working in the Cartesian Space, collision is detected by intersections between geome-
tries of robot and obstacles. Roadmap techniques [Nilsson, 1969] and cell-decomposition
[Lozano-Pérez, 1981] methods have been applied firstly in Cartesian Space and latter in
Configuration Space. Other modeling methods frequently used in path planning are Oct-
Trees, used in [Faverjon, 1984] and generalized quad-trees with 2" trees in [Paden, Mess
& Fisher, 1989).

Although the most of research works in collision avoidance and path planning have
considered polyhedrical approaches for robot and obstacle modeling, several authors have
used other kind of models. [Oommen & Reichstein, 1986] used ellipses to model moving
objects and obstacles. [Fink & Wend, 1991] make a distinction between static obstacles
modeled in detail with polyhedra and changing obstacles described with spheres. [Khatib,
1986] model objects by envolving n-ellipses and n-cylinders for applying potencial function
method. [Johnson & Gilbert, 1985] apply collision avoidance techniques on a 3 degree of
freedom manipulator modeled with cylindrical elements.

A new approach has been recently presented in [Tornero, Hamlin & Kelley, 1990],
where objects (and links of robot-arms) are approximated by an infinite number of spheres,
producing spherical volumes. The distance computation between these models results very
fast. A hierarchical structure using spherical objects is presented in [Tornero, Mellado,
Hamlin & Kelley, 1992] with reduction in computational cost. Hierarchical structures
are suitable to robotic systems because of their natural configuration, as for example in
[Henrich, Cheng, Rembold & Dillmann, 1992].

This paper presents a new mathematical representation for modeling robotic systems
based on the use of spherical splines. Firstly, hierarchical structure of robotic systems is
presented. Next section introduces spherical splines described in funtion of a low number
of control spheres. Last section considers an extended hierarchical structure with different
levels of accuracy including polyhedra, spherical volumes and spherical splines.

Hierarchical Structure for Robot Modeling

A hierarchical structure is considered for describing the manufacturing and assembly area
of the factory where static and mobile robots are working. This area is decomposed in
cells, systems, subsystems and elements. Cells are the toppest level in the structure. The
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Figure 1: Multi-level hierarchical structure

following levels correspond to systems for describing mobile robots, assembly lines, etc.;
subsystems for robot-arms, machine-tools, conveyors, etc.; and finally elements for the
robot-links, components of machine-tools, etc. as can be seen in Figure 1.

For robot-arms, a kinematical model based on homogeneous transformation matrices
using a modified form of the Denavit-Hartenberg parameters [Denavit, 1955] is used in
order to determine the position of the robot links. Characteristic points in each link are
described with respect to its local coordinate system. The matrices relate the position of
each coordinate frame to the previous one. According to [Craig, 1986], the homogeneous
transformation relating frame 7 to frame ¢ — 1 is given as follows:

co -S6 0 a;_q
S&Ca..l CﬂCa_l ~—5'01.1 —.S'a_ld; (1)
S0Sa_, COSa_; Ca_; Ca_id;
0 0 0 1

where C0, S0, Ca and S« stand for cos 8;, sin8;, cos; and ‘sin o; respectively, C8_,,
$6_1, Ca_; and Sa_; stand for cos8;_y, sin8;_,, cos o;—; and sin o;_; respectively and 6;
defines the angular position of joint ¢ for a manipulator with revolute joints, and o, a;, d;
are the constant D-H parameters.

Checking a robotic system for collisions consists of two steps. First, the characteristic
points of the volumes in local coordinates are translated into world coordinates based
on the forward kinematics. Second, distances between objects are computed using the
appropriate algorithms.

For the purpose of collision-detection, the different objects in the world need to be
modeled. Each object can be represented by one or several models depending on the
accuracy required, giving an extension of the conventional hierarchical structure concept.
Generally, the complexity of the models used is directly related to the exactness of the
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representation obtained. Any attempt to make the model less complex leads to some kind
of approximation. There is a trade off depending on how much simplification is acceptable
for the accuracy required versus the speed up in the collision detection.

In addition, several objects in one level can be modeled separately, or globally at
the toper level. For example, the links of a robot can be modeled at the element level
or globally at the subsystem level. Obviously, the volume of the model at a level must
contain the volume of the union of models used at lower level. Ususally, elements at the
lowest level are formed by means of union of convex polyhedra.

As an example, the hierarchical structure with three levels (system, subsystem and
element) based on polyhedra for a robotic system compound of an ABB IRB L6 robot-arm
on an ABB IRBT 6000S track motion is shown in Figure 2.

Solid Modeling with Spherical Splines

Splines are well known in Computer Aided Geometric Design [De Boor, 1978], [Bartels,
Beatty & Barsky, 1987]. They have been widely used for modeling curves (and surfaces)
that must pass exactly through individual points. For a set of points, Pp,...,P,, the
spline curve r(u),uo < u < u, is given by a piecewise curve. Each segment, r;(u),u; <
u < iy, interpolates two of the given points: ri(u;) = P, 7ri(uit1) = Piy1. By derivative
constraints, the spline is continous up to the second derivation.

Since a cubic function is the simplest twisted curve, cubic splines, (particularly, natural
cubic splines), are the most often used to represent twisted spatial curves. A cubic path
segment limited by P;, P41 is given by

3
ri(u) = Za,-ju’,u,- <u<Lup (2)
=0

where aj, ... ,a,3 determine the shape, location and size of segment ;. The values of a;;

are function of P, ..., P,, which can be used as control points to modify the curve. In
this paper, the complete spline is going to be represented by
Sp(u) = [r(u), P, .- ., Pu] ®3)

As splines are parametric formulae, it can be consireded as non-dimensional, that is,
when applied on 2D, 3D or d-D points, the result is on 2D, 3D or d-D space respectively.

On the other hand, the topology of the result of appliying splines on points in the
Cartesian space depends on the degree of freedom (dof) considered. For example:

o For 1-dof, the result is a curve, represented by Equation (3).
o For 2-dof, the result is a surface, represented by

[s(u,v),Pj,i=0,...,n,5 =0,...,m] 4)
e For 3-dof, a volume is obtained, represented by

[v(u,v,w), Pijr,i =0,...,m,5 =0,...,mk=0,...,]] (5)
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Figure 2: Hierarchical structure for an ABB IRB L6 on an ABB IRBT 6000S: a)System

Level; b)Subsystem Level; c)Element Level
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Figure 3: Spherical Spline with 1-dof: a) Center Coordinate and Radious Interpolation
with the Use of Splines b) Volume of the Spherical Spline

A spherical spline consists on extending the concept of splines applied on points to
splines applied on spheres. A sphere is represented as a four dimensional vector, s =
(z,y,2,r), where the first three components represent the coordinate of the center of
the sphere, ¢, and the last one its radious r. In this way, the representation is with four
dimensional vectors projected into 3D space. The formulae is an extension of Equation (3):

SS(u) = [v(w), 0, - - -, Sn) (6)

where s;,1 = 0,...,n are called control spheres. The spherical spline should not be
considered as a sphere whose center is moving along a spline curve, because radious is
also involved in the relationship of the spline. This case can be obtained when all the
radii of the control spheres are the same. The proper result is the volume of the union of
a (infinte) set of spheres. It is obvious that conventional splines are particular cases of the
spherical spline (control spheres with null radii). Figure 3 shows how center coordinate
and radii are generated from those of the control spheres with the use of splines and the
final volume obtained. The shape of a spherical spline can remind snakes, tentacles or
trunks of elephants. In fact, spherical splines are specially suitable for flexible and/or
deformable objects, or as will be seen below, for articulated chains such as robot-arms.

As the basic element of spherical splines is a volume, volumes are always generated,
even for higher dof, opposite to conventional splines, where, as mentioned before, result
depends on dof.
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Figure 4: Control Spheres and Spherical Spline with 1-dof for an ABB IRB L6 robot-arm

In conventional splines, when the number of control points are equal to the dof plus
one, particular cases are given: for 1-dof, 2 (not equal) control points give a straigh line;
for 2-dof, 3 (not co-linear) control points define a plane and for 3-dof, 4 (not co-planar)
control points give a tetrahedron. For spherical splines, the following particular cases are
given:

o 2 (not equal) spheres define with 1-dof a bi-sphere, which can be considered as a
spherical cone.

o 3 (not co-linear) spheres define with 2-dof a tri-sphere, which can be considered as
a spherical plane.

o 4 (not co-planar) spheres define with 3-dof a teira-sphere, which can be considered
as a spherical tetrahedron.

These cases are given for linear relationship between control spheres. They have been
presented in [Tornero, Hamlin & Kelley, 1990] and considered as spherically-extended
polytopes in [Hamlin, Kelley & Tornero, 1992].

Robot Modeling with Spherical Splines

The use of spherical splines as a modeling technique fits adecuately to model a robot-arm
at the subsystem level. Robot-arms are usually articulated chains whose joints will be used
to define control spheres for defining the spherical spline. If radii are suitably choosen,
links between joints will be contained in the volume generated by the spherical spline.
Therefore, an enveloping volume of the robot-arm is obtained. Figure 4 shows an ABB
IRB L6 robot-arm with 5 control spheres and its model using a spherical spline generated
from the control spheres. Note that two robot motors have not been considered for the
model. To be included, bigger radii of control spheres could be taken, or a bi-sphere with
horizontal axis could be joint to the spherical spline.

When the robot-arm is moving, only new centers of the control spheres involved in the
motion must be recomputed, by product of matrices defined by Equation (1), to obtain
the new spherical spline.
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Splines have been frequently used in robotics to define an end-effector trajectory [Wu
& Jou, 1988] [Schiitte, Moritz & Neumann, 1991]. Spherical splines can take advantage
of this fact: a 2-dof spherical spline will give the swept volume of such a movement.
Therefore, only a set of control spheres need to be determined for describing the movement.
If this swept volume does not intersect with an static obstacle, the movement is free-
collision.

For a system with two robot-arms, the intersection of these 2-dof spherical splines will
not imply that robot-arms collide. One robot could have completely passed through the
intersection area before the other one has done it, producing no collision. This is because
time has not been included. To include time constrains, one additional dimension can be
considered.

A temporary spherical spline is define as a spherical spline considering time as an
additional dimension. For 1-dof spherical spline, its corresponding temporary spherical
spline is represented as

[[T("),So,-'-,sn],th‘u ;tm] (7)

For a fixed t;, a robot-arm configuration is given by the spherical spline [r(u), so, . . ., $x).
Forcing the robot to move according several configurations at time #; means a spline
interpolation in time space. Only intersections at fixed time #; must be computed.

To make easier distance computation, spherical splines can be considered as union of
spheres. The number of spheres to be considered will depend on the accuracy required, but
usually few spheres are enough to obtain a volume which envelopes completely the robot-
arm. The problem of finding the shortest distance between two robot-arms modeled with
spherical splines, say 5.S; and S5, can be stated as a minimization problem as follows,

d(55;,85)) = | _min o d(si,s;) (®)
with
d(si,s5) = f{l e —¢j | =ri — rj} (9)

where f{z} =zifz >0
= 0 otherwise

The problem can be expressed in terms of finding two spheres, each belonging to a
distinct spherical spline, with the shortest distance between them. A set of sphere-sphere
distances can be represented as a mesh where the height means distance and the other
two axes mean sphere considered for each robot. Figure 5 shows an example of a mesh
with its contour: The flat in the mesh represents a collision area. This mesh was obtained
for two ABB IRB L6 modeled as in Figure 4. Considering 20 spheres for each robot (less
spheres could be considered), there are 400 sphere-sphere distances to be computed. For
an average time of 0.05ms for sphere-sphere distance computation (see [Tornero, Hamlin
& Kelley, 1991]) the complete collision detection problem between the two robot-arms
can be computed in 20ms.

Spherical splines could also be simplified using a lower number of bi-spheres instead
of spheres. For distance computation between bi-spheres, fast geometrical algorithms
presented in [Tornero, Hamlin & Kelley, 1990] can be adopted. In [Hamlin, Kelley &
Tornero, 1992] this geometrical solution has been formalized as a spherical extension of
the polytope model.
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Figure 5: Distances between Spherical Splines: Mesh and its Contour of a Set of Sphere-
Sphere Distances Values for two Robots Modeled with Spherical Splines

Spherical splines can be included in the hierarchical structure presented in first section.
All the entities in the hierarchical structure are modeled by spherical-volumes. A given
object or set of objects can be modeled by different spherical-volumes with different degree
of accuracy. For entities at the element level, volumes used will depend on the shapes
and dimensions of the objects. Toper entities, such as subsystems, systems and cells,
will be modeled taking into account, in addition to shapes and dimensions of the objects
included, the configuration at each instant.

This hierarchical structure can be extended by considering different models in accor-
dance with the degree of accuracy required as, for example, spheres, bi-spheres, tri-spheres
and spherical splines. Figure 6 shows the ABB IRB L6 robot-arm models with two dif-
ferent degrees of accuracy (sphere and spherical-cone) at subsystem and element levels.
Spherical splines can be a model for a different degree of accuaracy in the subsystem level.

The links of the robot-arms are modeled by spherical objects described with respect
to their local coordinate systems. The kinematical representation given in Equation (1)
is used in order to determine the position of the robot links. Characteristic spheres
(control-spheres) in each link are described with respect to its local coordinate system.

Each one of the models at the required level is obtained as a minimization problem:
compute minimum volume of considered type which envelope all parts at this level.

Depending on the relative position between entities, local or global models are chosen.
For example, the links of a robot can be modeled globally at the subsystem level just as
one object or separately at the element level when required.
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Figure 6: Models at Subsystem and Element Levels for the ABB IRB L6 with two Degrees
of Accuracy: a) Spheres; b) Spherical-Cones

For the particular case commented above, the collision-detection procedure starts by
checking global models for the robotic system at lowest accuracy (i.e. sphere). If collision
is detected, better global models with higher accuracy are considered (i.e. spherical-
cones).

When the highest level of accuracy has been reached, local models in the system,
describing the subsystems, (robot-arm and motion track) are considered, starting with
their lowest accurate representation. If collision is detected, repeat process for lower level,
that is element level. The procedure ends when no collision occurs or when local models
at highest accuracy have been checked.

The collision-detection procedure manages the multi-level hierarchical structure ob-
taining reductions in computational time around 90% on average as was shown in [Tornero,
Mellado, Hamlin & Kelley, 1992].

Conclusions

This paper has presented an extended hierarchical structure for describing complex robotic
systems, with different levels of accuracy, in connection to an efficient distance computa-
tion procedure.

A new class of models for robotic modeling, based on the use of splines applied to
spheres is introduced. It can be considered as a generalization of spherical volumes.
Spherical splines are described in funtion of a low number of control spheres. To modify
the robot configuration, only control spheres must be recomputed. Objects based on
spherical approximation make easier the development of distance computation algorithms.
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The distance computation procedure based on the multi-level hierarchical structure
is highly efficient when dealing with complex objects, for which different models with
different accuracy can be considered. The reduced time consuming required makes this
procedure useful for real-time applications.
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Abstract. N-dimensional chains of maps, or n-chains, is a combinatorial model defined for representing the
topology of cellular complexcs. In this paper, we deduce from n-chains specialized combinatorial models for the
representation of subsets of cellular complexes. Operations for handling these models are deduced from
operations defined for handling n-chains. After generalization and systemization, we think that this study can be
used in order to define the kernel of a gecometric modeler, not based upon a single combinatorial model, but upon
a set of combinatorial models. This can be very useful when simultaneously handling different subsets of
cellular complexes.

Keywords. Geometric modeling, non-manifold modeling, topological modeling, combinatorial models, cellular
complexes, cellular manifolds, chains of maps, generalized maps.

1. Introduction

During the last years, many combinatorial models have been defined for the representation of
the topology of subdivisions of topological spaces. A subdivision is a partition of the space into
cells : vertices, edges, faces, volumes... First, combinatorial models have been defined for
Solid Modeling, i.e. for the representation of the topology of subdivisions of compact
orientable surfaces, which define the boundaries of solids [AFF,Bau,Min,We85]. Then, other
combinatorial models have been studied for the representation of subdivisions of more general
spaces : orientable or not orientable surfaces [GuSt], 3-dimensional and n-dimensional
manifolds [ArKo,Bri,DoLa,Ede,FePa,Li89,S0b,Spe]), 3-dimensional and n-dimensional
cellular complexes, i.e. for non-manifold modeling [EILi,GCP,LiEl,LuLu,MuHi,RoOC,
We86). Handling general cellular complexes can be very useful for Geometric Modeling
constructions [RoOC].

The origins of the work presented in this paper are the two following remarks :
— A combinatorial model defined for representing the topology of general cellular
complexes is often more complex than a combinatorial model defined for representing the
topology of subsets of cellular complexes, i.e. more informations are explicitly
represented. For instance, cells are not explicitly represented in many models used for the
representation of the topology of cellular manifolds [ArKo,Bri,DoLa,GuSt,Li89,Spe].
When the topology of an object of a subset of cellular complexes is represented by a
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model defined for the representation of the topology of general cellular complexes,
informations are often redundantly represented.

— Some subsets of cellular complexes are not closed under some construction operations.
For instance, non-regularized boolean operations, applied to subdivisions of manifolds,
do not ever produce subdivisions of manifolds. When using such operations for
constructing subdivisions of manifolds, it can thus be necessary to temporary model
more general cellular complexes. Either all subdivisions handled during the construction
process are represented by a same general model, and redundancy is not avoided, or
several combinatorial models can be used, according to the subset of cellular complexes
to which the current subdivision belongs. This second solution is investigated in the

paper.

N-dimensional chains of maps, or n-chains, have been defined for the representation of the
topology of n-dimensional cellular complexes [EILi,LiEl]. In this paper, we study several
subsets of cellular complexes, and we deduce from n-chains specialized models for the
representation of these subsets. This approach presents the following interests :
— There is a rigorous correspondence between each specialized model and the
corresponding subset of cellular complexes, i.e. only valid objects can be modelled.
Moreover, topological properties can be computed on the combinatorial model. Rigor and
computation of properties are useful for the control of a construction process ;
— All models are deduced from a same general model, and use a same formalism. Their
definitions are based upon a single type of basic elements, on which applications act. The
translation of this formalism into a data structure is direct. For instance, each basic
element can be implemented by a record which contains, for each application, a pointer to
the record corresponding to its image by this application. Moreover, these models are
deduced by applying very simple mechanisms. Conversion operations between these
models are thus easily defined.
— Operations have been defined for handling n-chains. Specialized operations are here
defined for handling specialized models deduced from n-chains. All operations can be
expressed using the basic operations defined for constructing n-chains. Each subset of
cellular complexes is closed under the related set of operations.

Cellular complexes and subsets of cellular complexes are studied in section 2, and the definition
of n-chains is also recalled in this section. Specialized models deduced from n-chains are
presented in section 3. We conclude in section 4.

2. Cellular complexes and n-chains

In this section, we define cellular complexes and severals subsets of cellular complexes which
are considered in section 3. Then, the notion of n-dimensional chains of maps, or n-chains, and
the relation between n-chains and the topology of cellular complexes are recalled, but they are
not formally detailed : cf. {LiEl].
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2.1. Cellular complexes and subsets of cellular complexes

Here, cellular complexes are defined as simplicial complexes structured into cells. A simplicial
complex is a set of simplices, i.e. vertices, edges, triangles, tetrahedra..., which satisfy some
properties (cf. below). This definition of cellular complexes is based on the fact that, starting
from a cellular object which satisfies some properties not detailed here (cf. [Bri] for instance),
we can deduce a structured simplicial complex by computing its barycentric triangulation : cf.
Figure 1-1. This classical idea is employed in [Bri] in order to define cell-tuple structures.

Figure 1-1. Top left, a cellular complex. Its barycentric triangulation is computed : each cell is
triangulated by inserting a vertex at its barycenter, whose associated number is the dimension
of the cell. Down right, a splitted view of the resulting numbered simplicial complex.

Combinatorial models for the representation of cellular complexes [Bri,Li89,LiEl] can be
defined as extensions of combinatorial models defined for representing simplicial complexes
[FePa,FrPi]). Though the relation between cellular combinatorial models and cellular
complexes is established through simplicial complexes, these models are cellular ones, i.e. cells
can be any cells, and not only simplices.

Here, we give combinatorial definitions of simplicial and cellular complexes. The relation
between these combinatorial objects and geometric objects is not detailed here, since it is well-
known in mathematics and intuitive enough [FrPi].

Let V = {vq, ..., vy} be a finite set of abstract objects called vertices. An n-dimensional
simplex or n-simplex is a set of n+1 distinct vertices, n = 0. An i-simplex {vjo, ..., vj;} i an i-
face of an n-simplex {vg, ..., vy} if and only if {vg, ..., vy} D {vjg, --r Vji}. An n-
dimensional simplicial complex K is a finite set of 0-, 1-, ..., n-simplices, such that (Figure 1-
2):

— Any face of any simplex of K is a simplex of K ;

— The intersection of two simplices of K is either empty, or it is a simplex of K.
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A simplicial complex can be constructed by adding “closed” simplices, i.e. a simplex and all its
faces, and by identifying simplices : Figure 1-2. With a constructive point of view, a simplicial
manifold can be defined as a simplicial complex constructed by adding "closed" n-simplices
and by identifying (n-1)-simplices in such a way that an (n-1)-simplex belongs to the
boundaries of at most two n-simplices.

Figure 1-2. Top, a simplicial complex. Down, constructing a simplicial complex.

A cellular complex is a simplicial complex such that (Figure 1-1 down right and 1-3) :

— It is structured by numbering its vertices. A number n(v) is associated to each vertex v,
such that, for any i-simplex & = {vy, ..., v;} which is not a face of a j-simplex, j > i, the
numbers n(vp), ..., n(v;) are all distinct, and 0 < n(vg), ..., n(v;) <i. A simplex incident
to vertices numbered ny, ..., np is denoted by {ng, ..., np}, with ng < ... < n,. An i-
dimensional cell, or i-cell, is the set of all j-simplices {ny, ..., nj.q, i} incident to a same
vertex numbered {i},0<j<i;

~Each "closed" cell, i.e. a cell and its boundary, is a cellular manifold as defined below.

A cellular complex can be constructed by adding “closed" cells and by identifying cells : Figure
1-3. Classical notions as boundary or star of a cell, incidence and adjacency relations between
cells can be easily defined on so-defined cellular complexes.

Intuitively, numbering a simplicial complex is the converse operation of barycentric
triangulation. It is not possible to define such a structure on any simplicial complex, but it is
always possible to subdivide it in order to get a simplicial complex which can be structured into
a cellular complex.
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Figure 1-3. Constructing a cellular complex.

This definition of cellular complexes is now extended in order to include cellular objects such
that the boundary of a cell may be incomplete [RoOC] : Figure 1-4. In terms of associated
simplicial complexes, that means that simplices exist, such that all their faces do not belong to
the complex. Such objects can be constructed by adding "closed"” cells, by identifying cells and
by removing cells.

Figure 1-4. Left, a cellular complex where the boundaries of cells are incomplete. Right, a
splitted view of this cellular complex.

Starting from so-defined n-dimensional cellular complexes, we study (Figure 1-5) :
—"Closed" cellular complexes, in which the boundary of each cell belongs to the cellular
complex : they are cellular complexes as initially defined : Figure 1-1 down right;
— Homogeneous cellular complexes, in which each i-cell belongs to the boundary of an n-
cel,0<i<n;
— Regular cellular complexes : with a constructive point of view, regular cellular
complexes can be constructed by adding "closed" n-cells, and by identifying (n-1)-cells ;
— Cellular manifolds, which are regular cellular complexes in which an (n-1)-cell belongs
to the boundaries of at most two n-cells.
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Figure 1-5. Left, an homogeneous cellular complex. Middle, a regular cellular complex.
Right, a cellular manifold.

2.2. N-chains

N-chains are defined for the representation of cellular complexes as previously defined.
Roughly speaking, a cellular complex is a set of 0-, 1-, ..., n-cells on which a boundary
relation is'defined, i.e. each i-cell is associated with the 0-, ..., (i-1)-cells of its boundary. I-
cells are modelled by i-dimensional generalized maps, or i-G-maps, and the boundary relations
between i-cells and j-cells are formalized by applications O'ji, 0<j<i<n.

Cells. An n-G-map G = (D, oy, 0y, ..., 0t) is defined by [Li89] (Figure 2-1) :

— D is a finite set of darts ;

— oy is an involution, i.e. for each dart d of D, aj(0j(d)) = dojo=d ;

—Foranyi, j0<i<i+2<j<n, 00 is an involution.
The relation between n-G-maps and n-dimensional cellular manifolds is the following. It is
well-known that an n-dimensional simplicial manifold can be represented by only representing
n-simplices and by associating each n-simplex with at most n+1 n-simplices which share with it
(n-1)-simplices [FePa]. Since simplicial manifolds are here structured by numbering the
vertices, an n-simplex is incident to vertices numbered from O to n, and an (n-1)-simplex is
incident to vertices whose set of associated numbers is {0, ..., n}-{i}, 0 <1 < n. Moreover, a
cellular manifold is not constructed by simply identifying (n-1)-simplices, but (n-1)-cells.

Each dart of D corresponds to an n-simplex, and conversely. Let ¢ and © be two n-simplices,
and dS, d° be the corresponding darts. If 6 and T share an (n-1)-simplex numbered {0, ..., n}-
{i}, d%a; = d7, and d%«; = d°. o; is obviously an involution. The fact that oo, is an
involution for 0 £ < i+2 < n corresponds to the fact that (n-1)-cells are identified during the
construction of an n-dimensional cellular manifold : cf. [Li89] and Figure 2-1.

All notions related to n-G-maps are defined through the orbit concept : Figure 2-2. The orbit of
dart d related to involutions oy, 0y, ..., O, 0 Sig <ij <... <ij<nandj2-1, is the set of
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all darts which can be reached by applying these involutions in any order, starting from d. If j =
n, this orbit is a connected component of the n-G-map, since it contains all darts corresponding
to n-simplices of a connected component (in its usual meaning) in the associated cellular
manifold. If j < n, this orbit corresponds to a (n-j-1)-simplex, since it contains all darts
corresponding to n-simplices which share an (n-j-1)-simplex numbered {0, ..., n}-{ig, ..., ij}
in the associated cellular manifold. An i-cell of an n-G-map is the orbit of a dart for all
involutions except @ : it contains all darts corresponding to n-simplices which share a same 0-
simplex numbered {i}.

Figure 2-1. Top, graphical representation of darts. Down left, a cellular manifold. Down right,
the corresponding 2-G-map (D, oy, 0y, oy) where the boundary of each cell is represented.
Darts d, dog, doy, dogoy are not filled, and dogory = dopoy.

Let G = (D, 0y, 01, ..., 0tp) be a connected n-G-map, and let @ be an application on D, which
value is undefined for each dart of D. If o, is the identity on D, G models a "closed” n-cell, (D,
o, 01, ..., Oy_1, ®) models the open n-cell, and (D, 0, &y, ..., 1) models the boundary
of this cell : cf. Figure 2-2.

Operations. Operations have been defined for handling n-G-maps [BDFL,Duf,Li89] :

— Any traversal of an n-G-map can be performed by applying involutions o; or
compositions of these involutions. For instance, such traversals are needed for
computing cells or topological properties as orientability ;

— Any n-G-map can be constructed by adding "closed" n-cells and by identifying (n-1)-
cells. Due to the definition of n-cells, adding an n-cell mainly consists in constructing an
(n-1)-G-map. Identifying (n-1)-cells is achieved by the sewing operation, which consists
in modifying involution o, on the darts of the (n-1)-cells which are identified, i.e. on
orbits for o, ..., 0, 0.

Boundary relations and n-chains. As mentionned above, a cellular complex can be
defined as a set of i-cells on which boundary relations between i-cells and j-cells are defined,
for 0 <i<n, 0<j<i. Boundary relations satisfy the properties :
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— If a k-cell ¢y belongs to the boundary of a j-cell ¢;, and if c; belongs to the boundary of

an i-cell ¢;, ¢ belongs to the boundary of ¢;, 0 <k <j<i<n;

—In an i-cell, all i-simplices joined through faces opposite to vertices numbered {j+1},
., {i-1} share a same j-simplex numbered {0, ..., j},0<j<i;

- There is a correspondence between the numbcrmg of an i-cell and the numbering of the

j-cells of its boundary, 0 <j <i: in other words, numbering is invariant under boundary

relations.

<0.1>(d)) = {d),dg} : the set of darts incident, with d}, to a
vertex numbered 0

<0>(d;) = {d},d,} : the set of darts incident, withd, to a
vertex numbered 1

<0,,0.>(dy) = {d},d,,...,dg} : the set of darts incident, with
dy, to the verlex numbered 2

Figure 2-2. Top, 2-G-maps which represent, from left to right, a closed cell, the corresponding
open cell and its boundary. Down, a 2-G-map which represents an open cell, and examples of
orbits.

Formally, an n—chailj C= ((Qi)i=0 n(© )0<_,<1<n) is defined by [EILi] (Figure 2-3) :
- Gi= (D}, a, ..., @;}, o} = ®) is an i-G-map, such that © is an application on Di
which value is undefined for any dart : Gt models open i-cells ;
-(c )J =0,...i-1 are applications from Dito Di U {&}. Applications oi model the boundary
relation between i-cells and j-cells. They satisfy for each dart d of Dl
* Property 1 : 1fd<5J #E, dcjcl‘( dog, 0<k<j<i;
« Property 2 : doyo _]+1<k<1 1;
» Property 3 : dako dc or doyoj = dcoc;‘( 0<k<j<i
€ is an undefined value. Letd be a dart of DL, If dG' €, the corresponding i-cell is locally not
incident to a j-cell, else it is.

Operations. The principle of traversal operations is similar to the corresponding operations on
n-G-maps : they consist in traversing darts by applying involutions (xli( and applications Gi For
instance, the boundary of an i-cell can be computed by applying applications (5J to all darts of
the i-cell, for 0 <j <i.

Any n-chain can be constructed by applying two basic operations : adding an open i-cell, and
joining an open i-cell with the j-cells of its boundary from dimension 0t0j,0<i<n,0<j<i:
cf. [EILi,Elt].
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a.. . c. . e.
Figure 2-3. Top, a 2-chain which models the cellular complex displayed in Figure 1-4. Down :
illustrations of properties : a. property 1 ; b. property 2 ; c., d. and e. property 3.

Implementation. An n-G-map can be easily implemented using records and pointers
[BDFL,LI89]. Each dart is implemented by a dart record, which contains n+1 pointers to dart
records. Each pointer associates the record with the dart record corresponding to the image of
the dart by an involution. Constraints of consistency, necessary for such a data structure
implements n-G-maps, are also easily deduced from the definition of n-G-maps. All traversals
can be performed by a single algorithm, similar in spirit to a depth-first search traversal in a
graph [BDFL]. Construction operations are implemented by operations which modify pointers
on dart records, and they are directly deduced from the "adding cell” and sewing operations.
This type of implementation can be easily generalized for n-chains and all models deduced from
n-chains in section 3. It is clear that other types of implementation can be defined [BDFL,Duf].

3. Subsets of cellular complexes and related combinatorial models

Specialized models are deduced from n-chains for the representation of subsets of cellular
complexes. In fact, properties of cellular complexes of these subsets are used in order to reduce
the amount of explicit informations contained in the model. The mechanisms employed for
deducing specialized models are classical and simple ones :
—If ¢, yand m are applications, such that | = y¢, the explicit representation of 1} can be
omitted if ¢ and y are explicitly represented ;
— If an object is such that it implicitly exists and no application is explicitly represented on
it, its explicit representation can be omitted.
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These mechanisms, applied to a model, produce an equivalent model, i.e. both models
correspond to a same subset of cellular complexes. Classical consequences are the followings.
It is clear that less space is required for implementing a model in which the amount of
informations explicitly represented is reduced. But if implicit informations have to be explicitly
handled, they have to be computed, meaning more computing time. Similarly, some operations
can be less costly, since less explicit informations have to be modified. On the other hand, if
arguments of these operations are implicit, it is possible that they have to be explicitly computed
before applying the operation. Examples of these classical consequences are mentioned for
combinatorial models deduced from n-chains.

First, these mechanisms are applied to n-G-maps and n-chains ; then, they are applied in order
to deduce specialized models for the representation of "closed", homogeneous and regular
cellular complexes, i.e. “closed”, homogeneous and regular n-chains. At last, we show that n-
G-maps is a specialized model which can be deduced from regular n-chains for the
representation of cellular manifolds.

3.1. Generalized maps

Let G = (D, 0y, 01, ..., 0ty) be an n-G-map, and M be the associated cellular manifold. M can
be constructed by adding n-cells and by identifying (n-1)-cells. This corresponds in G to the
fact that ot joins all darts corresponding to n-simplices incident to a same (n-1)-cell, i.e. oo,
is an involution for 0 <i < n-2 : in other words, o, is an isomorphism between two orbits for
0, 01, ..., Op. It is thus useless to keep the explicit definition of a, for all darts of these
orbits : it is sufficient to only know that two darts of these orbits are images from each other by
o, : Figure 3-1.

Let d and d' be two darts of these orbits, such that dot, = d'. We define A, by dA, = d', d'A,
=d, and A, is undefined for all other darts of the orbits. Conversely, it is possible to extend Ap
for all other darts of the orbits in an isomorphism between these orbits, and get the definition of
oy, d and d' are called representative darts of the orbits.

- A,

Figure 3-1. A reduced 2-G-map which models the cellular manifold of Figure 1-5.
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This can be extended for all involutions oy such that i > 2, since o is an involution for 0 <j
<i-2. A main drawback is the fact that computing orbits in so-reduced n-G-maps is more
complex than in non-reduced n-G-maps [Elt].

3.2. Chains

Properties 1 and 2 satisfied by applications G of n-chains can be used in order to reduce the
amount of explicit informations contained in n-chains.

Figure 3-2. Using properties 1 (top) and 2 (down) in order to reduce the amount of explicit
inter-cellular relations in 2-chains. Dashed arrows mean that the corresponding relation is not
explicitly represented. These relations are not represented at all in the following figures.

Property 1 means that if a k-cell ¢ belongs to the boundary of a j-cell ¢j, and if ¢; belongs to

the boundary of an i-cell ¢;, ¢i belongs to the boundary of ¢;, 0 Sk<j<i<n:
— If the boundary relations between c; and c;, ¢; and ¢y are explicitly represented, it is
useless to explicitly represent the boundary relation between c; and c;. More formally, let
d be a dart, such that d(SJi # € if c} and 015( are explicitly represented for d and dc}, the
explicit representation of G}, for d is useless : Figure 3-2. This property is employed in
section 3.3 in order to define a specialized model for representing "closed” cellular
complexes ;
— If the boundary relations between c; and cj, ¢; and ¢y are explicitly represented, it is
useless to explicitly represent the boundary relation between ¢; and c. More formally, let
d be a dart, such that dc} #e:if 6} and o} are explicitly represented for d, the explicit
representation of o}, for de is useless : Figure 3-2. This property is employed in section
3.4 in order to define a specialized model for representing homogeneous cellular
complexes.

Property 2 means that in an i-cell, all i-simplices joined through faces opposite to vertices
numbered {j+1}, ..., {i-1} share a same j-simplex numbered {0, ..., j}, 0 <j <i. The explicit
representation between all i-simplices and the j-simplex is useless, since the explicit
representation between one i-simplex and the j-simplex is sufficient. More formally, given a
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dart d of D, it is sufficient to explicitly represent c}‘ for d, and not for all darts of the orbit of d
for involutions o}, &ji7, .. 0!y : cf. Figure 3-2. This is employed in section 3 in order to
simplify the drawings.

3.3. "Closed" chains

"Closed" cellular complexes. Roughly speaking, "closed" cellular complexes are cellular
complexes such that the boundary of each cell is completely defined and belongs to the cellular
complex. Let C be a "closed” cellular complex, ¢y and ¢; be a k-cell and an i-cell of C, such that
ck belongs to the boundary of c;j, with i > k+1. An (i-1)-cell ¢;.; of C exists, such that ci
belongs to the boundary of c;_; and c;.; belongs to the boundary of c;. It is thus useless to
represent all boundary relations between cells. Only the explicit representation of boundary
relations between i-cells and (i-1)-cells is needed, 0 <i<n.

"Closed" n-chains. This corresponds in n-chains to the fact that for any dart d of Di, dcji #€
for any i, j, 0 < j <i < n. A "closed" n-chain C = ((G)i=g,.. n, (Gi’1)o<i<n) is defined by
(Figure 3-3) : )
- G1 = (D}, o, ..., O jl, oc} =®) is an i-G-map which models open i-cells ;
— 63} is an application from Di to Di! which satisfy, for any dart d of Di :
« Property 4 : dog 6,401 = dojlol, 0<i-2 <i<n;
« Property 5 : dajo,); = ool or dojol; = do;i}, 0sk<i-2 <i<n,

Figure 3-3. Top, a closed 2-chain which models the cellular complex shown in Figure 1-1.
Down, constructing a closed 2-chain.
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Itis possible to compute for any dart d of Di a dart of the incident j-cell by applying O'i_il...o'j‘;l.
Property 4 (resp. property 5) corresponds to properties 1 and 2 (resp. property 3) of n-chains.

Operations. Traversal operations for handling "closed" n-chains are obviously deduced from
the corresponding operations on n-chains. For instance, the boundary of an i-cell may be
computed incrementally by computing the (i-1)-cells of its boundary by applying Gi.il to all
darts of the i-cell, then the (i-2)-cells of its boundary by applying Gi{_é to all darts of the
computed (i-1)-cells, and so on.

Two basic operations are defined for constructing any "closed" n-chain : creating a “closed” i-
cell, i.e. an i-cell and its boundary, and identifying i-cells : cf. Figure 3-3. They can be defined
by the basic operations defined for constructing n-chains. For instance, creating a "closed"” cell
consists in creating a cell, creating the cells of its boundary, and in joining all these cells
together.

3.4. Homogeneous chains

Figure 3.4. Top, an homogeneous 2-chain which models the homogeneous cellular complex
drawn in Figure 1-5. Down, constructing an homogeneous 2-chain.

Homogeneous cellular complexes. An n-dimensional homogeneous cellular complex is
an n-dimensional cellular complex, such that each i-cell belongs to the boundary of an n-cell, 0
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<1i < n. The explicit representation of boundary relations between i-cells and j-cells is useless
for 0 £j < i < n, since they can be deduced from the boundary relations between n-cells and i-
cells, and between n-cells and j-cells.

Homogeneous n-chains. This corresponds for n-chains to the fact that for each dart d of
Di, a dart d' of D" exists, such that d'e? = d, for 0 <i < n. An homogeneous n-chain C =
(Gh)icp,... p (Dixg,.. n-1) is defined by (Figure 3-4) :
— Gi=(Di, a(i), s ui,il, a{ =) is an i-G-map which models open i-cells ;
— o7 is an application from D7 to Di U {e}. For sake of simplicity, properties satisfied by
these applications are not detailed : cf. [Elt].
It is clear that for any dart d of D, it is possible to compute a dart of an incident j-cell by
computing a dart d' of D such that d'c} = d, and by applying ¢} to d', for 0 < j<i<n.

Operations. Traversal operations are not changed for n-cells : for instance, the boundary of
an n-cell can be computed as for n-chains. But it can be necessary to compute applications 6}, 0
<j <i < n for traversing the other j-cells, for instance when computing the boundary of an i-
cell.

An homogeneous n-chain can be constructed by first constructing n-cells, using the operation
for creating cells defined for handling n-chains, and second by constructing i-cells of their
boundaries and joining the n-cells with these i-cells : cf. Figure 3-4. Note that it may be
necessary to compute applications ci, 0 <j <1i < n, when joining an n-cell with an i-cell, in
order to check the validity of the resulting n-chain.

3.5. Isomorphic chains

Figure 3-5. Top, making a 1-cell implicit. Down, constructing an isomorphic 2-chain.

Isomorphic cellular complexes. Isomorphic cellular complexes are cellular complexes for
which property 3 of cellular complexes is stronger. Isomorphic cellular complexes are such that
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the "subdivision" of a cell corresponds exactly to the "subdivision" of its boundary : cf. Figure
2-3-c. Non-isomorphic cellular complexes are in fact objects which are not generally handled in
Geometric Modeling : cf. Figures 2-3-d and 2-3-e.

Isomorphic n-chains. Isomorphic n-chains are such that, for each dart d of Di and for each
J» O <j<i<n, d(SJ =gor (SJ is an isomorphism between the orbit of d for involutions (10,

o 1, and the j-cell to ‘which dcs belongs : cf. Figure 2-3-c. As for n-G-maps, it is useless to
explicitly represent 6 on all darts of the orbit of d : cf. section 3.1. d and do’ are representative
darts of their orbits, and we just have to explicitly represent this "relation” between dand dc’
Moreover, since the j-cell belongs to the boundary of the i-cell, it is useless to expllcttly
represent the boundary relations berween the j-cell and the k-cells of its boundary, 0 <k <j,
since they can be deduced from the boundary relation between the i-cell and the k-cells. At last,
the explicit representation of all darts of the j-cell is useless, except for dc}, since no
applications are explicitly defined on them : cf. Figure 3-5.

Operations. As an example of traversal operations, the boundary of a j-cell may be computed
as in n-chains if the j-cell is explicitly represented, else it is necessary to compute an explicitly
represented i-cell, 0 <j <i < n, such that its boundary contains the j-cell. Since the cells of the
boundary of the j-cell belongs to the boundary of the i-cell, it is possible to easily compute the
boundary of the j-cell starting from the i-cell. This is similar to the corresponding operation in
homogeneous n-chains.

An isomorphic n-chain may be constructed by adding an explicitly represented i-cell, joining an
explicitly or implicitly represented j-cell with an i-cell, 0 <j <1 < n, and making a cell implicit
as described above: cf. the definition of isomorphic n-chains and Figure 3-5. Some "technical”
problems can arise : for instance, it may be necessary to modify the representative dart of a cell.
In fact, these problems can be automatically handled during an interactive construction process.

3.6. "Closed", homogeneous and isomorphic chains

"Closed" homogeneous isomorphic cellular complexes. These cellular complexes
simultaneously satisfy the properties of "closed”, homogeneous and isomorphic cellular
complexes (cf. sections 3.3, 3.4 and 3.5). According to these properties, it is useless to
explicitly represent i-cells, for 0 <1 < n. Only n-cells are explicitly represented, the other cells
are implicitly represented. The boundary relations are represented only between n-cells and
implicit i-cells,0 <i<n.

"Closed", homogeneous and isomorphic n-chains. An i-cell is implicitly represented
by a representative dart. Applications 6} map representative darts of orbits for of), ..., iy to
representative darts of i-cells. Formally, such an n-chain is defined by ((Di)=¢,. n.1- G
(6Diz0,...n-1), ith (Figure 3-6) :

—Diis a set of darts ; each dart of D! implicitly represents an i-cell ;

— Gn is an n-G-map which models open n-cells ;

— oY is an application which maps representative darts of orbits for o), ..., &.;" onto Di.
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Properties satisfied by these applications can be easily deduced from properties 1-3 of n-
chains. For instance, let d be the representative dart of an implicit i-cell, and let d, ..., dp be
the representative darts of all explicit n-cells, such that dqc'i' =d,1<q<p;forallq,q,1<q,
q' < p, the orbits of dg and dg for o, ..., oy are isomorphic to each other.

Flgure 3-6. Top, a "closed” homogeneous isomorphic 2-chain. Down, constructing such a 2-
chain.

Operations. Traversal operations are similar to those defined for handling isomorphic chains.
For instance, the boundary of an n-cell can be computed as in isomorphic n-chains ; the
boundary of an i-cell can be computed through the incident n-cells, 0 <i<n.

N-chains of this type may be constructed as closed n-chains, by creating closed n-cells and by
identifying implicit i-cells, 0 < i <n.

3.7. Regular chains

Regular cellular complexes. Regular cellular complexes are "closed" homogeneous
isomorphic cellular complexes, which can be constructed by adding "closed” n-cells and by
identifying (n-1)-cells. The explicit definition of i-cells is useless, for 0 <i < n-1.
Consequently, the explicit representation of the boundary relations between i-cells and j-cells is
also useless, j < 1.

Regular n-chains. I-cells are not represented for 0 < i < n-2. (n-1)-cells are implicitly
represented by a representative dart. A regular n-chain is defined by (D"-1, G1, 6,y), with
(Figure 3-7) :

—Dm1is a set of darts ; each dart implicitly represents an (n-1)-cell ;

— G is an n-G-map which models open n-cells ;
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— o, is an application which maps representative darts of orbits for o, ..., 04" in G?
onto Dn-1,

Figure 3-7. A regular 2-chain which models the regular cellular complex of Figure 1-5.

Properties 1-3 of n-chains are implicitly satisfied through the definition iself of regular n-
chains. I-cells which are not represented are defined through a notion which is very close to the
notion of orbit for n-G-maps. For instance, the 0-cell incident to a dart d of D" is defined as the
set of darts which are reached by applying successively involutions o}, %, ..., aph,
application 6" and its "inverse" (c,";)-! in any order : cf. Figure 3-7.

Operations. Traversal operations are here quite different from the corresponding operations
defined for handling closed, homogeneous and isomorphic chains, since i-cells are not
represented at all for 0 < i <n-2. In fact, traversal operations are closed to traversal operations
defined for handling n-G-maps [Elt].

Constructing regular chains is very simple, since it consists in creating n-cells and in joining
these cells through o, along implicit (n-1)-cells. It is easy to prove that this operation is thus
simpler and less costly than the corresponding operation defined for handling general chains.

3.8. G-maps

Cellular manifolds. Cellular manifolds are regular cellular complexes such that each (n-1)-
cell belongs to the boundary of at most two n-cells.

Manifold n-chains and n-G-maps. Let G = (D1, G1, 6,.,")) be a regular n-chain which
models a cellular manifold. Properties of cellular manifolds correspond to the fact that, for each
dart d of D1, at most two darts d; and d, exist in D" such that d,6,"; = d,0,7; = d. We can
thus define an application A, such that d{Ap = dy, and dpA = d;. A, is obviously an
involution, and d corresponds to the orbit of d; or dj for A,

A manifold n-chain is defined by (G®, A,), where G = (D1, &), ..., 001, ®) is an n-G-map
which models open n-cells, and A, is an involution which maps representative darts of orbits
for o), ..., 0y onto other representative darts of such orbits. This involution can be extended
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in an isomorphism o, between orbits for o), ..., & 4%, and the manifold n-chain is obviously
equivalent to the n-G-map (D?, o, ..., &}, o) : cf. Figure 3-8.

Figure 3-8. From a regular 2-chain which models a cellular manifold to a 2-G-map.

Other specialized models can be defined by a systematic study. For instance oriented maps have
been defined for representing oriented cellular manifolds [Li89]. [Bri] has proved that incidence
graphs as defined in [Ede,Sob] are equivalent to cell-tuple structures or n-G-maps for the
representation of the topology of cellular manifolds in which no cell exists such that its
boundary self-intersects.

4. Conclusion

This paper presents a set of combinatorial models, from n-chains defined for the representation
of the topology of cellular complexes, to n-G-maps defined for the representation of the
topology of cellular manifolds. There is an exact correspondence between each subset of
cellular complexes and the related combinatorial model. Operations are defined for handling
each subset of cellular complexes, and this subset is closed under the related operations.
Moreover, if it is necessary to temporary model more general cellular complexes during a
construction process, conversion operations exist for converting a model into a more general
model, and conversely [Elt].

A specialized model corresponds to a subset of n-chains which satisfy some properties. These
properties are employed in order to reduce the amount of explicit informations contained in the
model. The consequences of such a process are classical and well-known. Less space is
required for implementing a specialized model, but more computing time can be needed, e.g.
for computing the implicit informations. Nevertheless, it is often not necessary to explicitly
handle all informations ; and many construction operations are less costly on specialized models
than on general n-chains, since less informations have to be modified. A complementary
systemic study is now necessary in order to get precise results about the classical space/time
duality in this case.
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We are now studying :

— The definition of other subsets of cellular complexes, in order to deduce specialized
models for their representations ;

— The implementation of a set of combinatorial models in the kernel of a geometric
modeller. A possible approach is the study of the algebraic specification of a set of
models, from n-chains to n-G-maps [BDFL,Duf] ;

— The automatic choice of a model according to the object which has to be represented
and to space/time requirements. The use of a specialized model can be completely
tranparent for a user : that means that the user knows that (s)he handles a sub-class of
cellular complexes which satisfy some properties, but (s)he does not know the
specialized model which is employed for the representation of these cellular complexes if
(s)he does not want to ;

— The automatic generation of combinatorial models, given the properties of the cellular
complexes which have to be represented ;

— The automatic definition of operations for a specialized model, according to its
properties ;

— The comparison between these extensions of the notion of map and other non-manifold
models used in Geometric Modeling. It will be an extension of the comparison between
n-G-maps and combinatorial models used for the representation of cellular manifolds
presented in [Li91].
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Abstract: The Hierarchical Assembly Graph (HAG) is a common representation method
for geometric models. The HAG is a directed acyclic graph. Nodes in the graph represent
objects, and arcs denote the sub-part relation between objects. Affine transformations and
other instantiation parameters are attached to the arcs. An instance of an object in a HAG is
defined as a path ending at its node. Information common to all instances whose paths end at
a given node can be attached to this node. Data associated with a single instance cannot be
attached to any single node or arc in the graph. Such private data can be stored in an external
list, hash table, or a partial expansion of the graph into a tree, but all of these schemes have
severe drawbacks in terms of storage, access efficiency, or update efficiency.

In this paper we present a scheme for representing single instances in the assembly graph
itself, by identifying an instance with the last node in its path when the only way of reaching
the last node is through a unique path starting at the first node of the path. We give an
algorithm for singling an instance in the graph, i.e. transforming the graph into an equivalent
one in which the instance can be identified with a node. We also show how to undo an instance’s
singling when its private data is no longer needed.

Keywords: Assembly, Hierarchical Assembly Graph (HAG), geometric data structures, single
instance representation, singling algorithm.

1 Introduction

One of the most important activities in computer-aided design and computer graphics is the
design of geometric models [Hoffmann89, Mantyld88]. The preferred way of designing a model
is hierarchically, by composing objects or parts into more complex objects. A common method
of representing such a model is by a hierarchical assembly graph (HAG), a directed acyclic
graph in which nodes denote objects and arcs denote the sub-part relation between objects.
Geometric and other parameters related to the model can be attached to the nodes or the
arcs. The most common example is attaching affine transformations to arcs to denote relative
placement and scale of part and sub-part [Braid78].

An important observation regarding the HAG is that internal nodes do not represent in-
stances of objects in the final model, but ‘generic objects’. The generic object appears in as
many instances as there are paths leading to it from the root of the graph. The HAG has two
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notable advantages: space efficiency — information common to all instances generated from
the same generic object (including their sub-graphs) is stored only once; and fast update —
modification of parameters or information in the generic object is instantaneously reflected in
all its instances in the graph.

In many cases it is desired to attach data to a single instance. For example, saying that
the color of one chair in a meeting room is different from the default color of the other chairs;
or that a specific screw in a machine has a unique mark on top. In this paper we call this
type of data private instance data, and assume that there is no special structure imposed on it,
i.e., private data of one instance is independent of private data that may be attached to other
instances. Note that since our graph can be instantiated as a sub-part in another graph, we
actually want to associate private data with a sub-path in this other graph (a sub-instance).

An instance is specified by a path in the graph, therefore private data cannot be attached
to a single node or arc. There are some simple methods for single instance representation,
which include an external list or hash table, an expansion of the graph into a tree, and storage
of a partial expanded tree having only paths leading to instances with private data. Each of
these schemes has disadvantages in terms of storage, access efficiency, or update efficiency, to
be described later.

We are not aware of substantial previous work on the issue of single instance representation
or even on the representation of assemblies. There is a rich literature on boundary represen-
tations (see the textbooks [Hoffmann89, Mintyla88]) and some work on hierarchical boundary
models, e.g. [Floriani88]. Braid [Braid78] and Lee and Gossard [Lee85] describe assembly data
structures which are essentially hierarchical assembly graphs. A more complex assembly struc-
ture, including symbolic repetitions and recursions, is described in [Emmerik91]. A modeling
system using sequences of parameterized transformations is described [Rossignac89], and a
method for interactive editing of a node’s affine transformation is detailed in [Rossignac90].
None of these papers deals with the general problem of associating private data to single in-
stances in geometric hierarchies. Requicha and Chan [Requicha86] briefly discuss the fact that
single instances correspond to paths, in the context of representing features and tolerances in
CSG. Rossignac [Rossignac86] presents a technique for storing, at any node, lists to sub-node
instances, using a relative path. These references are used to override the inherited attributes
for that instance during evaluation. However, usage of private instance data is done by ex-
panding the graph into a tree.

The single instance representation issue is extremely practical, and was probably solved
ad-hoc in many systems. The lack of literature may be attributed to the existence of seemingly
simple and obvious solutions. However, the issue is important enough to justify a separate
discussion, and its elegant and efficient solution is not as simple as first imagined.

This paper has two main contributions. First, we discuss the single instance representation
issue in a general manner, defining the problem and the requirements from a solution. We
describe numerous obvious solutions and show that they are not efficient in terms of time and
space.

Second, we present a scheme for representing single instances in the assembly graph itself,
by identifying an instance with the last node in its path when the only way of reaching it
is through a unique path from the first node. We give an algorithm for singling instances in
the graph, i.e., transforming the graph into an equivalent one in which the instance can be
identified with a node. We also show how to undo an instance’s singling when its private data
is no longer needed. The elegance of our scheme lies in that it enables private data to be stored
uniformly within the graph itself, in a similar way to storage of common data and transparently
to algorithms manipulating the graph.
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Section 2 defines the problem and discusses the advantages and disadvantages of the simple
solutions. Section 3 presents the singling algorithm and some of its properties, and also shows
how to undo the effects of the algorithm in order to delete private instance data once it is not
needed.

2 Instances in Hierarchical Assembly Graphs

In this section we motivate and define the problem of representing single instances in hierar-
chical assembly graphs. We define the terms strict instance and sub-instance, discuss simple
solutions to the problem and show that they have severe disadvantages.

2.1 The Hierarchical Assembly Graph (HAG)

A geometric model is best designed hierarchicaly, by composition of simple objects into more
complex ones. The natural way of representing such a model is by a directed acyclic graph
(DAG) . A node in the graph represents a generic object. We denote objects and nodes by
capital letters (A, B, N), where ‘object A’ means the sub-graph rooted at node A. An arc in
the graph from node A to node B means that object B is one of the objects used in defining
object A. We say that the meaning of the arc is an instantiation of the generic object B; we
also refer to B as a sub-object of A and to A as a parent of B. We denote arcs by small letters
(ei, ex). Note that it is a mistake to denote an arc by the pair of nodes it connects, since there
may be several arcs connecting the same two nodes; an object can utilize another object more
than once.

Figure 1(a) gives a textual specification of a simple HAG, in the notation described in [Em-
merik91]. The same HAG is visualized in Figure 1(b); bold, hatched arcs denote several arcs,
numbered in the range shown to their right. Figure 1(c) shows a possible object represented
by the HAG.

X=5Y
1.5 /% E}
Y=2Z D D
1.2 D D
0O
Z = block

@ (b) (c

~

Figure 1: An example of a HAG.

Various parameters of an instantiation are attached to the corresponding arc. One such
common parameter is an affine transformation expressing the placement and scale of a sub-
object relative to those of its parent. There may be other parameters, for example, if the

!By requiring that the graph be acyclic we rule out using it for representing fractal-like objects. This is not
a practical limitation. See [Emmerik91] for a description of a system allowing cyclic graphs.
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Display (Node N) {
UpdateCurrentColor (Color(N))
if N is a leaf
DisplayPrimitive (Geometry(N))

else
for each out-going arc e {
PushGraphicsState()
MultCurrentTransformation (Transformation(e))
Display (DestinationNode (e))
PopGraphicsState()
}

Figure 2: A procedure for displaying a model represented by a hierarchical assembly graph.

sub-object is an object parameterized by dimensions then an instantiation can supply the
desired dimensions.

As an illustrative example, Figure 2 gives pseudo-code for displaying a model represented
in a HAG, assuming: (1) all children of a node are combined with the set union operator, (2)
every node has a color attached to it which is inherited by its children, (3) there are display
functions available for the geometric primitives in the leaves of the graph.

2.2 Instances

The HAG is a graph and not a tree since one generic object may be instantiated more than once,
by different objects or even by the same object. For example, in mechanical engineering there
is a large number of standard parts which are commonly utilized in many of the components
of a machine. In interior design, the same chair, lamp, or tile can be used many times in a
building.

We define a strict instance of an object A in the graph as a path in the graph starting
from the root and ending in A. When the path can start in any node we say that the path
is a sub-instance, because it corresponds to a strict instance in the sub-graph rooted at the
path’s first node. For simplicity, we will refer to both types as an instance and use sub- or
strict-instance only when the differentiation is needed.

An instance [ is denoted by the list of the arcs on its path: I = (ey, ..., ex). Note again that
it is wrong to denote a path by a list of its nodes since this creates an ambiguity when there
is more than a single arc connecting the same two nodes. Note also that an instance’s path
does not have to end in a leaf.

We say that an instance contains another if its path contains the other instance’s path.
Instances overlap if their paths have common arcs.

2.3 Single Instance Representation

Information common to all instances of a node is attached to the node. This information may
include the object’s basic geometry, default color and material, and so on. It may be desired
to associate private data to an instance. As examples, pin number 1 in a VLSI chip should be
marked by a slight change in geometry; In Figure 1 the block pointed to by the arrow needs to
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be drawn in a different color. We call the operation of associating private data to an instance
I a singling of I.

Private instance data cannot be attached to any specific node or arc in the graph since it
is associated with a whole path in the graph. A scheme for representing single instances is
needed. Note that private instance data should not be lost when the object is instantiated in
another object; this is the whole point in hierarchical design. Hence, a requirement from such
a scheme is that it be capable of representing sub-instances (corresponding to partial paths),
not only strict instances (corresponding to paths from the root).

On the other hand, there is no reason why a single instance representation scheme should
be required to represent two overlapping or containing instances. From the point of view of the
design process, it is meaningless to associate different private data with two such instances; it
only matters which object is instantiated and through which path from the root.

An interesting issue is the way in which instances are specified. In an interactive system,
the user is obviously not expected to type in whole paths in the graph. Instead, he/she can
graphically select one strict instance and be given the power to step up and down its path to
narrow or widen it. An instance may also be the result of querying. For example, instances
located in a specified area of space, touching a specified object, or visible from a certain location.
Instance specification is an orthogonal issue to the instance representation issue discussed in
this paper.

2.4 Simple Solutions: List, Hash Table, Partial Tree and Graph

A very simple scheme for single instance representation is to expand the graph into a tree, in
which case private data can be attached to any node because there is only one way of reaching
a node. However, this method loses the two main advantages of the graph. Storage efficiency
is lost because common instance information will be duplicated. For large models this becomes
prohibitive. Update efficiency is damaged because a modification of a generic object is no longer
automatically reflected in all of its instances, and requires traversing the tree and performing
the modification on every duplicated node.

A second scheme for single instance representation is to store the instances in a separate,
external structure, in which a single entity corresponds to a path in the assembly graph. This
scheme has the appealing interpretation that the graph stores the common instance information
and the other structure stores the differing information.

The external structure can be a simple list whose nodes correspond to paths in the graph.
This scheme requires a search in the list each time an instance is visited in the graph, in order to
determine whether it has an associated private data. A hash table can be used instead of a list
to make the search more efficient, but there are problems in designing efficient hash functions,
especially that a key here is of varying length. Another alternative, an array indexed by an
instance’s serial number, consumes too much space and creates consistency problems when the
numbers change as a result of a change in the HAG.

It is possible to combine both schemes by using a partial tree. A partial tree is an expansion
of the graph into a tree having only the paths leading to instances with private data. Figure 3
shows a HAG (a) and a partial tree singling the sub-instance (5) (b). Arcs 6 and 7, which are
not contained in any path leading to sub-instance (5), do not appear in the partial tree. A
traversal of the graph is accompanied by a coordinated, synchronized traversal of the tree to
identify the existence of private data.

The partial tree scheme is indeed attractive for representing strict instances, but not for
sub-instances. Suppose that an object B with private instance data is used a large number of
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times in an object A, i.e., it appears in many paths in the graph of A. The partial tree will
duplicate all of the instances of object B, but all the duplicates will be identical (Figure 3(b)).
We see that the partial tree has the same disadvantages as the fully expanded tree in terms of
storage and update efficiency.

1.2

3.4

(@ (b) ()

Figure 3: (a) A HAG, (b) a partial tree singling sub-instance (5), (c) a partial graph singling
the same instances.

A solution may be to store a partial graph instead of a partial tree. In a partial graph,
instances are represented by a partial tree rooted at the first node on the instance’s path, and
all arcs which do not lead to the first node are removed from the graph. Figure 3(c) shows a
partial graph singling instance (5); arcs 6 and 7 do not appear, while parts leading to the first
node of instance (5), the third node, are stored as a graph. This scheme presents a problem
when an instance whose path contains the path of a singled instance is to be singled, with
different data (for example, instance (1,3,5) in Figure 3(c)). An algorithm is required for
singling instances in partial graphs.

The singling algorithm presented in the next section singles instances in general directed
acyclic graphs. As such, it can be used on the partial graph too. However, it can be used
directly on the orignial graph, obviating the need for the partial graph.

3 A Scheme for Instance Singling

In this section we present a scheme for singling instances in directed acyclic graphs. The scheme
stores instances as equal-status nodes in the graph. We give an algorithm for instance singling
and show how to undo its effects.

3.1 General Idea

The main observation on which the scheme is based is that a path (hence an instance) can be
identified with its last node, if and only if the only way of reaching the last node of the path
is through a unique path starting from the first node. Another way of phrasing this condition
is that there is no upward ambiguity when going from the last node up to the first node of the
path. Note that the condition has two essential parts:- that the only way way of reaching the
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last node of the path is from the first node, and that there is only one such way. When this
condition is fulfilled, the instance’s private data can be associated with this node or with the
arc directly leading to it (Figure 4).

Figure 4: (a) An example of a HAG having three nodes, m + n arcs, n x m strict instances,
and n X m + m + n instances. No single node or arc can be identified with an instance. (b)
The output of the singling algorithm when singling the path (1,1). (c¢) An erroneous answer
in which the path is duplicated.

The graph is transformed to achieve this situation. The transformation process should be
careful to preserve all original paths in the graphs, not to duplicate paths, and not to add
new paths. The graph in Figure 4(a) can be transformed as in (c) to single the path (1,1).
However, the old path still exists in the graph. A correct solution is shown in (b), where all
and only original paths are present and no path is duplicated.

Our scheme has the advantage that it is completely transparent to graph traversal algo-
rithms; they operate as they ordinarily would, not knowing or caring whether the data they
find associated with a node is private or not. There is no need to search for instances in exter-
nal structures or to coordinate the traversal with one on a partial tree or a partial graph. For
example, in Figure 2, a node’s color is used to update the current display color. The procedure
is used with no change when the color belongs to a single instance.

Every operation that could be performed on the original graph can also be performed on
the transformed graph. In particular, a different instance can now be singled, so that a singled
graph represents the whole assembly, including private data of many single instances.

3.2 A Singling Algorithm

Denote the path of the instance I to be singled by I = (e;,...,ex),0 < j < k and the nodes
it passes through by (Nj_1, ..., Ni). InArcs(N), OutArcs(N) denote the sets of in-coming and
out-going arcs of node N, respectively. Ciyy (C for ‘children’) denotes the arcs in OutArcs(V;)
which connect to nodes other than Njy;. P; (P for ‘parents’) denotes the arcs in InArcs(NV;)
which arrive from nodes other than /V;_;. E; denotes the set of arcs in OutArcs(N;) connecting
N;_y to N;; other than e;. Pseudo-C code of the algorithm is shown in Figure 5, and Figure 6
shows the main transformation performed.

The algorithm performs k — j + 1 stages, such that stage ¢ deals with N;,i = k..j. Note
that the order is bottom-up. At stage i, if ¢; is not the only in-coming arc to node N; the node
is split into two nodes Nf and NP, I for ‘instance’ and O for ‘other’. The out-going arcs of
node N; are duplicated and each new node receives a copy, except that the copy of e;41 coming
out of N? does not connect to N/ but to N§&,. The only in-coming arc of N is e;, to assure
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Singling (Graph G, Path I, Data date) {
let the arcs on I be ej,..., e
let the nodes on I be Nj_,,...,Ni

for i=k to j {
if there is only one arc in InArcs(N;)
continue
replace N; by two nodes N/ and NP
OutAres(Nf) = OutAres(N;)
OutArcs(NP) = OutArcs(N;), with e;y; connecting to NG, instead of N/,
InArcs(Nf) = &
InArcs(NP) = InArcs(N;) — e
}

attach date to node N,f or its in-coming arc

Figure 5: Pseudo-C code for the singling algorithm.

upward disambiguity (the condition necessary for identifying the new node N} with the singled
instance). All other in-coming arcs to N; become in-coming arcs of NP.

Note that only the arcs C;y are duplicated, not the whole sub-graph descending from them;
both sets of arcs denoted by Ci;; in Figure 6(b) lead to the same nodes.

To prove that the algorithm is correct, we have to prove (1) instance I can be identified
with node Nf; (2) the new graph is equivalent to the original one in terms of their instances.
For (1), all we need is the following invariant, whose proof is easy:

o After stage i there is a node N/ which has a unique in-coming arc e;, reaching from N;_j,
and (among others) an out-going arc e;41, connecting to N7,;.

As a result, after stage i there exist two nodes N} and N;_; connected by a unique path
Ni-1, N}, ..., Nf. This path can be denoted by the names of its nodes because there is no
ambiguity — only a single arc connects each pair of nodes. After the last stage, in which i = j,
we can safely identify the original path (e;, ..., ex) with node N{.

Instance-equivalence of the new and original graphs means (1) all previously existing paths
still exist (2) they exist not more than once (3) no new paths are added. To verify these
conditions we enumerate the paths in the graphs explicitly. Before stage 7 there are 10 types
of paths in the graph: paths that do not pass through N;, and nine types of paths which pass
through it in the following ways:

(ei1 ei+l)) (ei, eio+1)1 (ei: C): (6?7 ei+1)) (eiov eio-H), (eiora C)r (P, ei+l): (P, eio+1): (pr C)

where ef € E;,e,-o+1 € Eiy1,¢ € Ciq,p € P,. From the formulation of the algorithm it is
clear that if we identify the new nodes N/ and NP with the original NV; for the purpose of path
equivalence, the paths above are exactly those which are present in the graph after stage 2, and
that none of them is duplicated. We conclude that the transformed graph possesses exactly
the same instances as the original graph. Hence the algorithm is correct.

The time complexity of the algorithm is O(T; |Out Ares(iV;)|), because the work performed
at stage ¢ is dominated by the duplication of out-going arcs. Regarding space complexity, in
the worst case the graph’s storage may double, because the space occupied by 3°; Out Arcs(N;)
may turn out to be on the same order as that of the whole graph.
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Figure 6: The situation in (a) is replaced by that in (b). Node N; is split into two nodes, N/,
which belongs to the path to the singled node, and N2, for all the other paths.

The algorithm is optimal in terms of the number of nodes in the transformed graph, since
a node is split into two if and only if there is more than one in-coming arc, and in this case the
node must be split in order to prevent upward ambiguity.

Finally, note that consecutive singling of each and every strict instance in the graph will
result in an expansion of the graph into a tree, since at the end no node will have more than
a single in-coming arc.

3.3 Deleting Singled Instances

In a dynamic or interactive environment it is necessary to provide a way of deleting singled
instances once their private data is no longer needed, in order to optimize the graph’s storage
and the efficiency of graph traversal algorithms. Deleting singled instances is done by reversing
the process shown in Figure 6, and it requires two small modifications to the singling algorithm:
twin node connection and arc counting.

Twin node connection means linking the two nodes N/ and NP which result from splitting
node N; at stage z. This symbolic link is essential when searching for two nodes to join to a
single node. 7

Arc counting means keeping a counter on every arc e; participating in a singled path. The
counter counts the number of singled paths using this arc. Arc counting is necessary since
singling of some instance J may utilize arcs created for singling of a previous instance I.
If those arcs were to be joined automatically when deleting instance I, instance J may not
be singled anymore, which would impair the equivalence of the transformed and the original
graphs.

In Figure 7, singling instance (1) in the simple graph (a) results in the graph (b). Singling
instance (2) does not change the graph. Suppose it is now ‘desired to cancel the singling of
instance (1). If this is done by joining the two nodes Bf and BY, instance (2) is not singled
anymore. A counter on arc 2 will show that it is used for singling some instance hence the
node it leads to (B]) cannot be joined to another.
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(a) (b)

Figure 7: An example for the necessity of arc counters.

When deleting singled instances, the process of joining two twin nodes together back into
one node is only done when all counters in all in-coming arcs have a value of 1. Otherwise, no
joining is done and the only operation done in stage i is decrementing the counter on arc e;.

4 Discussion

We have motivated and defined the problem of associating private data with single instances
in hierarchical assembly graphs (HAGs). An algorithm for singling instances was presented.
The algorithm is suited for singling instances corresponding to arbitrary paths in the graph,
not necessarily paths starting at the root (strict instances) or ending at a leaf.

The singling algorithm can be used in two ways to solve the above problem. First, it can
be used on the original HAG itself. Second, it can be used on a partial graph, as defined
in Section 2. The latter option is appealing since the common and private data of instances
are clearly separated into two structures. The former is more elegant since the whole singling
process is completely transparent to algorithms manipulating the HAG. These operate with no
modification since singled nodes are similar in structure and functionality to the other nodes
in the graph.

In this paper we have not dealt with updating singled instances after modification of the
graph itself (i.e., when adding or deleting nodes or arcs). The arc counters (Section 3) can be
easily used to notify the user that an editing operation invalidates an instance’s private data;
meaningful automatic treatment of this case is left to future reports.

Another topic for future work is how to organize the private data when imposed on it
there is a structure different from the structure of the assembly graph (for example, if color
inheritance of instances depends upon their location and not upon their sub-part hierarchy).
It seems that in this situation an external structure cannot be avoided.
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Towards the Integration of Solid and Surface Modeling
by Means of Pseudo-Boolean Operators

Luca Mari, Cristiano Sacchi
CNR-IMU, CAD Group
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Abstract: In geometric modeling two main technologies have been successful and are
continuing their development: solid modeling and surface modeling. These techniques are
still used separately while being complementary in their advantages: a solid modeler is able
to describe objects with a clear distinction between inner and outer parts, whereas a surface
modeler is better suited in the description of free form objects, but leaves the model validity to
the user responsibility. The integration of the two technologies is therefore an important topic
of the current research in the field.

This paper presents a new technique to perform booleans with trimmed curves and surfaces;
such a technique is not based on point set classification, but exploits geometry orientation;
this makes it able to deal with non closed topologies, thus extending the classical concept of
boolean operators. According to this approach several valid operators can be defined, which
behave like booleans in the case of closed topologies but differently with non closed ones.

1. Introduction

In geometric modeling two main technologies have been successful and are continuing their
development: solid modeling and surface modeling. These techniques are still used separately
while being complementary in their advantages: a solid modeler is able to describe objects with
a clear distinction between inner and outer parts, whereas a surface modeler is better suited in
the description of free form objects, but leaves the model validity to the user responsibility. The
integration of the two technologies is then an important topic of the current research in the
field.

Some works have been published about non-manifold topology [WEI86, MAS90], and some
others covered the topic of the integration of surfaces and solids [VAR84]. A modeler that
performs booleans on solids bounded by trimmed surfaces is described in [CAS87]; another
approach to the same problem is presented in [FAR87]. Both approaches are based on point
set classification. This is a clear limitation when unbounded topology is allowed by the
representation scheme, a typical situation in surface modelers. An interesting approach toward
the integration of solids and surfaces was published by Chiyokura [CHI91], but further
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research is needed to define a robust theoretical background about "open-sets”. A system
which handles solids and surfaces in a homogeneous way is known to the authors [XOX90];
unfortunately no detailed description of the underlying approach has ever been published.

This paper presents a new technique to perform booleans with trimmed curves and surfaces.
Such operators, here called pseudo-booleans, are not based on point set classification, but
exploit geometry orientation; this allows to deal with non closed topologies, thus extending the
classical concept of boolean operators. Moreover, it is pointed out that according to this
approach several valid operators can be defined, which behave as booleans in the case of
closed topologies and can be applied also to non closed ones.

Since the point set classification can be here avoided in most cases, a modeler using the
presented technique is faster and more robust than a classical one in computing booleans;
indeed, it has to perform few vector operations, where a classification of points against solids
is usually in order.

Furthermore, this approach makes easier the surface trimming; indeed, by just indicating the
surface to be trimmed and the trimming surface, the modeler is able to decide which parts to
retain on the basis of the surface orientation.

out

intersection points

points to be classified using ray-firing

Fig. 1 - Curve classification via ray-firing.

The approach also allows to create bounded solids from sets of surfaces, no user intervention
being needed during the process. Free form geometries can be used during the first phases of
the design, so that solids from surfaces can be automatically generated for a more accurate
analysis of the design.

2. General description

The basic assumption of point set classification is that a solid divides the space in three parts:
interior, exterior, and boundary. Then a point set classification algorithm typically returns
either in, out, or on, depending on the location of the given point with respect to the solid.
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In the case of BRep models, the most effective point set classification algorithm is called ray-
firing. A ray is fired in a random direction from the point to be classified, counting the
number of intersections with the boundary of the solid. For even numbers the point is outside,
and for odd ones it is inside, whereas the point is classified as on if lying on a face.

When the element to be classified is a curve, the traditional approach is to split the curve at any
intersection with the boundary and to classify its resulting parts, such a classification simply
consisting in the point set classification of a point lying on each curve part (Fig. 1).

It can be noted that a curve intersecting the solid changes its "local status” when passing from
the interior of the solid to the exterior, or vice versa (Fig. 2).

curve entering

o~
A

curve exiting

e
oul™

Fig. 2 - Local transitions of a curve with respect to a solid.

Therefore, in the case the local transition between interior and exterior can be computed, the
curve classification might be done without ray-firing. Since the boundary of a solid is oriented,
the normal to the surface being the geometric element which determines the orientation, if also
the curve has an orientation the test for computing the local transition is usually simple. A
transition from interior to exterior happens when the normal to the surface and the curve have
the same orientation, in the other case the transition being from exterior to interior (Fig. 3).

It can be noted that the same approach has been followed by Crocker and Reinke [CRO87] to

avoid expensive point set classification during boolean operators computation for BRep solids.

Fig. 3 - Curve orientation with respect to the solid boundary.

A classification realized by checking local transitions does not require the closeness of
objects, thus resulting in an actual extension of the domain of the algorithm: with a local
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transition check technique, a curve can be classified with respect to an object without a
complete boundary, whereas this is not possible with ray-firing algorithms which rely on the
closeness of the boundary.

Since the object boundary can be non closed, the semantics of the classification should be
changed here, considering that a curve may cross the boundary only once. It results in
configurations where a curve "enters"” the object without "leaving” it, or vice versa (Fig. 4).

- normal
local trasition

object with incomplete boundary

Fig. 4 - A curve "entering" an object without leaving it.

This approach to local transition evaluation is exploited by a new kind of operators, called
pseudo-booleans. When a pseudo-boolean operator is applied to objects with closed boundary
it behaves as a "regular” boolean does, but it operates also in the case of objects with open
boundary, with a behavior which is predictable for a user aware of the orientation of the
entities under consideration. In this sense, pseudo-booleans actually have a broader domain
than "regular” booleans.

In the following the algorithm for computing pseudo-intersections is discussed; pseudo-unions
and pseudo-differences are conceptually analogous, except for geometry orientation.

3. Two dimensional algorithm

In this Section, first some notation is introduced. Then the pseudo-intersection of two curves
intersecting in one point is defined. Finally, the definition is extended, considering curves
intersecting in more than one point and curve chains.

3.1. Notation

Consider two oriented curves c;=[a;b], i=1,2, defined with a trimmed parametric
representation ¢;=c(t;). Let ¢, and ¢, be G!, non self-intersecting, and non overlapping (i.e., if
¢;Mc,#J, then dim(c;Mc,)=0; so that they intersect in single points).

An intersection point p of ¢, and c, is defined so that there exist the values T,€ T; and T, T,
such that ¢, (t,;)=c,(t,)=p. Given such a point p, it can be shown that the conditions imposed
on the curves imply that there exists £>0 such that N(p,c,.c,.€) is a non empty neighborhood of
p with radius € such that:
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Gt =c(1)=¢q.q#p = qe N(p,C.C8);

c(T;18) € N(p.c,.c,.€) = ¢ (138" € N(p,c;,c,.8), V&', 0<8'<d, i=1,2.
The first condition (Fig. 5) expresses that p is the only point in the neighborhood belonging to
both curves; the second condition (Fig. 6) establishes that the neighborhood contains only
points of the curves defined by a connected set of values of the parameter t; (in the following
the neighborhoods will be indicated as N(p) whenever this cannot generate ambiguities).

Forbidden intersection point

Neighborhood center

Fig. 5 - A case of violation of first condition.

Neighborhood center

"~ Forbidden situation

Fig. 6 - A case of violation of second condition.

A normal vector is defined for each point on c; as the unit vector orthogonal to the first
derivative to the curve in the point and right-bounded with respect to the derivative. Then each
c; splits N(p) in two parts: a (conventional) "local outer" part, N;O(p), where the normal of the
curve in p lies, and a "local inner" one, NjI(p) (in the case p is the extreme point of a curve, it
can be assumed that the curve is locally extended, so that N;,O(p) and N;i(p) result however
well-defined: such a case is immaterial for the algorithm).

"local inner” part
E
“local outer” part Y
normal

Fig. 7 - The normal of each curve in the intersection point p
splits the neighborhood N(p) in two parts.

Since the curves have an orientation, the intersection point p splits each curve in two parts,
one part "entering” the neighborhood, ¥;, = [a;, p], and one part "leaving" it, ¥;, = [p, b;].
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"leaving" part

/}ﬂ
"entering" part

normal

Fig. 8 - Due to its orientation, each curve has an "entering" and a "leaving" part
with respect to a point.

A relation of "local containment” € is then defined between parts of curves and
neighborhoods, such that:

%, € N(p) < 3qev; qeN; i(p).
Therefore, a part of a curve with an extreme in an intersection point is "locally contained" in
the neighborhood of that point iff some of its points lie in the "local inner” part defined on the
neighborhood by the other curve (note that given a curve c; the index 3-i simply identify the
other curve).

3.2. A basic definition of pseudo-intersection

Let ¢, and ¢, be oriented, G, non self-intersecting, and non overlapping.
The pseudo-intersection of ¢, and c,, ¢, M, c,, is defined as:
G 6= Uyﬁéf\'(p) Yij
for i=1,2, j=1,2, with the further assumption that:
€M, C=CNC,

if the curves intersect in p but U = J, or do not intersect (thus in the first case

EORE
¢,N,c,={p}, in the second one =).
Therefore, the pseudo-intersection is constituted by the parts of each curve lying in the "local
inner" part defined on the neighborhood of the intersection point by the other curve.

-

-(:@\ o _)<_/\

Fig. 9 - Two intersecting curves (left) and their pseudo-intersection (right).

It should be noted that when the curves are tangent in the intersection point a number of cases
arises.

The given definition of M, can be translated to a more suitable form from a computational
point of view.

Let n; and d; be respectively the normal and the first derivative of ¢; in p.
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Fig. 10 - The cases of pseudo-intersections arising
when the normals in the intersection point are colinear.

In the case n;#1n, (non local colinearity), it can be shown that the relation of local containment
can be expressed in terms of n; and d,, as:

[a;, p] € N(p) e dieny;>0

[p, b;] € N(p) < dieny; <0
("xey" is here the inner product of x and y). It should be noted that d,en,>0 iff d,en,<0, and
therefore conditions d,en,>0 and d,en,>0 are mutually exclusive. Moreover, while the absolute
value Id;| of the derivatives depends on the specific parametrization, their direction does not, so
that such conditions are well defined. On the other hand, if the normals of the curves in p are
colinear, these equivalencies cannot be applied, and a deeper analysis is in order.
In such a case the information brought by the first derivative is "too local” for discriminating
which parts of which curves constitute ¢,M,c,. While relying only on differential geometry
would require derivatives of higher and higher order, a more effective approach, although
perhaps less elegant from a theoretical point of view, allows to reach a computationally
efficient definition of M,, and can be applied also in the case of G! curves.
Let NB(p) the boundary of the neighborhood N(p) (in 2D a circumference centered in p and
with radius €). On the basis of the conditions imposed on the curves, each entering part [a;, p]
intersects NB(p) in a different point q;. In the same way, each leaving part [p, b;] intersects
NB(p) in a different point r;. Therefore the segments [q;, p] and [p, r;] are defined.
Then, two cases must be distinguished, on the basis the curves are defined with the same
orientation (i.e., n; = n,), or with opposite orientation (i.e., n; = —n,).

In the first case, n; = n,, the relation of local containment becomes:

[a;, p] € N(p) < [g,plen<[gs;,p]en
[p, b] € N(p) & [pr]en<[p,rylen
(note that being n; = n, the subscript can be dropped), while in the second case, n; = —n;:
[a;, p] € N(p) < [q,plen>[p,ryjen
[p, b;] € N(p) < [p.rlen>Iq;;,plen

3.3. Pseudo-intersection of curve chains

In the general case the pseudo-intersection has to be performed between curves intersecting in
more than one point and curve chains.
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If two curves intersect in more than one point each curve is implicitly divided in parts by
intersection points (Fig. 11), so that the pseudo-intersection operator has to decide which
curve parts have to be retained.

823

Fig. 11 - Intersection between two curves in many points.

The condition to discard a curve part is that at least one of its ends lies locally outside with
respect to the other curve, the local containment relation being computed for each intersection
point as discussed in the previous Section. The algorithm for the pseudo-intersection of curves
intersecting in more than one point is then (Fig. 12):

1) intersect the two curves;

2) evaluate the local containment relation at the ends (intersection points) of each curve part;
3) for each curve discard all the parts having at least one end lying locally outside the other;

4) connect the remaining parts in order to create a curve chain.

Intersect the curves

- Evaluate local containment relation
at each intersection point

Remove the curve parts
having at least one endpoint

lying locally outside the
other curve and connect the
result in a unique curve chain

Fig. 12 - Steps for the pseudo intersection of curves intersecting in more than one point.

Also the case of intersection of curve chains can be dealt with as already presented: by
considering a curve chain as a unique C° curve, the algorithm for curves intersecting in more
than one point can be directly adopted (when curves intersect in a vertex, the local containment
can be evaluated as described for intersections at curve endpoints). An example of pseudo-
intersection between curve chains is shown in Fig. 13.
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Fig. 13 - Pseudo-intersection between two curve chains.

4. Three dimensional algorithm

The approach presented in the previous Section can be extended to surfaces in a
straightforward way by exploiting the 2D algorithm. The basic idea is to preprocess surfaces to
orient intersection curves in parametric space, and then to use the 2D algorithm.

This Section explains the way data are preprocessed and how pseudo-booleans between sets of
surfaces are performed.

4.1. Constraints

The set of surfaces on which the pseudo-intersection operator is defined must satisfy some
constraints. In analogy to the 2D case, surfaces are assumed as non overlapping, so that the
intersection between two surfaces is a curve, possibly reduced to single points or the empty
set. The overlapping situation should be detected before the application of the operator in
order to properly modify the involved surfaces. Another annoying problem arises since
intersection curves are computed numerically, so that the real intersection and the computed
curve could not match exactly. This problem is unavoidable while numerical computation is
used. The treatment of this problem being beyond the scope of the paper, it is assumed here
that the match between curves is exact; since the algorithm works on trimmed surfaces, the
trims are assumed to be coincident with the boundary curves of each surface. It is also assumed
that a data representation for timmed surfaces and solids exists and that it connects the model
parts in a complete way, i.e., it allows the interrogation of the relations between parts starting
from any point of the data structure [WOO85].

4.2. Some preliminary concepts

A parametric surface is a mapping from R2 to R3. As in the case of curves, the goal is to select
the parts of a surface lying locally outside with respect to the other in order to remove them
during the pseudo-intersection computation. If the surface normal is defined as the unit vector
orthogonal to the surface in each point and pointing outside the virtual material, the parts of a
surface to be removed can be selected according to the criterion of being "on the same side" of
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the other surface normal. Again, this selection can be realized in a simple way by exploiting the
orientation of the intersection curves.

The intersection of two parametric surfaces is a mix of points, curves and surfaces. Any point
belonging to the intersection can be inversely mapped to the parametric space of the involved
surfaces; then, in the case the intersection is a curve, the inverse mapping defines two curves,
called "curves on surface", each one lying in the parametric space of a surface. The
representation of a curve on surface is defined as follows. Let ¢(w) be a 2D curve in parametric
space, and s(u,v) the surface which the curve lies in, being c,(w) and cy(w) the two component
functions of the curve. The curve on surface cg(w) is then cg(w) = s(cx(w),cy(w)).

4.3. The algorithm for two surfaces

The intersection of two surfaces consists of some curve branches. The typical representation
of each branch consists of a curve in Cartesian space and two curves on surface (one for each
surface). Since the curves in parametric space (often called "trimming curves”) define the
valid portion of the surface domain of a trimmed surface, the parametric space representation
of the curves on surface is all is needed to perform the algorithm, and a suitable application of
the 2D pseudo-intersection in parametric space is able to select the valid part.

The orientation phase proceeds as follows (Fig. 14):

1) let ni(u,v) be the normal to the i-th surface in the point (u,v), c(w) the intersection curve,
and d(w) its first derivative in the point w. The normal of the 2D curve on surface s; can be
remapped in 3D, its direction being given by the cross product d(w)xn;(cx(w),cy(W));

2) for each point of c(w), the direction of the mapped normal of the curve on surface s, has to
point in the half space defined by the normal of s;. In the general case, to correctly orient
the curve it is sufficient to compute the sign of the inner product between the mapped
normal and the surface normal in one point of the curve (analogously to what has been
shown for curves). As previously, the special case of the colinearity of normals has to be
managed in a different way;

3) when one trimming curve has been oriented, the other one simply assumes the opposite
orientation.

Fig. 14 - An example of orientation of curves
Once the curves have been oriented, the algorithm proceeds performing the 2D boolean as
described in the previous Section.
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After the orientation phase all curve normals in parametric space point in the direction of the
side to be removed. Applying the 2D algorithm in the parametric space of each surface the new
trim can be computed. The entire process is summarized in Fig. 15.

Cartesian space . parametric space & , parametric space Sz

- :
Intersect surfaces ‘ﬁm . O Y
Orient curves in both
parametric spaces O N N
Apply 2D algorithm ' :
to compute m ) ,
the new trim s O ' Q

Fig. 15 - Steps for computing the pseudo-intersection between two surfaces.

4.4. Special cases

The problem of colinear normals arises also for surfaces, and it is even more common than in
2D (as an example, consider a cylinder touching a plane). The technique for selecting which
part has to be retained is based again on a preprocessing for the 2D algorithm. To detect this
situation, a "check plane" orthogonal to the tangent of the intersection curve is defined. Such a
plane intersects both surfaces, thus generating two curves that just touch when they cross the
intersection curve. The local containment test can be performed in the parametric space of the
check plane, to know whether the two surfaces intersect or just touch (Fig. 16).

Cartesian space parametric space

-/
e

tangent to the intersection curvs

check plane

Fig. 16 - Check plane construction.
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If the two surfaces intersect, curves on surfaces have to be oriented. The local containment
check can provide information about curve orientation in the parametric space; indeed, the
vector d(w)xn;(cx(W),Cy(W)) has to point in the direction of the trimmed part (Fig. 17).

check plane

surface normal

Fig. 17 - Choice of the d(w)xnj(c,(w),cy(W)) vector.

4.5. The algorithm for set of surfaces

If two sets of surfaces are involved the algorithm has to be slightly modified. Each surface of
each set is intersected with each surface of the other set to obtain all intersection curves, and
such curves are oriented in the way described in the previous Section. Then, for each surface,
they are connected to generate a set of composite curves on the surface. Finally the 2D
pseudo-boolean can be performed (Fig. 18).

Fig. 18 - Pseudo-intersection between two sets of surfaces.

This stage can involve the problem that the curves in the parametric space could not generate a
closed shape (Fig. 19).

The algorithm could recognize the problem and take some decision, the simpler one being to
abort the operation and rollback to the previous status.
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Fig. 19 - A case in which the intersection does not generate a closed shape.

5. Open Problems
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To maintain model consistency is the most difficult thing in the development of geometry based

algorithms. This holds in particular in the case of surfaces, since the domain is 2D and many

consistency conditions are extremely difficult to be checked. An example of this is in Fig. 20.

)

€

N

ELEA\ND\\E) -

Fig. 20 - A typical example in which difficulties arise in the consistency check.

The main problem is that in some cases the trimming curves are closed but their orientation

depends on the side in which the curve is analyzed. In case of curves similar situations can be

easily detected because intersections consist of single points and inconsistencies between sides

are evident. On the other hand, in the case of surfaces such kind of inconsistencies can lead to

non trivially detectable inconsistencies, since the curves are locally correct whereas the trim is

globally wrong.
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6. Conclusions and future work

The paper presented a new operator, called pseudo-intersection, extending the classical
concept of booleans. This operator is aimed to integrate surface and solid modelers, allowing
operations between any entity in the model.

It should acknowledged that this is just a very initial step toward such an integration. While
pseudo-booleans are "solid oriented” operators extended to surfaces, "surface oriented”
operators should be extended to solids, and perhaps brand new operators have to be
introduced.

The algorithm itself for computing pseudo-boolean requires further investigations. The
Authors do not know whether pseudo-booleans can be computed exploiting local information
only. Is it possible to know which part of the curve/surface has to be retained by interrogating
higher order derivatives only? Furthermore, the detection of inconsistent results should be
enhanced in the case of surfaces, and the management of overlapping curves and surfaces has
to be addressed in future research work.

The implementation of pseudo-booleans for surfaces is on going, so that it is still impossible to
perform sp'eed tests. However, our guess is that pseudo-booleans are faster than regular ones
because they do not use the ray-firing algorithm when surfaces intersect.

A straightforward extension of this algorithm can perform a pseudo-boolean among many sets
of surfaces to find a pseudo-common volume. A free form geometry can be thus built by using
surface based operators, converting the result into a solid by just trimming away redundant
parts.
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Abstract

This paper presents an interactive deformation technique. The entity employed
for defining the deformation of an object is a 3D axis as well as some associated
parameters. 4

The technique allows an easy specification and control of deformations that can
be defined with that entity such as bending, twisting and scaling.

Contrary to existing techniques, the method developed is independent of both
the geometric model of the object to be deformed and the creation technique used
to define the object.

Moreover, it can easily be integrated into traditional interactive modeling sys-

tems.

CR Categories and Subject Descriptors: 1.3.5 [Computer Graphics]:Computatio-
nal Geometry and Object Modeling - Curve, surface, solid, and object representation;
Geometric algorithms, languages, and systems; Hierarchy and geometric transformations;

1.3.6 [Computer Graphics]: Methodology and Techniques - Interaction techniques.

Additional Keywords and Phrases: Solid geometric modeling, deformations.
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1 Introduction

Today’s graphics systems for producing images consist of several software components,
the first one being a 3D geometric modeler with which a user can define objects geometry.

A geometric modeler often includes two classes of modeling techniques: the creation
techniques such as the sweep, the loft or the extrusion and the modification techniques.
Modification, or deformation, techniques may be used either for refining the shape of
an object defined using creation techniques or for changing the shape of existing objects

obtained by scanning a real object, for instance.

The approaches taken to deforming objects include:

e Manipulation of the geometric model.

The deformation techniques of this class consist of direct manipulation of the ge-
ométric model representing the surface. They are often very dependent on the
geometric model. For instance, one may interactively move the control points of
a spline surface or of a hierarchical spline surface [FB88]. If the geometric model
representing the surface is an implicit surface [WBB*90] defined by points (resp.
axis), the deformation technique involves moving the points (resp. deforming the
axis).

Recent work has also shown that the trivial solution that consists of moving the
control points of a spline surface can be extended to allow the user to manipulate
freely any point or even a curve of the surface [BB91, WW92]. These new techniques

make direct manipulation less dependent on the geometric model.

e Manipulation of a creation entity.

In a general modeling system, it is usually preferable to use the same geometric
model such as a spline or a polygonal surface, for representing each object. In this
case the creation technique and thus the creation entities used for defining an object
are often independent of the geometric model of the object. Creation entities may
include the axis or the cross-section used for creating a surface as a sweep, or the
profile curve, or angle used for the defining of a surface as a surface of revolution.
A common practice for deforming objects this way consists of manipulating the

entities, or the parameters, used to create the surface.
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Basically, deformations of this class can be resumed as a redefinition of some of the

creation entities followed by a recomputation of the surface.

¢ Manipulation of a deformation entity.

Techniques for which a deformation entity is defined and used to deform the object
fall into this class. The deformation entity can be compared to the creation entity,
since it plays the role of an interface between the geometric model and the user.
One of its consequences is to make the deformation technique independent of both
the geometric model and the creation technique. Techniques such as the FFD and

the EFFD [SP86, Coq90], or Cobb’s region or skeletal warp [Cob84] lie in that class.
Techniques of the third class present several advantages:

o From a user point of view, the same deformation technique can be applied to any
object, no matter where it comes from. Furthermore, the geometric model becomes

transparent for the user.

o These techniques can be combined with one another to increase the power of the

modeling system.

o The deformation is completely defined by the deformation entity. A deformation
tool [Coq90] can thus be defined, permitting the reproduction of the deformation

several times, on possibly different surfaces.

In order to take advantage of these benefits, one of our goals was extending some
deformation techniques of the first two classes to the third one.

This paper deals with deformations defined by an axis. These deformations are simple
and specific, but very useful and commonly employed. They include bending, twisting
and scaling around an axis.

Several techniques exist for deforming an object with an axis.

One of them consists of defining the object as a sweep surface and then deforming
the axis or modifying other parameters such as a scale factor or a twist factor defined
along the axis (cf. Manipulation of a creation entity). A second solution consists of using
implicit surfaces, defined by a skeleton-axis, to represent the surface (cf. Manipulation of

the geometric model).
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It follows that:

e The object has to be defined as either a sweep surface or an implicit surface with
an axis as skeleton. The class of objects that can be defined this way is rather

restricted.
e The only axis that may be used to deform such an object is the creation axis.

e Combining these deformations with other deformations is rarely possible.

Parent [Par77] uses axial deformations for deforming 2D shapes while Barr [Bar84],
has proposed 3D axial deformations where the axes considered are only straight axes and
the bending operations are very restricted in comparison with what we can expect from
a real 3D axis.

Our purpose is thus to develop an axial deformation technique that is independent of
the georﬁetric model and valid for any creation technique and any axis.

The following section explains the principles of the Axial Deformation technique and
emphasizes the computation process. Section 3 presents several extensions increasing both
the generality and the power of the previously defined deformation techniques. Finally,

we give some examples to illustrate our approach.

2 Axial Deformations

Our goal is to define a deformation technique that makes use of a 3D axis for deforming
existing objects. This technique is called AxDf, for Axial Deformation. Suppose we have

an object. From the user’s point of view, the deformation process is as follows:

o First, the user defines a 3D axis, that can be positioned either inside or outside the

object. This 3D axis may have any shape, depending on the deformation desired.

e Second, the user changes the shape of the axis, and the deformations so applied to

the axis are automatically passed on to the object.

Figure 1 illustrates the AxDf technique by a simple example. Figure 1-left shows the
sphere we wish to deform as well as the axis used for defining the deformation; a straight
axis, in black has been designed. Figure 1-right shows the sphere deformed in a manner

that is intuitively consistent with the motion of the axis visualized in black.
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Figure 1: Deforming a sphere.

Within an interactive modeling system, the 3D axis will be represented by a 3D curve;
any spline curvé can be used.

To make this deformation technique practical, we must find a way to pass the axis’
deformations to the object. We handle this problem using a two-step process. First, each
vertex ! V of the object is attached to one point Ay of the axis and its local coordinates
(z,y, 2) in the axis’ local coordinate system are computed. Second, the deformed vertex
is obtained by computing the associated local coordinate system at Aj,, homologous to
Ay on the deformed axis, and transforming the (z,y, z) coordinates from this coordinate

system to the world coordinate system.

Three problems have to be considered:

e attaching a vertex to the axis,
o defining local coordinate frames on the axis,

e computing the coordinates of the deformed vertices.

These three problems will be studied in the following paragraphs.

1From now on, every point of an object will be called a vertex to avoid any confusion with the points

of the deformation axis.
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2.1 Attaching a vertex to the axis

To compute axial deformations, each object vertex must be attached to the 3D axis. A
natural association consists of attaching the vertex to the closest point of the curve. The
closest point can be computed either recursively by using the convex hull property of a
spline curve or by discretizing the curve. Selecting the closest point of the curve may raise
some problems, namely when several points of the axis are located at equal distance from
the object vertex, or when a vertex lies in two different planes normal to the axis and the
best choice is not the closest axis point. Several techniques for improving that choice are
under consideration. One of them consists of taking into account vertex adjacencies in
order to make the association function continuous.

The attach point is represented by its parameter value on the axis curve.

2.2 Axis local coordinate frames

After attaching each object vertex to a point of the axis, we now define a local coordinate
frame at each point of the axis in order to allow the computation of the (z,y,z) local
coordinates of each object vertex in this coordinate system.

Several methods exist for defining coordinate frames at each point of a 3D curve. A
common practice consists of considering the well known Frenet frame. For each point of
a 3D curve, the Frenet frame is represented by the three orthogonal unit vectors defined
by the tangent, the normal and the binormal at that point. This frame depends on the

first and the second derivatives of the curve, it can thus be computed explicitly.

However, three problems exist:

e The normal is not defined on linear curve segments, nor more generally, where the

curvature vanishes.
e The normal direction flips at the inflection points.

e The normal can rotate in an undesirable manner around the 3D curve.

An alternative to the Frenet frame has been proposed by Klok in [Klo86]. Klok defines
a rotation minimizing orthogonal frame by the requirement that the rotation of the frame

be minimized along the curve.
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Assuming that C(s), s € [0, L] is a regular curve, Klok defines the rotation minimizing
orthogonal frame ¢(s), f(s), g(s) along C such that

t(s) = C'(s)/1IC" ()l

F(8) = =(C"(s).£())C(5)lIC'(s)?

g'(s) = =(C"(s)-9(s))C'(s)/1IC"(s)II?

£(0) and g(0) being chosen such that ¢(0), f(0) and g(0) are mutually orthogonal unit
vectors.

These equations guarantee that the rotation of f(s) is minimal along the curve.

As a closed-form solution of the previous equations does not exist, Klok also gives a
geometric construction of the rotation minimizing frame based on an approximation of
the curve by a sequence of straight line segments.

This solution has been adopted for computing the frames at each point of the axis.
Note that a special treatment has been added for cusps: when a cusp is detected on the
axis, the orientation of the following frames is reversed.

The (z,y, z) coordinates of V are thus defined as the coordinates of V in the frame

associated to Ay. Note that in most cases, T equals zero.

2.3 Deformed vertices

The process for computing the deformed position Vyzpy of a vertex V is as follows.
Let A}, be the point of the deformed axis corresponding to Ay. Al is defined such that
its parameter value on the deformed axis is equal to the previously computed parameter

value of Ay.

Vacpy is the vertex defined by the (z,y, 2) local coordinates in the frame associated
with A},

3 Extensions

We have thus far proposed a basic version of the AxDf technique. The only deformations
that can be controlled are the deformations obtained either by bending or stretching the
axis (cf. Figure 1 for a simple example). Other parameters can be defined in order to

extend the AxDf technique. Some of them are suggested in the following paragraphs.



248

3.1 Scale and twist

Scale and twist graphs can easily be added to the Axial Deformation technique. The twist
(resp. scale) value permits the twisting (resp. scaling) of the object around the axis. The
objective is to define both a twist and a scale factor at each point of the axis; these factors
are then used for computing the deformed object’s vertices. From the user’s point of view,
a twist (resp. scale) factor can be defined at any point of the axis. The value along the
axis is thus obtained by interpolating the values defined by the user. Figure 2 illustrates
the twist factor by a simple example. The undeformed object is composed of two rods
shown in Figure 2-left; a straight axis has been positioned between the 2 rods. Figure
2-right is obtained without changing the shape of the axis, just by adding a twist factor
of 0 at one end and another of 360 degrees at the other end.

Figure 2: Twisting two straight rods.

3.2 Zone of influence

In order to improve the Axial Deformation technique, a zone of influence can be intro-
duced to define the portion of the 3D space to be deformed. In our implementation, we
have taken advantage of the deformation axis to define that space. A simple solution
consists of defining two zones of influence ZImin and ZImax as general cylinders around

the deformation axis, ZImin being included into ZImax.
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The vertices of the object lying inside ZImin (resp. outside ZImax) will be fully de-
formed (resp. will not be deformed at all). Vertices in-between will be partially deformed
by interpolating the deformation parameters, such as twist, scale and attach point.

Each zone of influence is defined by the two radii R, and Rpga of each circular
cross-section along the axis. These radii are defined in the same manner as the twist or
the scale parameters.

Figure 3 illustrates the use of the zone of influence. In Figure 3-left, a planar surface
is shown and the axis used to deform the surface is visualized in black. The two zones of
influence are also visualized using transparencies: ZImin is the inner zone while ZImax is
the outer one. Only the vertices of the object lying inside ZImax will be deformed. The

deformed surface is shown in Figure 3-right where the deformed axis is shown in black.

Figure 3: Zone of influence.

3.3 Deformation tool

A consequence of the independence of the AxDf technique and the geometric model is the
capacity of exploiting the deformation tool paradigm. The deformation tool must fully

describe the deformation. In AxDf, a deformation tool is composed of:
e two axes: the undeformed, or initial axis, and the deformed, or final one,
e two zones of influence, ZImin and ZImax,

e 3 twist graph and a scale graph.



250

Figure 4: The same deformation applied to two different objects.

As the deformation is fully described by the deformation tool, the same deformation
can be applied several times to different objects, simply by using the same deformation
tool. In Figure 4 the same deformation tool is applied to two different objects: a straight
ribbon and the twisted rods presented in Figure 2. The initial axis is a straight line while

the final axis reoresents a node. A twist has also been added to this deformation.

Figure 5: Adapting the deformation tool to the object.

A deformation tool can also be adapted to the object to which it will be applied. In
Figure 5 we have applied the node-deformation tool to an object that is not straight, a

horseshoe. This has been made possible simply by adapting the initial axis to the shape
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of the object. In Figure 5-left the visualized axis is the new initial one. The deformed

horseshoe is shown in Figure 5-right together with the final axis.

4 Examples and Concluding Remarks

Two simple examples of deformations of well known objects by the AxDf technique are
illustrated in Figure 6 and 7. Figure 6 presents two teapots. On top, an axis has been
designed by the user inside the spout of the undeformed teapot. The deformed teapot

presented below results from a deformation of the axis.

Figure 6: Deforming the teapot.

In Figure 7, a deformation that includes both a deformation of the axis and a modifi-
cation of the scale graph is applied to the VW.
In our implementation, computing the deformation of the most detailed object (2160

vertices) takes approximatively 0.30 second on an IRIS 310 VGX.
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Figure 7: Deforming the VW.

Although specific and simple, the deformations that can be controlled with the AxDf
technique are very common and most useful. Furthermore, AxDf offers the following

advantages:

e Since the deformation is independent of the object to which it is applied, it can be

re-used to deform other objects.

Since AxDf is independent of the creation technique, it can be used to deform any

existing object.

AxDf can easily be combined with other deformation techniques, such as FFD.

AxDf can be applied to many different geometric models such as spline surfaces,

polygonal surfaces or hierarchical surfaces.

e AxDf can easily be integrated into most general and interactive modeling systems.

AxDf is very intuitive and fully interactive.
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This paper has shown that AxDf is a viable deformation technique for geometric
modeling. It greatly increases the class of deformations obtained by manipulating a
deformation entity and makes easier the control of some deformations usually defined
using the FFD techniques. There are however a number of enhancements and extensions

to AxDf that we should like to investigate. Some of them are:
o checking for self-intersection of the deformed surface,
o automatically (or semi-automatically) designing the first axis on the surface,

e implementing an adaptative subdivision technique such as that of Griessmair et al.

[GP89] in order to maintain an acceptable resolution of the surface,
¢ allowing several axis to be used simultaneously for deforming an object.

Furthermore, due to the simplicity of the deformation entity (the axis), it seems likely
that this approach would also be very attractive for animation applications.

AxDf is part of ACTION3D, a general interactive modeling system developed jointly
by SOGITEC and INRIA.
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Abstract

This paper proposes a method of generating surfaces from a network
of curves that have arbitrary parametric forms, and that intersect in an
arbitrary topology.

The surfaces generated from the network are represented by multisided
patches defined on a multivariate coordinate system. An m-sided patch is
generated by blending m sub-surfaces with a transfinite interpolant, and
each sub-surface is generated by blending two sweep surfaces that are
defined by a pair of curves intersecting with each other in the network.
An advantage of the final surfaces is that they have everywhere the same
order of continuity as the curves.

This method is flexible in its representation of the curve expressions
and the connective topology of a network. It can implement a surface
model in user-friendly and designer-oriented CAD interfaces that handle
direct input of 3D curves.

Key Words: Computer-aided geometric design, Multisided patches,
Sweeping, Blending, Geometric continuity, Curve network.

1 Introduction

New technologies in computational graphics, such as photo-realistic
rendering, enhance the visual effect of presentations in industrial design
and commercial production. The input of shapes, however, is still a time-
consuming process, and needs the support of skilled CAD operators.
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A new paradigm is required for current 3D-CAD systems used to design
the shapes of free-form surfaces, because the systems are inadequate for
quick input of shapes in the initial stage of conceptual design. 3D-CAD
systems have come to use the metaphor of sketching that was used by
2D-drawing systems in order to realize a designer-oriented environment
of shape input. Sketching systems aim at a user-friendly interface that is
easy to use, intuitive, and good at handling complicated shapes.

In current surface modellers, free-form surfaces have a topological
constraint on their control points or profile curves; they must be arranged
in the topology of a regular two-dimensional mesh. This constraint is
derived from the formation rule of tensor product surfaces. 3D-sketching
systems based on current surface modellers therefore generate tensor
product surfaces such as loft or sweep surfaces from a set of hand-drawn
curves arranged in the topology of a regular mesh. This topological
constraint, however, limits the expressional flexibility of designers.

On the other hand, advanced three-dimensional input devices have
been proposed for CAD systems whose interface handles the input of free-
form curves. For example, an MIT group (Sachs, Roberts and Stoops,
1991) has developed a CAD interface that allows users to design shapes
by entering information of free-form curves directly in three dimensions,
using a pair of hand-held sensors. The interface manages the input of
a curve network that is free from the topological constraint of a regular
mesh. We call such a network irregular. The network, however, represents
only a wireframe model and lacks a surface model. This limitation
of the representative model makes it impossible to conduct engineering
evaluations and simulations such as interrogation or rendering of surfaces,
or data generations for Numerical Control machine or Finite Element
Method. The above example highlights the need for a method of skinning
an irregular network of curves.

Multisided patches have the potential to generate smooth surfaces
from an irregular network of curves, because they can have an arbitrary
number (more than two) of sides corresponding to their boundary curves.
The existing methods of generating multisided patches have the following
common drawbacks:

¢ Each boundary curve of a patch must contain only one segment; it is
always defined by one expression.

o It is impossible or very complicated to generate curvature-continuous
surfaces.
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Each boundary curve of a patch often comprises many curve segments if
it is designed by sketching. Moreover, designers using surface modellers
in industrial design often impose strict conditions on the continuity of
surfaces so that shapes will have a smooth appearance. They claim
that G? continuity (that is, uniqueness of surface normals and of either
principal curvatures or principal directions) is necessary in order to
confirm the shape from the continuous reflection curves on the surfaces.
However, the existing methods are inadequate to satisfy these conditions.

For these reasons, we have improved the mathematical model of
multisided patches to match data incidents to corresponding edges, and
to ensure geometric continuity of arbitrary degrees.

In this paper, we propose a method of skinning a network with
multisided patches. These are generated by sweeping and blending the
curves corresponding to the boundaries of the patches. This method
can implement a surface model in CAD interfaces that handle only
a wireframe model by allowing direct sketching of curves in three-
dimensional space.

In Section 2, we explain the existing methods of generating multisided
patches and sweep surfaces. In Section 3, we propose a method of
generating a multisided patch from curves surrounding the patch. In
Section 4, the method proposed in Section 3 is modified for singular
conditions on the topology of the network: patches that have multiple
and T-connected intersections, and open-sided and two-sided patches are
considered. In Section 5, we give examples of curve networks and surfaces
generated from them by our method, and in Section 6, we offer some
conclusions and discuss future work. The Appendix includes a proof of
the geometric continuity of the patches defined in Section 3.

2 Previous Work

Methods of generating multisided patches have become important
as a result of the need for a mathematical model that can handle
complicated shapes. These methods eliminate the drawback of tensor
product surfaces; namely, a constraint on the arrangement of control
points or profile curves.

Catmull and Clark (1978), Doo and Sabin (1978), and Nasri (1987)
proposed the recursive subdivision method, to remove the restriction
on the topology of surfaces. This method, however, does not have
closed-form parametrization. Hosaka and Kimura (1984), and Loop and
DeRose (1989) introduced multisided patches, which are regarded as a
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generalization of Bézier patches for multivariate barycentric coordinates.
Loop and DeRose (1990) presented a method of constructing multisided
B-spline surfaces with multisided patches, called S-patches, by using
Sabin nets (Sabin, 1983). However, it is hard to calculate the control
points of these patches in such a way as to generate G? continuous
surfaces.

Varady (1991) proposed a method of overlapping patches, introducing
local parametrization for individual vertex patches, and Charrot and Gre-
gory (1984) introduced multisided patches by using local parametrization
of a multivariate coordinate system and a convex combination of blending
functions. Nielson (1987), and Hagen and Pottmann (1989) also proposed
triangular patches defined on barycentric coordinates through the use of
blending functions. Their methods are similar to Charrot and Gregory’s,
and are extendible to multisided patches. These methods can generate
G? surfaces by increasing the degree of constituent equations, and they
have no constraints on the representation of sub-surfaces to be blended.

The above-mentioned methods of generating topologically free surfaces
are still used for patches that match data incidents only to corresponding
vertices. That is to say, the surfaces are defined by geometrical values
assigned to corresponding corners of the patches.

On the other hand, methods of generating sweep surfaces are well
known and are implemented on most surface modellers, because they
allow the design of shapes to be curve-based rather than vertex-based.

Woodward (1988) proposed techniques for skinning surfaces by using
interpolation based on B-splines, and Coquillart (1987) described a
method based on non-uniform rational B-splines by adding a profile curve
to scale the inbetween cross sections. Choi and Lee (1990) classified
sweeping rules as parallel, rotational, spined, and synchronized sweeps;
these sweeps are generalized by combining coordinate transformation
and blending. Klok (1986) proposed a method of sweeping along a 3D
trajectory by using rotation minimizing sweep that is a modification of
Frenet frame sweep, and Tai, Loe and Kunii (1992) presented techniques
of homotopy sweep.

Their methods are flexible in terms of shape definition, but the
representations of surfaces are restricted to tensor form. That is to say,
the surface expressions comprise only the product of two independent
parameters for cross sectional curves and guide curves, and this property
restricts the topology of surfaces.
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3 Surface Model

In this section, we propose a method of generating an m-sided patch
surrounded by m boundary curves by using m-variate coordinates.
We first introduce generalized barycentric coordinates for the m-sided
domain. Next, we generate two sweep surfaces by sweeping two cross
sectional curves along the i*! boundary curve; the cross sectional curves
are selected from those curves sharing an intersection with the i*! curve.
Next, we generate a surface by blending the above two sweep surfaces,
and call it the i** sub-surface. Finally, we generate an m-sided patch by
blending the m sub-surfaces. This blending uses a transfinite interpolant
that preserves the geometric continuity of the i*h sub-surface on the i
boundary curve.

3.1 Generalized barycentric coordinates

Let a patch be surrounded by boundary curves C; , i = 1,2,...,m,
and be defined over an m-lateral polygon called a domain polygon. Each
vertex of the domain polygon p; corresponds to an intersection of the
curves, and each edge of the domain polygon e; corresponds to a section
of a curve between two intersections, as shown in Figure 1.

We embed the multivariate coordinates on the domain polygon by using
the generalized barycentric coordinates proposed by Loop and DeRose
(1989; 1990). The mapping from each point p on the domain polygon
P = {p1, pa2, ..., pm} to the generalized barycentric coordinates
= {l, Ly, ..., £y} is defined as follows:

_ _mi(p) _ _IIZ, ai(p)
Lp) =, Tl =——s
Y T (P) a;-1(p)ai(p)
where a;(p) denote the signed area of triangle p p; p;;1, whose sign is
determined to be positive if p is inside P.

The coordinates £ define m-sided patches, and have the following
properties:

o Division of one: T2, ¢4, =1.
o Vertex preservation: p; is mapped to 4 =1 N £ =0.
o Edge preservation: e; is mapped to £; + £;11 =1 N £jz;41 = 0.

o Pseudo-affine property: p = £, £;(p) pi holds if the domain polygon
is regular.
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8.2 Construction of sub-surfaces

In this subsection, we propose a method of constructing sub-surfaces.
The i** sub-surface, denoted by S;, is generated from the boundary curves
one;, e;_1,and e;;; . Without loss of generality, we assume that the curve
C;(t) on e; spans from 0 to A; , and let C;_;(0) and C;;1(0) coincide
with the vertices p; and p;4; respectively (see Figure 1). All the curves
can have arbitrary parametric forms that map the value of a parameter
t € [0, A;] to a 3D point C;(t); they can have arbitrary degrees and nodes
of segments if they are represented by polynomial spline functions. The
spans A; are also arbitrarily set; however, it is desirable to make the spans
be proportional to the arc length or the Euclidean distance between two
intersections of the curve C; in order to avoid generating unnaturally
shaped surfaces.

We here consider a sweep of cross sectional curves C;_; and C;y; in
which C; is regarded as a guide curve.

First, we introduce the local parameters w; and v;: u; defines the
parameter space of the guide curve C;, and v; defines that of the cross
sectional curves C;_; and C;y4;.

_ {'l_n_J ; { A; ; m even
S ) Ai/(1=4itpp1) 3 m odd ’
7
U = wiz lbivk (1)
v; = [A, 1(1 - —) + Aip ] Z bivk
A k=2

where the suffix of £ is defined to modulus m, and | | represents a floor
function.

Let the cross directional derivative D; about e; be defined by partial
derivatives with respect to 4; , 1 =1,2,...,m:

0 0
D; = (4i+4i) T + (biv1 + Liva) m5— T
0 0 0
Zz Ai —Ui) 7 — U5
P COF e
then (u; , v;) form an orthogonal parameter space with respect to D;:
Di u;, = 0 N
Uu; u;
D;v; = A;_ - i -
v (1= 5) + By,

The sweep surface T;, is then represented in (u; , v;) coordinates by

Tip(ui , vi) = M, [Cp(v:) — Cp(0)] + Ci(ws) , p=i—1,i+1, (2)
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where M, represents an affine transformation matrix whose 3 x 3 elements
are functions depending only on the parameter u;, and a parallel (or
translational) sweep of C, along C; is obtained by setting M, to a
unit matrix. The elements of the matrix M, can be also determined
by calculating an orthonormal coordinate frames along the guide curve
C;, using a method of Frenet frame or rotation minimizing sweep (Klok,
1986). This method imposes only weak restrictions on the guide curve; it
must be regular and twice continuously differentiable with non-vanishing
curvature.

Next, we generate the ¢*

" sub-surface S; by blending the two sweep
surfaces T;;_1 and T; ;41 with functions g;_1(u;) and gi41(u;)

Si(€) = gi-1(w:) Tii1(ui » vi) + giv1(ui) T (ui , i) , (3)
where g;_; and g;;; are determined in such a way as to satisfy the following
constraints:

gio(wi) + gim(w) = 1, w €[0,A],
9i-1(0) = gin1 (D) = 1. (4)

We here introduce weight parameters w; for each curve C;, and
construct the functions g;_; and g;4; by using w; as

W;— Ai — U
gi—l(ui) = 1( l) ;
wi—1 (A — wi) + Wiy
Wi1U;
Giv1(wi) =~

wic1(Ai — u;) + wigru;

where the parameter w; controls the influence of C; on the shape of the
sub-surface S;.

The values of the elements of the matrix M, and the function g, are
uniquely determined for each pair of the intersecting curves (C; , C,).
The above-mentioned methods of determining these values are effective
in that they can calculate smooth and natural shaped surfaces fast and
stably. We may use nonlinear optimization techniques to minimize the
variation of curvature or the energy of surfaces in order to generate the
fair shapes (Moreton and Séquin, 1992). Their calculation, however, is
time-consuming and unstable for our surface model.

It is noteworthy that the sub-surface S; defined by the above
expressions has the same order of geometric continuity as the cross
sectional curves C;_; and C;;; (see Appendix).
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Figure 1: Sweeping of curves Figure 2: Blending of sub-surfaces

8.8 Blending of sub-surfaces

In this subsection, we generate an m-sided patch Q™ by introducing
a blending function BP? of the n'M-degree. The patch Q™ is composed
by the convex combination of the m sub-surfaces S; , 7 =1,2,...,m as
follows (see Figure 2):

Q"() = £ 84 B,
where B} is defined by
(Litirn)"
Bl)= ——FF—= -
) e (Leles)
Equation (5) imposes the following conditions on the edges:
Bi(¢) = 1; L€e;,
BI(f) = 0; L€ejy,
B (2)
ae;t

= 07 ‘eeei,
i1,5=1,2,..,m, h=1,2,...,n—1,

where £ € €; := {£i+4iy1 = 1N 44 ;41 = 0} . Consequently, Q™ preserves
the derivatives of S; with respect to D;, up to the (n — 1)*-order on e;:

D!}Q™(0) = D!Si(¢) ; L€ei, h=0,1,..,n—1. (6)
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Equation (6) implies that the continuity condition of Q™ on e; is
reduced to that of S;. Also, patch Q™ has twist compatibility at the
vertices (or corners) of the domain polygon, where compatibility was
introduced by Gregory (1974) for a rectangular patch.

The function B! has singular points on the corners, but the
singularities can be removed by adopting the limiting behavior of B}
near the vertices such that

Bi(f) = { S0 Lempm
/2 5 LEDPj—i in
where £ € p; := {{; =1 N £j» = 0}. Note that these limiting values
preserve the continuity of the generated surface.

This blending function is regarded as a generalization of the interpolant
proposed by Nielson (1987) and Hagen and Pottmann (1989), whose
methods concern a triangular domain. Charrot and Gregory (1984)
proposed a blending function that has a similar property. Their function,
however, uses a combination of three successive variables for pentagonal
patches and interpolates the values on two sides, whereas our function
uses a combination of two successive variables and interpolates on one
side. Notice that the multivariate coordinates in the Gregory-Charrot
scheme are defined by the perpendicular distances of a point from the
sides of a regular polygon, and are thus not identical with the generalized
barycentric coordinates.

In Figure 3, we show the equi-valued line plots of B} for domain

polygons with three, four, and five sides, where each line indicates
nf10, n=0,1,...,10.

Figure 3: Equi-valued line plots of B3
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4 Modifications for singular topology

The sub-surface S; described in Subsection 3.2 destroys the condition
of geometric continuity with an adjacent sub-surface S; along the ith
boundary, if the constituent cross sectional curves for S; and S; are not
successively parameterized.

An irregular network of curves causes such discontinuity of cross
sectional curves between adjacent sub-surfaces if the following conditions
on an intersection are satisfied:

¢ More than two boundary curves intersect at a common vertex (called,
multiple intersection).

e The open end of a curve intersects in the middle of the other curve
(called, T-connected intersection).

Besides, the method in Subsection 3.2 cannot deal with such conditions
on a domain as

e An open set of the boundary curves defines the domain of a patch
(called, an open-sided patch).

¢ Only two boundary curves enclose the domain of a patch (called, a
two-sided patch).

We call the above four conditions singular topology.

We consider that a curve network of singular topology is necessary in
order to design complicated shapes flexibly, and therefore modify the rules
of generating and blending sub-surfaces so that they satisfy geometric
continuity for singular topology. The following four subsections explain
the modified methods for each condition of singular topology.

4.1 Multiple intersection

More than two curves often intersect at a common point in a network;
this point may represent a pole of a sphere or the center of a symmetrical
shape.

Let the guide curve C; have a multiple intersection with two curves
Cl, and C%,, as shown in Figure 4 (a). The adjacent sub-surfaces S;
and S; must have a boundary curve that is successively parameterized;
however, two cross sectional curves C}_; and C?_; are independently
parameterized. We therefore replace the cross sectional curve for S;
and S; with a common curve C;_; that is continuous at the multiple
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intersection. For éxﬁmple, C;_1 is constructed by averaging the cross
sectional curves such that:

Zé‘:l Cf—l(t)
b )

where ) indicates- the number of the curves C¥_; that intersect with C;
at the multiple intersection.

éi-—l (t) =

This modification of cross sectional curves ensures that the sub-surfaces
S; and S; have geometric continuity of the same order as the curves C¥_;.
However, the final surface does not satisfy geometric continuity at the
multiple intersection, because of inconsistency of the geometric quantities
at the intersections. Nevertheless, we can modify the intersecting curves
in such a way that geometric continuity is satisfied at the multiple
intersection. For G! continuity, the first-order derivatives of the curves are
adjusted so that they are on a common plane at the multiple intersection.
For G? continuity, the second-order derivatives of the curves are also
modified so that the curves have a consistent principal curvature or
principal direction at the multiple intersection (Miura and Wang, 1992).

4.2  T-conmnected intersection

Hierarchical representation of a curve network is effective for designing
complicated shapes, and it is realized by using T-connected intersections
in the network.

Let an open end of a curve Cr be connected to the middle of a boundary
curve C;(u) at u = r; A;, and let the curve Cr split a sub-surface S; into
two sub-surfaces S? and S!, as shown in Figure 4 (b).

It is obvious that the sub-surfaces S? and S} cannot have geometric
continuity with the adjacent sub-surfaces S; if they are constructed by
using [C?_; , C¥, CY, ] and [Cl_,, C}, CL,] respectively.

We generate sub-surfaces that have geometric continuity with S; as
follows:

1. Generate sub-surface S; by neglecting Cr and using C}_; and CL,
as cross sectional curves and C; := C? U C! as a guide curve.

2. Split the sub-surface S;(u;, v;) at u; = r; A; into two sub-surfaces:
S?(’U,i, ’Ui) = S,’ (’I',‘ u; , ’Ui) , S}('u,l-, 'Uz-) = Si ((1 — Ti) U; + 75 Ai y 'Ui) .

The curve Cr is used as a guide curve in constructing the sub-surfaces
S?,., and S, and used as a cross sectional curve for S, and S._,. As a
result, the final surfaces obtained by blending sub-surfaces have geometric



266

continuity with S; , and they exactly interpolate the curve Cr because
the sub-surfaces S?,; and S}_; contain the curve Cr.

4.8 Open-sided patch

When the shape of a surface is being designed, a transitional network
of curves may contain a domain that is topologically not closed. We
here consider a modification of the method described in Section 3 for
generating a surface from a set of boundary curves surrounding the
open domain. This technique allows designers to check the shape of the
transitional network.

Assume that a virtual curve C,, is added to a set of boundary curves
C;, i=1,2,...,m—1 in order to surround an m-sided domain, as shown
in Figure 4 (c).

Because sweep surfaces Ty, and F,_i, cannot be defined, sub-
surfaces 'S; and S, are equated to Tip and Tp_1n,-2 respectively.
We then generate the m-sided patch Q™ by blending the sub-surfaces
as follows:

Q") =5 80 B,

n n Um ) =1
By = W) el )T
! PV (fk£k+1)n ’ 0 , itl,m—1

4.4 Two-sided patch

The definition of a domain polygon in Subsection 3.1 implies that a
two-sided patch cannot be defined; however, a domain enclosed by two
curves often occurs in the construction of a curve network, especially in
the first stage of designing a shape. Therefore, we propose a method of
skinning the two-sided domain by extending it into a quadrilateral region,
as shown in Figure 4 (d).

We here split the curves C; and Cs into two pieces as

et -aufy) oo -3
Cl(t) = Cs (;) , CL(t) = C, (A22+t)
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Then the sub-surface S;, ¢ = 1,2,3,4 is constructed by the method
proposed in Subsection 3.2 with the split curves. The sub-surface S; is
constructed by using C! as a guide curve, and by using C) and Cj as
cross sectional curves, and the sub-surface Sy is constructed with C}, C3
and C}. The sub-surface S5 and S, are similarly constructed by using Cy
and C} as a guide curve respectively, and by using C!Y and Ci as cross
sectional curves. This construction ensures the geometric continuity of
the sub-surfaces S; on e;.

The final four-sided patch Q! is generated by using the same blending
functions B} introduced in Subsection 3.3 as

(c) Open-sided patch (d) Two-sided patch

Figure 4: Singular topology
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5 Examples

In this section, we present some examples of curve networks and
surfaces generated from them by our method.

Figure 5 shows an example of a closed surface generated by a network
that excludes the singular topology described in Section 4, where yellow
balls indicate intersections of curves.

In Figure 6, we show an example of a surface defined by a curve
network that contains multiple and T-connected intersections, where
green balls indicate multiple intersections and red balls indicate T-
connected intersections, and Figure 7 shows an example of a surface
defined by a curve network that has open-sided and two-sided domains.

All surfaces are generated from curves that have C? continuity
represented by cubic splines, where the weight parameters w; are set to
1 for all curves, so that every pair of sweep surfaces are blended linearly.
Translational sweeps are adopted for all the examples by setting M, to a
unit matrix. Surface data are generated by tessellating m-sided patches
into triangular-stripes, and are rendered by using the Phong shading
method on an IBM RISC System/6000 ®.

(a) A network (b) A surface

Figure 5: A network excluding singular topology

1IBM RISC System/6000 is a trademark of IBM Corp.
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(a) A network (b) A surface

Figure 6: A network including multiple and T-connected intersections

(a) A network (b) A surface

Figure 7: A network including open-sided and two-sided domains
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6 Conclusions

We have presented a method of generating surfaces from a network of
curves. Compared with existing methods, it has the following advantages:

o Surfaces can be defined by a network of curves that have arbitrary
parametric forms.

o The network can be defined on an arbitrary connective topology, and
all domains surrounded by the curves can be skinned.

o Each patch can have G" continuity with adjacent patches if all curves
surrounding it have C™ continuity.

These advantages make it possible to construct a surface model on user-
friendly CAD interfaces for designing shapes by inputting 3D curves,
such as (1) a sketching system with pen-input device, or (2) a virtual
environment system with an advanced 3D input device such as a Spaceball
or a DataGlove.

We have not considered the topological representation of a network
in this paper. Our method assumes that the topological data for the
network is predetermined. Because of the complexity of the topology
in an irregular network, it is difficult to construct topological data
automatically from curve data. The topological representation and
operations (including non-manifold conditions) for the network are our
next research topics.
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Appendix

Proof of geometric continuity

The n'"-order geometric continuity of surfaces, demoted by G",
quantifies the smoothness of the connections between patches, and is
independent of the parametrization of patches. Equation (6) implies that
the G™ condition of Q™ on e; is reduced to that of S;. We here prove
that sub-surfaces S; constructed by the method given in Subsection 3.2
have G™ continuity.

We show that S; can be reparametrized to yield C™ continuity along
the common boundary if cross sectional curves have C™ continuity at
their intersections with a guide curve, because this property ensures G™
continuity according to Herron’s definition (Herron, 1987).

Definition: Two surface patches are said to be G™ continuous if one can
be reparametrized to yield a true C™ join between the two.

We assume the following premise without loss of generality:
[Premise]

1. Two adjacent sub-surfaces S; and S; are defined on regular domain
polygons sharing e; .

2. The surface S; (or S;) is defined on u; and v; (or @; and ;) formed
by the barycentric coordinates £ (or ) in Equation (1), and £ (or £)
are determined by the common two-dimensional coordinate system

(z,9).

3. The coordinate system (z,y) has its origin at p;, the direction of the
z coordinate coincides with e;, and the point (1,0) coincides with

Pi+1 -

The claim for G continuity is as follows:

[Claim] There ezists a reparametrization of z(z,y) and §(z,y) such

ha
that 9"Si(ui(,0),vi(,0)) _ 8"Si(u:(Z0, %o), vi(Z0, %)) )
dz" - daz" ’
o"S; (ui(z,0), vi(z, 0)) 9"Si(wi(&o, o), ¥i(Eo, %)) ®)
oyt ay" ’

where 7y = #(z,0) , ¥p = g(z,0), h =0,1,...,n, and assignment of
= 0 is made after the derivatives have been obtained.
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From Equations (2), (3), and (4), the derivatives of S; and S; with
respect to = on e; are represented by

BhS; _ 6"Ci(u,-) 6’@,- _ 8"C,-(ﬂi) .

Y R " U

From the premise, u; and %4; are represented on e; as follows:

fee, h=0,1,...,n.

( 0) _ Z,— _ w; _ oG _
b B b+l _7Ti+7ri+1—ai+ai+1_$’
_ 2

Ti(z,0) = T+in =z .

Because the identical relation of u;(z, 0) = @;(z,0) holds, Equation (7) is
always satisfied without reparametrizing; Z(z,y) == .

Considering u;(z,y)/0y = 0ui(z,y)/0y = 0, we can represent the
derivatives of S; and S; with respect to y as follows:

8"Si(u,~ N 1)17) [as,’(’u,,‘ y 'Ui) 8’Uz':| (#)

oyt dv; Oy
0Si(mi, m) _ [08i(@i, w) ow]®
Oy - 8v; Oyl ’

where [0S /8v,v/8y]™ represents the chain rule of differentiation such
as

95 o _ o8 av

[Ov ’ Oy Ov Oy ’

88 av]@> 9% v’ 0S %

50 By 50 3y Tou a2
95 @]@ _
[Ov’ Oy -

If C;_; and C;; satisfy C" continuity on e;, the derivatives of S; and
S; on ¢; always coincide as

8"S,-(u,-,0) _ 3hgi(ﬂi,0)

a'U,'h - a’l_iih
3hC,’_1(0) BhCi 1(0)
= gi-1(wi) Mz’—l—é‘;i‘;[_ + giv1(w) Mi+1—a‘;;:h—‘ .
It is thus necessary and sufficient that
h,,. b
ﬁmamzﬁmi%, h=1,2,...n, (9)

y—0 8y y—0 ay
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holds for Equation (8) to be satisfied.
Let §(z,y) = Rl(z) y + (1/2) R2(2) ¢*,
and abbreviate dv;(z,0)/0y and 0%v;(z,0)/0y? as V,(z) and Vi, (z),
and similarly 0%;(z, 0)/83 and 8°%;(z,0)/83° as V;(z) and Vj(z),
then Equation (9) is represented by
Vy(z) = Rl(z)Vy(z),
Vale) = Ri(2)? Vigla) + B2z) Vy(z)

It is clear that Vj(z) never vanishes on e;, and thus the functions R1(x)
and R2(z) always exist as

R2(a:) — Vyy(w) _ Rl("”)2 ‘_/;?17('7’) )

Vi(z)
We have therefore proved that the claim is satisfied for G? continuity. O
For G*, n > 2 continuity, we can obtain similar results by introducing

j(z,y) = =&, (1/i!) Ri(z) y'.



Hybrid Symbolic and Numeric Operators
as
Tools for Analysis of Freeform Surfaces*

Gershon Elber'* and Elaine Cohen
Computer Science Department,
University of Utah

Abstract

Freeform surfaces are commonly used in computer aided geometric design, so accurate
analysis of surface properties is becoming increasingly important. In this paper, we define
surface slope and surface speed, develop visualization tools, and demonstrate that they
can be useful in the design process. Generally, surface properties such as curvature and
twist are evaluated at a finite set of predetermined samples on the surface. This paper
takes a different approach. A small set of tools is used to symbolically compute surfaces
representing curvature, twist and other properties. These surfaces are then analyzed using
numeric techniques.

The ¢ombination of symbolic computation to provide an exact property representation
(up to machine accuracy) and numerical methods to extract data is demonstrated to be
powerful and robust. This approach supports a uniform treatment once the surfaces are
computed and also provides global information, so questions such as ‘is a surface devel-
opable?’ or ‘what are the hyperbolic regions of a surface?’ can be answered robustly.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling-Splines; Curve, surface, solid, and object representations.

Additional Key Words and Phrases: NURBs, Freeform surface analysis.

1 Introduction

Sculptured surface representations are fundamental forms in computer graphics and in computer
aided geometric design. During different stages of modeling with sculptured surfaces, quite a
few properties of the surfaces may be of interest to the designer or required for a proper design.
The designer may need to isolate regions with surface slopes, defined in this paper, which are
too high or too low, to detect all regions with twists larger than prespecified values, to have a
visual bound on the distance traveled in the Euclidean domain while moving in the parametric
domain (which we refer to as speed bound), or even to isolate all the hyperbolic (saddle) regions
in the model.

Previous work directed at computing first and second order surface properties evaluated
them over a discrete grid. Normals were computed and visualized by drawing them as arrows,

*This work was supported in part by DARPA (N00014-91-J-4123) and the NSF and DARPA Science and
Technology Center for Computer Graphics and Scientific Visualization (ASC-89-20219). All opinions, findings,
conclusions or recommendations expressed in this document are those of the authors and do not necessarily
reflect the views of the sponsoring agencies.

! Appreciation is expressed to IBM for partial fellowship support of the first author.

{Current address: Computer Science Department, Technion, Haifa 32000, Israel.
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called “hedgehogs” [Schw83], over the grid. There have been attempts [Barn88, Beck86, Dill81,
Forr79] to understand and compute second order surface properties such as mean and Gaussian
curvatures, as well as twist, by evaluating them over the predefined grid (plate 1).

Given a surface S(u,v), there is no common method to accurately subdivide S into con-
vex, concave, and saddle regions. Using symbolic tools developed in section 2 this trichotomy
becomes feasible [Elber92], as is demonstrated in section 3.

In section 2, we describe the required symbolic computation tools so properties such as
Gaussian curvature, surface normal, surface slope, surface twist, and surface speed bound may
be computed and represented as freeform surfaces. We call such derived surfaces property sur-
faces. We emphasize the NURBs and Bézier representations although other representations
could be used, including any (piecewise) polynomial or (piecewise) rational representations. In
section 3, we apply these tools to some examples and demonstrate their effectiveness. Visual-
ization is used extensively in the section to communicate the relationship these properties have
with the shape of the surface.

2 Background

Surprisingly enough the set of symbolic tools one needs for the analysis treated here is small.
One needs to have representations for the derivative, sum, difference, and product of scalar
curves and surfaces. Any manipulation of curves or surfaces using these tools will result in
a curve or a surface of the same type. The resulting curve or surface is exact to within the
accuracy of the numerical computation, since these operation have closed forms and are, in fact,
symbol manipulators. Therefore, we refer to the usage of these tools as symbolic computation.

Contouring will also be used as a tool to extract information from the symbolically computed
property surfaces.

2.1 Symbolic Tools

Given a Bézier or NURBs curve, the form of the derivative as a curve in vector space is well
known (see [Farin86]),

dC(t) —_ d z:O PBk(t) (
dt dt - Z

i=0

Py —
itk — b

Bf ), 1)

and this result easily extends to tensor product surfaces.

The symbolic computation of sum and/or difference of two scalar Bézier or NURBs curves
is achieved by computing the sum and/or difference of their respective control points [Elber92,
Farin86, Farou88], once the two curves are in the same space. This requirement can be met by
representing them as curves with the same order (using degree raising [Cohen86a, Cohen86b]
on the lower order one, if necessary) and the same continuity (using refinement [Cohen80] of
knot vectors for NURBs).

Il

k k
Yo PBE ()£ Q:BE(1)
=0 =0

k
> (PiBE,(w) + QiBE,(v))

i=0

C1(1) £ Ca(2)

Il
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k
Y (P Qi) BE,(u). 2

i=0
This result easily extends to tensor product surfaces as well.

Representation for product of scalar curves is the last requirement. For Bézier curves
(see [Farin86, Farou88]),

S RBr(H) S Q;BN()

1=0 7=0
=S¥ PQB OB}
i=0 j=0
= ZiPQJ m)-l-(n)Bri'jn( )

C1(2)Ca(t)

=0 j=0 i+j
m4n

= Y RBPT), 3)
k=0

where (m) (n)
Ri= Y, PQjmx Gl
1,j
i+ji=k

This result can also be extended to tensor product surfaces. It is also necessary to represent
scalar products as part of representing sums and differences of rational curves and surfaces, as
well as derivatives of rationals.

Finding a representation for the product of NURBs is far more difficult. A direct algorithmic
approach has recently been developed [Morken] which supports symbolic computation of the
coefficients of the product after finding the knot vector of the product curve. However, since it is
computationally expensive and complex to implement, one might choose to exploit the B-spline
representation uniqueness property and compute the coefficients of the product by solving an
equivalent interpolation problem [Elber92].

2.2 Contouring operator

It is frequently useful to know the zero set of a property surface or to have all regions in which
the values of the property is larger than some threshold, either for itself or to use in further
analysis. Contours in the parameter space of the property surface can be used as trimming
curves for the original surface [McCol88], so the trimmed surface will consist of all regions of the
original surface with property values larger (or smaller) than the contouring level. The problem
of computing the contours is closely related to finding surface-surface intersections and ray-

surface intersections [Kaji82], problems with inherent numerical complexities and instabilities.
Let F(u,v) = (%&%—’,’%, 1!"](:”; R ﬁ%};) and P = Az + By+ Cz+ D = 0 be the property surface
and the contouring plane, respectively. By substituting the components of F(u, ) into P one

can solve for all values of u and v in the parametric domain for which F(u,v)N P # 0.
S(u,v) = Az(uvv) + By(u’ v) Z("a”)

w(u,v) w(u,v)

+C

w(,0) b
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Az(u,v)+ By(u,v)+ Cz(u,v) + Dw(u,v)
w(u,v)

()

A single NURBs surface representation for equation 4 can be found using the operations
defined in section 2.1, namely surface addition and surface multiplication. The zero set of the
surface S(u,v), in equation 4, is the set of parametric values for the required intersection. Since
both F(u,v) and S(u,v) share the same parametric domain, mapping the parametric domain
information back to F(u,v) is trivial. S(u,v) is a scalar surface, which leads to a simpler and
faster computation. Assuming w(u,v) # 0, the zero set of S(u,v) can be computed using only
the numerator of S(u,v). Thus, even if F(u,v) is a rational surface, contouring computations
can be performed on scalar polynomial surfaces.

In the following section, the tools defined in this section will be used. The four basic
operations for surfaces: addition, subtraction, multiplication, and division will be combined with
differentiation to define or approximate property surfaces, as necessary. Then the contouring
algorithm will be used to analyze and extract useful information from them.

3 Examples

3.1 Surface slopes

The slope of a planar curve at a given point is equal to the angle between the tangent to the
curve and a reference line, usually the horizontal axis. In an analogous way we define the
surface slope at a given point, p, as the angle between the plane tangent to the surface at p
and a reference plane. Without loss of generality, in the discussion below we assume that the
reference plane is the zy plane.

Since the angle between two planes, is equal to the angle between their two normals, to
compute surface slope, one need only compute the angle between the surface normal and the 2z
axis. Let n be the surface unit normal and let n, be its z component. Then, the tangent of the

slope angle P is equal to:
V1—n?

Nz

tan(P) = (5)
When n, = +1 the surface orientation is horizontal. If n, = 0 the surface is vertical, and
finally if n, = —1 that surface is horizontal again, but this time facing down.

Inspection of the surface unit normal equation shows that n(u,v) cannot be computed
directly using the symbolic tools of section 2.1 because of the need to determine the square
root. However, the z component of the unnormalized normal surface, #, is equal to:

Oz (u,v) Oy(u,v)  dy(u,v) Oz (u,v) 6)
du v du o

where z(u,v) and y(u,v) are the 2 and y components of surface 5(u, v).

7, (u,v) =

Then, n,(u,v) = #,(u,v)/||#(u, v)||, where ||#i(u, v)|| is the magnitude of 7(u,v)

Even though n,(u, v) contains a square root factor, it is a scalar function, and can be squared
so that n,(u,v)? can be represented.

Given a slope P in degrees (or radians) the conversion to the n2(u,v) value required is
straightforward using equation 5. Therefore, given a certain slope P, one can compute the
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Figure 1: Silhouettes are equivalent to the zero set of equation 6 (rotated view).

required n, and n? using equation 5. Since n? is representable using (piecewise) rationals, one
can contour this surface at the required nZ level. Plate 2 demonstrates this exact process for
several slope levels.

Alternatively, one can use the symbolically computed property nZ(u,v) as a scalar map
designating the color of the surface at each location, much like a texture map. Plate 3 is an
example for this approach, for the same surface as in plate 2.

The technique presented here has also been used to compute silhouette curves of sur-
faces [Elber90], and is equivalent to the zero set of equation 6. 7,(u, v) is symbolically computed
and its intersection (contouring) with the plane Z = 0 provides the required silhouette curves
in parametric space. Figure 1 shows one such example.

Slope is not an intrinsic surface property. In fact, since it is orientation dependent, it provides
the designer with a measure on the planarity of the surface as well as on its orientation.

3.2 Surface Speed

The speed of a curve is defined as the distance moved in Euclidean space per unit of movement
in parameter space. For a curve,

S(1)

Il

[

JE @ &)

We define the speed bound of surface S(u,v) as the supremum of the speeds of all curves on
the unit circle of the tangent plane using the first partials as a basis.

I

Let (t) be a curve in the parametric domain of S(u,v), that is a(f) = (u(t),v(t)). By
providing this speed bound of the surface parametrization, one can compute certain properties
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on aft) and use the speed bound to extrapolate and provide bounds on the properties on the
composed curve S o a = S(u(t), v(t)).

Let 4(t) be an auxiliary arc length parametrized curve with its image in the parametric
2 2
space of S(u,v),i.e. v(t) = (u(t),'v(t)), with ‘/ (%) + (%) =1, for all t. Then
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If agf = au S (see figure 2 with collmear partials along the surface boundary, which implies

the surface is not regular there) and %% = d’i’, then
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and the upper bound established in equation 8 is reached. Therefore, this bound is minimal.

Since it is not possible to represent the square root of equation 8 as a (piecewise) rational
surface, in general, we compute instead

s = () + (5" G
() @)@
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Figure 2: Degenerated boundary provides the two extremes on speed bound.

Plates 4 and 5 are two examples of using $(u, v) to compute a speed bound on the surface.

The speed surface can be used to provide a measure on the quality of the parametriza-
tion. This can becomes especially important if the surface is to be evaluated (for any purpose,
including rendering) at a predefined set of parameter values.

3.3 Variations on Surface Twist

Also interesting is the ability to visualize surface twist. Basically, the twist is defined as the
cross derivative component:
8%S(u,v)

T(u,v) = Sudy (12)

This equation is representable and can always be computed symbolically for (piecewise)
rationals. Plates 6, 7 and 8 shows this property as a texture mapped on the surfaces.

Using equation 12 as a twist measure has a major drawback as can be seen in plate 7. Even
though the surface is flat, the twist component is not zero since the speed of the parametrization
is changing. In other words, the mapping from the parametric space to the Euclidean space is
not isometric. It would be more helpful to use the twist component in only the surface normal
direction (see [Barn88]) to eliminate the twist as a result of a non isometric mapping.

. 025(u,v)
g =1y = (H,W) (13)

where [;2, and = ly; are two of the components of second fundamental matrix form, L (see
also [Carmo76, Mill77, Stok69]).

Obviously, this time the /y2 component in the flat surface in plate 7 is zero showing no twist
in the normal direction. Furthermore, the use of this property showed that the teapot has
virtually no twist in the normal direction as well. All the twist in plate 8 was a result of the
nonisometric mapping. Plate 9 shows a nonplanar surface, similar to the one in plate 7 using
112 as property surface mapping colors onto the surface, as texture.

Since now one can compute both the total twist (equation 12), and the twist in the normal
direction (equation 13), one can consider computing the twist in the tangent plane to the surface
as the difference of the two quantities. This difference would provide another measure as to the
quality of the surface parametrization.
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3.4 Surface Trichotomy

It is frequently desired to provide a bound on the angularity of a surface. It is also desired in
some cases to detect and isolate concave or convex regions. In 5-axis NC milling, a flat end
cutter is usable only for the convex part of the surface.

In [Carmo76, Elber] it is shown that one of the principal curvatures must be zero along the
boundaries of convex, concave, or saddlelike regions and that this immediately necessitates that
||L]] = 0 where ||L|| is the determinant of the second fundamental matrix form. It is also shown
in [Elber] that the zero set of [|L|| can be used instead where

(%5) (3.%5)
P=()= 2 : (14)

(di) (2.55)

@
(Y

and # is the unnormalized normal #(u,v) = %‘3 X %% to the surface.

Each element of L is representable as a NURBs, using the tools developed in section 2. The
bottom of plate 10 shows the scalar surface ||L|| with the zero plane and their intersection. The
top of plate 10 uses these intersection curves to form the surface trichotomy into convex (red),
concave (green), and saddle (yellow) trimmed regions. Plate 11 demonstrates this method on
a more realistic object. The teapot trichotomy degenerates into a dichotomy since no concave
regions exist in the teapot model.

Finally, it is interesting to note that a sufficient condition for a surface to be developable is
that its Gaussian curvature is zero everywhere, i.e. K(u,v) = 0 [Faux79]. Since K(u,v) = {{éﬂ,
where G is the first fundamental form [Carmo76, Mill77, Stok69], this condition is equivalent to
the condition that ||L|| = 0, for regular surfaces when ||G|| # 0. A simple practical test that can
answer whether a surface is developable or not is to symbolically compute and compare each of
||L]] coefficients to zero. Plate 12 shows two developable NURBs surfaces, one ruled along an
isoparametric direction while the other is not.

3.5 Bounding the Curvature

In [Elber] it is suggested that the sum of the squares of the principal curvatures may be a
relevant measure of shape and can be represented as

3

(=3)" + (k2
(g11l22 + hingae — 2g12h12)? - 2||G||||LI] (15)
ERHER '

£ is bounded to be at most v/2 larger than the larger absolute value of the two principal
curvatures. Furthermore, £ can be represented using the tools described in section 2. In plates 12
and 13, the £ property has been computed for the two developable surfaces and for the Utah
teapot model respectively and used as a texture mapped through a color map table.
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