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Introduction 

Mesh generation techniques are widely employed in various engineering fields in- 
cluding those related to physical models described by partial differential equations 
(PDE). Numerical simulations of such models are intensively used for design, di- 
mensioning and validation purposes. One of the most frequently used methods, 
among many others, is the finite element method (FEM). In this method, a contin- 
uous problem (the initial PDE model) is replaced by a discrete problem that can 
actually be computed thanks to the power of currently available computers. The 
solution to this discrete problem is an approximate solution to  the initial problem 
whose accuracy is based on the various choices that were made in the numerical 
process. 

The first step (in terms of actual computation) of such a simulation involves 
constructing a mesh of the computational domain (i.e., the domain where the phys- 
ical phenomenon under interest occurs and evolves) so as to  replace the continuous 
region by means of a finite union of (geometrically simple and bounded) elements 
such as triangles, quadrilaterals, tetrahedra, pentahedra, prisms, hexahedra, etc., 
based on the spatial dimension of the domain. For this reason, mesh construction 
is an essential pre-requisite for any numerical simulation of a PDE problem. More- 
over, mesh construction could be seen as a bottleneck for a numerical process in 
the sense that a failure in this mesh construction step jeopardizes any subsequent 
numerical simulation. 

Ir 
I r k  

Mesh construction in general and more precisely for numerical simulation pur- 
poses involves several different fields and domains. These include (classical) ge- 
ometry, so-called computational geometry and numerical simulation (engineering) 
topics coupled with advanced knowledge about what is globally termed computer 
science. The above classification in terms of disciplines which can interact in 
mesh construction for numerical simulation clearly shows why this topic is not 
so straightforward. Indeed, people with a geometrical, a computational geometry 
or a numerical background may not have the same perception of what a mesh 
(and, a fortiori, a computational mesh) should be, and subsequently do not share 
a common idea of what a mesh construction method could be. 
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To give a rough idea of this problem, we mention, without in any way claim- 
ing to  be exhaustive, some commonly accepted ideas about meshes based on the 
background of those considering the issue. 

From a purely geometrical point of view, meshes are mostly of interest for the 
properties enjoyed by such or such geometrical item, a triangle for instance. In this 
respect, various issues have been investigated regarding the properties of such an 
element including aspect ratios, angle measures, orthogonality properties, affine 
properties and various related constructions (centroids, circumcenters, circumcir- 
cles, incircles, particular (characteristic) points, projections, intersections, etc.). 

A computational geometry point of view mainly focuses on theoretical proper- 
ties about triangulation methods including a precise analysis of the corresponding 
complexity. In this respect, Delaunay triangulation and its dual, the Voronoi’ di- 
agram, have received much attention since nice theoretical foundations exist and 
lead to  interesting theoretical results. However, triangulation methods are not 
necessarily suitable for general meshing purposes and must, to  some extent, be 
adapted or modified. 

Mesh construction from a purely numerical point of view (where, indeed, 
meshes are usually referred to as triangulations or grids) tends to  reduce the mesh 
to a finite union of (simply shaped) elements whose size tends towards 0: 

where 7 h  is provided in some way or other (with no further details given on this 
point). The construction of 7j is no longer a relevant problem if a theoretical 
study is envisaged (such as a convergence issue for a given numerical scheme). 

In contrast to all the previous aspects, people actually involved in mesh con- 
struction methods face a different problem. Provided with some data, the problem 
is to develop methods capable of constructing a mesh (using a computer) that con- 
forms to the needs of “numerical” and more generally “engineering” people. With 
regard to  this, the above subscript h does not vanish, the domain geometry that 
must be handled could be of arbitrary complexity and a series of requirements 
may be demanded based on the subsequent use of the mesh once it has been 
constructed. On the one hand, theoretical results about triangulation algorithms 
(mainly obtained from computational geometry) may not be so realistic when 
viewed in terms of actual computer implementation. On the other hand, engi- 
neering requirements may differ slightly from what the theory states or needs to  
assume. 

Let 7 h  be a triangulation where h tends to 0, then ..., ” 

* 
+ A  

As a brief conclusion, people involved in “meshing” must make use of knowledge 
from various disciplines, mainly geometry and computation, then combine this 
knowledge with numerical requirements (and computational limitations) to  decide 
whether or not an a priori attractive aspect (for a particular discipline) is relevant 
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in a meshing process. In other words, good candidates for mesh construction 
activities must have a sound knowledge in various disciplines in order to be able 
to select from these what they really require for a given goal. 

Fortunately, we should point out that meshing things are becoming increasingly 
recognized as a subject of interest in its own right, not only in engineering but also 
at universities as well. In practice the subject is being addressed in several places 
all over the world, and a numerous people are spending a great deal of time on 
it. A few specialized conferences and workshops do exist and papers on meshing 
technologies can be found in various journals. Currently a few books’ entirely (or 
substantially) devoted to meshing technologies are available. 

Purpose and scope 

The scope of this book is multiple and so are the potential categories of intended 
readers. As a first remark, we like to think that the theoretical background that 
is strictly necessary to understand the book is anything but specialized. We are 
confident that a reasonable knowledge of basic geometry, a touch of computational 
geometry and a good guess of what a numerical simulation is (for instance, some 
basic notions about the finite element method) provide a sufficient background for 
the reader to profit from this material. With regard to this, one of our objectives 
has been to make most of the presentations self-contained. 

One issue underlying some of the discussions developed in the book was what 
material the reader might expect to find in such a book. A tentative answer to 
this point has led us to incorporate some material that could be judged trivial by 
readers who are already familiar with some meshing methods, yet we believe that 
its inclusion may well prove useful to less experienced readers. 

We have introduced some recent developments in meshing activities, even if 
they have not necessarily been well validated (at least to the industrial standard), 
so as to allow advanced readers to initiate new progress based on this material. 

It might be said that constructing a mesh for a given purpose (academic or 

‘Probably the very first significant reference about mesh generation is the book by Thompson, 
Warsi and Mastin, [Thompson et al. 19851, authored in 1985, which mainly discussed structured 
meshes. A few years after, in 1991, a book by George, [George-l991], was written which aimed 
to cover both structured and unstructured mesh construction methods. More recently, a book 
authored in 1993 by Knupp and Steinberg, [Knupp, Steinberg-19931 together with a book by 
Liseikin, [Liseikin-20001, provided an updated view of structured meshes. In 1998, a book fully 
devoted to Delaunay meshing techniques, [George, Borouchaki-19971, appeared. Among books 
that contain significant parts about meshing issues, one can find the book authored by Carey in 
1997, [Carey-19971. 

Thus, it is now possible to  find some references about mesh technology topics. In this respect, 
one needs to  see the publication of the Handbook of Grid Generation, edited by Thompson, Soni 
and Weatherill, [Thompson et al. 19991, which, in about 37 chapters by at least the same number 
of contributors, provides an impressive source of information. To conclude, notice the publication 
of another collective work, “Maillage et Adaptation”, [George-2001], in the MIM (MBcanique et 
IngBnierie des MatBriaux) series published by HermBs, Paris, together with a concise vulgarization 
book, “le maillage facile”, [Frey, George-20031. More recently, the Encyclopedia of Computational 
Mechanics, edited by Stein, de Borst and Hughes, [Stein et al. 20041, offered a chapter on mesh 
generation. 
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industrial) does not strictly require knowing what the meshing technologies are. 
Numerous engineers confronted daily with meshing problems, as well as graduate 
students facing the same problem, have been able to complete what they need 
without necessarily having a precise knowledge of what the software package they 
are familiar with actually does. Obviously, this point of view can be refuted and 
clearly a minimum knowledge of the available meshing technologies is a key to 
making this mesh construction task more efficient. Finally, following the above 
observations, the book is intended for both academic (educational) and industrial 
purposes. 

Synopsis 

Although we could have begun by a general purpose introduction and led on to a 
presentation of classical methods, followed by a discussion of advanced methods, 
specialized topics, etc., we chose to structure the book in such a way that it may be 
read sequentially. Relevant ideas are introduced when they are strictly necessary 
to the discussion, which means that the discussion about simple notions is made 
easy while when more advanced discussions are made, the more advanced ideas are 
given at the same time. Also, some almost identical discussions can be found in 
several sections, in an attempt to make each section as self-contained as possible. 

* * *  
The book contains 24 chapters. The first three chapters introduce some general 

purpose definitions (Chapter 1) and basic data structures and algorithms (Chap- 
ter 2), then classical mesh generation methods are briefly listed prior to more 
advanced techniques (Chapter 3). The following chapters provide a description of 
the various mesh generation methods that are in common use. Each chapter corre- 
sponds to one type of method. We include discussions about algebraic, PDE-based 
or multi-block methods (Chapter 4), quadtree-octree based methods (Chapter 5), 
advancing-front technique (Chapter 6), Delaunay-type methods (Chapter 7), mesh 
generation methods for implicitly defined domains (Chapter 16) and other mesh 
generation techniques (Chapter 8) not covered by the previous cases. Chapter 9 
deals with Delaunay-admissible curve or surface meshes and then discusses medial 
axis construction along with the various applications that can be envisaged based 
on this entity. Prior to a series of five chapters on lines, curves and surfaces, a 
short chapter concerns the metric aspects that are encountered in mesh generation 
activities (Chapter 10). As previously mentioned, Chapters 12 to 16 discuss curves 
and surfaces while Chapter 11 recalls the basic notions regarding differential ge- 
ometry for curves and surfaces. One chapter presents various aspects about mesh 
modification tools (Chapter 17), then, two chapters focus on optimization issues 
(Chapter 18 for planar or volumic meshes and Chapter 19 for surface meshes). 
Basic notions about the finite element method are recalled in Chapter 20 before 
looking at a more advanced mesh generation problems, namely how to construct 
adapted, mobile or deformable meshes (Chapters 21, 22 and 23). Parallel aspects 
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are discussed in Chapter 24. To conclude, an index is provided to  the readers. 
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I a1 absolute value 
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[a, b] a closed interval 

(u, u) 
( . A . ) 

Euclidean length of a vector 
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Chapter 1 

General Definitions 

Before going further, it seems important to clarify the terminology and to provide 
some basic definitions together with some notions of general interest. First, we 
define the covering-up of a bounded domain, then we present the notion of a 
triangulation before introducing a particular triangulation, namely the well-known 
Delaunay triangulation. 

A domain covering-up simply corresponds to the naive meaning of this word 
and the term may be taken at face value. On the other hand, a triangulation is 
a specific covering-up that has certain specific properties. Triangulation problems 
concern the construction, of a covering-up of the convex hull of a given set of 
points. In general, a triangulation is a set of simplices, triangles in two dimen- 
sions, tetrahedra in three dimensions, with certain properties. If, in addition to  a 
set of vertices, the boundary of a domain (more precisely a discretization of this 
boundary whose vertices are in the above set) is specified or, simply if any set of 
required edges (faces) is provided, we encounter a problem of constrained trian- 
gulation. In this case, the expected triangulation of the convex hull must contain 
these required items. 

In contrast, the notion of a mesh may now be specified. Given a domain, 
namely defined by a discretization of its boundary, the problem comes down to 
constructing a “triangulation” that accurately matches this specific domain. In 
a way, we are dealing with a constrained triangulation but, now, we no longer 
face a convex hull problem and, moreover, the mesh elements are not necessarily 
simplices. 

After having established triangulation and mesh definitions, some other aspects 
are discussed, including a suitable element definition (as an element is the basic 
component of both a triangulation and a mesh), finite element definition as well as 
mesh data structure definition which are the fundamental ingredients of any further 
processing (such as using a finite element method). In addition, we introduce 
some definitions related to  certain data structures which are widely used in mesh 
construction and mesh optimization processes. To conclude, we propose measures 
of mesh quality and of mesh optimality. 

Obviously this chapter cannot claim to be exhaustive. In fact, more specific 
ideas will be introduced and discussed as required throughout the book. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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1.1 Covering-up and triangulation 

If S is a finite set of points in Rd (d = 2 or d = 3), the convex hull of S, denoted as 
Conw(S), defines a domain R in Rd. Let K be a simplex’ (triangle or tetrahedron 
according to  d ,  always considered as a connected and closed set). Then a covering- 
up 7, of R by means of simplices corresponds to  the following definition: 

Definition 1.1 7, is  a simplicia1 covering-up o f 0  i f  the following conditions hold 

a (HO) The set of element vertices in 7, is  exactly S .  

” 

( H l )  R = u K ,  where K is  a simplex. 

The interior of every element K in 7, 

The intersection of the interior of two 

KEZ 

a (H2)  

(H3)  

is  non empty. 

elements is  an empty set. 

Here is a “natural” definition. With respect to  condition ( H l )  (where while 
not strictly necessary, we restrict ourselves to  simplicial elements), one can see 
that R is the open set corresponding to the domain that means, in particular, that 
R = u K .  Condition ( H 2 )  is not strictly necessary to define a covering-up, but 

KEZ 
it is nevertheless practical with respect to  the context and, thus, will be assumed. 
Condition (H3)  means that element overlapping is proscribed. 

Similarly, we will consider conforming coverings-up, referred to as triangula- 
tions. 

- 

Definition 1.2 7, is  a conforming triangulation or simply a triangulation of fd 
i f  I, is  a covering-up following Definition (1.1) and iJ in addition, the following 
condition holds: 

a (H4)  the intersection of two elements in 7, is  either reduced to 

- the empty set or to 

‘Let us briefly recall the definition of a d-simplex: we consider d + 1 points aj  = (a i j )$ l  E 

W d ,  1 5 j 5 d + 1, not all in the same hyper-plane, i.e., such that the matrix of order d + 
a l l  ... al,d+l f ... A = ”’ “‘ ”. 

ad,d+l ’ ( a? ‘1 1 ) 
is invertible. D-simplex K whose vertices are the aj  is the convex hull of these points aj . 
point x in W d ,  with Cartesian coordinates xi is fully specified by the data of d + 1 scalar 
X j  = Xj(x) that are solutions of the linear system: 

d+ 1 c aijXj =xi with c X j  = 1, 
j=1 j=1  

whose matrix is A. The Xj(x) are the barycentric coodanates of point x with respect 
points a j .  

1: 

Every 
values 

to the 



GENERAL DEFINITIONS 21 

- a vertex, an edge or a face (for d = 3). 

More generally, in d dimensions, such an intersection must be a k-face’, for 
k = -1, ..., d - 1, d being the spatial dimension. 

Figure 1.1: 
(right-hand side). Note the vertex located on one edge in this case. 

Conformal triangles (left-hand side) and non-conformal triangles 

Remark 1.1 For the moment, we are not concerned with the existence and pos- 
sibly uniqueness of such a triangulation for  a given set of points. Nevertheless, a 
theorem of existence will be provided below and, based on  some specific assump- 
tions, the particular case of a Delaunay triangulation will be described. 

Euler characteristics. The Euler formula, and its extensions, the Dehn-Som- 
merville relationships, relate the number of k-faces ( k  = 0, ..., d - 1) in a trian- 
gulation of a. Such formula can be used to check the topological validity of a 
given mesh or also for other purposes, such as the determination of the genus of a 
surface. 

Definition 1.3 The Euler characteristics of a triangulation 57, is  the alterned 
summation: 

d 

k=O 

where n k ,  k = 0,  .., d denotes the number of the k-faces in the triangulation. 

When the triangulation is homotopic to the topological ball, its characteristic 
is 1. If the triangulation is homeomorphic to the topological sphere, its Euler 
characteristic is 1 + (-l)d. In two dimensions, the following relation holds: 

n u  - n e  + nt = 2 - c ,  

where nu ,  n e  and nt are respectively the number of vertices, edges and triangles 
in the triangulation, c corresponds to the number of connected components of 

2A (-1)-face is the empty set, a 0-face is a vertex, a 1-face is an edge, a k-face is in fact a 
k-simplex with k < d,  d being the spatial dimension. 
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the boundary of R. More precisely, if the triangulation includes no hole, then 
nu - n e  + nt = 1. In three dimensions, the above formula becomes: 

n u - n e + n f  - n t = 2 - 2 g ,  

where n f is the number of faces, nt the number of tets and g stands for the genus 
of the surface (i.e., the number of holes) of the triangulation. Thus, a triangulation 
of a closed surface is such that n u  - n e  + nf = 2. 

Delaunay triangulation. Among the different possible types of triangulations, 
the Delaunay triangulation is of great interest. Let us recall that S is a set (a 
cloud) of points (sites) and that fd is Conv(S ) ,  the convex hull of S . 

Definition 1.4 
circumscribed to any of its elements does not contain any vertex of S.  

is the Delaunay triangulation of R i f  the open discs (balls) 

Figure 1.2: The empty sphere crite- 
rion is  violated, the disc of K en- 
closes the point P.  Similarly, the cir- 
cumdisc of the triangle with vertex 
P includes the vertex of triangle K 
opposite the common edge (the cri- 
terion is symmetric for any pair of 
adjacent elements). 

This criterion, the so-called empty sphere criterion or Delaunay criterion, 
means that all open balls associated with all elements do not contain any ver- 
tex, a closed ball containing the vertices of the element under consideration only. 
This is the main characterization of the Delaunay triangulation. The Delaunay 
criterion leads to several other characteristics of any Delaunay triangulation. Fig- 
ure 1.2 shows an example of an element K which does not meet the Delaunay 
criterion. 

A basic theoretical issue follows. 

Theorem 1.1 There exists a unique Delaunay triangulation of a set of points. 

The proof is evident by involving the duality with the Voronoi' diagram associ- 
ated with the set of points (cf. Chapter 7). The existence is then immediate and 
the uniqueness is achieved as the points are assumed in general position3 if one 
wishes to have a simplicia1 triangulation. Otherwise, the following remark holds. 

3A set of points is said to be in general position if there is no configuration of more than three 
points that are co-circular (more than four cespherical points) such that the corresponding open 
disk (ball) is empty. 
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Remark 1.2 I n  the case of more than three co-circular (resp. four co-spherical) 
points, a circle (resp. sphere) exists enclosing these points. If the related disk 
(resp. ball) is empty, the Delaunay triangulation exists but contains non-simplicia1 
elements such as polygons (resp. polyhedra). 

Hence, the uniqueness holds i f  non-simplicia1 elements are allowed while i f  
the latter are subdivided by  means of simplices, several solutions can be found. 
Nevertheless, while it may be excessive, we will continue to speak of the Delaunay 
triangulation by  observing that all any partitions of a non-simplicia1 element are 
equivalent after swapping4 a k-face. 

A brief digression. The notion of a Voronoi' diagram (though it had yet to  
be called as such!) first appeared in the work of the French philosopher R. 
Descartes (1596-1650) who introduced this notion in 1644 in his Principia Philoso- 
phiae, which aimed to  give a mathematical description of the arrangement of mat- 
ter in the solar system. In 1850, G. Dirichlet (1805-1859) studied this idea in two 
and three dimensions and this diagram came to be called the Dirichlet tessella- 
tion [Dirichlet-1850]. However, its definitive name came after M.G. Voronoi' (1868- 
1908), who generalized these results in d dimensions [Voronoi'-1908]. 

Nature provides numerous examples of arrangements and quasi-regular paving 
which bear a strange resemblance to Voronoi' diagrams. Figure 1.3 illustrates some 
of these typical arrangements5. 

Constrained triangulation. Provided a set of points and, in addition, a set 
of edges (resp. edges and faces in three dimensions), an important problem is to  
ensure the existence of these edges (resp. these edges and faces) in a triangulation. 
In the following, Const denotes a set of such entities. 

Definition 1.5 Tr is  a constrained triangulation of fd for  Const i f  all and any 
element of Const is  an entity of Tr. 

In particular, a constrained triangulation6 can satisfy the Delaunay criterion 
locally, except in some neighborhood of the constraints. 

Remark 1.3 As  above, provided a set of points and a constraint, we are not 
concerned here with the existence of a solution triangulation. 

4A 2-face swap (flip) consists of replacing the diagonal of the convex quadrilateral made up of 
two adjacent triangles by the alternate configuration, see Chapter 18 for the precise definition. 

5Given a set of geometric objects, an arrangement is a covering-up of the space by means of 
the regions (cells) formed by the given objects and their (potential) intersections. 

Whereas a constrained Delaunay triangulation in two dimensions is a triangulation which 
satisfies the empty sphere criterion, where a open ball can contain a vertex in the case where the 
latter is not seen, due to a constrained edge, by all the vertices of the considered element. In 
other words, a constrained entity exists which separates the above vertices and the others. 
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Figure 1.3: Top, the wings of a dragonfly (doc. A. LeBe'on) show an alveolar 
structure apparently close to a Voronoi' diagram (left-hand side) and one of the 
more representative examples of regular paving (consisting of hexagonal cells) is 
that of a bee's nest (right-hand side). Bottom, two examples of natural arrange- 
ments. Left-hand side: the basaltic rock site of the Giant's Causeway, Co Antrim, 
Northern Ireland (photo credit: John Hinde Ltd.). Right-hand side, desert region 
of Atacama (Chile), the drying earth forms patterns close to Voronoi' cells. 

1.2 Mesh, mesh element, finite element mesh 

Now we turn to a different problem. Let R be a closed bounded domain in R2 or 
R3. The question is how to construct a conforming triangulation of this domain. 
Such a triangulation will be referred to  as a mesh of fd and will be denoted by 7, 
or 7 h  for reasons that will be made clear in the following. Thus, 

Definition 1.6 7 h  is a mesh o f n  i f  
0 

(HI) a =  U K .  
K E l h  

(H2) The interior of every element K in 7 h  is  non-empty. 

(H3) The intersection of the interior of two elements is  empty. 
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Condition (H2)  is clearly not verified for a beam element for instance. Condi- 
tion ( H 3 )  avoids element overlapping. In contrast to the definition of a triangula- 
tion, Condition (HO) is no longer assumed, which means that the vertices are not, 
in general, given a priori (see hereafter) and, in (Hl), the K’s are not necessarily 
simplices. 

Most computational schemes using a mesh as a spatial support assume that 
this mesh is conforming (although, this property is not strictly necessary for some 
solution methods). 

Definition 1.7 7 h  is a conformal mesh of fd i f  Definition (1.6) holds and 

(H4) the intersection of two elements an 7 h  is  either the empty set, a 
vertex, an edge or a face (d = 3). 

Clearly, the set of definitions related to a triangulation is again met. There 
is a fundamental difference between a triangulation and a mesh. A triangulation 
is a covering-up of the convex hull of a given set of points which, in general, 
is composed of simplicial elements. A mesh is a covering-up of a given domain 
defined, in most of the applications, via a given discretization of its boundary, 
this covering-up being composed of possibly non simplicial elements. On the other 
hand, at least two new problems occur, namely: 

the respect or enforcement, in some sense, of the boundary of the domain so 
that the triangulation is a constrained triangulation, 

the necessity of constructing the set of points which will define the vertices of 
the mesh. Usually the boundary points of the given boundary discretization 
are given as sole input and field points must be explicitly created. 

Remark 1.4 For a boundary discretization defining a domain, the existence of a 
mesh conforming to this discretization holds in two dimensions but is still, at least 
from a computer point of view, a delicate question in three dimensions. 

Remark 1.5 I n  the finite element method, the meshes7 are generally denoted by 
7 h ,  where the index h of the notation refers to the diameters of the elements in 
the mesh, these quantities being used in error bound theorems. 

As previously mentioned, a mesh can be composed of elements of different ge- 
ometric natures. A mesh consists of a finite number of segments in one dimension, 
segments, triangles and quadrilaterals (quads for short) in two dimensions and 
the above elements, tetrahedra (tets), pentahedra and hexahedra (hexes) in three 
dimensions. The mesh elements must generally satisfy some specific properties 
depending on the application involved. 

Meshes can be classified into three main classes according to their connectivity. 

71t should be noted that people with a finite element background use the term triangulation 
and use the term mesh synonymously. 
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Definition 1.8 The connectivity of a mesh is  the definition of the connection 
between its vertices. 

Then, following this definition 

Definition 1.9 A mesh is  called structured (resp. unstructured) i f  its connectivity 
is  of the finite difference type (resp. any other type). 

A structured mesh can be termed as a grids .  In two dimensions, a grid element 
is a quadrilateral while, in three dimensions, a grid consists of hexahedra. The 
connectivity between nodes is of the type (2 ,  j ,  k ) ,  i.e., assuming the indices of a 
given node, the node with indices (i, j ,  k )  has the node with indices ((i - l), j ,  k )  as 
its “left” neighbor and that with indices ( ( i  + 1), j ,  k )  as its “right” neighbor; this 
kind of mesh is convenient for geometries for which such properties are suitable, 
i.e., for generalized quadrilateral or hexahedral configurations. 

Remark 1.6 Peculiar meshes other than quad or hex meshes could have a struc- 
tured connectivity. For instance, one can consider a classical gr id  of quads where 
each of them are subdivided into two triangles using the same subdivision pattern. 

Such a mesh is usually composed of triangles (tetrahedra) but can also be a 
set of quadrilaterals (hexahedra) or, more generally, a combination of elements of 
a different geometric nature. Note that quad or hex unstructured meshes are such 
that the internal vertices may be shared by more than 4 (8) elements (unlike the 
case of structured meshes). 

For completeness, we introduce two more definitions. 

Definition 1.10 A mesh is  said to be mixed i f  it includes some elements of a 
different geometric nature. 

Definition 1.11 A mesh is said to be hybrid i f  it includes some elements with a 
different spatial dimension. 

A mixed mesh, in two dimensions, is composed of triangles and quads. A 
hybrid mesh, again in two dimensions, is clearly a mixed mesh but, for instance, 
includes some triangles together with some segments. 

To complete this classification, a mesh may be manifold or not. This point 
concerns only surface meshes. 

Definition 1.12 A (conformal) surface mesh is  called manifold i f  its internal 
edges are shared by exactly two elements or only one element in the case of a 
boundary edge for  an open surface. 

Otherwise, the surface mesh is said to  be non-manifold. This is the case of 
surface meshes which include stiffeners or which have two or more connected com- 
ponents. 

‘Note that some authors use the term “grid” to refer to any kind of mesh whatever its 
connectivity. 
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Mesh element 

The elements are the basic components of a mesh. An element is defined by its 
geometric nature (triangle, quadrilateral, etc.) and a list of vertices. This list, 
enriched with some conventions (see hereafter), allows the complete definition of 
an element, including the definition of its edges and faces (in three dimensions). 

Definition 1.13 The connectivity of a mesh element is the definition of the con- 
nections between the vertices at the element level. 

This connectivity, the local equivalent of the mesh connectivity, makes the 
description of the topology of the element possible. 

Definition 1.14 The topology of a mesh element is a definition of the relation- 
ships between its faces, edges and vertices. 

Triangle connectivity and topology. For convenient purposes, the (local) 
numbering of vertices and edges is pre-defined in such a way that some properties 
are implicitly inducedg. This definition is only a convention leading to  implicit 
properties. In particular, a ordered numbering of the vertices enables us to com- 
pute the surface area of a triangle with a positive, or directional, sense. It also 
allows us to  evaluate directional normals for each edge. 

In the case of a triangle with connectivity [l, 2,3] ,  the first vertex (1) having 
been chosen, the numbering of the others is deduced counterclockwise. Then the 
topology can be well defined by means of the edge definition: 

- edge [l] runs from vertex (1) to vertex (2), 

- edge [2] : (2) + (3), 

- edge [3] : (3) + (l), 

- edge [l] is opposite vertex (l), it runs from vertex (2) to vertex (3), 

- edge [2] : (3) + (l), 

- edge [3] : (1) + (2). 

Once a topology has been chosen, all mesh elements must conform to this rule. 
Such an implicit definition will be a source of simplicity hereafter, avoiding explicit 
definitions at  the element level during the computational step, as mentioned earlier. 

or alternatively, 

Usual element connectivities and topologies. 
are now defined in terms of the two above definitions. 

Elements other than triangles 

0 The segment: [1,2], (1) + (2). 

0 The quadrilateral: [l, 2,3,4]  with a numbering as for the triangle, 

edge [2] : (2) + (3) 
edge [4] : (4) + (1) 

edge [l] : (1) + (2) 
edge [3] : (3) + (4) 

gGiven a vertex numbering (index) based on an implicit definition results in implicit definitions 
for both the edges and the faces, thus avoiding an explicit definition of these entities at the element 
level, which would be not unique and memory consuming. 
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2 1 

Figure 1.4: Local vertex numbering of segment, triangle and quadrilateral, given 
the first vertex index. 

Figure 1.5: Tetrahedron, pentahedron and hexahedron. 

0 The tetrahedron": [l, 2,3,4] with (1>,13,11) assumed to be positive with, 
for the edges: 

edge [l] : (1) + (2) 
edge [4] : (1) + (4) 

and, for the faces: 

edge [2] : (2) + (3) 
edge [5] : (2) + (4) 

edge [3] : (3) + (1) 
edge [6] : (3) + (4) 

face [I] : (1) (3) (2) 
face [3] : (1) (2) (4) 

face [2] : (1) (4) (3) 
face [4] : (2) (3) (4) 

0 The pentahedron: [l, 2,3,4,5,6]  with (1>,13, 12) assumed to be positive, 
with, for the edges: 

edge [l] : (1) + (2) 
edge [4] : (1) + (4) 
edge [7] : (4) + (5) 

edge [2] : (2) + (3) 
edge [5] : (2) + (5) 
edge [8] : (5) + (6) 

edge [3] : (3) -+ (1) 
edge [6] : (3) -+ (6) 
edge [9] : (6) -+ (4) 

and, for the faces: 

face [I] : (1) (3) (2) face PI : (1) (4) (6) (3) 
face [3] : (1) (2) (5) (4) face [4] : (4) (5) (6) 
face [51 : (2) (3) (5) (6) 

l0Similarly to the triangle, an alternative definition also suits well where face [i] is opposite 
vertex (i). Actually, the latter convention leads to  greater simplicity. 
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a The hexahedron: [l, 2,3,4,5,6,7,8], (1?,12,1%) assumed to be positive, with 

edge [l] : (1) + (2) 
edge [4] : (4) + (1) 
edge [7] : (3) + (7) 
edge [lo] : (6) + (7) 

edge [2] : (2) + (3) 
edge [5] : (1) + (5) 
edge [8] : (4) + (8) 
edge [ll] : (7) + (8) 

edge [3] : (3) + (4) 
edge [6] : (2) + (6) 
edge [9] : (5) + (6) 
edge [12] : (8) + (5) 

and, for the faces: 

face [l] : (1) (4) (3) (2) 
face [3] : (1) (2) (6) (5) 
face [5] : (2) (3) (7) (6) 

face [2] : (1) (5) (8) (4) 
face [4] : (5) (6) (7) (8) 
face [6] : (3) (4) (8) (7) 

Other types such as pyramid may be defined. Actually, this type of element 
allows for some flexibility in mixed meshes. This is the case when structured hex 
meshes must be combined with unstructured tet meshes. 

Finite element mesh 

So far, we have considered meshes as geometric entities. Now we turn to  the notion 
of finite element meshes since we are mainly interested in finite element compu- 
tation as the mesh has a great deal of importance for this application. As will 
be discussed in Chapter 20, finite elements will be constructed based on the mesh 
element. To this end, it will be necessary to properly define the nodes, degrees of 
freedom, interpolation schemes, etc. so as to define the required structures (stiff- 
ness matrix, right-hand side, etc.) in order to compute the solution to  the problem 
at  hand. 

Let us briefly recall for those not so familiar with a finite element style compu- 
tation, that the classical scheme of such calculus includes the following steps (for 
the simple case of a linear system to solve): 

a a definition of the computational domain, 

a mesh construction step whose purpose is to complete the list of the (geo- 
metric) elements of this mesh, 

a an interpolation step which constructs the finite elements from the mesh 
elements, 

0 a matrix and right-hand side construction step to complete the system corre- 
sponding to the discretization of the initial equations, based on the element 
connectivity, 

a a solution step which computes the solution of the above system. 

This being clarified, we can proceed by giving some definitions related to the finite 
element meshes. 
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Node definition. The finite elements will be associated with the mesh elements 
a t  the computational step. For the moment, a finite element is a geometric element 
supplied with a list of nodes. 

Definition 1.15 A node is a point  supporting one or several unknowns  o r  degrees 
of freedom (dof) .  

The nodes are defined according to  the interpolation used in the computation. 
For a given geometric element, several finite elements may be exhibited as a func- 
tion of the interpolation step. The “simplest” finite element is the Lagrange P1 
finite element whose nodes are the element vertices. A Lagrange P2 finite element 
includes as nodes the element’s vertices and a point on each of its edges (in the 
usual case, these nodes are the edge midpoints). Other finite elements may involve 
several nodes for each edge, nodes located on faces or inside the element while the 
element vertices may be nodes or not (see Chapter 20). 

Once the node location has been established, it is a case of defining a local 
numbering for the nodes of the finite element. This task is trivial when the only 
element vertices are the nodes as the node numbering follows the vertex numbering. 
If the nodes are defined elsewhere, the local numbering must be well defined. It 
can be either implicitly defined as for the vertex or explicitly defined in some cases 
where an implicit definition is not possible, for instance, when the number of nodes 
varies from one edge to the other as it does for some finite elements. If we consider 
a Lagrangian P2 triangle, it is common to define the three first nodes as the three 
vertices and then to  define as fourth node the node located along the first edge of 
the triangle (and so on for the other nodes). See Chapter 20 and Chapter 17 for 
node (re)numbering issues. 

Physical attributes. At the solution step, the finite elements are the support 
of various computations or specific treatments. The mesh, through its elements 
must contain information making it possible the selection of a set of elements, 
a set of faces, set of edges or a set of nodes, in other words, making possible 
any processing concerning these entities, in particular to take into account the 
loads, flows, pressures, boundary conditions, graphic requirements at the time 
the solutions must be displayed, etc., related to  the problem considered. This 
will allow to carry out the adequate assignment (i.e., associate the relevant value 
with such or such an item) or the proper computation of the useful integrals over 
particular entities. 

It is then convenient to associate a physical attribute with all the mesh entities 
(elements, faces, edges, nodes). This task can be carried on in many manners and, 
a t  the computer level, can be implemented in various different ways. 

Geometric attributes. For similar reasons, a geometric attribute (provided in 
some way) proves to be useful for some operations such as the proper definition 
of the nodes in the case of a finite element other than P1 or the definition of a 
subdomain. Thus, it is also convenient to  associate a geometric attribute with all 
the element entities (faces, edges, nodes). 
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1.3 Mesh data structures 

A data structure is simply, but not only, a way of organizing a set of given in- 
formation (values). A mesh data structure is a way to  store all the values that 
will be useful for a further processing. Following this idea, two categories of struc- 
tures can be distinguished. One is typically used when constructing the mesh. In 
other words, such a structure, referred to as the internal mesh data structure, is 
the organization of the values describing the mesh which are required inside the 
mesh generation method chosen for this task. On the other hand, the structure 
referred to as the output mesh data structure is the mesh organization used at 
the computational step, i.e., outside the mesher. Thus, the values stored in it 
as well as the way in which they are organized can slightly differ from those in 
the previous structure. The possible differences between the two mesh structures 
depend both on the type of the mesh generation method and the solution method 
that are used. However, for the output structure, it could be desirable to have a 
“universal” structure or, at least, a (presumably) generic structure, more suitable 
for data exchanges. 

The internal mesh data structure 

The key idea is to  define as simple a structure as possible which is well suited to  
the problem. In some sense, it is the minimal amount of information needed for the 
application. Various reasons can justify this policy. Among them, a given mesh 
generation method, due to the algorithm used and the nature of the meshes it is 
capable of processing, may require a given data organization that is different from 
another method. Hence, a “universal” structure is not, a priori, a good solution, 
as it would be unnecessarily complex in certain cases. Thus, for a given method, 
one has to find what is needed specifically and what is not strictly required. In 
this respect, efficiency as well as memory occupation reasons can be invoqued to  
justify such or such a choice. 

The internal mesh structure is only used within the algorithm and, when the 
mesh is created, the information stored within this structure is transformed to  
complete the output data structure which is the natural and unique link with the 
other computational steps. 

Some values and data items are specific to one structure or the other. Some 
others must be included in both. The point is to  make this requirement precise 
and to define the structure accordingly. In the next chapter, we will give some 
indication about what such an internal structure could be. 

The output mesh data structure 

Defining a suitable, general purpose and reasonably simple output data structure 
for mesh storage is not a trivial task. A number of issues must be addressed in 
order to  fulfill various requirements. These include: 

a the definition of the nodes, when defining the finite elements at the so-called 
interpolation step, 
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0 the definition of boundary conditions and loads, the computation and the 
assembly of the relevant matrices and right-hand sides, 

0 the solution of the resulting system(s), 

0 the visualization of the results, 

0 and many others types of processing related to the nature of the problem to 
solve. 

In this respect, it is clear that a classic computational scheme involving a mesh 
generation step, an interpolation step, the computation of the system to be solved 
and the solution step is less demanding than an adaptive scheme requiring a loop 
of such operations where, for instance, the mesh (and the geometry itself, in some 
cases) is modified at  each iteration step of the loop. Thus, a mesh data structure 
must be defined in such a way as to provide easy access to: 

0 the vertex coordinates, 

0 the element vertices, 

0 the physical attributes of the mesh entities, 

0 the geometrical attributes of these entities, 

in order to make the previous computational requirements possible. 
These basic principles being stated, it is beyond the scope of this book to  

discuss further what the “ideal” data structure could be. Nevertheless, it must 
be observed that, at this time, existing norms do not give a satisfactory answer 
to the question of knowing what a mesh data structure should be. On the other 
hand, in Chapters 2 and 20, one can gain some indications about data structures 
when seen from a more abstract point of view or from a purely practical point of 
view. 

The “.mesh” data structure 

Flexibility and versatility have been the major concerns when designing the fol- 
lowing mesh data structure, proposed in [George, Borouchaki-19971, Chapter 10. 
With no surprise, this mesh data structure is named with the suffix .mesh. 

Notations. The terms in policy font are file items. The blanks, <<new lines>> and 
tabs are item separators. The comments start with the character “#’’ and end at the end 
of the line, unless if they are in a string. The comments are placed between the fields. 

The notation ( ... , i=l,n ) stands for an implicit DO loop. 
The syntactic entities are field names, integer values (I) , (double) floating values 

(R) , strings (C*) (up to 1024 characters) being placed between llll. The blanks and 
<<new lines>> are significant when used between quotes and to use a quote in a 
string, one has to type it twice 

Booleans (B) : 0 for false and any other value for true (1 in general). Numbers, for 
instance, a vertex number, is denoted by QVertex. 

II. 
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The entities of number type (assuming that the numbering starts from 1) are the 
vertex numbers QVertex, the edge numbers QEdge, the triangle numbers QTria, the 
quadrilateral numbers @quad, the tetrahedron numbers @Tetra, the pentahedron num- 
bers QPenta, the hexahedron numbers QHexa, the numbers of a vertex in the appropri- 
ate support (described later), QVertexSuPP, the numbers of a support edge QEdgeSupp, 
the numbers of a support triangle QTriaSuPP, the numbers of a support quadrilateral 
@quadsupp, the numbers of a support tetrahedron QTetraSuPP, the numbers of a support 
pentahedron QPentaSuPP , the numbers of a support hexahedron QHexaSuPP. 

In addition, Refq5i denotes a number based on a physical attribute. 

Description in extenso. 
the release and then the various fields that can be used. 

The data structure first includes a string identifying 

0 MeshVersionFormatted 1 

0 Dimension (I) dim 

0 Vertices (I) NbOfVertices 

( ( (R) xi , j=l,dim ) , (I) Refc#$ , i=l  , NbOfVertices) 

( QVertext , QVertex: , (I) Refq5; , i=l  , NbOfEdges ) 

( ( @Vertex: , j=1,3) , (I) Ref4; , i=l  , NbOfI'riangles) 

( ( @Vertex: , j=1,4) , (I) Ref4f , i=l  , NbOfQuadrilaterals) 

( ( QVertex: , j=1,4) , (I) Ref+; , i=l  , NbOffetrahedra) 

( ( QVertex: , j=1,6) , (I) Ref+; , i=l  , NbOfPentahedra) 

( ( @Vertex: , j=1,8) , (I) Ref4f , i=l  , NbOfHexahedra) 

0 Edges (I) NbOfEdges 

0 Triangles (I) NbOfI'riangles 

0 quadrilaterals (I) NbOfQuadrilaterals 

0 Tetrahedra (I) NbOffetrahedra 

0 Pentahedra (I) NbOfPentahedra 

0 Hexahedra (I) NbOfHexahedra 

0 SubDomain (I) NbOfSubDomain 

, (1) Orientationi, (1) Ref&,  1 typei == 2 : QEdgei 
( (I) typei,if typei == 3 : QTriai 

typei == 4 : Oquadi 

i=l  , NbOfSubDomain ) 
{ 

0 Corners (I) NbOfCorners 
( QVertexi , i=l  , NbOfCorners ) 

( QEdgei , i=l  , NbOfRidges ) 

( QVertexi , i=l  , NbOfFtequiredVertices ) 
0 RequiredEdges (I) NbOfRequiredEdges 

( QEdgei , i=l  , NbOfRequiredEdges ) 

0 Ridges (I) NbOfFtidges 

0 RequiredVertices (I) NbOfRequiredVertices 
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0 RequiredTriangles (I) NbOfRequiredTriangles 

( QTriai , i=l , NbOfRequiredTriangles ) 
( Qquadi , i=l , NbOfRequiredQuadrilaterals ) 

( QEdgei , (I) VertexInEdge, ( (R) x{ , j=l,dim) , 

0 Requiredquadrilaterals (I) NbOfRequiredQuadrilaterals 

0 TangentAtEdges (I) NbOffangentAtEdges 

i=l , NbOffangentAtEdges ) 
0 NormalAtVert ices (I) NbOfNormalAtVertices 

( QVertexi , ( (R) x{ , j=l,dim) , 
i=l , NbOfNormalAtVertices ) 

0 NormalAtTriangleVert ices (I) NbOfNormalAtTriangleVertices 

( QTriai , (I) VertexInTrian., ( (R) x{ , j=l,dim) , 
i=l , NbOfNormalAtTriangleVertices ) 

0 NormalAtquadrilateralVert ices (I) NbOfNormalAtQuadrilateralVertices 

(Qquadi , (I) VertexInQuad. , ( (R) x: , j=l,dim) , 
i=l , NbOfNormalAtQuadrilateralVertices ) 

0 AngleOfCornerBound (R) 0 

0 Geometry 
(C*) FileNameOfGeometricSupport 

- VertexOnGeometricVertex 
(1 1 NbOfVertexOnGeometricVertex 
( QVertexi , QVertexqeo , i=l , NbOfVertexOnGeometricVertex ) 

(I) NbOfEdgeOnGeometricEdge 

( OEdgei , OEdgeqeo , i=l , NbOfEdgeOnGeometricEdge ) 
(1 1 NbOfI'riangleOnGeometricTriangle 
( QTriai , QTriaqeo , i=l , NbOfTriangleOnGeometricTriangle ) 
(I) NbOfI'riangleOnGeometricQuadrilateral 

( OTriai , 

(1) NbOfQuadrilateralOnGeometricTriangle 

( Qquadi , QTriaqeo , i=l , NbOfQuadrilateralOnGeometricTriangle ) 

(I) NbOfQuadrilateralOnGeometricQuadrilateral 

( Oquadi , 
0 MeshSupportOfVertices 

- EdgeOnGeometricEdge 

- TriangleOnGeometricTriangle 

- TriangleOnGeometricquadrilateral 

, i=l , NbOfI'riangleOnGeometricQuadrilateral ) 
- quadrilateralOnGeometricTriangle 

- quadrilateralOnGeometricquadrilatera1 

, i=l , NbOfQuadrilateralOnGeometricQuadrilateral ) 
(C*) FileNameOfMeshSupport 



GENERAL DEFINITIONS 35 

- VertexOnSupportVertex 
(1 1 NbOfVertexOnSupportVertex 

( QVertexi , QVertex:”” , i=l  , NbOfVertexOnSupportVertex) 

(I) NbOfVertexOnSupportEdge 

( OVertexi , 

(I) NbOfVertexOnSupportTiangle 

( QVertexi , QTria:UPP, (R) ufUpP, (R) ufupp , 

- VertexOnSupportEdge 

, (R) ufupp , i=l  , NbOfVertexOnSupportEdge) 

- VertexOnSupportTriangle 

i=l  , NbOfVertexOnSupportTriangle ) 
- VertexOnSupportquadrilateral 

(1 1 NbOfVertexOnSupport Quadrilateral 

( OVertexi @quad:”’’, (R) u:~’’, (R) ufupp , 
i=l  , NbOfVertexOnSupportQuadrilateral ) 

- VertexOnSupportTetrahedron 
(I) NbOfVertexOnSupportTetrahedron 

( QVertexi , QTetrafuPP, (R) uqUpp , (R) ufuPP , (R) wfUpP , 
i=l  , NbOfVertexOnSupportTetrahedron ) 

- VertexOnSupportPentahedron 
(I) NbOfVertexOnSupportPentahedron 

(~Vertexi , QPenta:upp, (R) u q u p p  , (R) vpupp , (R) wpupp , 
i= 1 , NbOfVertexOnSupport Pentahedron ) 

- VertexOnSupportHexahedron 
(I) NbOfVertexOnSupportHexahedron 

( OVertexi QHexapupp, (R) u:upp (R) upupp (R) wfupp , 
i=l  , NbOfVertexOnSupportHexahedron ) 

0 CrackedEdges (I) NbOfCrackedEdges 

( QEdget , QEdge: , i=l  , NbOfCrackedEdges ) 
0 CrackedTriangles (I) NbOfCrackedTriangles 

( QTriat , QTria: , i=l  , NbOfCrackedTriangles ) 

( QQuadt , QQuad: , i=l  , NbOfCrackedQuadrilaterals ) 

( QEdget , QEdge: , i=l  , NbOfEquivalentEdges ) 
0 EquivalentTriangles (I) NbOfEquivalentTriangles 

( QTriat , QTria: , i=l  , NbOfEquivalentTriangles) 

( QQuadt , QQuad: , i=l  , NbOfEquivalentQuadrilaterals ) 
0 PhysicsRef erence (I) NbOfPhysicsReference 

( (I) Refc#Ji , (C*) CommentOnThePhysic 

0 Crackedquadrilaterals (I) NbOfCrackedQuadrilaterals 

0 EquivalentEdges (I) NbOfEquivalentEdges 

0 Equivalentquadrilaterals (I) NbOfEquivalentQuadrilaterals 

, i=l  , NbOfPhysicsReference ) 
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0 IncludeFile (C*) filename 

0 BoundingBox ( (R) Mini (R) Maxi , i=l dim) 

0 End 

Remark 1.7 I n  the following, we give some comments concerning the different 
fields. At first, it may be seen that some fields are mandatory while some others 
are optional". 

The comments and remarks about the fields are given according to  their intro- 
duction order in the above description. Info contained in the data structure are 
supposed to  be sufficient to make any processing possible. if the mesh tool pro- 
cessing the data has not the relevant capability, the corresponding info is simply 
ignored. 

The string MeshVersionFormatted indicates the release identificator and the 
type of the file. MeshVersionUnf ormatted is an alternative case for this field. 

The edge table, Edges, includes only, a priori, the edges with a significant 
reference number Ref 4. 

The elements are given with respect to  their geometric nature (triangle, quadri- 
lateral, etc.). In this way, when several types of elements coexist in the mesh, it 
is not required to  manage a table of element types. 

The sub-domains are defined using one edge in two dimensions or one face in 
three dimensions combined with the orientation information] (Orientationi), indi- 
cating on which side of this entity the sub-domain lies. The sub-domain number 
is Ref@. 

A corner point, Corners (for a support type structure)] is a point where there 
is only a Co continuity between the edges sharing the point. Thus, a corner is 
necessarily an existing mesh vertex, listed in the Vertices list. 

A ridge is an edge where there is a Co continuity between the faces sharing it. 
Thus, a ridge is necessarily a mesh edge, listed in the Edges list. 

The required vertices, RequiredVertices, are the vertices of the support that 
must be present in the mesh as element vertices. Similarly, some edges or (trian- 
gular or quadrilateral) faces can be tagged as required entities. 

The tangent vector to  an edge, TangentAtEdges, gives the tangent vector (with 
respect to  the surface) for this edge at  the indicated endpoint. Giving the tangent 
vector of an edge by means of the tangent vector at a point enables us to deal with 
the case where several edges (boundary lines) emanate from a point. 

surface at  this vertex. 
The normal at a vertex, NormalAtVertices, gives the (unit) vector normal the 

llIn this way, it will be possible to add some fields that are not yet defined at the time such 
or such capability must be made available. 
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The normal a t  a vertex of a triangle (a face), NormalAtTrianglesVertices, 
gives the normal vector at the vertex of the specified triangle. The difference 
between the normal a t  vertices and the normal a t  a triangle vertex allows for local 
discontinuities between neighbouring triangles. 

The corner threshold, AngleOfCornerBound, is a value which enables us to  
determine the continuity type between two edges or two faces that was not clearly 
defined or not explicitely specified. 

The mesh vertices are related to the type of support in which they exist. There 
are two categories of supports, a geometric support and a current mesh. 

When the support is of a geometric nature, Geometry, and is defined by a 
file, it gives the relationships between the vertices, boundary edges and boundary 
faces of the current mesh with the geometric entities. Thus, a mesh vertex can be 
identical to  a geometric vertex, a mesh edge can have a geometric edge as support 
and, in three dimensions, a face can have a geometric face as support. These 
relationships allow us to  classify the entities of the current mesh with respect to  
an entity defining the domain geometry, this information will be particularly useful 
when constructing finite elements of higher order. 

When the support is a (usual) mesh by itself, MeshSupportOfVertices, and is 
defined by a file, it gives the relationships between the current mesh and the above 
mesh. A vertex of the current mesh belongs to  an entity12 of the support mesh. 
This information may be relevant when interpolating or transferring a solution 
from one mesh to  another, in an adaptive iterative process for instance. 

Hence, in an iterative computational process, the support for the mesh at a 
given iteration step is the mesh of the previous step. In this way, we indicate that 
a vertex, i, of the current mesh 

0 is identical with a vertex of the support, 

0 lies on an edge of the support at abcissa u, 

0 falls within a triangle of the support, u, w being the coordinates in the refer- 

0 falls within a quadrilateral of the support, u, w (idem), 

0 falls within a tetrahedron of the support, u, w, w (idem), 

0 falls within a pentahedron of the support, u, v, w (idem), 

0 falls within an hexahedron of the support, u, w, w (idem). 

A vertex not in this “table” is considered to  be a free vertex. The relationships 
defined in this way enable us to know the location of a vertex using the reference 
element related to  the support entity which includes this vertex. Using the refer- 
ence element to  come to  the current element, requires using one of the following 
relations according to the geometric type of the element (see Figures 1.4 and 1.5 
for the numbering convention): 

ence element, 

12For a boundary element, a projection will be needed to obtain the desired location. 
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0 for an edge with endpoints kl and kz 

< = (1 -u)d, +ud2 

< = ( 1 - u - w ) d 1  +ud2 +wd3 

4 = (1 - u)(1 - w)d, + u ( l  - v).”,, + uv.”,3 + (1 - u)..”,, 

< = (1 -u-w -w)& +ud2 +wd3 + W d 4  

< = (1 - u - w)(l - W ) d 1  + u(1- W ) d 2  + w ( 1 -  w ) d 3  

+(1- u - w)wd4  + u w d 5  + W W d 6  

< = (1 - u)( l  - w)(l - W ) d 1  + u(1 - w)(l - W ) d 2  + uw(1 - w ) d 3  

+(1 - u)w(l - W ) d 4  + (1 - u)( l  - w)wd5 + u(1 - W ) W d 6  

+uww& + (1 - u)wwd*.  

0 for a triangle with vertices kl, 1 = 1 , 3  

0 for a quad with vertices kl, 1 = 1 , 4  

0 for a tetrahedron with vertices kl, 1 = 1 , 4  

0 for a pentahedron with vertices kl, 1 = 1 , 6  

0 for an hex with vertices kl, 1 = 1,8 

Remark 1.8 In principle, this information i s  naturally known by the mesh gen- 
eration algorithm and i s  relatively easy t o  obtain. Moreover, when simplicia1 ele- 
ments  are used, the barycentric coordinates are trivial t o  obtain and thus do not 
strictly need t o  be stored. 

Crack definition is the purpose of three fields, CrackedEdges, 
CrackedTriangles and Crackedquadrilaterals; we specify then that an edge 
(a face, respectively) is identical in terms of geometry to  another edge (face). 

Equivalent quadrilaterals indicate that two edges (resp. faces) must be meshed 
the same way (for instance, in periodic meshes). 

A comment about the meaning of the physical reference numbers is provided 
in the field PhysicsRef erence. 

It is possible to include a file in the data structure, IncludeFile. This inclusion 
will be made without ensuring any compatibility. 

For some applications, it is useful to know the size of the domain, i.e., the 
extrema of its point coordinates. This will be stored in the field BoundingBox. 

The string End indicates the end of the data struture wherever it is encountered. 

To conclude with this description, one must consider the data structure to- 
gether with a suite of vizualisation and manipulation (reading, writing, converting) 
tools to  make the things coherent and consistent altogether. 

The three fields, EquivalentEdges, EquivalentTriangles and 
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1.4 Control space and neighborhood space 

Control space 

It is useful to introduce the notion of a control space for various purposes, as will 
be seen in the chapters devoted to adapted meshes. Indeed, this space serves to  
determine the current background. 

For the sake of simplicity, an ideal control space is simply the specification of a 
function H ( z ,  y )  defined at any point P ( z ,  y )  of EX2 in a two-dimensional problem. 
In other words, function H is defined analytically and is used to  specify the size 
and the directional features that must be conformed to by the mesh elements 
anywhere in the space. However, from a practical point of view, the control spaces 
will not be ideal in the sense that above function H is actually provided only in 
a discrete manner. Indeed, formally speaking, a control space can be defined as 
follows, [George- 199 11 : 

Definition 1.16 (A,  H )  is a control space for the mesh T of a given domain 
R i t  

0 R C A where A covers the domain R, 

0 a function H ( P ,  d) i s  associated with every point P E A, where d' is  the 
direction of the disc S1 (or the sphere S2 in three dimensions): 

Thus a control space includes two related ingredients. First a covering trian- 
gulation A, is defined. Next, a function H is defined, whose support is a covering 
triangulation A. This pair allows for the specification of some properties or criteria 
to which the elements of the mesh should conform. 

In terms of geometry, A is an arbitrary covering triangulation. For example, 
it can be one of the following types: 

type 1: a regular partition, such as a finite difference type, 

type 2: a quadtree or octree-based partition (see Chapters 2 and 5), 

type 3 an arbitrary user-constructed mesh or the current mesh, for instance, in an 
iterative process, the last computed mesh which then serves as a background 
mesh. 

In addition to this partitioning aspect, (A, H )  contains, by means of the function 
H ,  the global information related to  different aspects. One could be the geometry 
of the domain, the other could be the physics of the problem. These values allow 
us to  determine whether the mesh T ,  under construction, conforms to the function 
everywhere. 
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To construct H ,  one can consider one of the following approaches: 

0 compute, from the data, the local stepsizes h (the value h being the de- 
sired distance between two points) related to the given points. A generalized 
interpolation then enables us to obtain H .  This process is purely geomet- 
ric in the sense that it relies on geometric data properties: boundary edge 
lengths, etc.; 

0 manually define the value of H for every element of A. A desired size is 
then given everywhere in the space for isotropic control, or the desired sizes 
according to  specific directions are given for anisotropic control; 

0 manually specify H by giving its value for each element of the covering 
triangulation constructed for this purpose (we return here to a type 3 space 
as introduced above); 

0 use the cell sizes (in the above type 2 case), where this size is used to  encode 
the value of H .  This then leads to the construction of the (A, H )  space so 
as to  satisfy this requirement; 

0 define H from an a posteriori error estimate. We are then in an iterative 
adaptive process. A mesh T is constructed, the corresponding solution is 
computed and the error estimate analyzes this solution so as to complete H .  
Then A is set to  T and the pair (T,  H )  forms the control space used to govern 
the new mesh construction (cf. Chapter 21). 

For each of the different types, this definition results in one or the other control 
space types. In what follows, we will show how to create the internal points in 
accordance to  the specifications contained in this space (for a mesh construction 
method) or to optimize a mesh (for a mesh optimization method). 

Definition 1.17 When the geometric locus of points P +  H ( P ,  4 is a circle (resp. 
a sphere in three dimensions), with P in A and d'varying, the control space is 
isotropic. When this locus is  an ellipse (resp. an ellipsoid), the control space is 
anisotropic. 

Only these two cases will be discussed hereafter, leading to the definition of 
the metric maps which are used to govern the mesh construction process. 

Remark 1.9 The popular notion of a background mesh, extensively used for  in- 
stance, in adaptive mesh construction processes, is  nothing more than a control 
space. I n  this case the covering triangulation is the mesh of the previous iteration 
step while the function results from the analysis of the current solution by  means 
of an a posteriori error estimate. 

Remark 1.10 The above function H is strictly related to a metric tensor field as 
will be seen later. I n  this context the discrete meaning of H ( P ,  4 will be seen as 
a d x d symmetric definite matrix denoted, at point P ,  by  M ( P )  . 
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Note that some authors, while using different approaches, return in fact to  
this notion of a control space. For instance, source points can be introduced 
and this information is used to complete an equivalent of the above H function, 
[Lohner-19891. 

Neighborhood space 

Close to the previous idea of control space is the notion of a neighborhood space. 
Such a space acts to help any neighboring information or queries. For instance, 
this is a way to  facilitate the search for all the vertices located in some regions as 
such a query could be of great interest for various purposes. 

The neighborhood space structure is similar to  that of a control space. It 
includes two components, a spatial support together with some information related 
to this support. The spatial support may be defined as above with, in this case, a 
special emphasis on simple structures (grid, tree structure such as a binary tree or 
a quadtree in two dimensions) in which localization problems are evident. Along 
with this support, the space includes some information of a topological nature. 
For instance, for a grid, one encodes in its cells the fact that a point, an edge, 
etc., exists or not. Thus, when such a cell is queried, we know whether a point, 
an edge, etc., exists within a certain neighborhood. This is a simple example of 
what could be encoded in this kind of space. 

1.5 Mesh quality and mesh optimality 

The purpose of constructing a mesh is not simply a question of creating a mesh (a 
covering-up) of the domain of interest but to obtain a good quality mesh. There- 
fore, the immediate question is: “ what is a good quality mesh?” or, similarly: “ 
how is it possible to  define an optimality criterion?”. 

In response to these questions, the literature contains a number of tentative 
definitions which are more or less naive (and, in some cases, fanciful to  the point 
of eccentricity !). In this respect, let us mention some widely held, although not 
necessarily true, ideas. For instance, a nice looking mesh is a good mesh. This 
raises the problem of what “nice looking” actually means. A good mesh is a mesh 
whose elements have the same size and conform to a nice aspect ratio. In addition, 
some peremptory assertions can be found such as “a Delaunay mesh is optimal”. 
The list goes on, but our aim here is to find some reasonable criteria that are well 
suited to qualifying a mesh. 

A preliminary and obvious remark helps us in this discussion. The mesh is 
constructed for a specific purpose: to solve a given problem. Therefore, the true 
quality or optimality problem is related to  the solution that can be computed 
with the mesh as a support. In this respect, it makes sense to  claim that the mesh 
quality is good if the resulting solution quality is good. As a consequence and 
following the same approach, optimality is obtained if the mesh size is minimal (in 
some sense, for instance, if the number of nodes and vertices is minimal) resulting 
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in a minimal cost when computing the problem solution. This characterization is 
then related to the nature of the problem and, moreover, implicitly assumes that 
a suitable way to  qualify the solution quality is given. 

In a numerical simulation by means of finite elements, an error estimate is the 
sole judge. A nice mesh is one which leads to the best possible numerical accuracy, 
i.e., to  a minimal bound for the approximation error. For other cases, for instance, 
in a surface visualization problem based on a mesh of the surface of interest, the 
quality must be measured with regard to  the approximation quality or the graphic 
aspect of the surface mesh with respect to  the real surface. For other problems, 
the quality aspect may be related to different objectives. 

At first, this computational process is based on an approximation of domain 
R where the problem is formulated. Thus, a first condition regarding the mesh 
quality is to make this approximation precise. In fact, we want to solve the given 
problem in domain fd and not in an approximate domain different from the real 
domain. This being established (that results in conditions about the boundary 
elements of the mesh leading to  a good boundary approximation), the mesh quality 
is related to  the solution and thus to  the nature of the problem under investigation. 
Using an error estimate enables us to see the quality of the mesh and, more 
precisely, to know if its elements conform to a desirable size, a nice directional 
aspect. 

When such an appreciation is not available, i.e., when no error estimate is 
used, one can only guess in advance the mesh quality notion and it becomes then 
important to  translate this evaluation in terms of a quality function about the 
mesh elements. For a problem of an isotropic nature, considering the equilateral 
triangle as an optimal element is a natural choice, while for a quad the square is a 
priori optimal. When no sizing information (about the element size or the desired 
edge length) is provided, the only reasonable behavior is to take advantage of the 
boundary (assumed to  be appropriately sized) and to  complete regular elements 
whose size follows at  best the size of the boundary items. A finer discretization 
in a boundary region results in smaller elements, while a coarser discretization 
may lead to larger elements. Then, these sizing features will be used to find a 
reasonable size value for the elements located at  some distance from the domain 
boundaries. In particular, a progressive gradation of the sizes is often a desirable 
feature when considering the elements in a given neighborhood. 

When a size map is provided via a control space, we will see that a unit length 
in the metric associated with this control space is the targeted value. This leads 
us to the notion of a unit mesh as the good mesh we like to create. 

Definition 1.18 A unit mesh is a mesh with unit edge lengths. 

Comparing the edge length with the metric specification as defined in the 
control space provides the expected actual values. For the moment, it is enough 
to say that, in an isotropic context, a unit length in a metric map specifying a 
value h actually gives a length h in the usual sense and that a similar notion is 
also valid in an anisotropic context. 
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Remark 1.11 A triangle with unit edge lengths i s  necessarily a good quality tri- 
angle. This is  not the case of a tetrahedron that may  have a n  inconsistent volume 
(quite small) while i t s  edges are (about) unit edges. 

After this remark about simplicia1 elements and due to the other various ge- 
ometries that can be envisaged, edge length control must be coupled with other 
criteria to make sure that a good quality is obtained. 

Notice that the unit value is related to  the underlying metric map and that 
the latter could be the combination of a map of a geometric nature (due to  the 
domain geometry) with one or several other maps of a physical nature depending 
on the behavior of the problem under investigation. 

* * *  
To conclude this brief overview of the main concepts of mesh generation, let 

us indicate that numerous detailled discussions will be provided in the following 
chapters to  clarify all the notions introduced in this chapter as well as practical 
advices to deal with them in computational applications. 



Chapter 2 

Basic Structures and Algorithms 

The aim of this chapter is to  introduce a variety of data structures and to  show 
how they can be used profitably in a mesh generation context. To this end, some 
basic as well as more sophisticated data structures are recalled together with some 
algorithms of greater or lesser complexity. The discussion is then developed by 
means of various application examples related to  situations extensively used in a 
meshing context. 

While people having a computer science background may be familiar with these 
basic notions, we would nevertheless like to  address this topic here in order to  allow 
people less directly concerned to  gain some knowledge of this (vast) topic, notably 
applied mathematicians or numericians. Moreover, in the mesh generation con- 
text, specific applications and uses of the classical data structures lead to specific 
situations and merit some comments. 

The literature about data structures and algorithms is quite abundant. Among 
the usual references, the textbooks would include [Aho et al. 19831, [Wirth-19861, 
[Sedgewick-19881, [Cormen et al. 19901, [Samet-19901 and [Gonnet et al. 19911 as 
well as the unchallengeable [Knuth-l998a], not to mention many others that can 
also be consulted. 

The complexity of an algorithm, both in terms of the number of operations 
and of the memory resource allocated, is analyzed from a theoretical point of 
view. However, we will show that specific theoretical results obtained in ad-hoc 
academic situations must be slightly nuanced. Indeed, numerous assumptions 
like “the points must be in general position” in a triangulation problem or all 
operations involved in a given numerical process have the “same cost” or again are 
“exactly computed” are unlikely to  be what we meet in “real life”. Nevertheless, 
despite these remarks, theoretical results allow for a good understanding of some 
difficulties and will help us to  find appropriate solutions. 

* * *  
Therefore, after having described the theoretical point of view in the first sec- 

tions of this chapter, we give some indications and remarks about the most com- 
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monly encountered difficulties in realistic applications. After that, we turn to some 
application examples to  illustrate how to benefit from the theoretical material. 

The first section introduces the general problem from an academic point of 
view. The second section presents the most commonly used elementary data struc- 
tures (array, list, stack, etc.). The third section deals with complexity problems 
for a given algorithm. Section four analyzes the sorting and searching techniques 
and introduces three main paradigms used in many methods. Data structures in 
one and two dimensions are discussed in sections five and six, while topological 
data structures are mentioned in section seven. Sections eight and nine deal re- 
spectively with the notions of robustness and optimality of an implementation. 
The last section proposes several practical application examples. 

2.1 Why use data structures? 

As an introduction, we look at a “naive” algorithm that can be used to  construct a 
triangulation. Let consider a set of points S, each of which contained (to simplify 
even more) in a single initial triangle. The algorithm consists of finding, for each 
and any point P ,  the triangle K enclosing it and then to subdivide K into three 
new triangles by connecting P to  the three vertices of K :  

0 For all P E S 

- Find triangle K containing point P,  

- Subdivide this triangle into three. 

0 End 

While very simple, this algorithm raises several questions. Among these, we 
simply mention the need to  define the concept of a triangulation and how to 
represent it, for instance, by using adjacency relationships between the triangles. 
Another question is related to  the quick identification of the triangle containing the 
point P to be inserted. Should we examine all triangles of the current triangulation 
or take into account the fact that any triangle is obtained by subdividing its parent? 

This simple example gives some indications on how to proceed and what to  
know to implement such an algorithm (simple as it may be). This is not indeed 
restricted to defining the operations required to code this algorithm, but also to  
finding the data structure(s) adapted to the problem, in such a way as to  define a 
Program. According to  [Wirth-19861, we have the following paradigm: 

Algorithm + Data Structures = Program. 

There is obviously a close link between an algorithm and the data structures it 
uses. Usually, the more complex a data structure, the simpler the algorithm will 
be, although the simplicity of the algorithm is generally altered during the data 
structure update. For triangulation (meshing) algorithms in particular, a rich data 
structure allows useful data to be stored and retrieved thus simplifying the task of 
the algorithm, but on the other hand, any modification of the mesh induces a set 
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of modifications and updates of the data structure. On the other hand, a simple 
data structure is efficient to  update but forces the algorithm to perform explicitly 
a set of operations to  recreate some data each time needed. As an example, a 
data structure that keeps only the adjacency relationships between the triangles 
of a mesh provides instantaneously the neighbors of a given triangle but requires 
an algorithm to identify all the triangles sharing a common vertex. However, if 
this information is stored, it can be retrieved immediately, provided it has been 
updated as the mesh evolves. 

Notice that a (mesh) data structure contains integer values (numbers, indices, 
etc.) as well as real values (triplets of coordinates of the vertices in three dimen- 
sions, for instance). In Section 2.2, we will describe data structures allowing this 
kind of information to  be stored. 

A data structure being fixed, we discuss the behavior of the algorithm. There- 
fore, we recall, in Section 2.3, several fundamental notions about the complexity, 
allowing to  analyze the efficiency of standard algorithms and basic data structures. 
In Section 2.4, we describe a series of algorithms, based on one of the computer 
science paradigms, namely, Divide and Conquer. We give some examples of meth- 
ods for searching and sorting, some of which we describe, such as the insertion 
sorting technique, the quicksort and bucket sorting as well as binary searching 
(dichotomy) or interpolation methods. Section 2.5 discusses the manipulation of 
entities of dimension one (integers). To this end, we look at: 

0 general data structures allowing to  store, retrieve or analyze sets of objects, 

0 structures allowing a selective access to some entities already stored. The 
access can be performed according to  several criteria of selection. We find 
here, for instance, the approaches where the smallest item (in some sense), 
the first or the last recorded, the neighbor(s) of a given item, etc. is sought. 
Here we will find the data structures like stack (LIFO), queue (FIFO), pri- 
ority queues, array with sorting and binary searching trees. 

0 data structures like dictionaries that can provide answers to questions like 
“does this item exist?” and allow items to be inserted or suppressed. We 
will find here BST and hash coding techniques. 

In Section 2.6, we discuss how to use data structures in two and three dimen- 
sions for fast storing and retrieving of items such as points, segments (edges) or 
polygons. Section 2.7 is devoted to  the computer implementation of topological 
data. After this overview of basic data structures and algorithms, we discuss ro- 
bustness problems inherent to any implementation of a mathematical expression 
in a computer. The degree of the problems and the notion of predicate are then 
analyzed as well as the cost in terms of the number of operations and of memory 
requirements (Sections 2.8 and 2.9). To conclude, we mention some applications 
where the previously described material can be used, in the specific context of the 
development of mesh generation and modification algorithms (Section 2.10). 
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5 3 ? 1 7 ? 1  

2.2 Elementary structures 

In this section, we describe tables (arrays), pointers, lists, stacks and queues. 
These structures are briefly introduced below on deliberately simple examples. 

Table or array 

The table or the array is most certainly the simplest and the most efficient data 
structure for numerous applications. An array can be simply defined as a fixed 
set (connected or contiguous) of memory where items of the same nature (more 
precisely, items having the same storage requirement) are sequentially stored and 
are accessible by one or several indices. The important point is that an array 
allows direct access to each and any of its elements. Indeed, if the array begins at 
the address a and if each item requires b words of memory to  be stored, then the 
item of index i starts a t  the address a + (i  - 1) b. This simple property means 
that the array is a convenient data structure, easy to use and hence, is used as a 
basic component in more sophisticated structures (trees, hash tables, grids, etc.). 

Figure 2.1 shows an example of an array of length 6 containing integer values. 
Items 3 and 5 are not yet affected and thus, the corresponding values are undefined 
(symbolized by the ? sign). 

The intrinsic drawback of the array structure (besides the need to  detect a 
possible overflow) is related to the static memory allocation it requires, before 
being used. In other words, if more space is needed at  some point, a new array 
must be allocated and the old one should be copied into this new one. 

An array allows to store vectors (a one-index array, in the usual sense), ma- 
trices (array of two indices), etc. and, as mentioned, the arrays are used as basic 
components in more elaborate data structures. 

List 

The list is another data structure in which the items are stored in a linear way 
(sequentially). Unlike an array in which the items follow each other in a portion 
of the memory, the nodes of a list can be accessed using an address in memory 
or, more precisely, a pointer. The notion of a pointer is naturally available in 
most programming languages and, if not, can be emulated as will be shown in 
Section 2.5. 

To clarify, we now describe the case of a double linked list. In this case, 
each node contains three fields: the data value which represents the expected 
information and two pointers that allow access to the neighboring nodes. To 
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handle a list correctly, we need two additional pieces of information: the head and 
the tail of the list (Figure 2.2). The head and the tail give access to the first and 
the last node of the list. To check whether a data value is contained in a list, 
it is sufficient to cover the list starting from the head, following the pointers until 
the data value is found or the tail is reached (then the data value does not exist 
in the list, except if it is in the last node). 

head tail 

I 1 next 
pointer 

NULL ~~ 17 -mvNuLL 
previous 

pointer 

Figure 2.2: A double linked list containing the same data values as in Figure 2.1). 

Adding or deleting an item in a list is equivalent to adding a node and updating 
the relevant pointers or breaking existing pointers, while managing head and tail 
pointers, if necessary. The following schemes illustrate the operations of searching 
for and inserting an item in a list, that is (with obvious notations): 

Algorithm 2.1 Searching for an item x in a list. 

Procedure Listcontains (List ,x) 
node t head(list)  
WHILE node # NULL AND node.ualue # x 

END WHILE 
RETURN node (if node # N U L L ,  then x is present in the list) 

node t node.next 

Algorithm 2.2 Insertion of an item x at the beginning of a list (newnode being 
the new element). 

Procedure ListInsert (List ,x) 
node t newnode 
node.ualue t x 
n o d e p e v  t NULL and node.next t head(List) 
head(list).preu t node 
head(list)  t node 

Algorithm 2.3 Insertion of an i tem x in a list after a given position current.  

Procedure ListAppend(List , current ,x) 
node t newnode 
node.value t x 
node.next t current.next and node.preu t current 
current.next.preu t node and, finally, current.next t node 
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Several types of lists exist (other than the doubled linked list). Indeed, one 
can find the simple linked lists (one of the two pointers is omitted), the circular 
lists (items are accessible via a circular order), the sorted lists, etc. Irrespective of 
the case, a list is a simple and flexible way of managing dynamic sets of entities 
(the number of entities varies throughout the process), although in some cases 
(Section 2.3) the searching operations can be expensive. Hence, notice that lists 
are well adapted to  cases where the considered values do not follow any specific 
order. Notice also that sometimes the size of the list must be known in advance (if 
it is implemented as an array), otherwise dynamic allocations are to  be expected 
as it evolves. 

Remark 2.1 A list can contain data that are not single values (some languages 
allow for this). 

Exercise 2.1 Explain how to implement a circular list. How many pointer(s) is 
(are) required? 

Exercise 2.2 Examine a data structure based on  a linked list but in which the 
entities point to an array. What advantages can be expected from such an organi- 
zation? 

Stack 

As for a plate stack, where only the plate on top of the stack can be accessed, the 
stack is a data structure allowing access only to the last item inserted. For this 
reason, it is referred to as a LIFO list (Last In First Out). The usual operations 
associated with a stack are twofold: Push add an item to the top of the stack 
and Pop remove the item on top of the stack (if one exists, i.e., if the stack is not 

A stack is very easy to  implement using simultaneously an array (the stack 
itself) and an integer, the stack pointer, that indicates the index of the last item 
stored in the stack, Figure 2.3. 

empty). 

I17 

I 5  

6 

5 

4 - pointer Figure 2.3: A stack (containing the 
same values as the array of Fig- 3 
ure 2.1 or the list of Figure 2.2). 

stack 

L 

1 
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If the stack pointer is null (void), the stack is empty. If this pointer exceeds the 
size of the stack, the latter overflows. In this case, a solution consists of allocating 
an array that is bigger and copying the old stack in this new structure. Another 
solution consists of using a linked list (see next exercise). 

Exercise 2.3 Can we use a simple linked list or should we use a double linked list 
to implement a stack? 

Queue 

A queue is a data structure whose behavior is very close to that of a queue of 
persons (as can be seen in a post office’). The main operation with a queue is to  
access the next entity, which is equivalent to  removing this item from the queue. 
Moreover, each new item is appended at the end of the queue. According to  this 
logic, we have a FIFO structure, First In First Out. If the data structure used 
to implement a queue (an array for instance) is of bounded size, an overflow is 
encountered whenever an item is added to  an already full queue. On the other 
hand, attempting to  remove an item from an empty queue leads to  an underflow. 

A simple linked list offers all the required facilities to implement a queue. 
However, if the maximum number of items to be stored is known in advance, an 
array is preferable as it avoids the memory allocation or deallocation problem and 
the possible overflow. For more details, we refer the reader to  [Cormen et al. 19901 
and to  the following exercise. 

Exercise 2.4 Find a data structure to implement a queue using an array ofjixed 
size, and address the problems of overflow and underflow (Hint: i f  the head (the 
tail) of the queue is  reached and i f  free space is available in the array, “move” 
(pack down) the items of the queue). 

Objects and pointers 

In Section 2.2, we assumed that it is possible to associate to each entity one or 
two additional fields (the pointer(s)) indexing nodes of the same type. On the 
one hand, the notion of pointer may not exist in some languages and, on the 
other hand, if the number of items is known in advance, the use of pointers serves 
no purpose. To demonstrate this, let us look at memory allocation/deallocation 
problems in this context. A simple way of handling this situation is to manage 
a list of free memory entries, a free list. When more space is needed, we apply a 
First-Fit method. The list is explored and the first free available block of memory 
(of appropriate size) is used. If this area is bigger than necessary, it is split and 
the remaining block is appended to  the free list. In a similar way, the addition of 
a free block is performed by referencing it in the free list (possibly by merging it 
with the neighboring memory blocks if such blocks are free). 

This point is emphasized in Figure 2.4 where H represents the pointer to the 
head of the free list. Notice that two integers are associated with each information 

lWithout wishing to make any unfair assumptions about this type of institution in any par- 
ticular country. 
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Figure 2.4: Memory management with the First-Fit strategy. 

unit, a pointer to another block linking the free list) and an integer giving the ac- 
tual block size (used in the First-Fit operation). In the example, we have allocated 
a ,  b, c,  d and e in line. If a becomes available and if b also becomes available, then 
the area a U b is defined as free (available). Then, d becomes available. Hence, the 
free list is maintained. 

Fortunately, more sophisticated yet less time consuming memory management 
mechanisms exist. Nevertheless, if the size of the memory required is not known 
in advance or if the notion of pointer does not exist, attention must be paid to  
the memory management procedure. We emphasize this point in the case where 
a double linked list stored in an array is used. Each record contains the given 
information and two integers defining the next and previous records in the list. 
The example of Figure 2.5 illustrates this implementation for the list given in 
Figure 2.2. The same representation can be obtained using three arrays (one for 
the value, one for the pointer to  the next and one for the pointer to the previous 
item) instead of only one. 

head 

1 
tail 

I 
1 2 3 4 5 6 7 8 

I 1 1  - 1  J 

Figure 2.5: Linked list of Figure 2.2 implemented with an array. Middle, the list, 
top, the pointer to the following node and bottom, the pointer to the previous node. 
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2.3 Basic notions about complexity 

We discuss here the problems related to  the complexity of an algorithm. As will 
be seen, this notion concerns various aspects and affects the perception of the 
algorithmic “quality”. 

Behavior of a function 

As seen in Section 2.1, the construction of an algorithm and/or a data structure 
requires evaluating the number of operations involved and, in addition, looking 
closely at memory problems. 

Addressing these points involves analyzing the complexity in time as well as 
the complexity in size of the algorithm and/or the data structure. A simple and 
generic way to  analyze these notions is to  introduce a mathematical function f 
related to  the size n of the inputs of the problem, where for instance, n is the 
number of points to  be inserted in the triangulation. Finding the exact value of 
f ( n )  can be difficult or even impossible. However, we are usually not interested 
in this value, but rather in a rough estimate of it. Several ways of quantifying 
this point exist. The usual notations are f ( n )  = 0 ( g ( n ) )  or R(g(n))  or O(g(n))  
or o ( g ( n ) )  which indicate respectively that, for a sufficiently large n and for a 
“known” g(n), we have: 

0 0: c l g ( n )  < f ( n )  < c z g ( n )  where c1 and c2 are two constants. Hence, f 
and g have the same behavior when n grows. 

0 0: f ( n )  < c g ( n ) ,  c being a constant, and we have an upper bound, 

0 R: f (n )  > c g ( n )  where c is a constant. We have then a lower bound, 

0 0: f (n )  < c g ( n )  for any positive constant c. 

The quantifications in 0 and o can be seen as two ways of comparing two functions 
from slightly different points of view when looking at the bounds. One way of 
qualifying these two measures is indeed to  write, for 0: 

= 0 .  lim - f (n) 
n’cc g ( n )  n’cc g ( n )  
lim fo < c ,  while for 0, we have: 

As an example, notice that 2 n2 = 0 ( n 2 )  but 2 n2 # o ( n 2 ) ,  while we have both 
n l o g n  = 0 ( n 2 )  and n l o g n  = o(n2) .  These relations indicate the asymptotic 
behavior of the functions, see Figure 2.6. 

Notice however that the previous expressions involve some constants that can 
be very large. For instance, an algorithm of complexity n2 is a p n o n  faster than 
an algorithm of complexity loon, if n is smaller than 100 while it is slower if n 
is larger than 100. Another remark is that the complexity measures the behavior 
for large input sizes rather than for small size problems. This will be discussed in 
Section 2.4 when dealing with sorting algorithms. 

Exercise 2.5 For which values is  an algorithm in n3 more eficient than an algo- 
rithm in 1000 n2 log n ?  
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Figure 2.6: Illustrations of the notations 0, 0 and R. 

Exercise 2.6 Let f and g be two functions asymptotically positive. Among the 
following assertions, indicate which are true and which are false: 

0 i) f ( n )  = O ( g ( n ) )  with f ( n )  = fi and g ( n )  = nsinn, 

0 i i )  f (n) + g ( n )  = @ ( m W  (n), d n ) ) ) ,  
0 iii) f ( n )  = O ( g ( n ) )  means 2 f ( n )  = 0 ( 2 9 ( " ) ) ,  

0 iv)  f (n) = O ( g ( n ) )  means (1 + &If (n) = %(n)).  

Complexity, worst case, average case, optimal case 

Looking back to the study of the complexity of an algorithm, one has to  notice 
that several complexities can be defined. More specifically, related to: 

0 the complexity in the most favorable case and that in the worst case, i.e., 
the minimum and the maximum number of operations strictly required, 

0 the average complexity, i.e., the complexity obtained by averaging the com- 
plexity on a series of cases. 

The worst and optimal complexities are usually easy to  determine as it is sufficient 
to look at the extreme configurations. The average complexity, however, requires 
the introduction of probabilities. These notions are now illustrated: 

Algorithm 2.4 Searching for a value x in the array Tab. 

Procedure IsContainedInArray (Tab, x, f ound) 
i t 1  
f o u n d  t .FALSE. 
WHILE ( f o u n d  = .FALSE.) AND (i 5 n) 

IF Tab(i) = x THEN f o u n d  t .TRUE. 
ELSE z t z +  1 

END WHILE 
IF i = n + 1 THEN f o u n d  = .FALSE. (lost, x has not been found), 
ElSE f o u n d  = .TRUE. (found) 
END IF 
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where the goal is to  see whether a given value x belongs to the array Tab at 
an index i, the length of Tab being n. The problem is to determine how many 
comparisons are performed in this algorithm in the optimal case, the worst case 
and on average. 

If the first entry of the array is x,the algorithm stops after only one test and 
its optimal complexity is 1. If the array does not contain x ,  n comparisons are 
necessary to conclude. To find the average, in the case where x exists in the array, 
we find a number of comparisons equal to: 

1? 

E ( x  E Tab) = i Pr(x ,  i) 
i=l 

where Pr(x,  i) represents the probability of finding x at  the index i of the array. 
As Pr(x , i )  = i, we find that E(.)  = y, which can be written as E(.)  = @(n). 
In other words, if the array is not sorted, a number of tests of the order of n is 
expected on average. 

These three measures of complexity show different information. More precisely, 
the worst complexity is a good measure whenever the time to  run an algorithm 
has been fixed. We find here the concrete situations where we expect to have a 
given complexity, for instance, linear, depending on the sizes of the input of the 
problem. Actually, in this case, the worst case gives the desired information. 

Exercise 2.7 The previous example, in the line WHILE, requires two tests of equal- 
i t y  and a comparison, hence three tests. Show that the number of tests can be 
reduced to  only one if x ,  the sought value, is inserted in the array at the index 
n + 1 (by increasing its size by  1, this new node being called sentinel). 

Amortized complexity 

Another notion of complexity, known as the amortized complexity, measures the 
average performance of each operation in the worst case. More precisely, some 
algorithms or structures are such that the more costly operations are very rarely 
executed. In some other cases, a costly operation means that the required oper- 
ations will be inexpensive afterwards. An example of such a behavior is given in 
the case of a stack. 

Let consider a stack and let us assume that the operator Multi-Pop(Pile,k) 
which consists of applying the operator Pop to k items (for k smaller or equal to  
the size of the stack). Let us look at  a sequence of n Push, Pop and Multi-Pop. 
A Push and a Pop are in O(1) while a Multi-Pop is in the worst case in O(n) ,  
hence, the worst case for a sequence of n operations is in O(n2).  Is this the true 
complexity of the algorithm? 

As each item cannot be popped more than once, the number of Pop (Pop and 
Multi-Pop) is at most equal to  the number of Push, that is about O(n).  Then, 
whatever the value of n, a sequence of Push, Pop and of Multi-Pop takes a time 
in O(n).  Indeed, the amortized complexity of the operation is in = O(1). To 
summarize, this quantity measures the average efficiency of each operation in the 
worst case during the execution of a set of operations. 
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2.4 Sorting and searching 

Numerous methods may be used to  sort an array containing items on which an 
ordering is defined. 

Sorting by comparison algorithms 

Sorting by insertion. Let us consider an array of size n and let us assume, at 
the stage i of the processing, for i = 1, ... , n  - 1, that the sub-array i (between 
the indices 1 and i) has already been sorted. The algorithm of sorting by insertion 
consists of inserting w = Tab(i + 1) in the sub-array i in the right place, by moving 
the items greater than w towards the right. This can be written as follows: 

Algorithm 2.5 Sorting by insertion f rom the smallest to  the largest. 

Procedure Insertionsort (Tab) 
FOR i = 2,n 

value t Tab(i)  

WHILE j > 0 AND TAB( j )  > key 
j t i - 1  

TAB(j  + 1) t T A B ( j )  
j t j - 1  

END WHILE 
T A B ( j  + 1) t value 

END FOR 

to obtain a sorting algorithm from the smallest to  the largest. In trems of com- 
plexity, the relevant quantity in the analysis of this sorting algorithm is clearly 
the number of items moved towards the right side. If the input is seen as a per- 
mutation of n different numbers, this quantity can be easily seen as the number 
of inversions in this permutation (i.e., the sum for all elements of the number of 
larger items located on the left hand side). 

If the array is originally sorted in the reverse order, the worst complexity is 

obtained. It corresponds to C i, that is O(n2).  Finding the average complexity 

is more difficult and requires constructing a random model. Here, we simply 
indicate that the required number of permutations is equally probable. Under this 
assumption, the average number of permutations is still in O(n2).  

While not really efficient in the worst case and on average, a sorting algorithm 
by insertion is still very useful for small examples or in cases where the data are 
already almost ordered. In the last case, a simple comparison is sufficient to  decide 
whether or not each item is in the right place. Hence, this sorting algorithm is 
almost linear in time. 

n 

i=l 

Exercise 2.8 Indicate how to  use this sorting algorithm t o  sort a linked list (its 
values). I s  the overall complexity of the process affected? 
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Quicksort. The quicksort algorithm sorts in place, that is by permutating the 
data. This method is widely used because it has proven to  be robust, efficient and 
easy to implement. Its efficiency is close to  the optimum. Its robustness is mainly 
related to  the fact that it is insensitive to  the properties of the values to be sorted. 
The ease of implementation is due to  the simplicity of the underlying concept of 
permutation. 

Indeed, the main idea consists of taking one item of the array, the pivot, and 
splitting the array into two pieces around the pivot. The elements which are 
larger (resp. smaller) are placed on the right-hand side (resp. left-hand side) and 
the process is iterated on each of the sub-arrays. The splitting procedure is also 
simple and consists of scanning the array and exchanging the elements larger than 
or smaller than the pivot (once it has been fixed). The sorting algorithm can be 
written as follows: 

quicksort (Tab, left ,right) 

where T a b  is the array to  be sorted and l e f t  and right are the left and right indices 
of this array (for instance, l e f t  = 1 and right is the number of values in Tab) .  
This procedure is written recursively as follows: 

Algorithm 2.6 Quicksort from the smallest to the largest. 

Procedure Quicksort (Tab, lef t ,right) 
IF l e f t  < right 

m + Partition(Tab, l e f t ,  right) 
Quicksort(Tab, l e f t ,  m - 1) 
Quicksort(Tab, m + 1, right) 

END I F  

The procedure Partit ion corresponds to  the following algorithm: 

Algorithm 2.7 Procedure Parti t ion for the Quicksort algorithm. 

Procedure Partition(Tab,left,right) 

pivot + Tab(ipivot) 
j t l e f t  
Exchange Tab(1eft + 1) and Tab(ipivot) 
FOR i = l e f t  + 1 TO right DO 

ipivot + l e f t+r ight  
2 

IF TAB(i )  < pivot, 

END I F  
j + j + 1 and exchange Tab(i)  and T a b ( j ) ,  

END FOR 
exchange Tab(1eft) and Tab( j )  
RETURN j 

In [Knuth-1998bIl it is proved that the average complexity of the quicksort is in the 
order of 1.38nlogzn1 where the logarithm is taken in the base of 2, thus leading 
to O(n1ogn) .  This is an interesting result because the sole operation used in the 
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sorting algorithm is the two-two comparison of the elements. It is then possible 
to prove that, on average, each sorting algorithm requires a minimum number of 
comparisons is on the order of n(n log n ) ,  in the worst case. 

Notice however, that the worst complexity is in O(n2).  This is obtained when 
the array is already sorted in such a way that, at each step of the recursion, the 
smallest (resp. largest) element is picked as the pivot. To avoid this unbalanced 
case, a solution consists of choosing the pivot in a different way. One strategy 
can be to  pick an element randomly in the array. But, using a random number 
generator in this case can be seen as superfluous. The easiest way to improve the 
efficiency is to  use the technique known as the average of three in which the pivot 
is chosen as the average value of the element on the left, middle and right of the 
array. 

The version of this algorithm described above can be improved in two different 
ways, thus leading to almost 30% speedup, depending on the implementation. 
Firstly, the recursion can be avoided by using a loop. This requires storing the 
bounds of the sub-arrays for a further processing. Then, to avoid the time devoted 
to pushing and poping the data because of the recursion, a simple sorting algorithm 
by insertion can be performed in place of a recursive call when the number of 
entities to be sorted is very small. In a similar way, the small sub-arrays can be 
kept (not processed) during the recursion and sorted by insertion in the whole set 
of data. The critical size below which a recursion is not efficient depends on the 
implementation and is found to range between 2 and 25. 

Exercise 2.9 Analyze the case of a quicksort algorithm that does not account 
for the sub-arrays of size smaller than k, these being processed using a sorting 
algorithm by  insertion on  the whole set. Show that the expected complexity is  in 
O ( n k  + n log- ) .  

n 
k 

Exercise 2.10 Replace, an the algorithm Quicksort (Tab, left ,right) above, 
the two recursive calls by a loop using a stack for the two sub-arrays. 

Bucket sorting 

We have just seen that the quicksort algorithm is based on two-two comparisons 
of the elements. Hence, the number of operations is only related to  the order of 
the data and not to  the specific value to  be sorted. 

A dramatically different approach for sorting is based on the use of the value of 
the entities to  be sorted in such a way as to separate them. More specifically, the 
domain containing the entities to  sort is divided into equally sized pieces of size 
6 and each entity is associated with the block containing it. This association is 
obtained using a function (integer part), denoted 1 ,  and then, all items belonging 
to the same block are chained together in a linked list. 

The general scheme of a (recursive) bucket sort is the following: 
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Algorithm 2.8 Recursive bucket sort. 

Procedure Bucketsort (XI , 2 2 ,  ... , 2,) 
zmin t min(zl,zz, ... , xn )  

X m a x  + ~ U Z ( Z I ,  Z Z ,  ... X n )  

6 t L & ( z m a z  - X m i n ) ]  

FOR i =  l , n  
i d z  t L + ( X i  - X m i n ) ]  

add in List(idz) 
END FOR 
FOR i = l,nb 

END FOR 
I F  the size of List(i) is at least 1, Bucketsort(List(i)) 

Remark 2.2 The number n b  of blocks can be taken to be equal to the number n of 
data, so as to achieve an balanced partition. However, when n becomes very large, 
it is  desirable to choose nb < n (if only for memory allocation problems). 

1 2 - 6 -  n 

Figure 2.7: Example of a block defined during the construction of the partition 
related to the bucket sorting. 

If each block contains O(1) points after the block construction, then the par- 
tition is said to be balanced. In this favorable case, the sorting algorithm is of 
linear complexity. This is not certain if some blocks contain a lot of points and, 
in this case, a solution consists of sorting these points recursively. Moreover, if at 
each stage, all points but one belong to the same block, for instance, if xi = i! ,  for 

i = 1, ..., n, the recursion requires n - 1 levels and the time is C i that is O(n2). 

The efficiency of bucket sorting is thus related to the number of points to be 
sorted in an interval of size 6, which is related to the distribution of the xi’s. More 
precisely, in [Devroye-19861, it is shown that points for which the distribution 
function is of compact support and of square integrable2 are sorted in linear time 
by recursive bucket sort3. Intuitively, this just means that although some regions 
seem to be highly populated in the original sample, a good separation of the points 
is achieved after a small number of recursions with interval lengths 6. 

n 

i= 1 

21f f is this density function, f is said to be square integrable if the integral of its square 

3Sufficient conditions are usually well-known for a probability density to be sorted in linear 
converges, i.e., j f 2  < CQ. 

time. But coming up with necessary conditions remains an open issue. 
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Remark 2.3 W e  have described here the bucket sort for one-dimensional data 
(integer or real numbers for instance). This technique can also be applied to data 
in R2 or R3, for example points that need to be sorted according to various criteria. 

Remark 2.4 Notice also, as for the previous examples, that numerical problems 
are not taken into account in the discussion. Indeed, what happens i f  a point 
is  located on the right-hand side of a point (being considered as larger, within the 
roundoff errors) when it should be on  the left-hand side (mathematically speaking)? 

Leaving these remarks to one side, does this mean Bucket sort should be pre- 
ferred to  Quicksort when the dataset to  be sorted is known to have certain prop- 
erties? The answer is not that clear: Quicksort sorts an array in place whereas 
Bucket sort requires more memory (several points may fall within the same bucket). 
So, depending upon the implementation, the U ( n )  time algorithm may outrun an- 
other one in U ( n  log n) for some sample sizes. 

Searching algorithms and dichotomies 

In Section 2.3, we have analyzed the performances of a sequential search in an 
array and we have shown that a linear time complexity can be achieved for a 
fruitful search as well as for a failure. We now turn to  a more powerful strategy, 
the dichotomy that leads to a boolean result (positive or negative) in a U(1ogn) 
time. 

The intrinsic weakness of a sequential search is that, at each step, the com- 
parison performed between the sought value x and the part of the array analyzed 
does not provide any global information about the array. However, for a sorted 
array, this drawback can be avoided. Indeed, by comparing x with the element in 
the middle of the array, one can decide which part of the array should contain x. 
A simple comparison thus allows the number of potential candidates to  be divided 
by two. As the size of the problem decreases by a factor 2 at each step, the size 
of the searching domain is reduced to 1 after log n comparisons. Such a searching 
algorithm based on dichotomy follows the general scheme: 

Algorithm 2.9 Dichotomy search of an i tem x in an array Tab.  

Procedure IsContainedInSortedArray(Tab,x,found) 
l t l ,  r t n ,  
WHILE 1 # r 

l + r ,  
2 

idx t 1- 
IF x 5 T a b ( i d x ) ,  THEN r t i dx  
ELSE 1 t idx + 1 
END IF 

END WHILE 
IF x = T a b @ ) ,  f o u n d  = . T R U E . ,  
ElSE found = .FALSE. 
END IF 
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Despite its performances, we must notice that a dichotomy search is not always 
the best method. For instance, if we want to  find a name beginning by B in a 
phone book, it is usually recommended to  start from the beginning of the book 
rather than from the end! This simple remark suggests an improvement in the 
binary search. When the value x is searched for in a sub-array indexed from 1 to  
r ,  we start by estimating the place where x is most likely to  be. The natural way 
of doing this is to interpolate x in the sub-array Tab(1,  ..., r ) ,  which is equivalent 
to replacing the index i d x  in the above scheme by: 

x - Tab(1)  
i d x  = 1 + ( r  - 1 )  1 T a b ( r )  - Tab(1)  

For this reason, the searching algorithm, known as interpolation-search algorithm 
or interpolating search, is very similar (in its concept) to  a bucket sort. Its effi- 
ciency is strongly related to the properties of the dataset. It can be proven that 
for a large variety of datasets (in terms of density), a successful1 search or a failure 
can be achieved in O(1og l o g n ) .  

Another search strategy of the same kind consists of using a bucket tree to  
store the elements. Similarly, the complexity is related to the partition density of 
the elements, see [Devroye-19861. 

Exercise 2.11 The  WHILE statement in the algorithm i s  skipped i f  T a b ( i d x )  = x .  
Does this affect the complexity of a successful search (x i s  found)  or a failure (x 
i s  not  in Tab)?  

Three main paradigms 

Before going further, we introduce three paradigms that will be used later and 
which can be considered fundamental in algorithmics. 

The first paradigm is known as Divide-and-conquer. Briefly speaking, it 
consists of solving a problem P by 

i) dividing P into several sub-problems, for instance into two sub-problems PI 
and Pz (of smaller sizes), 

ii) solving the sub-problems, here PI and Pz,  

iii) merging the partial solutions together. 

The recursive division stops in practice when the sub-problem becomes sufficiently 
small and its solution is easy to  obtain. The number of sub-problems created and 
the way of merging the solutions are related to  the nature of the problem at hand. 
For instance, the Quicksort divides a problem in two and the merging operation 
simply consists of putting the solutions end to  end. 

The second paradigm concerns the Computational model. This consists of 
defining the type of operations that may be used when devising an algorithm. 
For instance, in quicksort or in bucket sort, we noted the difference between the 
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former approach, which uses only pairwise comparisons, and the second approach 
which requires the floor function 11. We noticed that this resulted in complexities 
that are sensitive to various properties of the dataset (random permutations versus 
probability densities in our examples). 

The last one is the Randomization paradigm which we encountered with 
the pivot selection in the quicksort algorithm. Broadly speaking, making choices 
a t  random is an elegant and efficient way to  avoid worst-case complexities with 
high-probability. Intuitively speaking, if an event of bad complexity occurs with 
some probability, having it occur over a long sequence is very unlikely. Thus, this 
technique will be widely used in the following. 

These three techniques are of course independent. In particular, quicksort-like 
strategies as compared with bucketsort-like ones can be viewed as two independent 
implementations of the Divide-and-Conquer paradigm. The former splits the task 
into a constant number of sub-problems while the latter attempts to make decisions 
faster using a higher branching factor. 

Exercise 2.12 Let List1 and List2 be two ordered linked lists of sizes n and m 
respectively. Show that they can be merged in time n + m - u(n, m) by changing 
pointers only, with u(n,m) the number of i t ems  of List1 bigger than the largest 
element of List2 (or vice versa). 

Let List be a list containing n items. Show that List can be recursively sorted by 
first splitting it into two equally sized sub-lists, sorting these sub-lists and merging 
them. Wha t  i s  the t ime complexity of this method? (This sorting algorithm is 
known as the Merge sort). 

Exercise 2.13 Let Lo = (x1,x2, ..., 2,) be a set of n real numbers. Suppose also 
we have a coin and define Li+l f rom Li as follows: for each x in Li+l, toss the 
coin and add x to  Li+l i f  the output i s  heads. Now, call e the first integer such 

that L, i s  the empty-set. Show that E (e )  = O(1ogn)  and Pr(e 2 a l o g n )  5 
1 

2.5 One-dimensional data structures 

One-dimensional data structures for handling (one-dimensional) objects are con- 
sidered amongst the most fundamental since they are the building blocks on which 
more involved algorithms and data structures are based. In Section 2.2, we saw 
how to store unordered objects. In this section, we shall see how to define dic- 
tionaries and priority queues. As for the data structures already described, these 
can easily carry out operations such as “is this element contained in”, “insert” or 
“delete” an element and, moreover, these are more geared to  handling requests 
such as “find the min” , “find the max” . 

Binary tree 

In Section 2.4, we used a Divide-and-Conquer paradigm to search a sorted array. 
We noticed the running time improvement over the naive algorithm of Section 2.3. 
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In this section, we do the same in a dynamic context based on a Binary Search 
Free (referred to  hereafter as BST)  that improves the complexity of any searching 
operation on linked lists. We start with a definition. 

I 0 

4 J  

i7- 

root 

Figure 2.8: Pointer  representation of a binary tree. 

Definition 2.1 A binary tree i s  a data structure whose node contains, in addition 
t o  the information field (the value), two pointers; the left and the right children. 
If the information field obeys some ordering relationship, such a tree i s  called a 
Binary Search Tree (BST) .  

The topmost node is called the root of the tree. A distinction is made between 
a node that has children, called internal, and a node without children, called 
terminal or a leaf. The depth (height) of a node is the number of edges (branches) 
crossed from the root to that node (Figure 2.8). 

Figure 2.9: Binary tree constructed 
f r o m  the sequence of values 17, 5, 1 
and 3. Notice that in this tree, ac- 
cording to  the sequence of the values, 
the nodes have only one child. A dif- 
ferent  ordering could lead to  nodes 

1 

3 having two children. 

An example of binary search tree growth is illustrated in Figure 2.9 where the 
insertion of the values 17, 5, 1 and 3 is depicted. First, 17 is inserted and stored 
at  the root since the tree is empty. Then 5 is inserted and put in the left subtree 
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as it is smaller than 17. Similarly, 1 goes to the left of 5 and 3 to the right of 1. 
The resulting tree has one internal node at depths 0, 1, 2 and a leaf 3, it has an 
edge at depths 1, 2 and 3. 

To see which parameters influence the operations on BST, let us consider the 
searching and insertion procedures whose general schemes are given below: 

Algorithm 2.10 Searching in a BST. 

Procedure Contains (node, x) 
IF node = NULL THEN return = .FALSE. ,  END 
IF node.ualue = x THEN return = .TRUE., END 
ELSE 

IF x 5 node.ualue THEN Contains(node.left,x) 
ELSE Cmtains(node.right, x )  
END IF 

END IF 

Algorithm 2.11 Inserting a value in a BST. 

Procedure Insert (node ,nodeFather , x) 
IF node = NULL 

allocate a new node, newnode 
newnode.ualue t x 
newnode.left t NULL and newnode.right t NULL 
IF x 5 nodeFather.ualue THEN nodeFather.left t newnode 
ELSE nodeFather.right + newnode 
END IF 

END IF 
IF x 5 node.ualue THEN Insert(node.left,node,x) 
ELSE Insert(node.right, node, x )  
END IF 

Basically, the strategy consists of tracing a path down the tree and making the 
right decision at each node encountered. If a value already present in the tree is 
asked for, the searching process stops in an internal node or in a leaf (terminal 
node). If the value is not in the tree, the process ends up in a node and adds 
a child to it. The average cost of a search is related to the sum of the depths 
of the node in the tree. As for the worst-cases, these quantities are bounded by 
the depth of the tree, h, which is such that [logzn] 5 h, 5 n - 1. On average, 
see [Mahmoud-19921, the expected depth of a random tree containing n values is 
E(h,) M 2.98logn. 

Randomly building BST trees is therefore interesting and is easy to handle if 
one can possibly afford bad performances. However, should this not be the case or 
should deletions be allowed (very little is known for a random tree after a sequence 
of deletions and insertions), a different strategy must be applied. 

Bad performances clearly arise from “skinny” and “elongated” trees. This is, 
for example, the case in Figure 2.9. One would prefer the configuration given in 
Figure 2.10, right-hand side. 
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Figure 2.10: Left hand side: balancing by rotation around a node. Right hand side: 
balancing the tree of Figure 2.9. 

To avoid this type of situation, the strategy consists of balancing the tree to 
have its subtrees containing roughly the same number of items. The relevant 
elementary operation is the rotation around a node depicted in Figure 2.10. 

In practice, there are several methods to balance a tree. For instance, AVL4 
trees, [Wirth-19861, are such that for any node the depths of the two subtrees 
differ by at most one. For the red-black trees [Cormen et al. 19901, the balancing 
is achieved by some constraints satisfied by the color of the nodes. The reader is 
referred to the cited references for more details about tree balancing, an operation 
that reveals to be a bit tricky. 

The performances of the red-black trees are summarized in the following the- 
orem: 

Theorem 2.1 The depth of a red-black tree containing n values is  bounded by  
< h, < 2 log n. The operations “inser”’, “delete”, “exists”, ‘3nd the man”, 

‘3nd the max” are in O(1ogn) .  

We now give some schemes for traveling through (traversing) a binary tree. 

Algorithm 2.12 Tracing a path in a binary tree. 

Procedure inOrderProcessing (node) 
IF node # NULL 

inOrderProcessing(node.1e f t )  
process node 
inOrderProcessing (node.right) 

END IF 

Algorithm 2.13 Tracing a path in a binary tree (pre-order processing). 

Procedure preOrderProcessing(n0de) 
IF node # NULL 

process node 
preOrderProcessing(node.1e f t )  
preOrderProcessing (node.right) 

END IF 

4Acronym for Adelson, Velskii et Landis, inventors of this type of tree. 
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Algorithm 2.14 Tracing a path in a binary tree (post-order processing). 

Procedure postDrderProcessing(node) 
IF node # NULL 

postOrderProcessing(node.1e f t )  
postOrderProcessing (nodexight) 
process node 

END IF 

Exercise 2.14 A m-ary search tree is defined as a search tree whose nodes have 
exactly m children (a node contains the value and m pointers). How do m-ary 
search trees compare against BST in terms of searching time and memory re- 
quirements ? 

Exercise 2.15 Show how a red-black tree can be used for sorting in O(n1ogn) .  

Hashing 

Like the bucket sort, the hash functions consist in splitting the dataset processed 
into bins or buckets. The hashing process is viewed here as a one-dimensional struc- 
ture, in particular to  emphasize the fundamental difference between the hashing 
technique and the bucket sort. 

However, it seems obvious that this structure is adequate for multi-dimensional 
data and, practically, is commonly used in such situations. If h denotes the hash 
function and if x is the element considered, then h(x)  is the hash value associated 
with x ,  as will be seen hereafter. In three dimensions, we will find, with obvious 
notations, h(z ,  y ,  z )  the hash value associated to the element ( x ,  y ,  z ) .  

There is however a fundamental difference between the hash function used in 
bucket sort, namely h(x)  = L:(x - x,in)], and general hash functions. While 
the former is monotonic, i.e., if x 2 y then h(x)  2 h ( y ) ,  this property is not 
strictly required in the latter case. Moreover, general hash functions are usually 
implemented using modulo, see Figure 2.11, left-hand side, for instance. It should 

Figure 2.11: Non  monotonic hashing (left) and monotonic hashing (right). 

be emphasized that this enables the building and handling of dictionaries5, but 

5A set on which insertion, deletion and searching operations are defined. 
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does not allow the processing of proximity queries such as “given h(x) ,  report the 
neighbors of x from the values of h in a neighborhood of h(x)”. We shall return 
to this issue in Section 2.6. 

To define precisely a few standard hash functions, we start with the following 
definitions. 

Definition 2.2 Let U be a universe, i.e., a set of possible keys (0, 1, ...), let 
S be a subset of U of size n, let I be an  array of buckets indexed by  a set of 
integers Z. Suppose, in addition, that each bucket is endowed with an auxiliary 
data structure (linked list, array, BST,  ...) that may contain up to b items. Then, 
a hash function is an  application h from U to  Z. Two keys x and y are said to  
collide i f  for x # y we have h(x)  = h ( y ) .  A bucket i s  said to  overflow i f  more than 
b keys have been hashed into it. 

As an example, consider Figure 2.12. Here, the set of all possible keys is the 
integer (in this example) range 1,  ..., 50. The values to  be hashed are five numbers 
S = (2 ,5 ,10 ,15 ,37) .  The hash table is an array of 10 linked lists (thus b = 00). 

The hash function satisfies h(10)  = h(37)  = 1,  h ( 2 )  = 3 ,  h(15)  = 6 and h ( 5 )  = 8. 
Typically, if one wants to  know whether x is stored in the hash table, the algorithm 
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Figure 2.12: Example of a hash table. 

consists of checking whether x is present in the data structure associated with the 
bucket of I indexed by h(x) .  The important parameters are therefore the relative 
size of S as compared with that of I and the number of items referenced within 
each bucket. Several types of hash function can be envisaged: 

a universal hashing, for which h is chosen randomly, 

a perfect hashing, where h is injective, 

a minimal hashing, where card (S )  = c a r d ( I ) ,  

a dynamic hashing, where card (S )  is not known beforehand, 

a monotonic hashing, where h keeps the ordering on the keys. 
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Two main problems are to be considered when implementing a hash technique. 
The first is related to the choice of the hash function (see above). The second, 
related to this choice, deals with collisions handling. 

The collisions handling is indeed very important. One can of course rehash 
the whole table if some buckets are overflowing, but that does not tell us how to 
choose the right hash function. 

An initial strategy consists of setting b = 1, in which case a single key at most 
is stored per bucket. This peculiar hashing is called “open addressing”. The hash 
function maps IA x Z to Z and the sequence of buckets attached to the key x is 
seq(x) = (h(x ,  0 ) ,  h(x ,  l), ..., h(x,  m - 1)). The function h should be chosen such 
that for any key x ,  seq(x) is one of the m! permutations of 0,1, ..., m - 1 with 
equal probability. Several such functions are described in [Cormen et al. 19901. 
Their design is mainly concerned with avoiding overly long common sub-sequences 
between seq(x) and seq(y). 

The second strategy aims at avoiding collisions as much as possible. A funda- 
mental notion in this context is that of universality: 

Definition 2.3 Given two integer ranges IA = 0,  ..., n - 1 and Z = 0 ,  ..., m - 1, 
with n 2 m, a family of hash functions 7-l is called %universal i f  for any x1 and 
2 2  of IA such that x1 # 2 2  and h chosen at random in ‘H, the following holds: 

1 

Pr(h(x1) = h(x2)) 5 L. 
m 

Interestingly, the condition: 

implies the previous condition and corresponds to a 2-universal hashing called 
strong. The idea is to have the images of two points behave as independent random 
variables. 

Priority queues 

Many situations require the records to be processed in order, but not necessarily in 
full order and/or not necessarily all at once. For instance, an algorithm may require 
the highest value to be processed, then more values to be collected, etc. The data 
structures supporting this kind of operation are called priority queues and can 
be viewed as generalizations of stacks or queues. More precisely, a priority queue 
is a data structure containing records with numerical keys (numerical values), the 
priorities, and supporting the following operations: 

a the construction of a priority queue for a set of items, 

the insertion of a new value, 

the search for the maximum, 

a the modification of the priority of an item, 
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a the deletion of an arbitrary specified item, 

a the merging of two priority queues. 

Interestingly enough, the red-black tree data structure turns out to  be a simple 
yet efficient implementation for priority queues. From the discussion of Section 2.5 
and according to Theorem 2.1, we know that the insertion, deletion and search 
operations have a O(1og n )  complexity. Moreover, the construction, the modifica- 
tion of the priority and the merge requests simply require a sequence of insertions 
and deletions. 

More sophisticated implementations of priority queues provide better com- 
plexities for the construction, modification of priority and merge operations. In 
particular, a fashionable data structure for that purpose is the heap data structure, 
which is a complete binary tree with the property that the key in each node should 
be larger than (or equal to) the keys in its children (if any). The reader is referred 
to [Sedgewick-19881 and [Cormen et  al. 19901 for further reading. 

Exercise 2.16 Show how t o  implement  a priority queue using a n  ordered linked 
list. W h a t  are the complexities of the “merge” and ‘(change priority” operations? 

Exercise 2.17 Suppose a red-black tree i s  endowed with a n  additional pointer  t o  
the m a x i m u m  (or  m i n i m u m )  en try  stored. Give the complexity of the ‘ s n d  the 
Max” (“nd the min”), ‘(insert” and “delete” operations. 

2.6 Two and three-dimensional data structures 

After one-dimensional data structures, we now turn to multi-dimensional data 
structures. Here, we find grids and trees (quadtrees and octrees). Described in 
this section as data structures, these structures will be viewed again (Chapters 5 
and 8) as they also help meshing algorithms. 

In this section, we show how several ideas developed for one-dimensional data 
structures can be reused in two and three dimensions to handle more complex 
objects such as points, polygons, etc. 

Grid-based data structures 

Grid-based data structures are the two and three-dimensional equivalent of the 
one-dimensional bucket-like data structure. Notably, their performances vary 
greatly depending on the kind of items processed. If points are stored in two- 
or three-dimensional grids, very precise theoretical results have been known for a 
while, see [Devroye-19861 for example, that give indications about the behavior of 
the operations involved with such grids. However, when more complex objects are 
involved, such as polygons, many theoretical results remain to be established and 
justified experimentally. The aim of this section is precisely to present guidelines 
for the efficient use of grid-like partitions for applications such as mesh generation. 
A good starting point for further reading is [Cazals, Puech-19971. 
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Let A = Ax x A, x A2 = [%in, ~rn,,] x [Yrnin, Yrnaxl x [&in, ~rn,,] be some 
three-dimensional domain containing a set & of n objects, which may be polygons, 
etc. Suppose we also want to answer proximity requests over the items of &. For 
example, we want to find the closest polygon to a given point or find the pairs of 
intersecting polygons. 

Similar to the bucket sort for the one-dimensional case, a clever way to  address 
this class of problems consists of subdividing the domain of interest A into nxnyn, 
axis aligned boxes (voxels) of size 6,6,6, with 6, = 2 (and similar values for the 
other dimensions) and having each voxel reference the items intersecting it. Once 
this pre-processing step has been done, the voxel containing a point P(x,  y ,  z )  is 
identified by the triple ind, ,  i n d ,  and i n d ,  with, for instance, i n d ,  = xc-Fzmin. 
From this voxel, the items of & close to P are easily retrieved. In order for this 
construction to be efficient, two types of constraints must be taken into account. 
First, each voxel should reference a small number of items of E .  Then, the memory 
requirements should be affordable, i.e., n,n,n, = o(n) with a small constant. We 
discuss here three grid-based data structures which achieve these goals for different 
input datasets, see Figure 2.13. 

A grid is in fact a structure that can be uniform, recursive or related to a 
hierarchy of uniform grids. 

Figure 2.13: T h e  three types  of grid-based structures.  Lef t ,  a u n i f o r m  grid, middle ,  
a recursive grid and  right, a hierarchy of u n i f o r m  grids. 

Uniform grid. A uniform grid for the set & is a partition of its bounding box 
into n,nyn, subdivisions of equal lengths along the x, y and z axes. To get a 
memory requirement that is linear in the number of objects, the ni are usually 
taken so that ni = ai 3Js;. The ai are positive constants and the simplest choice 
is a, = a, = a, = 1. Other choices may be preferred, for instance, related to  
heterogeneous values based on the ratios of the dimensions of the box, the amount 
of memory available, etc. 

Uniform grids provide a simple yet efficient way of handling uniform distribu- 
tions. But their performances drop catastrophically for more structured datasets, 
so other solutions have to  be found. 

Recursive grid. Once a uniform grid has been built for a set &, one may find 
that some voxels are too heavily populated (they record too many items). If 
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maxi ,  standing for the maximum number of items, is some positive integer (e.g. 
50), a recursive gr id for & is a hierarchical structure based on uniform grids such 
that whenever a voxel contains N items, N > maxi (the initial voxel being the 
bounding box) it is recursively split into a uniform grid of approximatively N 
voxels. 

Especially if no memory limitation is set, recursive grids provide the simplest 
and fastest implementation for handling many proximity problems. For unevenly 
distributed inputs, the performance gain over uniform grids can be up to  several 
orders of magnitude. 

Hierarchy of uniform grids. A weakness of the previous construction is that 
the recursion may waste a lot of empty voxels (Figure 2.13, middle). To solve this 
problem, the blind recursion can be replaced by a process that figures out more 
cleverly which are the dense areas that should be allocated resources and which 
are the empty areas. The strategy proposed in [Cazals, Puech-19971 successively 
separates the objects according to  their size (filtering step), finds subsets of neigh- 
bors called clusters within these classes (clustering step), stores each cluster in a 
uniform grid and finally builds a hierarchy of uniform grids (Figure 2.13, right). 
For a description of the filtering and clustering steps, the reader is referred to  the 
previous reference. 

Nevertheless, the hierarchy of uniform grids offers a flexible and efficient data 
structure for input datasets with strong coherence properties. This is especially 
true since its construction overheads are almost the same as those of a recursive 
grid. 

Quadtrees and octrees 

A quadtree is a two-dimensional spatial data structure whose counterpart is the 
octree in three dimensions. The term quadtree refers to a class of hierarchical data 
structures with the common property of recursively decomposing a spatial region. 
Very much like grid-based subdivisions, quadtrees can be used to store a variety 
of inputs (points, line-segments, polygons, etc.) in any dimension (to simplify, the 
term quadtree will be employed whatever the dimension). And also similarly to  
grids, very little is known about the theoretical properties of this kind of structure, 
other than for points. 

The basic idea consists of splitting the region processed into two sub-regions 
along each axis. In dimension d, a region is therefore split into 2d children. The way 
the splitting hyper-plane (a line in two dimensions, a plane in three dimensions) is 
chosen, together with the recursion termination condition determines the quadtree 
type. We present below the two basic schemes when the input is a set of n points, 
see [Samet-19901 for more details. 

Point quadtrees. The point quadtree can be seen as a generalization of a binary 
search tree. In two dimensions for instance, (Figure 2.14), each point is stored in 
a node and serves as the pivot in the subdivision of the associated region into four 
quadrants. The quadrants are numbered from left to right and from top to  bottom 
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(see the figure). As will be shown, locating a point in a quadtree is an easy matter 
that requires comparing its coordinates to those of the nodes currently traversed 
in order to decide in which quadrant it belongs. 

The optimal strategy for building a point quadtree depends on whether or not 
the input dataset is known a priori. If it is, choosing at each step the median point 
along one axis (which luckily may also be the median of the other axis) results 
in a tree of depth between 1094 n and log2 n. If no a priori information is known, 
the points have to be sequentially inserted and the weakness already mentioned 
for BST trees may arise, i.e., the tree may be very elongated. Finally, similarly 
to BST trees, point quadtrees can be made dynamic, that is to support deletions. 
Nevertheless, this operation is rather tricky, see [Samet-19901. 

Overall, point quadtrees are an interesting and versatile data structure which 
however suffers from several drawbacks. First, the higher the dimension, the higher 
the number of empty null pointers created . Then, its depth is usually larger than 
that of grid-based structures. Its use is therefore recommended when recursive 
grids or a hierarchy of uniform grids are too demanding resource-wise and/or 
when a dynamic feature for the process is desirable. 

.P" I 

P, 

Figure 2.14: Point  quadtree based o n  a set  of points  in R2. 

Point-Region quadtrees. If one requires the four regions (the quadrants in 
two dimensions) attached to a node to have the same size, the data structure 
obtained is called a Point-Region quadtree (PR-quadtree) .  The recursion stops 
whenever a quadrant contains at most one data point, so that every point may be 
stored in a leaf node. As an illustration, consider Figure 2.15 which represents the 
PR-quadtree for the set of points of Figure 2.14. Before going further, notice that 
this type of quadtree is the one that will be commonly used in this context (see 
Chapter 5). 

Locating a point in a PR-quadtree requires finding the quadrant containing it, 
which is similar, although certainly simpler here, to the previous quadtree case. 

Inserting a point starts with a quadrant location. If the quadrant found is 
empty, simply insert the point and it is finished. Otherwise, it is refined into four 
regions (children) and if the other point does not belong to the same quadrant, 
insert the two points and it is finished. Otherwise both points are recursively 
inserted into the quadrants. It should be clear that many splits may be necessary 
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to separate points located very close to one to another. More precisely, the depth 
of the tree may be as much as l o g z ( f ) ,  where L and 1 are the distances between 
the closest and farthest pair, respectively. In other words, the depth of the PR-  
quadtree depends upon the values manipulated (see also Section 2.4). In order to  
avoid wasteful memory allocation, a conservative approach consists of splitting a 
node only if its depth in the tree is not more than a certain threshold. Alternatively, 
the leaves can be allowed to accommodate up to maxi points, with maxi a small 
integer. Deletion of a node is considerably simpler than for point quadtrees because 
there is no need to  rearrange the tree as all values are stored in the leaf nodes. 
However, the deletion of a node having exactly one brother should be followed by 
a step to collapse the four leaves. 

In conclusion, PR-quadtrees offer an interesting alternative to usual point 
quadtrees especially because it is easier to  obtain a dynamical aspect. However, 
one has to  be careful about the height of the tree which may become very great if 
two points happen to be very close to each other. Hence, grid-based data structures 
are usually (much) more efficient because of their greatly reduced depth. 

A 
Pl P7 P3 

Figure 2.15: The equivalent Point-Region quadtree data structure. 

Filters and side-effects 

Numerous operations on meshes and triangulated surfaces require a pr ior i  running 
more or less tricky and expensive algorithms. For example, in order to compute 
the intersection between a line and a discretized surface (a triangulation), we have 
to compute pairwise intersections between the line and each triangle. Similarly, 
to render and plot such a (meshed) surface on a graphical device using the ray 
tracing method6, we have to  intersect lines (in EX3) with the surface. Because this 
could be very expensive, as with any algorithm involving two geometric entities, 
a conservative approach consists of first making sure some necessary conditions 
are satisfied before running the computation. For example, for a ray intersecting 
a polygon, the intersection point P is necessarily contained in the bounding box 
of the polygon. If this is so, it must be further checked whether P lies within the 

tivery briefly, the ray-tracing method consists of figuring out, for a given scene and viewpoint, 
the color of each pixel in the image representing this scene is rendered into has to be painted 
with. For a given pixel, this is done by casting a ray onto the scene from the viewpoint that 
intersects the pixel. The pixel color is deduced from the objects hit by the ray together with the 
contributions of the reflected and refracted rays. 
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polygon and this requires a linear time in the number of vertices of the polygon, 
otherwise, any further check is unnecessary, see [O’Rourke-1994]. 

Suppose now that the polygons are accessed through a grid-like data structure. 
In order to lessen the number of entities referenced by each voxel and thus the 
number of polygons tested (for intersection for a given ray), one is tempted to 
reduce the voxel sizes (thus increasing the total size of the grid in memory). By 
doing so, one also increases the probability of the ray belonging to the rectangle 
bounding box. Put differently, reducing the number of intersections results in 
more expensive computations because the coarse filter given by the bounding box 
becomes less efficient. This kind of side effect should be borne in mind when 
performing fine tuning of an algorithm. 

2.7 Topological data structures 

For the sake of simplicity, we restrict ourselves here to the two-dimensional case 
and we only consider triangulations. Not surprisingly, the central building block 
to describe such meshes is the triangle, together with a couple of data structures 
encoding the adjacency relationships. For surface meshes, a more general structure 
is necessary as a triangle could share an edge with more than one other triangle. 

Triangulations (meshes) can be represented in many different ways. First, we 
present a representation based essentially on the triangles themselves. Then, we 
briefly discuss another representation based upon the triangle edges. 

A triangle-based representation 

The triangles are indexed from 1 on. A triangle is an (oriented) triple of vertices 
(cf. Chapter 1). With each triangle are associated its (at most) three edge neigh- 
bors (two dimensional case). The neighborhood relationships are encoded such 
that 

k = Neigh(j, i) 

which means that the triangle of index k is adjacent to the triangle of index i and 
that the edge j of triangle i is the common edge ( k  = 0 means that the edge j of 
triangle i is a boundary edge). Suppose also that vertex j of triangle i is opposite 
to edge j of this triangle (see also Chapter 1). 

The pair of triples vertices-neighbors is one possible way of representing a 
triangulation (and probably the most concise one) also called the adjacency graph 
of the triangulation. 

A richer representation is based upon the triples of vertices and the connection 
matrices. Each triangle K is endowed with a 3 x 3 matrix defined as follows (Fig- 
ure 2.16): 

a the diagonal coefficient i, cii indicates the local index of the triangle vertex 
opposite to triangle K by the edge i, 

a another coefficient cij gives the index of the j t h  vertex of K in its ith neigh- 
bor. 
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A 

Figure 2.16: Definition of a triangle K and of its three neighbors Ki. One can see 
the global indices of the vertices (Pi,A, ...) and the local indices (in any triangle) 
of these points (1, 2 and 3). 

According to its definition, the adjacency matrix of triangle K in Figure 2.16 is: 

C K =  1 3  2 . (1 1 1) 
Hence, for the first line, point A of K1 sees K and c11 = 2 because A is the second 
vertex of K1. Similarly, c12 = 1 because the index of P2 in K1 is 1 and finally, 
~ 1 3  = 3. Notice that, unlike the depicted example, the matrix has no specific 
property (symmetry, for instance). 

This representation is richer than the previous one and makes access to  neigh- 
borhood items easier, as vertex information is added to  element information. 

Remark 2.5 One can notice that the diagonal of this adjacency matrix allows the 
whole set of coeficients to be reconstructed. 

A question arises a t  this point: “Which data structure should table N e i g h  be 
implemented with?” As pointed out in Section 2.7, if the number of vertices of the 
triangulation is known, so is the number of triangles (an upper bound). In this 
case, an array can be allocated beforehand, although the triangulation algorithm 
creates intermediate (transient) triangles. Another solution consists of using a 
dynamic hash table. 

Remark 2.6 To decide which is the best structure, we face a recurrent problem. 
Shall we use a (‘rich” and “complex” structure, which is more memory consuming 
but provides more information at once or a ‘(poor” structure which is less expensive 
but gives less directly accessible information. The answer is  strongly related to the 
memory available, to the cost of retrieving stored information and also to the cost 
of updating the structure. 
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Winged-edge data structure 

Another way to  represent a mesh consists of viewing it from the point of its edges. 
This solution, as opposed to the previous one (for which a constant number of 
neighbors per face is assumed), allows edges common to more than two faces to be 
dealt with as well as with faces having an arbitrary number of vertices. We can find 
here two alternatives, the winged-edge (see [Baumgart-19741, [Baumgart-19751, 
[Weiler-19851) and the half-edge (see [Mantyla-19881, [Kettner-19981) data struc- 
tures which are edge-based structures. This kind of structure, also described in 
[Knuth-19751, essentially allows the following operations: 

walk around the edges of a given face, 

access a face from the adjacent one when given a common edge, 

a visit all edges adjacent to  a vertex. 

Hierarchical representat ion 

A more general description, useful for triangulations as well as for arbitrary meshes 
(manifold or non-manifold, conforming or not) is based upon the exhaustive enu- 
meration of the relationships between the mesh entities. 

Schematically, this description indicates the hierarchy between the entities ac- 
cording to  their dimensions (points, edges, faces, elements). Hence, we have a 
direct link such as: 

Points - Edges - Faces - Elements, 

and the reverse link 

Elements - Faces - Edges - Points. 

This type of storage, [Beall, Shephard-19971, offers numerous advantages, although 
it is rather memory consuming and expensive when updating the structure. It 
provides a direct access to the entities of a higher (resp. smaller) dimension. 

For a dynamic type of situation (such as graphical visualization, for instance), 
this kind of structure is especially appealing. 

Other represent at ions 

Some peculiar applications can benefit from a very specific organization of the 
data. For instance, for a two-dimensional triangulation, if each vertex is endowed 
with the oriented list of the neighboring vertices (sharing an edge), this structure 
allows the related triangles to be easily retrieved, [Rivara-19861. 

Other representations can also be found, for instance, the STL format which 
consists of enumerating all faces (elements) using the vertex coordinates (neces- 
sarily duplicating this information). 

To conclude, one can notice that interchange formats (STEP, IGES, SET, VDI, 
CGM, etc.), although not directly aimed at  meshing structures, can nevertheless 
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give some information on how to design data structures for meshes. The data 
structure described in Chapter 1 is the one we advocate for meshing structure. It 
has been already adopted by several groups and seems well suited for many types 
of applications. 

2.8 Robustness 

Non-robustness refers to  two notions. First, the result may not be correct (for 
instance, the convex hull of a set of points is not convex). Then, the program stops 
during the execution with an error or in a more catastrophic way (the program 
fails) with an overflow, an underflow, a division by zero, an infinite loop, etc. If 
the algorithm is reputed to  be error-free (from a mathematical point of view), this 
means that its implementation leads to  an erroneous behavior. Anyone who has 
implemented a geometric algorithm is likely to  have faced this type of problem at 
some point. 

This section has several aims. First, we give a very brief overview of the 
potential reasons why numeric problems arise; we recall how real numbers are 
encoded on most computers, and explain why the issues are even more difficult 
in a geometric context. We then provide some guidelines to reduce these risks, 
and finally we give an overview of the state-of-the-art techniques used to make 
floating-point operations robust. 

Robustness issues 

Numerical issues in scientific computing have been known since the early days of 
computers. The core of the problem lies in the limited resources used to  encode 
numbers (the bits) and the drawbacks are twofold. First, the biggest and small- 
est numbers that can be represented are upper and lower bounded, so that some 
calculations cannot be carried out if the intermediate value exceeds these bounds. 
Second, real numbers have to  be represented approximatively since one cannot 
squeeze infinitely many of them into a finite number of bits. These difficulties can 
yield to erroneous results and also generate undefined operations such as &5 with 
x < 0 or x x y with x = 0 and y = 00. The unpredictability of floating point opera- 
tions across different platforms led in the eighties to  the adoption of the IEEE-754 
standard [Goldberg-l991], [Kahan-19961. In addition to  the previously mentioned 
exceptions, this standard also defines several floating-point storage formats and 
templates for the +, -, x ,  + and ,f algorithms, that is, any implementation of an 
operation should produce the same result as the operation provided by the stan- 
dard. Note that this makes calculations consistent across different architectures, 
but does not eradicate exceptions at  all. 

More practically, the way floating-point numbers are represented on most mod- 
ern processors is in the form mantissa x 2exponent where the mantissa is represented 
by a p bits binary number. For example, p = 24 (resp. p = 53) for simple (resp. 
double) precision in the IEEE-754 standard. Rephrasing the issues raised above, 
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how should one proceed when calculations produce numbers that cannot be rep- 
resented using that many bits? If one does not care so much about exactness, 
the standard format specifies how such results have to  be rounded to fit back into 
the finite representation. If one does care about exactness, one needs to  switch to  
another representation. 

One solution is the multiple-digit format based on a sequence of digits and a 
single exponent. Another solution is the mult iple- term format where a number 
is expressed as a sum of ordinary floating point words. This latter approach has 
the advantage that the result of an addition such as 240 + T 4 0  is encoded in two 
words of memory while the multiple-digit solution requires 81 bits and incurs a 
corresponding speed penalty when further processed. 

Computational geometry 

From the computational point of view, geometric computations are even more 
difficult to  handle than pure numerical calculations. A simple remark makes this 
point clear. Consider for instance, the computation of the solution of a general 
matrix system by any suitable method. A solution close to the exact one, within 
a given precision, is usually obtained, except in some pathological cases. Let us 
now consider two examples of geometric calculations. 

The first example concerns the problem of computing the convex hull of a set 
of points S = (PI ,  ..., P,) in the plane. 

Clearly, two points Pi and Pj contribute to the convex hull if all the remaining 
points lie on the same side of the line passing through Pi and Pj. So that the only 
predicate one needs for the computation is the so-called orientation test that, for 
three points A,  B and C, indicates whether C lies on one side or the other of the 
line passing through A and B (Figure 2.17). 

Figure 2.17: A convex hull that  i s  
n o n  convex .! 

Using this predicate, the output of any convex hull algorithm consists of a 
combinatorial structure over S, namely the list of vertices defining the convex 
hull, together with a consistency condition stating that the corresponding polygon 
is convex. But should a predicate calculation yield an erroneous result, the result 
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Orientation(A,B,C) = 

computed may not be convex (as on the figure where Pi+l was reported to lie on 
the right side of PiPi+z). The result may be 100 % erroneous with respect to  the 
goal aimed at, but we could possibly consider that this result is close enough to  
the theoretical result, if the error is small, as in the previous example, a correct 
answer about a few percent. 

The second example corresponds to a more critical situation. To construct 
a Delaunay triangulation using an incremental method, one has to determine 
whether a given point belongs to the circumscribed disk (in two dimensions) of an 
element. The predicate used in this case is the incircle predicate described above. 
A slight error, however minor, in the answer can lead to  a triangulation that may 
be correct although it does not satisfy the Delaunay criterion or to  overlapping 
elements. With respect to  the goal expected, one can get an approximate answer 
within a few percent (the result is valid but the triangulation is not Delaunay) or 
a totally wrong answer (no correct triangulation at  all). 

Here, we have emphasized two different cases, one where a result is obtained 
and the other one for which the errors are so great that no result a t  all can be 
obtained. Notice also that such errors can lead to a “fatal” error, a program 
failure. 

Ax A, 1 
B, By 1 , (2.1) 
c x  c, 1 

inCircle(A, B ,  C, D )  = 

A, A, A:+A2 1 
8 

(2.2) 
B, By B2+B8 1 
c, c, c;+cy 1 ‘ 

D, D, D:+Dp 1 
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We analyze the position of point D with respect to the circle (disk) passing through 
A,  B and C. 

Exercise 2.18 What is  the algebraic degree of bucket sort and quicksort algo- 
rithms described in Section 2.4? 

Robust and efficient floating-point geometric predicates 

We are interested in evaluating the sign of the predicates. We will assume in the 
discussion that the sole operations required are the addition and the multiplication. 
As mentioned above, the main issue of floating-point calculations is related to 
rounding and we noticed that the arbitrary precision computations solved this 
difficulty. Unfortunately, the overhead makes these solutions impractical. In this 
context and especially since we are interested in the sign of the expressions rather 
than their value, it was observed that floating-point calculations were actually 
very often reliable, so all that was needed was a way to take care of the confusing 
situations. To that end, the following paradigms have been proposed. 

a Interval analysis: the evaluation of an expression is replaced by that of guar- 
anteed upper and lower bounds on its value. When the sign is needed, if 
the interval does not contain 0, one can conclude. Otherwise, the evaluation 
must be performed again with higher precision (or by any other method). 

Arithmetic filters: the evaluation of an expression is accompanied by that of 
the maximum absolute error. 

Details can be found in [Shewchuk-l997b] and also in [Devillers-Preparata 19981, 
for instance. Several methods are available (or have been studied) and it seems 
likely that these methods will be further refined and, possibly, work their way into 
real-world applications. 

Remark 2.7 I n  mesh generation, the main idea is  to make sure the algorithm will 
provide a valid result, not necessarily strictly conforming to the theory but usable 
(a non-convex convex hull is  theoretically awkward although its use depends on  the 
application envisaged). 

2.9 Optimality of an implementation 

The design and the implementation of a computer program performing some task 
usually requires taking care of various aspects. What is needed is to design the 
algorithm, to implement and test it and, possibly, to profile it (speed and memory 
requirements). Optimizing a computer program consists of optimizing its running 
time and/or its memory requirements, or fine tuning its time-space trade-off. In 
this section, we briefly review some features any programmer should be familiar 
with when pursuing these goals (dealing with efficiency and robustness). 
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Memory handling 

Broadly speaking, the memory handling of a computer by the operating system is 
usually divided into two categories, the static and the dynamic memories. Basi- 
cally, the static memory is a chunk used in a stack-like manner to store the local 
variables and the parameters used in the user-defined procedures and functions. 
The dynamic memory is a pool the user can request slots from in a dynamic 
fashion. 

In Section 2.2, we saw that allocating and de-allocating dynamic memory could 
be very costly. A good strategy sometimes consists of writing a special case ded- 
icated memory handler using particular features of the requests processed. For 
example, if one knows beforehand how much space is going to  be needed, a linked 
list or a stack may be better implemented by a static array. 

Another problem is fragmentation. If too many small slots are requested and 
freed too often, the memory map may end up like a piece of gruyere cheese. 
In this case, although a significant amount of memory may be available overall, 
any request for a big chunk may fail since no such continuous block is available. 
Garbage collecting must then be used to  rearrange the memory. 

Finally, there is another problem worth mentioning. It is desirable to  group into 
memory the data manipulated in a program so as to  avoid, as far as possible, cache 
defaults which are extremely costly. This kind of problem is rarely mentioned. 
Cache memory is random access memory RAM that a computer microprocessor 
can access more quickly than it can access regular RAM. As the microprocessor 
processes data it looks first in the cache memory and if it finds the data there 
(from a previous reading of data), it does not have to do the more time consuming 
reading of data from larger memory. Therefore, a judicious data organization can 
save a lot of time in memory reading because of cache defaults. 

Running time profiling 

When trying to  reduce the time required by a calculation, two questions have to  
be addressed: 

a which are the most time consuming functions (procedures) of the program? 

a can one significantly reduce the amount of time spent therein? 

One way of knowing how much time is spent in the different steps of a computer 
program is to  use a profiler. Most modern computers come with tools geared to  
this goal and the functionalities offered are twofold. First, the number of times a 
given block is called (typically a function) is reported. Second an estimate of the 
time spent within the block is given. This value is obtained either via a compiler 
directive or by sampling the program counter regularly. In the latter case, the 
desired value is obtained by calling (and loading) very often (usually several times 
per period) the internal clock, thus running the risk of distorting the measurement. 
Indeed, this estimate may not be very sound for functions whose unit call cost is 
much less than the sampling grain. Getting much better information can be done 
by running a system call when stepping in and out of a particular function to  
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retrieve the system time, thus slowing down less dramatically the execution time 
and not altering the measurement as much. 

Several strategies may be employed to optimize a piece of code. In practical 
terms, a set of simple rules can be followed. Before reviewing this briefly, we 
provide Table 2.1 that shows, with respect to  the number of cycles, the total cost 
of the classical operations (at the turn of the century, for some machines). 

M4 I 

Table 2.1: Number of elementary cycles for some classical operations on a range 
of computer architectures. 

In this table, the computer architectures Mi are the following: 

M i :  HP PA 7100 

M5 : Intel Core 2 Duo 

Mz : Sun HyperSparc 
M3 : IBM power pc  G5 M4 : Apollo 68040 

The simple analysis7 of Table 2.1 shows that some operations must be avoided 
as far as possible. To this end, one has to  find another way of implementing 
the desired functionality while asking the question about the pertinence of such 
an operation (say, for instance, a distance calculation d, if d2 makes it possible 
to decide unambiguously, thus allowing to avoid the extra J call. Similarly, 
comparing triangle angles can be achieved by comparing their cosine values). 

Following these remarks, we propose here some ideas to optimize a program. 
As will be seen later, this approach concerns high level as well as low level func- 
tionality, some of these operations being simply common sense: 

0 analyze the predicate likely to  give the desired information. If several pred- 
icates can be used, pick the best one (in terms of its degree), 

0 if a predicate has a high degree, look for another formulation of the problem 
in which this predicate is no longer involved, 

0 examine the operations used and keep track of costly operations, 

7The goal is not to compare such or such an architecture but to point out that significant 
differences exist between numerical operations. 
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a minimize the number of parameters of a function, 

a avoid indirections as far as possible (pointers or, even worse, pointers to  
pointers), 

a use arrays if possible (take care of multi indices arrays or matrices with more 
than 3 indices, for example), 

a avoid small loopss (typically a loop i = 1 , 2  is not legitimate) and in the case 
of nested loops, use the most judicious implementation, 

a etc. 

To conclude and without pursuing this discussion further, notice that opti- 
mizing a program can lead to  a less elegant or less formal implementation, for 
example, when a recursive call is replaced by a loop. 

2.10 Examples of generic algorithms 

For the sake of simplicity, in this section we consider triangular meshes only, 
although most of the constructions described can be extended (more or less easily) 
to other kinds of meshes. The following examples are given to emphasize how to 
benefit from algorithms and data structures described in the previous sections 
when dealing with applications related to mesh generation. 

Therefore, numerous examples are linked to  frequently encountered operations 
in various tasks in mesh generation or mesh modification algorithms. The order 
in which examples are given is not strictly significant. Some of these examples are 
purely academic, others deal with more real-world applications. 

Remark 2.8 The following examples can be seen as a set of exercises. Starting 
from data assumed to be known beforehand and depending on  the goal envisaged, 
the reader is  welcomed, on  the one hand, to examine the proposed solution and, 
on the other hand, to look for alternate solutions to the same problem. 

Enumerating the ball of a vertex (1) 

Given a mesh and a vertex of this mesh, the ball of this vertex is the set of elements 
sharing the vertex. Here, we propose a method which, for any vertex of a mesh, 
provides the list of the elements in its ball. Our interest is motivated by the 
fact that vertex balls are commonly used in numerous parts of mesh generation 
or mesh optimization algorithms (see Chapter 18, for example). The proposed 
method works without the knowledge of the adjacency relationships between the 
elements. 

Let n e  be the number of triangles in the mesh and let T r i a ( 1  : 3 , l  : n e )  be the 
array that stores the vertex indices of the mesh elements. Let n p  be the number 

8Theoretically, compilers should be able to perform this task in most cases. 



84 MESH GENERATION 

of mesh verticesg. The array Tab(1 : n p )  is initialized to the value -1. Now, in 
view of a further usage explained below, we fill the arrays T a b  and Lis t  (of length 
3 x n e )  as follows: 

Algorithm 2.15 Construction of the ball of the mesh vertices. 

Procedure PrepareBall (Trial 

FOR i = 1,ne 
ij t 0 

FOR j = 1,3 
s t Tr ia ( j ,  2) 

List(i j)  t Tab(s)  
Tab(s) t ij 
ij t ij + 1 

END FOR j 
END FOR i 

It is now easy to obtain the indices of all the elements sharing a given vertex. Let 
P be the index of the considered vertex, then its ball is obtained as follows: 

Algorithm 2.16 Enumerating the ball of a vertex. 

Procedure Ballpoint 1 (PI 
ij t Tab(P) 
I F  ij # -1 THEN 

i = y + 1 ,  

j = ij - 3(i - 1) + 1, 
(vertex P is  the vertex of element i), 

(vertex P is  the vertex of index j in  element i), 
ij t List(i j)  and back t o  I F .  

ElSE END. 

On completion of this procedure, the different indices i obtained in the algorithm 
are the indices of the elements" in the ball of the point P used as entry point 
while for each triangle of index i ,  the index j gives the position of point P. 

Note that the above method consists of two algorithms. The first one is a 
preparation step which constructs the relevant tables. Once that has been done, 
the second one can be used repeatedly to access the ball of any vertex in the mesh. 

Enumerating the ball of a vertex (2) 

Here, we consider a similar problem but now only one ball is of interest (i.e., we 
consider only one vertex P )  and, in addition, we assume that the neighboring 
relationships are available (see below how to compute this information). 

gThe points are assumed to be sequentially numbered from 1 to np ,thus, in a connected way, 
if this last property is not satisfied, np must be the largest number (index) of a point. 

'OIn what follows, depending on the context, we will not differentiate between the index of an 
entity and this entity itself. For instance, point P and point of index P must be considered as 
two possible expressions of the same notion. Similarly, element k is the element of index k .  
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Given a triangle, its three neighbors are given via a table Neigh(1  : 3 , l  : n e )  
(where n e  is the number of triangles). Indeed, k = N e i g h ( j ,  i )  means that element 
k is adjacent to element i and edge j of element i is the shared edge (while k = 0 if 
edge j of element i is a boundary edge). Also we assume that vertex j of triangle i 
is opposite edge j of this triangle (see Chapter 1). Now, let ko be a triangle having 
a vertex P,  the following algorithm computes the indices of the elements in the 
ball of P (we assume that P is not the index of a boundary vertex): 

Algorithm 2.17 Enumerating the ball of a vertex. 

Procedure Ballpoint2 (PI 
k + ko ,  ltab + 0, 
REPEAT 

ltab + ltab + 1, 
tab(1tab) + k 
take j the index of P in  triangle k ,  
take jnest the index following index j ,  
k + N e i g h ( j n e z t ,  k )  I 

WHILE k # k o .  

On completion, ltab is the number of triangles in the ball of vertex P and the 
indices of the desired triangles are the k’s in the array tab. 

Exercise 2.19 Examine the case where the vertex P in question is  a boundary 
vertex. Modify the above scheme accordingly. (Hint: take care of the case where 
N e i g h ( j ,  i )  = 0).  

Notice that the proposed scheme does not extend to  solving the same problem 
when a tetrahedral mesh is considered, where a more subtle algorithm must be 
defined as it is not easy to turn around a vertex. 

Exercise 2.20 Construct the ball of a vertex using the adjacency matrices de- 
scribed in Section 2.7. 

Searching operations 

The problem is to  find the item (the box, the cell or again the element) of a 
structure (a grid, a quadtree or an arbitrary mesh) within which a given point 
falls. Such problems are so-called searching problems or localization problems or 
again point location problems and are fundamental for various mesh generation 
methods. Let x ,  y be the coordinates of the given point. 

Searching in a grid. Using a grid (Section 2.6) is a source of simplification by 
many respects. First, the indices of a box containing a point can be computed 
trivially. Second, it is easy to  have access to the neighborhood of a given box and 
to that of a given point. 
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Let A, (resp. A,) be the size of the grid box in direction x (resp. y), the grid 
being constructed (see above) with the point XO, yo as left bottom corner. Then 

and, = IT] x - xo and and, = IT] Y -Yo 
are the two indices of the box containing the point. Actually, and, as well as 
ind, are integer values while the point coordinates could be floating-point values. 
Depending on the information stored in the grid, these indices can be used for 
various purposes (for instance, to find a point close to the point considered, any 
point in the box being a candidate, or, in the case of an empty box, any point in 
a non-empty box found in a certain neighbourhood of the initial box). 

Searching in a quadtree. The easiest way to locate the quadtree cell (a PR- 
quadtree here according to Section 2.6) containing a given point is to start from 
the root of the tree and to use the values of the coordinates of the center of this 
cell to determine which one of the four children contains the given point. The 
center of a cell is easily obtained based on the box indices, we have: 

AX A 
x, = and, Ax + - and y, = and, A, + 2 , 

2 2 

where x,, y, are the coordinates of this centre. The process is then recursively 
performed until a leaf (a terminal node) is reached. 

An alternative approach is based on the underlying binary encoding of the 
quadtree by which a cell can be defined by an index consisting of a series of 0 
and 1. The root is the 0 cell while the four first children can be identified by the 
following indices (Chapter 5): 

(00,01,11,10) 

where 00 is the bottom left cell, 01 is the cell on the right of the previous one, 
11 is the top right cell and 10 is the cell on the left of the previous (it is also the 
cell on top of the 00 cell). Actually, adding 01 to an index enables us to go to the 
cell on the right while adding 10 at the current index leads to the cell top of the 
initial cell (at the lower level, this effect will be obtained when adding 0001 and 
0010 respectively, and so on). 

Thus, binary operations can be used to locate a given point when a suitable 
system of coordinates has been defined. 

Searching in a mesh. In this case, we assume that we are given a triangular 
mesh 7 covering a convex (planar) domain (for the sake of simplicity we consider 
this simple case only) and we want to find which element in 7 contains point P. 

Let K be a triangle in 7 and let V1, Vz, V3 be its three vertices whose coordi- 
nates are denoted by xi and yi, then the signed surface area of K is: 

S,=ll x2 -XI x3 -x1 

2 Yz -Y1 Y3 -Y1 
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Actually, we can define SK as twice the above value so as to  avoid a division 
(notice that, due to the numbering convention of Chapter 1, SK is strictly positive 
if K is a valid element). 

Let us define the virtual triangle K j  as the triangle K where the vertex V, of 
K is replaced by the point P considered. Then, we can compute SKJ, ( j  = 1 ,3 )  
whose sign enables us to determine" where the point P is located with respect to  
the half-planes bounded by the lines supporting the three edges of K (note that 
7 regions are defined in this way). According to  the sign of S K i ,  we pass through 
the corresponding neighbor of K and we repeat this process until the three SK3's  
are positive (assuming that P is distinct from all the mesh vertices) meaning that 
the visited triangle contains P. 

Based on these observations, a searching algorithm is easy to design and im- 
plement. One has to  select a triangle KO and then follow the above scheme. 

Rapid searching procedure in an arbitrary mesh. The previous algorithm 
can be very time consuming if a large number of elements needs to be visited 
between triangle KO, the initial guess, and the solution triangle. This could lead 
in fact to a large number of area computations. Therefore, this algorithm could 
be combined with a grid (or a tree-like structure). A grid, or a tree-like structure 
enclosing the mesh is constructed and, for each cell one mesh vertex contained 
in it, if any, is recorded. In our previous examples, we showed that it is easy to  
find the cell of a grid or tree containing the given point. Also, a mesh element 
is associated with every point recorded in the cells. Hence, we can associate the 
given point with a close mesh point in the same cell. Any element, KO, having 
this mesh point as a vertex can be used as an initial guess for the above searching 
procedure. In this way, the number of visited triangles is reduced and the number 
of necessary computations is reduced as well. 

Remark 2.9 Note that the grid (the tree structure) could be defined in various 
ways depending o n  the nature of the dataset. In this respect, f o r  a grid, the number 
of boxes (indeed the values A, and Ag as introduced above) and thus the occupation 
of the boxes are parameters that strongly affect the e f ic iency  of the whole process. 

Intersection of a line segment with the elements of a mesh. Intersection 
problems are important components for various meshing techniques. One such 
problem is the following: given a mesh and a line segment between any two mesh 
vertices, construct the list of elements that are intersected by this line segment. A 
modification of the above searching technique allows for this task. 

Enumerating the set of edges in a mesh 

In this section, we describe several examples of methods for creating the list of 
the edges in a mesh. Let nu be the number of edges, which we will label from 1 
to n a  in the process of building the lists. In general, nu is not known beforehand, 

"We meet again here the barycentric coordinates. 
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so that in practice, an upper bound namax for na is needed to  allocate memory 
resources for the arrays used. 

An elementary method. Let ne be the number of elements in the mesh and 
let Tab(1 : 2 , l  : narnaz) be the table used to  store all the edges. The following 
procedure enables us to  fill the table Tab: 

Algorithm 2.18 Enumerating the edges in a mesh. 

Procedure TableEdgel (1 
na + 0 ,  
FOR i = 1,ne  

FOR j = 1,3 
let e1,ez be the indices of the endpoints of edge j of element i, 
k + 1 and IF found is a boolean, set found = .FALSE., 
WHILE ( found = .FALSE. AND k < na + 1 )  

IF [ (el = Tab(1, k )  AND e2 = Tab(2, k ) )  OR 
(ez = Tab(1, k )  AND el = Tab(2, k )  ) 1 , THEN found = .TRUE. 
ELSE k t k + 1 
END IF 

END WHILE 
IF found=.FALSE., the edge considered is a new one, THEN 

na t na + 1 AND TAB(1,na) t e l ,  TAB(2,na) t e2,  

END IF 
END FOR j 

END FOR z 

On completion, na is the number of edges and Tab contains the mesh edges (in 
fact, the indices of the edge endpoints). Notice that the number of times the 
comparisons are performed in the inner loop is proportional to  ne x nu. This 
method is very time consuming in terms of complexity; however, it can handle a 
non-manifold surface mesh in R3 (a mesh is said to be manifold if all of its edges 
are shared by exactly two triangles or belong to  the boundary, see Chapter 1) 
without any changes. 

Using an edge coloring scheme. In this example, we build the same table 
using a technique of edge coloring to ensure that every mesh edge is recorded only 
once. We assume that the mesh is manifold (if a surface mesh is considered) and 
that we can access the neighboring elements across each internal edge, i.e., we have 
constructed a list Neigh(j,i) which is the index of the neighbor of element i on 
side j .  (See the next section.) Let CoZorTab(1 : 3 , l  : ne) be a table which stores 
a color value (0 or 1) for edge j of element i in ColorTab(j, i). Then we can build 
Tab(1 : 2 , l  : na) as in the first example by: 
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Algorithm 2.19 Edge coloring scheme. 

Procedure TableEdge2 (1 
na t 0 ,  
FOR i = 1,ne 

FOR j = 1,3 
let e1,eZ be the indices of the endpoints of edge j in element i, 
I F  ColorTab(j, i) = 0 THEN, na t na + 1, 
set Tab(1,na) = e l ,  Tab(2,na) = ez and ColorTab(j,i) = 1 ,  
k = Nezgh(j ,  z), let j k  be the index of this edge in element k ,  
set ColorTab(jk, k )  = 1 ,  I F  k # 0. 
ELSE, edge j of element i has already been visited. 
END I F  

END FOR j 
END FOR i 

On completion, na  is the number of edges and T a b  contains the edges. The outer 
pair of loops of this method and the first one are the same. But the inner loop of 
this method is only executed 3 x n e  times. We reduced the amount of computation 
by using the large temporary table ColorTab. Note that this algorithm, serving as 
an example of static coloring, requires the input of the neighborhood relationships 
between the elements so as to know, for a given element, its (one, two or) three 
neighbors. 

Notice also that this algorithm does not extend to three dimensions as the 
coloring a vertex does not identify an edge (while a similar property holds for a 
face). 

Using hashing. In the two previous examples, we constructed arrays for the 
edges of a graph which in fact consists of labeling each edge with a number. The 
arrays give a direct access to the endpoints of the edge from the edge number. 
But to  determine the number of an edge from its endpoints, you have to search 
that table. In this example, we build a set of lists that provide the opposite access 
to edge data, i.e., we construct a list that allows a direct access to the number 
of an edge from the edge endpoints. This construction is an example of hashing 
(Section 2.5). It works even in the non-manifold case where an edge is shared by 
more than two elements. 

Let n e  be the number of elements, and el and e2 be the endpoints of an edge a. 
We assume that we have a table Sum( 1 : 2 * n p )  where n p  is the number of vertices 
in the mesh, a table L i n k ( 1  : n a m a x )  with namax  > n a  the number of edges in 
the mesh and a table M i n ( 1  : namax) .  

We first give the construction, then we add some comments. The construction 
consists of (after initializing all the arrays to  0): 
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Algorithm 2.20 Construction of the edges of a mesh. 

Procedure TableEdge3 (1 
na + 0 
FOR z = 1 , n e  

FOR j = 1,3 
compute s = e l  + e2, 
IF ~ u m ( s )  = 0, na t na + 1, Sum(s) + na, M i n ( n a )  t min(e1, ez ) ,  
ELSE IF Min(l) # mzn(e1,ez) with 1 = Sum(s) ,  THEN 

(A) IF Lznk(l) = 0 THEN 
na t na + 1 ,  Link(l) t na and M i n ( n a )  t mzn(e1, e2) , 
ELSE, consider m = Link(l) ,  
IF Min(m) # mzn(e l ,e2 ) ,  THEN set l = m and back to ( A ) .  

END IF 
END FOR j 

END FOR z 

As a result, na is the number of edges in the triangulation. 

More precisely, for each element edge, we compute an index s as the sum of its 
two endpoint numbers giving an entry point in the table Sum. A zero value for 
Sum(s) means that the current edge must be considered as a new edge (thus, it 
could be stored or processed as desired). Otherwise, one or several edge(s) with 
the same sum index have already been encountered. Hence, we just have to  check 
if any of these edges matches the current edge (thanks to  Link) .  This list traversal 
is done until the current edge is found (thanks to  Min) .  Actually, if it is found, 
we proceed to the next edge, if not, it is inserted at the next available entry in 
Link. 

Based on this construction, the edges can be retrieved using the following 
procedure: 

Algorithm 2.21 Retrieving the mesh edges. 

Procedure RetrieveEdge (1 
na t 0 
FOR s = 1,2 x np 

IF k = Sum(s) # 0, we find an edge such that e l  + e2 = s and 
mZn(e1,ez) = Min(k)  and, while scanning the array Link we find 
all the edges having the same sum of indices s. 
Practically, these edges can be obtained as follows 

na t na + 1 ,  the pair s - Min(k) ,  Min(k)  is the edge na,  
WHILE 1 = Link(k) # 0 
n a + n a + l ,  
k t l and the pair s - Min(l) ,Min(l)  is the edge na.  
END WHILE 

END IF 
END FOR s 

Many variations of this example can be obtained by modifying the keys of the 
hashing (replacing the Sum and the M i n  by different encoding schemes) or by 
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modifying the purpose of the algorithm. For instance, it is possible to obtain the 
list of the boundary edges. Note that different choices of hashing function lead 
to different numbers of collisions (the number of edges with the same key) which 
could dramatically affect the efficiency of the method. 

Exercise 2.21 Analyze how this technique could be used to improve the eficiency 
of the elementary method in the first example. 

About set membership 

The question is here to  decide (quickly) whether an edge is a member of a set of 
edges stored in an array. 

Depending on how the edge table is constructed (see the examples discussing 
how to construct this table in the previous section), finding if a given edge is a 
member of this table can be efficiently solved provided a suitable data structure is 
used (conversely, a less suitable data structure leads to  a time consuming method). 

In practical terms, if a hashing technique has been used to  establish the edge 
table (see the above procedure), checking whether an edge is a member of this 
table is easy. Let e l ,  e2 be the two indices of the edge, then: 

Algorithm 2.22 Check the existence of an edge e l ,  e2 in a mesh. 

Procedure ExistEdge (el , e2) 

compute s = el + e2, 

IF k = Sum(s) # 0, one o r  more edges 
such that el + e2 = s exist. 
IF Min(k)  = min(e l , e z ) ,  then edge e1,e2 belongs to the table. 
ElSE, scan the table Link to find 

all edges having the same sum of indices s: 
WHILE 1 = Link(k) # 0 ,  k t 1 and analyze Min(k) .  

ELSE, the edge is not stored. 
END IF 

provides the correct answer. Notice that the efficiency to  answer the question 
depends on the way the edge table has been constructed. 

Constructing the neighborhood relationships 

We consider again a triangular mesh and we would like to  construct the neighbor- 
hood relationships from element to  element. Let Neigh(1  : 3 , l  : n e )  be this table, 
then k = N e i g h ( j ,  i) means that element k is adjacent to element i and edge j 
of element i is the shared edge (while k = 0 if edge j of element i is a boundary 
edge). 

To construct this table, a variation of the algorithm previously employed to  
construct the edge table can be used where additional information is associated 
with the edges at  the time they are visited. In this respect, it is necessary, for a 
given edge, to  know the element of which it is a member and to know its index in 
its element. 
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The first time an edge is visited, for element i and index j ,  these two values 
are stored. When, say for element I at index J ,  the edge is met again then, the 
two following relationships are completed: 

N e i g h ( j ,  i) = I and Neigh(  J ,  I )  = i . 

Exercise 2.22 Discuss the non-manifold case (for a surface) where more than 
two triangles share a given edge. 

St at ic and dynamic coloring 

In a previous procedure, we showed one application of static coloring applied to  
some items of a mesh with the purpose of deciding quickly whether such or such 
a situation occurs. 

In this case, such a tool can be seen as a boolean operator where the status of 
an item is defined as . T R U E .  or . F A L S E .  (or 0 or 1 )  depending on the situation. 
In some cases, a two-flag operator is inefficient and dynamic coloring can be used 
more effectively. 

Let us give a very simple example. We would like to  construct balls about each 
vertex using a technique like the second enumeration method for balls discussed 
earlier in this chapter. For this purpose, let Lis t i  be a list of the indices of elements 
in the ball around the vertex of index i, and let ColorTab(1 : n e )  be a color table 
for the elements of the mesh. An initial solution ( n p  being the number of internal 
vertices) can be as follows: 

Algorithm 2.23 Construction of the ball of points. 

Procedure Ballpoint3 0 
FOR j = 1,ne 

END FOR j 
FOR i = 1,np 

ColorTab(j)  + 0 

define Listi as the empty l ist  
find an element of index k which belongs t o  the ba l l  of vertex i 
store k into Listi and se t  ColorTab(k) = 1 
WHILE element k has a neighbor of index j that has the vertex i 
AND that ColorTab(j) = 0 

k + j ;  ColorTab(k)  = 1; 
END WHILE 
FOR j = 1,ne 

END FOR j 
ColorTab(j)  + 0 

END FOR i 

This method uses two colors which must be maintained, which in turn requires 
additional processing of ColorTab to  reset its entries input to  zero. One way to  
avoid this would be to  maintain a list of the element indices that were encountered 
for the current a value and use it to reinitialize the relevant ColorTab entries to  0. 
Another way is to use dynamic coloring method using colouring values 1 through 
n p  as follows: 
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Algorithm 2.24 Construction of the ball of vertices. 

Procedure Ballpoint4 0 
FOR j = 1 , n e  

END FOR j 
FOR i = 1 , n p  

ColorTab(j)  t 0 

define Listi as the empty list 
find an element of index k that belongs to the ball of vertex i 
store k in List i  and set ColorTab(k)  = i 
WHILE element k has a neighbor of index j having the vertex i 
AND that ColorTab(j)  < i 

END WHILE 
k t j; ColorTab(k) t i ;  

END FOR z 

Here the vertex label i is used as a dynamic color code to simplify the manage- 
ment of the element status which is automatically updated without any explicit 
processing. 

About the construction of a dichotomy 

The dichotomy approach, illustrated by a small example here, is a useful approach 
to a variety of meshing problems. This example involves a partition of an interval 
a < x < b which is a set of points xi for i = l...N such that a = X I ,  b = X N  and 
xi < xi+l. Suppose that we are given a continuous function f ( x )  defined on the 
interval a < x < b and a tolerance value r. We wish to  construct a partition of 
this interval such that If (xi+l) - f (xi)l 5 r for each sub-interval. 

The following method uses the dichotomy approach to build tables T a b  and 
Next which store the desired partition. 

Algorithm 2.25 Construction of a dichotomy. 

Procedure IntervalDichotomy 0 
Tab(1)  + a  , Tab(2)  t b 
i t 1 ,  ltab t 2 ,  N e z t ( 1 )  t 2 
REPEAT 

z = Tab( i )  ; y = T a b ( N e z t ( i ) )  

'I" ltab t ltab + 1 ,  Tab(1tab) t 
Nezt(1tab) t N e z t ( z ) ,  N e z t ( i )  t ltab 
ELSE z t N e z t ( i )  

IF If(Y) - fb) l  > E s  

UNTIL i = 2.  

Note that this kind of algorithm has various applications and, in some sense, 
can emulate a recursive process, whereas this capability is not necessarily included 
in some programming languages. 

* * *  
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We have discussed a few examples of algorithms to illustrate how to use such or 
such basic structures or basic algorithms. Obviously, numerous other application 
examples can be found and, actually, meshing algorithms as well as mesh opti- 
mization algorithms or, in general, mesh manipulation algorithms or even mesh 
visualization algorithms can take advantage of using such or such basic ingredients 
in order to easily find or process the mesh entities that are involved in the whole 
procedure. 



Chapter 3 

A Comprehensive Survey of Mesh 
Generation Methods 

Mesh generation has evolved rapidly over the last decades and meshing techniques 
seem to have reached a level of maturity that allows them to calculate complete 
solutions to  complex three-dimensional problems. Typically, unstructured meshes 
for complex three-dimensional domains of arbitrary shape can be completed on 
current workstations in reasonable time. Further improvements may still be ex- 
pected, for instance, regarding the robustness, reliability and optimality of the 
meshing techniques. 

Early mesh generation methods employed meshes consisting of quadrilaterals in 
two dimensions or hexahedra in three dimensions. Each vertex of such meshes can 
be readily defined as an array of indices and these types of meshes are commonly 
referred to as structured meshes. By extension, any mesh having a high degree 
of ordering (for example, a Cartesian grid) is said to be structured. More recent 
developments have tried to cope with the complex geometries (for instance, in 
CAD models involving multiple bounding surfaces) that were difficult to handle 
(i.e., to  mesh) with fully structured meshes. Nowadays unstructured meshes are 
commonly associated with finite element methods to provide an efficient alternative 
to structured meshes. 

* * *  
The purpose of this chapter is to  provide a comprehensive overview of the 

current techniques for both structured and unstructured mesh generation and to  
discuss their intrinsic advantages or weaknesses. These techniques will be further 
discussed in more detail in the relevant chapters of this book. First, a preliminary 
classification of existing meshing techniques is proposed. One section is dedicated 
to surface meshing as surfaces play an important role in unstructured mesh gener- 
ation techniques. Finally, a brief outline of mesh adaptation approaches is given. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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3.1 Classes of methods 

Despite many conceptual differences (since mesh generation methods have been 
developed in different contexts and for different applications), the classification of 
these techniques into seven classes has been proposed, for instance, in [George-19911. 
Although this classification reflects the main approaches published, it appears that 
several techniques can be gathered together due to  their intrinsic properties, thus 
leading to a classification into only five categories. 

Class 1. Manual or semi-automatic methods. 
These are mainly applicable to  geometrically simple domains. Enumerative 

methods (mesh entities are explicitly user-supplied) and explicit methods (which 
take advantage of the geometric features of the domain) are representative of this 
class. 

Class 2. Parameterization (mapping) methods. 
The final mesh is the result of the inverse transformation, or mapping, of a 

regular lattice of points in a parametric space to  the physical space. Two main 
approaches belong to  this class, depending on whether the mapping function is 
implicitly or explicitly defined: 

algebraic interpolation methods. The mesh is obtained using, in one popular 
example, a transfinite interpolation from boundary curves (surfaces) or other 
related techniques that are explicitly defined, 

solution-based methods. The mesh is generated based on the numerical so- 
lution of a partial differential system of equations (elliptic, hyperbolic or 
parabolic), thus relying on an analytically defined function. 

Class 3. Domain decomposition methods. 
The mesh is the result of a top-down analysis that consists of splitting the 

domain to  be meshed into smaller domains that are geometrically close to a domain 
of reference (in terms of shape). Two main approaches have been proposed, the 
difference being the structured or unstructured nature of the mesh used to cover 
the small domains: 

block decomposition methods: the domain is decomposed into several simpler 
sub-domains (blocks), each of which is then covered with a structured mesh 
(obtained for instance, using a mapping technique, as seen above), 

a spatial decomposition methods: the domain is approximated with a union of 
disjoint cells that are subdivided to  cover a spatial region object, each cell 
then being further decomposed into mesh elements. Quadtree and octree- 
based techniques are representative of this class. 

Class 4. Point-insertion/element creation methods. 
These methods generally start from a discretization of the boundary of the do- 

main (although this feature is not strictly required) and mainly consist of creating 
and inserting internal nodes (elements) in the domain. Advancing-front (element 
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creation) and Delaunay-based (point insertion) approaches are two methods be- 
longing to this class. 

Class 5. Constructive methods. 
The final mesh of the domain is the result of merging several meshes using 

topological or geometric transformations, each of these meshes being created by 
any of the previous methods. 

Remark 3.1 Needless to say, this classification is necessarily arbitrary. However, 
while not unique, it does account for the different approaches published. Other 
methods not included in this classification exist, which are designed to handle spe- 
cific situations. 

A difficult task consists of clearly identifying the method capable of providing 
an adequate mesh, related to  the field of application. Basically, the geometry of 
the domain and the physical problem direct the user towards one method or the 
other. 

On the other hand, the emphasis can be put on the type of meshes created 
by any of the proposed methods. From this point of view, meshing techniques 
can be classified into two types, according to  whether they lead to  structured or 
unstructured meshes. 

3.2 Structured mesh generators 

In this section, we briefly describe the main approaches generally used to create 
structured meshes. While not claiming exhaustivity, the techniques mentioned 
here are representative of the current developments in this field. 

The basic idea common to all structured mesh generation methods consists 
of meshing a canonical domain (i.e., a simple geometry) and mapping this mesh 
to a physical domain defined by its boundary discretization. Numerous types 
of such transformations exist and have been successfully applied to  computational 
domains, for instance parametric space for surfaces (B4zier patches, B-splines), La- 
grange or transfinite interpolation formula, quasi-conformal transformations, etc. 

The first problem to solve is where to  place the mesh vertices in such a way 
as to  achieve a natural ordering appropriate to the problem considered. A trivial 
observation shows that simple domains such as squares and discs, in two dimen- 
sions, have an intrinsic curvilinear coordinate system. In this sense, the mapping 
techniques described below provide a basis for mesh generation. 

Curvilinear coordinates. The physical domain discretization requires some 
level of organization to efficiently compute the solution of the PDEs. This organi- 
zation is usually provided using a Cartesian or cylindrical coordinate system. More 
precisely, the grid points are defined using coordinate line intersections, which al- 
low all numerical computations to be performed in a fixed (square or rectangular) 
grid. Hence, the Cartesian coordinates used to  represent the PDEs have been 
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replaced by the curvilinear coordinates.' A constant value of one curvilinear coor- 
dinate (and a monotonic variation of the other) in the physical space corresponds 
to vertical or horizontal lines in the logical space.2 

Theoretically, two procedures can be used to generate a system of curvilinear 
coordinates, algebraic interpolation techniques [Gordon, Hall-19731 and solution- 
based techniques [Thompson-l982a]. From the computational point of view, the 
classical algebraic methods are usually faster than the differential equation meth- 
ods. 

3.2.1 Algebraic interpolation methods 

A simple, though efficient, way to achieve a structured mesh is to use a sequence 
of mappings to reduce the possibly complex domain to simple generic shapes (e.g. 
a triangle, a quadrilateral, a hexahedron, etc.). After a structured mesh has been 
defined in the logical space, the mapping function is used to generate a mesh 
conforming to all domain boundaries. This technique has proved useful for two 
and three-dimensional domains as well. 

The mapping function(s) and the mesh point distribution in the logical space 
can be chosen arbitrarily. However, it may be of some interest and it is sometimes 
more efficient to enforce the boundary discretization in the logical space to match 
the given domain boundary dis~retization.~ The control of the mesh point distri- 
bution in the parametric space makes it possible to control the density of mesh 
vertices in the real domain, for instance, to obtain a finer mesh in regions of high 
curvature. 

Remark 3.2 In general, the domain discretization mus t  be a convex4 polygon 
(polyhedron, in three dimensions) to  guarantee the validity and the conformity 
(Definition 1.7) of the resulting mesh. 

The problem of finding a proper mapping function is equivalent to finding a 
specific function of the curvilinear coordinates. This function contains coefficients 
that enable the function to match specific values of the Cartesian coordinates on 
the boundary (and possibly elsewhere). Algebraic grid generation is thoroughly 
discussed in [Shmit-19821 and [Eriksson-19821. Figure 3.1 shows an example of an 
algebraic mesh generated by the method described in [Baker-199lbI. 

To emphasize the algebraic method feature, we simply mention one particular 
mapping function, the transfinite interpolation scheme. This approach was first in- 
vestigated by [Gordon, Hall-19731 and, then, by [Eriksson-19831, among others. Its 
most significant feature is its ability to control the mesh point distribution and par- 
ticularly the slope of the mesh lines meeting the boundary surfaces [Baker-l989a]. 
In this chapter, we do not pursue the notion of transfinite elements and refer the 
reader to Chapter 4. However, we describe its application to the mapping of a 
unit square, in two dimensions. 

lThe mapping of the physical space onto the logical space must be one-bone. 
2Also called transformed or parametric space. 
3This feature makes it possible to conform exactly to the given domain boundaries. 
40r at least close to a convex shape. 
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Figure 3.1: Single block algebraic grid fo r  a fuselage plus two lifling surfaces (data 
courtesy of T. J .  Baker, Princeton University, NJ, USA). 

Unit square mapping by transfinite interpolation. Here, we are concerned 
with a continuous transformation which maps the unit square ( 6 , ~ )  E [0,1] x 
[0,1] one-to-one onto a simply connected, bounded two-dimensional domain. The 
mapping can be seen as a topological distortion of the square into the domain. 
The problem is to  construct the mapping function that matches the boundary of 
the domain and, more precisely, the boundary discretization of this domain. 

Let +i(< ,q)  , i  = 1 ,4  be the parameterization of side i of the real domain, 
for which four such sides have been identified, and let ai be the corresponding 
edge endpoints (corners). For the sake of simplicity, we have assumed that the 
discretizations of any two opposite edges of the domain have the same number of 
vertices5. A discretization of the unit square is constructed, which is analogous to  
that of the real domain, i.e., each side of the square conforms to  the discretization of 
the corresponding real side, in terms of the relative distances between successive 
vertices. A quadrilateral mesh is then formed in the logical space by joining 
the matching points on opposite edges, the internal nodes thus being the line 
intersections. 

The mapping function then takes the lattice of vertices in the parametric space 
(unit square) and maps it to  the physical space (real domain) using a transfinite 
interpolation based on the Lagrange interpolation formula as follows: 

Figure 3.2 shows a mesh of a domain mapped by applying a transfinite interpola- 
tion formula. 

The same technique can be applied to  map a right triangle onto a triangular- 
shaped domain and can be extended to three dimensions as well (cf. Chapter 4). 

5Such a situation can always been obtain by adding more nodes along a boundary edge, if 
needed. 
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Figure 3.2: Surface mesh obtained using a transfinite mapping of the unit square 
(right: with element shape control). 

Remark 3.3 (Sequential mappings) Another algebraic method which is simi- 
lar to the coordinate transformation method introduced above is based on the combi- 
nation of a sequence of mappings. I t  becomes possible to reduce a complex domain 
to a simple generic shape by introducing several simple conformal mappings suc- 
cessively. 

Remark 3.4 (Blending approach) The association of several meshes, each one 
being generated separately as a simple domain, to form a global smooth mesh using 
a weighted combination of functions is the attractive key feature of the blending 
gr id  technique. Although very promising, this approach is by  no means easy to 
implement for arbitrary complex configurations. To some extent, this technique 
prefigures the multiblock approach. 

3.2.2 PDE-based methods 

Since the problems to  solve are usually systems of partial differential equations, 
it seems obvious to  link the system of coordinates to the solution of a system of 
PDEs. If the coordinates vertices are specified on the boundary of the region, the 
equations must be elliptic, as they would be parabolic or hyperbolic if the speci- 
fication concerned only part of the domain boundary. Hence, the important step 
of finding a mapping between a Cartesian and a boundary-fitted curvilinear coor- 
dinate system is to  clearly identify the equations. The elliptical equation method 
is the most popular of this kind of technique (cf. [Eiseman, Erlebacher-19871 for 
a general survey of PDE-based methods). 

Elliptic method. The main advantage of the elliptic equation method is that 
it preserves grid orthogonality in the vicinity of the boundary. Another property 
is the inherent smoothness over the entire domain that prevails in the solution 
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of elliptic problems. Moreover, boundary discontinuities do not propagate far 
inside the domain. A drawback is that the coordinate system is the solution of 
a system of PDEs, thus resulting in more computing time than other methods 
of generation. This technique has provided some interesting results, especially in 
computational fluid dynamics (CFD) simulations for transonic flow over airfoils 
[Thompson-l982b], [Thompson-19871. One of the most simple elliptic systems is 
the Laplace system defined as 

vy=o  i = 1 , 3  (3.2) 

which can be obtained from the Euler equations for the minimization of the integral 

where the quantity lVtiI represents the grid point density in a certain way along 
the coordinate line for a variation of ti (cl = t ,  c2 = 71, ...). The smoothing 
effect of the Laplacian tends to closely or equally space the lines according to the 
boundary curvature. 

Remark 3.5 T h e  strong smoothing effect of the Laplace transform m a y  lead t o  a n  
undesirable node point  distribution. T o  overcome this problem, control func t ions  
can be introduced in Equation (3.2). 

Parabolic and hyperbolic methods. The mesh generation procedure can also 
be based on parabolic or hyperbolic PDEs. Equations of the parabolic method 
can be derived from the elliptical method by modifying the proper terms. The 
parabolic technique is useful to  generate a mesh between two boundaries of a 
multi-connected domain, with two boundary specifications. The hyperbolic ap- 
proach tolerates only one boundary specification and is mainly interesting for use 
in calculations over unbounded domains or for generating orthogonal meshes. 

For instance, the solutions of the following set of equations 

XCEXV+ YEYV = 0 7 XCEYV - XVYE = V ( t ,  7I)  7 

where x~ = g, defines a hyperbolic system [Steger, Sorenson-19801, where the 
first equation corresponds to the orthogonality condition and the second equation 
defines the local cell area based on a specified distribution V(( ,q) .  The main 
known drawback of the hyperbolic-type approach is its inability to  create meshes 
for internal flow problems. 

3.2.3 Multiblock method 

Wrapping a mesh around a complex domain boundary may be a tough and even 
intractable problem to solve. One way of getting around this difficulty is to  con- 
sider a multiblock scheme. In this approach, the whole domain is decomposed into 
several simpler sub-domains (i.e., blocks), each of which is then covered automati- 
cally with a structured mesh, resulting, for instance, from an algebraic technique 
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or a PDE methods. This feature makes the multiblock approach particularly in- 
teresting for parallel computations. 

Remark 3.6 I n  general, the resulting mesh is  structured at the block level but no 
longer at the global domain level. 

Several possibilities of implementing the multiblock technique arise depending 
on which constraints are required between the blocks (for instance, what degree 
of continuity or conformity is desired). 

Figure 3.3: Several implemen- 
tations of the multiblock ap- 
proach: overlapping (top), com- 
posite (center, mesh lines are 
continuous across the boundary) 
and patched (bottom, conforming 
surfaces of the boundaries, how- 
ever discontinuous mesh lines). 

Overlapping. If no special attention is paid to  the block interfaces, each block 
can be meshed separately for each component of the domain. The resulting mesh 
is a system of overlapping sub-meshes. Although the meshes are easy to gener- 
ate, the main drawbacks of the technique are the transfer of information between 
neighboring meshes and the accuracy of the interpolation which can prevent the 
stability of the method. 

Patched. An additional constraint to the overlapping multiblock technique re- 
quires the separate meshes to conform to the surfaces of their common boundaries, 
even if mesh lines are not continuous. In this patched approach, the interpolation 
procedure is easier than that required by the previous approach and mesh refine- 
ment can vary in specific regions without propagating elsewhere. 
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Composite. If mesh lines are required to  be continuous across the boundaries, 
thus propagating mesh refinement throughout the entire domain, we obtain the 
composite multiblock method. This technique requires a global vertex numbering. 
Its main advantage is the improved accuracy that results. 

General scheme. 
marized as follows. 

The composite multiblock decomposition method can be sum- 

Step 1. Decompose the computational domain into simple blocks. 

0 Use a global vertex numbering. 

0 Define the block interfaces to  ensure conformity. 

Step 2. Discretize the block interfaces. The requirements are to: 

0 obtain good geometric approximation, 

0 ensure the mesh lines are continuous across the boundaries, 

0 ensure the adequacy of each block with respect to  the local mesh gen- 
eration process (for instance, with an algebraic method, the number of 
points on opposite edges must be identical). 

Step 3. Mesh each block separately (create internal points). 

Step 4. Construct the final mesh by merging the sub-meshes. 

3.2.4 Product method (topology-based method) 

Semi-automated procedures sometimes give additional meshing capabilities to the 
user. Actually, the mesh of a complex domain of cylindrical topology in d- 
dimensions can be easily obtained from a d-1-dimensional mesh of a section, the 
source (for instance, a cylinder can be defined using a circle and a direction in 
three dimensions). More precisely, a point leads to a series of segments and a 
segment results in a set of quadrilaterals. The efficiency of the method is related 
to the ability of the user to define the reference mesh. 

In three dimensions, the purpose of the two-dimensional reference mesh is to  
provide a pattern from which to extrude the final mesh. The number of layers 
(slices) and their positions (i.e., the node locations along the reference line) can 
be supplied implicitly (the discretization of the line is given) or explicitly (using 
a stretching function for instance). The reference mesh is then extruded along 
the direction to create the desired number of three dimensional element layers be- 
tween an upper and lower bound. Based on the type of two-dimensional element 
(triangles or quadrilaterals), the resulting quasi-regular mesh is defined from ei- 
ther wedge or hexahedral shaped elements apart for some peculiar configurations 
leading to degenerate elements (cf. Figure 3.4). 

Remark 3.7 In general, the final mesh is not structured as the reference mesh 
i s  not necessarily structured. However, the connectivity of the resulting mesh  is 
derived f rom that of the reference mesh. 
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The main drawback of this approach is the possibility of degeneracies (for 
instance, when part of the domain boundary is coincident with the axis). 

General scheme. Schematically, the product technique reads: 

Step 1. Identify and mesh the domain of reference (section). 

Step 2. Extrude the reference mesh based on: 

0 the specified direction, 

0 the desired number of layers. 

Step 3. Optimize the mesh. 

Figure 3.4 illustrates the principle of a product method by depicting a source 
mesh composed of quads and the resulting hex mesh. For the sake of clarity, only 
one layer of elements, between two sections, is displayed. 

Figure 3.4: A two-dimensional source mesh (section) and one layer offset in the 
resulting three-dimensional mesh. 

3.3 Unstructured mesh generators 

In general, structured meshes for arbitrary complex geometries are difficult to ob- 
tain in a fully automatic manner. An alternative to  a structured mesh consists of 
using simplices (triangles or tetrahedra). This feature gives the mesh maximum 
flexibility to  address complex geometries as well as to control mesh point distri- 
bution. As previously mentioned, unstructured meshes are mostly composed of 
simplicia1 elements and the major automatic mesh generation methods produce 
such elements. However, there also exist some methods resulting in unstructured 
meshes consisting of quads or hex. Nevertheless, such methods are more tedious 
both to design and to  implement. 
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In this short survey, we will focus mainly on simplicia1 methods while other 
methods will be discussed after. 

Unstructured mesh generation is a task that may appear both easy and difficult 
a t  the same time. The first point is related to  the fact that theoretical issues can 
be used to help the algorithm design for some approaches. The second point, u 
contrurio, is that we don’t have such results for some other methods. In addition, 
whatever the case, the mesh generation technique must be robust and reliable 
since complex geometries and delicate situations must be envisaged. 

After these remarks, we now introduce the main approaches that enable us to  
create two and three dimensional unstructured meshes. To this end, we give the 
main characteristics of the various methods while the following chapters will give 
a detailed discussion. 

The generation of unstructured meshes involves the creation of points and the 
relevant connectivities. This is usually achieved through different stages that can 
be summarized as follows. 

Step 1. Definition of the domain boundaries. 

Step 2. Specification of an element size distribution function. 

Step 3. Generation of a mesh respecting the domain boundaries6. 

Step 4. Optimization of the element shapes (optional). 

The boundary discretization (which represents a polygonal (polyhedral) ap- 
proximation of the boundary of the real domain) can be achieved as a separate 
procedure or simultaneously with the creation of the mesh (in which case, the 
boundary integrity must be guaranteed by the mesh generation technique). 

The element size distribution function can be defined in two ways, implicitly or 
explicitly. In the first case, either the size of an interior element is deduced from 
the boundary discretization by interpolation, or, if a control space is supplied, for 
which the element size is defined at each vertex, the value at  any point can be 
computed by interpolation between vertices (cf. Chapter 1). On the other hand, 
a function f(z, y, z ) ,  defined over the entire (three-dimensional) domain, can be 
either constructed analytically to  define explicitly the element size distribution or 
user-supplied (e.g., academic test case). 

In general, good-quality meshes cannot be obtained directly from the meshing 
techniques. Therefore, a post-processing step is required to optimize the mesh with 
respect to  the element shapes. Regardless of the mesh generation method used, 
topological and geometrical mesh modification techniques are required to  obtain 
a high-quality mesh suitable for finite element computations (cf. Chapters 17 
and 18). 

Three approaches can be identified in the context of automatic methods in- 
cluding the spatial decomposition based methods, the advancing-front and the 
Delaunay type methods. After a survey of these methods, we will turn to some 
other approaches. 

6 0 r  the boundary discretization. 
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3.3.1 Spatial decomposition methods 

Spatial decomposition methods were applied to mesh generation purposes about 
three decades ago [Yerry, Shephard-19831. In such approaches, the resulting hier- 
archical tree structure (quadtree and octree in two and three dimensions respec- 
tively) serves as a neighborhood space as well as a control space (cf. Chapter 1) 
used to prescribe the desired element sizes which are related to the cell diameter. 

General principle. At first, the domain is enclosed in a bounding box (one cell, 
the root). The domain is then approximated with a union of disjoint, variably sized 
cells, representing a partition of the domain. The cells are recursively subdivided 
until each terminal cell is no larger than the desired element size (local value of 
the size distribution function). A covering up of a a spatial region enclosing the 
object (the bounding box) is then obtained. Each terminal cell is then further 
decomposed into simplices (triangles or tetrahedra), thus leading to a suitable 
finite element mesh of the domain. The stopping criterion can be based on the 
curvature of the model entity or supplied by an adaptive analysis error estimate. 

This type of method is usually capable of proceeding either directly from a 
given discretization of the domain boundary or, more generally, by generating 
the boundary representation of the domain using simple queries to a geometric 
modeling system, a CAD system. 

General scheme. 
involves the following steps. 

Schematically, a classical quadtree/octree-based technique 

Step 1. Initializations. 

0 boundary discretization (or analytical description of the boundaries), 

0 definition of the size distribution function (if available). 

Step 2. Tree decomposition. 

0 Initialization: the tree representation is derived from a box enclosing 
the domain, 

0 Recursive subdivision of the box up to a satisfactory criterion. 

Step 3. Tree balancing: to limit the difference between neighboring cells to only 
one level (the so-called 2 : 1 rule). 

Step 4. Cell meshing using predefined patterns (internal cells) and local con- 
nections (boundary cells). 

Step 5. Optimization: topological and geometrical modifications. 
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Figure 3.5: Original CAD model (Patran geometric modeler) and octree-based 
mesh before optimization (data courtesy of MacNeal-Schwendler Gorp.) 

Main features. The tree decomposition technique produces a set of cells that 
must have a size that is compatible with the element-size distribution function. 
As the size of the cells in the tree is directly related to  the expected local size, the 
element size resulting from the method will have a size close to  the targeted value. 
In contrast to other mesh generation methods, there is no particular difficulty at 
the time the field points are created. As the field points are chosen at  the quadrant 
(octant) corners, this stage is simple and does not require some specific checks 
(such as a filtering stage used to detect points that are too close together, etc.). 
However, this strategy of point location induces some rigidity. In other words, the 
point distribution may conform to the size function but the exact location of these 
points is not necessarily optimal. Hence, the extent of optimization required after 
the mesh completion may be relatively great. 

The simplicity of the method implies in most cases its robustness. The only 
problem regarding convergence is related to  the cases where it is not so easy to  
distinguish two entities which are rather close (two very close points which are not 
directly connected). This is why the case of the corners (points where the incident 
entities may form a rather acute angle) must be carefully considered. 

Boundary discretization. The boundary mesh of the domain boundaries could 
be an input data of the problem or not. 

In the case where this mesh is supplied, it is necessary to  identify the points 
and the characteristics of this mesh (corners, ridges, discontinuities, etc.). On the 
other hand, it is not necessary to  provide this surface mesh with an orientation, 
which is not the case for an advancing-front technique, for instance. As the spatial 
decomposition introduces some points (including some in the boundaries), it is 
necessary to check that the input mesh is a fine enough geometric approximation 
of the boundaries to avoid difficulties when creating a point on these boundaries. 

In the case where the boundary discretization is not supplied, such a mesh 
will be automatically created based on the tree structure. In this case, we assume 
that a geometric modeler is available and is used by means of a series of queries. 
Indeed, it is necessary to know the point on the boundary closest to a given point, 
to find the intersection between the boundary and a cell, etc. 
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Curvature-based refinement. This approach is carried out to improve the 
accuracy of the geometric approximation of the domain boundary. Hence, finer 
meshes are achieved in highly-curved regions and coarser meshes in regions of low 
curvature. The geometric approximation error7 can be related to a fraction of the 
desired mesh size as represented by the cell size [Shephard et al. 19961. Hence, 
the length of a mesh edge is related to the level of the cell in the tree structure. 

Tree decomposition. Starting from a box enclosing the whole domain, a tree 
is developed by recursive partition of its cells. The initial tree includes four cells in 
two dimensions and eight such cells in three dimensions. Each cell is analyzed so 
as to determine whether it conforms to a stopping criterion. If not, it is subdivided 
into four (resp. eight) cells of identical size. At completion, a covering-up of the 
enclosing box is obtained. 

The stopping criterion used in the method is related to  various facts based on 
the application at  hand. The most widely used criteria state that: 

0 all cells include at most one boundary point, 

0 all cells with no point inside include at  most one edge (face) of the boundary 
discretization, 

0 the size of all cells conforms to  the size map. 

This strategy implies that the decomposition tree enables us to  separate two close 
boundary entities. Therefore, in two dimensions, for instance, two edges belonging 
to two opposite but close domain sides will belong to two different cells. This means 
that a t  least one point will be created inside the domain in each region. Hence, 
the tree acts as a neighborhood space and as a separator. 

Tree balancing. Using this tree construction approach results in adjacent cells 
which can differ greatly in terms of size. Therefore, as the element sizes are related 
to the cell sizes, a smooth enough size gradation from element to  element will be 
obtained if the size variation from cell to  cell is bounded by a factor of two; the 
well known 2 : 1 rule. Prescribing such a rule also results in another positive 
property. In fact, it allows us to know in advance the possible combinations of the 
cells and then those of the elements resulting from such combinations, at least for 
the internal cells'. It is then easy to  define a priori all the patterns (templates) 
that will be subsequently employed to mesh the internal cells at a very low cost. 

For efficiency reasons, tree balancing can be carried out when building the 
tree. When a cell subdivision is performed, the tree balancing is verified and the 
adjacent cells are subdivided or not depending on the case, then, in turn, the 
neighboring cells are considered and such a process is recursively applied. 

7The maximal gap between the mesh edge or face and the curve or the surface. 
8A cell is said to be internal (with respect to the bounding box) if it is not intersected by the 

domain boundary. 
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Filtering step. Due to the way the tree is constructed, say following an arbitrary 
order (with no special attention paid to the geometry of the domain), it is possible 
to have two points related to  the intersection of the boundary with a cell side quite 
close to a cell corner or even to  another intersection point related to another cell 
side. To prevent the creation of necessarily bad quality elements using these points, 
a point filtering step is applied. Provided the domain topology is preserved, some 
points can be merged together. Actually, this task may be tedious, particularly in 
three dimensions. 

Element creation. The quadtree-octree method idea consists of using the tree 
structure for internal point creation as well as mesh element creation. As previ- 
ously seen, the tree balancing rule reduces the number of transition patterns from 
cell to  cell. Predefined patterns can then be used to quickly fill up the internal cells 
of the tree. A more general triangulation method (see [Shephard, Georges-19911) 
is necessary to  fill up the boundary cells (i.e., those that are intersected by the 
object boundaries). In this case, it is necessary to conform to the domain topology 
as well as to the domain geometry. For instance, in two dimensions, one must be 
sure that an edge related to a given geometric entity actually links two intersection 
points. 

Following this approach, it should be noted that the cell corners and sides will 
be members of the final mesh where they will be element vertices and edges (faces). 

External element removal. The mesh resulting from the previous stage is a 
mesh of the enclosing box. To obtain a domain mesh, all elements outside of this 
domain must be removed. To this end, a coloring algorithm is required (Chapter 2). 

Optimization. Meshes as completed by this method are globally good quality 
meshes. Nevertheless, since the internal points correspond to the cell corners 
(apart from the boundary points), a certain rigidity may be present. Moreover, 
the tree construction does not explicitly pay attention to  the intersections of the 
boundaries with the cells. In other words, the boundary may intersect a cell close 
to one side of it. As a consequence, ill-shaped elements can be constructed, for 
instance, rather flat elements. Thus, the classical optimization procedures (see 
Chapter 18) by means of topological and geometrical local operators can be used. 

Numerical issues. Quadtree-octree type methods are relatively easy to  imple- 
ment. However this apparent simplicity may hide some numerical difficulties, for 
instance, point localization problems (in a cell), intersection problems (from the 
model and the tree cells), and tree traversal procedures. However, the global com- 
plexity, in terms of memory occupation and CPU time, is of order O(ne),  where 
ne stands for the number of elements. 

3.3.2 Advancing-front method 

First suggested by [A.George-19711, this type of method has undergone significant 
improvements proposed by [Lo-19851, [Lohner, Parikh-19881 and more recently by 
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Figure 3.6: Initial C A D  model and octree type mesh  ( C A T I A ,  courtesy of Dassault 
Systdmes)). 

[George, Seveno-19941, [Rassineux-1995] and various references like [LOhner-l996b] 
or [Peraire, Morgan-19971. In this approach, the main idea is to construct the 
mesh element by element, starting from an initial front (i.e., a domain boundary 
discretization supplied as a list of edges in two dimensions and a list of faces in 
three dimensions). The technique proceeds by creating new points, or using a set 
of a priori created points, and connecting them with some points of the current 
front so as to  construct the mesh elements. Thus, the yet unmeshed space is then 
gradually nibbled since the front moves across the domain. The front can be simply 
defined as the set of mesh entities (edges or faces, thus entities of d-l dimensions) 
separating the part of the domain already meshed from the region not yet filled. 
The technique is iterative, an entity of the front (edge or face) is selected and a 
mesh element is formed either by connecting this entity to an existing point or to  
a newly created point so as to form a new good quality simplex. At each element 
creation, the front is updated and then dynamically evolves. This iterative process 
terminates when the list is empty; the domain is then entirely meshed. 

General scheme. A classical advancing-front technique reads as follows. 

1. Initialize the front with the domain boundary entities which can be sorted 
based on a given criterion. 

2. Define the element size distribution function which could be provided as 
input data or constructed as the best from the available input informations. 

3. Select the next entity from the front (based on a specific criterion). This 
leads to  the following: 

create an optimal point P based on the entity, 

determine whether a mesh vertex V exists that should be used instead 
of P. If such a point exists, set V to P,  
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check for element intersection, element size, etc., to  validate the above 

once a correct point has been identified, add the corresponding new 

choice, 

element, update the mesh data structure and update the front. 

4. Then as long as the front is not empty, return to  3. 

5. Optimize the mesh (if needed). 

Figure 3.7: Two-dimensional advancing-front mesh of a multi-airfoil without mesh 
optimization. Left-hand side: entire computational domain. Right-hand side: par- 
tial enlargement around the wing body. 

Critical features. Recurrent problems of any advancing-front method include 
the way to select a front entity, the (optimal) points identification and the element 
validation checks once a candidate point has been analyzed. All these operations 
must be made using robust and efficient algorithms since the convergence of the 
full process is strongly relatedg. 

Boundary discretization. The mesh of the domain surface (input data of the 
problem) forms the initial front. Each connected component of the boundary is 
orientated in a consistent way that allows the domain to be precisely defined with 
respect to its position around the boundary. In two dimensions, this leads to defin- 
ing in which way the polygonal segments of the boundary are considered. In three 

'In two dimensions, a theoretical issue about simple polygon triangulation (cf. Chapter 6) 
insures the convergence of an advancing-front method. However, this useful result is not so clear 
in three dimensions. 
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dimensions, the face orientations are such that, for a given connected component, 
all the face normals have the same orientation. The case of a non-manifold surface, 
in three dimensions, is more tedious and requires specific attention (for instance, 
the non-manifold face of the surface must be repeated). 

Remark 3.8 Since the boundary discretization i s  the initial front, boundary in-  
tegrity is part of any  advancing-front method and thus i s  preserved. 

Front analysis. The mesh elements are created based on the front entities. The 
selection of a front entity can be related to various criteria, based on the targeted 
solution. In general, this operation is not a purely local process. Indeed, it is 
necessary to anticipate the front evolution to prevent bottlenecks at a later stage. 
In two dimensions, one strategy resulting in a nice mesh gradation consists in 
selecting the smallest front edge (using, for instance, a heap structure). In three 
dimensions, it could be worthwhile selecting the faces at some neighborhood of 
the last created elements so as to minimize the required intersection checks. 

Internal point creation. In general, mesh quality is a function of the internal 
point distribution. Provided that the desired element size is supplied everywhere 
(via a control space, cf. Chapter l), several strategies can be used to find the 
location of a point from a given front entity. An optimal point is defined at the 
place where the element composed of the front entity and this point is regular 
(equilateral). In three dimensions, such a position belongs to the normal passing 
through the face centroid G at a distance from G dependent on the size function 
that is desired for the element. This location is then, if necessary, iteratively 
adjusted using an optimization procedure [Seveno-19971. 

Candidate vertices. The above optimal point P is not necessarily inserted in 
the mesh. In fact, another vertex of the current mesh can be seen as a potential 
candidate due to its proximity to the point P previously computed. This prox- 
imity notion depends on the distance from point to point, according to the size 
specification h(P)  at point P when this information is provided (or has been con- 
structed). In this respect, any point in a sphere centered at P,  with radius h(P)  is 
ips0 facto part of the candidate points. The set of such points is ordered based on 
the distance to P after which these points are analyzed so as to determine which 
one will be used to construct an element regarded as optimal. 

Validation. The question here is to select among the admissible points the best 
candidate to construct an “optimal” element, in terms of aspect ratio (shape) 
and/or size. In fact, it is necessary to check that a guest element (if retained as a 
mesh element) has no intersection with the front and does not include any other 
mesh vertices. These checks must be rigorously implemented and the number of 
intersection tests must be reduced so as to minimize the cost of the full meshing 
process. To this end, specific data structures (binary trees or quadtrees-octrees) 
can be used to reduce the number of tests necessary. A point leading to an invalid 
element or leading to any intersection is removed from the list of admissible points. 
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Then, among the candidate points now identified (for which all the tests have 
been successful), the one that will result in the best quality possible (in shape or 
size) must be chosen. Moreover, it is of the utmost importance to analyze precisely 
the configuration obtained after any valid element creation to decide whether or 
not it may lead to  a delicate or blocked configuration. 

Convergence issue. Since the advancing-front method is based on local oper- 
ations, convergence problems may be encountered, especially in three dimensions. 
A wide variation in size for the elements between two neighboring fronts may 
lead to intersection (overlapping) problems and the algorithm may have difficulty 
when meshing such configurations. As no theoretical results can guarantee that 
the method will complete a mesh in three dimensions, it is sometime useful to  
cancel some iterations and thereby removing some elements and points in the 
mesh. For efficiency reasons, such operations that enable us to overcome some 
local bottlenecks must be reduced as far as possible. 

Front updating. Once an optimal point has been inserted in the mesh, one or 
several elements are created. The external faces of such elements (those separating 
the already meshed domain and the not already meshed regions) are stacked into 
the front list while the edge (face) of the former front used in the construction is 
removed from this list. 

Mesh optimization. Meshes completed by an advancing-front method are in 
general good quality meshes. Nevertheless, due to the local aspect of the algo- 
rithms, it may be useful to  optimize the resulting meshes. In such a case, the 
classical optimization procedures are used, see Chapter 18. 

Remark 3.9 The theoretical complexity of an advancing-front method is  estab- 
lished to be in O(nelog(ne)), where n e  is  the number of simplices in the final 
mesh. I n  practice, eficient data structures are necessary to achieve this result, as 
pointed out in [George, Seveno-19941 and [Lohner-l996b]. 

Surface meshing. A two-dimensional implementation of the advancing-front 
technique can be adapted to  create surface meshes, provided that the surfaces are 
mapped onto a parametric space (logical space) or by using a direct approach. 
The aim is to  obtain a nice approximation of the real surface by means of a 
piecewise surface (a mesh) in such a way as to  obtain sufficiently good regularity 
(for instance, G1 continuity). 

In the first approach, the method uses the fundamental forms of the surface 
and completes an anisotropic mesh in a planar domain, the parameter space. This 
mesh is then mapped onto the physical space in such a way as to  bound the gap be- 
tween the triangle edges and the surface. This is done thanks to the so-called tan- 
gent plane metric or the metric of the maximal radii of curvature (cf. Chapters 13 
and 15) that make it possible to compute the lengths of the segments in the param- 
eter space using the geometry of the real surface, see [George, Borouchaki-19971, 
for instance. 
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Remark 3.10 (Variant) The same technique can be applied to the generation of 
quadrilateral or hexahedral elements. I n  two dimensions, it is  usually known as 
the paving technique [Blacker, Stephenson-19911, and in three dimensions as the 
plastering technique [Blacker, Meyers-19931. 

3.3.3 Delaunay technique 

The computational-geometry properties of the Delaunay triangulations have been 
investigated for many years [Delaunay-19341. Even before this date, in 1850, 
Dirichlet proposed a method to decompose a domain into a set of convex polyhe- 
dra [Dirichlet-18501. However, the application of these techniques to mesh gener- 
ation has only more recently been explored [Hermeline-19801, [Cendes et al. 19851, 
[Cavendish et al. 19851, [Baker-19861, [Weatherill-19851, [Mavriplis-19901. The ear- 
liest strategies used predetermined sets of points as the Delaunay construction 
provides a suitable technique to connect these points, although it does not pro- 
vide a mechanism to generate points. Moreover, the Delaunay triangulation of 
a domain may not preserve boundary integritylO which is a key requirement for 
mesh generation procedures and, thus, this point must receive special attention. 
Most of the current procedures for point insertion are based either on Bowyer- 
Watson's algorithm [Bowyer-1981], [Watson-1981] or Green-Sibson's algorithm 
[Green, Sibson-19781. 

For a given set of points (or sites) S = {Pk}, k = 1 , n ,  a set of regions {h}" 
assigned to each of these points can be defined, such that any location within V, 
is closer to Pi than any other of the points: 

V, = { P  : IP - Pzl 5 IP - Pjl ,v j  # 2) .  

The regions are convex polyhedra, the Voronoi' regions or cells. Joining all the 
pairs PiPj sharing a common segment of a Voronoi' region boundary results in a 
triangulation of the convex hull of S, the so-called Delaunay triangulation. The 
set of triangles (resp. tetrahedra) defining the Delaunay triangulation satisfies the 
property that the open circumdisk (resp. circumball) associated with the nodes of 
the element is empty (i.e., does not contain any other point of S). This condition is 
referred to as the in-circle (resp. in-sphere) criterion and is valid in any dimension. 

In this approach, an initial mesh is constructed, for instance, from a bounding 
box12 enclosing the boundary discretization (list of edges and/or faces) of the 
domain. All boundary points are inserted iteratively into the initial triangulation 
of the bounding box, thus leading to a Delaunay triangulation with no internal 
vertex. The boundary connectivity constraint is not taken into account in this 
construction scheme. Hence, it is necessary to ensure that the entities of the 
boundary discretization are present in the resulting Delaunay triangulation and, if 

'OI.e., does not conform to a given boundary discretization. 
"Known as the Dirichlet tessellation or the VoronoY cells. 
121ntroducing a bounding box is not strictly required, but is a source of simplification. Without 

this trick, the discussion becomes more subtle and makes it necessary to include several situations 
(rather than just one). 
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needed, to retrieve the missing entities by modifying the triangulation. Local mesh 
modifications are applied to  remedy the situation and to  finally obtain a mesh of 
the bounding box of the domain conforming the given discretization. Then, the 
external elements are removed (using a coloring scheme) and additional internal 
vertices can be created and inserted in the current mesh. Finally, the resulting 
mesh can be optimized to improve its quality. 

General scheme. Provided with a size distribution function and a boundary 
discretization of the domain under interest, the global procedure for the mesh 
generation using a constrained Delaunay method can be outlined as follows: 

Step 1. Initializations: 

input the boundary entities, 

construct an initial triangulation 7 B  of the bounding box of the domain. 

Step 2. Insert all boundary vertices into 7B. 

Step 3. Construct an empty mesh I, (no interior vertices) starting from 7B: 

recover the missing boundary entities (boundary integrity), 

identify the connected components of the domain. 

Step 4. Field point creation and insertion (i.e., enrich 74. 
Step 5. Mesh optimization. 

In this scheme, some steps deserve a special attention as they relate to  the 
robustness of the method and influence the resulting mesh quality. 

Delaunay kernel. Let Z be the Delaunay triangulation of the convex hull of 
the set of points S = { P k } ,  k = l , i ,  where i = 1,n .  The insertion of P = Pi+l in 
x results in the triangulation x+1. This can formally be written as 

where B p  denotes the set of elements formed by joining P with the external edges 
(resp. faces) of the set of elements C p ,  whose circumdisk (resp. circumball) con- 
tains P. This insertion procedure is known as the Delaunay kernel. 

Boundary integrity. Boundary recovery is commonly performed before the 
insertion of internal points, right after the insertion of boundary points. An al- 
ternative approach recovers the boundary integrity in the final stage of the mesh 
generation process, although it may result in a poor quality mesh, thus requiring 
an additional optimization stage [Mavriplis-19951. 

One technique of recovering boundary integrity consists of inserting a number 
of additional boundary points until the triangulation conforms to  the boundary, 
although the initial boundary discretization is obviously not stricly preserved. An 
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alternative (and more elegant) approach consists of modifying the Delaunay tri- 
angulation using local mesh modifications operators to  conform the boundary (cf. 
Chapter 18). This procedure matches exactly the specified boundary discretiza- 
tion. In two dimensions, if a boundary edge is missing, but its two endpoints 
belong to  two adjacent triangles, an edge swap is used to recover the missing 
edge. In three dimensions however, the implementation of the procedure is more 
complex and more tedious. Moreover, additional points (the so-called Steiner 
points) are often required to  enable the boundary recovery procedure to  be per- 
formed [George et al. 1991aI. 

Field point creation. Various approaches have been investigated to create in- 
ternal points. One strategy consists of inserting the new mesh points a t  the 
circumcenters of the elements [Holmes, Snyder-19881, [Weatherill, Hassan-19941. 
This technique results in meshes for which the (dihedral) angles are bounded. 
However, the resulting meshes can be irregular and the mesh gradation is not well 
handled. An alternative approach consists of driving the point creation by the 
boundary point distribution. 

It is assumed that the point distribution on the surface matches the geometric 
(curvature) as well as finite element requirements. This surface distribution is 
then extended into the domain using an interpolation scheme. One way is to  
create the points along the internal mesh edges, first in the empty mesh and then 
in the current mesh, so as to  conform to the desired element-size distribution 
function [George et al. 199lbI. In this approach, the point creation is controlled 
by a background mesh (actually the empty mesh). 

A third technique uses point sources considered as control functions with el- 
liptic partial differential equations [Weatherill, Hassan-19941. Another technique 
consists of using an advancing-front point-placement strategy to  create the inter- 
nal nodes. The front is then defined as the transition region between well-shaped 
and badly-shaped elements [Rebay-19931, [F'rey et al. 19981. 

Once created, the internal points are then inserted randomly13 in the current 
mesh using the Delaunay kernel procedure. 

Robustness issues. In two dimensions, thie Delaunay technique is very robust 
and reliable14. In three dimensions, however, the delicate task for the boundary 
recovery, which can be translated in terms of computer procedures, greatly dimin- 
ishes the robustness of the method, which relies explicitly on heuristic techniques. 

The Delaunay method results in a very efficient mesh generation technique. 
Most of the operations can be achieved in constant time (provided adequate data 
structures; cf. Chapter 2). The overall complexity (space and time requirements) 
is o(nlog(n)) ,  where n is the number of vertices (or the number of elements). 
Nowadays, this method appears to  be one of the most efficient meshing techniques 
available, as speeds in excess of 500,000 or even more elements/minute15 on current 
computers have been reported by several authors. 

131n case a number of points must be inserted and not one at a time. 
141t is easily proven that the boundary integrity can always be recovered. 
15Compared to the same amount but in the matter of a second for a triangulation problem! 
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method 

quadtree 
advancing-front 

Delaunay 

Figure 3.8: Delaunay mesh of a mechanical device. Boundary mesh with no in- 
ternal vertex (left-hand side) and resulting mesh after optimization (right-hand 
side). 

n P  n e  Q M  Qworst 

1,246 2,171 1.25 1.88 
2,557 4,795 1.1 1.61 
2,782 5,528 1.16 1.82 

Observing these examples indicates a non-negligible variation in size for the 
meshes (the number of elements is in a ratio of 2 or more) while the mesh qualities 
are of the same order (close to 1 !). The CPU costs are all less than one second. 
Thus, at least in two dimensions, all the methods produce rather similar meshes (in 
terms of quality). Notice that the element sizes inside the domain are only related 
to the boundary discretization provided as input data. The quadtree type method, 
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Figure 3.9: Overview of the different mesh generation methods when applied in 
a domain (used, for  instance, for  a CFD problem). Quadtree type mesh (top), 
advancing-front type mesh (middle) and Delaunay type mesh (bottom) including a 
close-up view around the fuselage. 
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based on a 2 : 1 gradation rule, results in larger elements inside the domain (say, 
far away from the boundary) and thus produces fewer elements than the two other 
methods that could be tuned to produce such behavior too. Advancing-front and 
Delaunay meshes are quite similar in terms of size. 

A more subjective view could produce some differences regarding the aesthetics 
of the created meshes. 

3.3.5 Other methods 

Various other techniques have been developed for unstructured mesh generation, 
although none of them seems to  be widely used today. However, two classes of 
techniques offer interesting features in specific fields of applications: hybrid meth- 
ods, which are useful for CFD (Computational Fluid Dynamics) computations, 
and partitioning methods, which can be used in parallel applications. 

Hybrid methods. These approaches combine features of structured meshes (in 
general in the vicinity of the domain boundaries) and unstructured meshes (for 
instance, [Weatherill-19881, [Kallinderis et al. 19951, [Khawaja et al. 19951, and 
[McMorris, Kallinderis-19971). In hybrid prismatic/tetrahedral meshes, the initial 
surface triangulation is the outer prismatic surface. In general, layers of prisms 
are used to resolve boundary layers and wakes, while tetrahedral elements cover 
the remaining part of the computational domain. A hybrid type mesh combining 
elements of different orientations seems more flexible to accommodate the differ- 
ent flow features. The most common technique employed for generating prismatic 
elements is a marching method that starts from a surface and propagates towards 
an outer boundary. The marching direction vectors are based on the normal at the 
surface vertices and the marching distances along these vectors (i.e. the stretching 
of the nodes along the direction) are dependent on the physics of the problem 
(for instance related to the Reynolds number) [Garimella, Shephard-19981. The 
grid is built one layer at a time in an iterative process. The unstructured mesh 
is generated using any classical unstructured mesh generation method (Delaunay, 
advancing-front, octree, etc.). 

The tedious part in developing this type of mesh generator lies in the man- 
agement of the interfaces between the structured and unstructured meshes. For 
instance, if a Delaunay algorithm is used, the boundary integrity constraint may 
be relaxed or even omitted. A promising technique consists of using a buffer layer 
for the transition from the prismatic to the tetrahedral elements; for instance, 
pyramidal elements with quadrilateral bases can be introduced. An alternative 
method consists of allowing the outer layer of prismatic elements to be broken 
down during the boundary recovery stage. 

Partitioning methods So far, this chapter has only dealt with unstructured 
mesh generation methods that generate simplicia1 or hybrid meshes. Quadrilateral 
meshes may be desirable in some applications (structural mechanics for instance) 
where they lead to increased computational performance and numerical accuracy. 
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In this context, partitioning methods offer a way to  design automated algorithms 
for producing well-structured quadrilateral or hexahedral meshes. 

Most of the first partitioning algorithms subdivided the domain recursively 
until simple elements (i.e., patterns) or very simple transition meshes remained 
[Cavendish-19741, [Schoofs et  al. 19791. This class of techniques is known as recur- 
sive partitioning. Another approach consists of separating the mesh generation in 
two phases: an automatic subdivision of the domain into subregions and the mesh- 
ing of the resulting subregions. The first stage is based on the identification of suit- 
able subdivisions and uses the medial axis (surface) of the domain or the Voronoi' 
diagram of its edges (faces) [Tam, Armstrong-19911, [Armstrong et al. 19951. In 
the second stage, an algebraic method (or a similar method) can be used to  mesh 
the various regions resulting from the partition. 

Figure 3.10: Partitioning method based o n  medial axis subdivision: skeleton of the 
domain (left-hand side) and quadrilateral mesh  of the domain (right-hand side). 

Quadrilateral meshing. 
erate quadrilateral meshes for domains of arbitrary shape. 

Direct or indirect approaches may be adopted to  gen- 

0 Direct methods. 

Among the direct methods, essentially two approaches have been investigated: a 
domain decomposition technique followed by quadrilateral sub-domain filling by 
means of an algebraic method [Armstrong et  al. 19951, [Talbert, Parkinson-19911 
and the quadrilateral paving techniques [Blacker, Stephenson-19911. The first ap- 
proach is domain decomposition sensitive and relies on the quasi-convex nature 
of the resulting sub-domains. The domain decomposition algorithms usually re- 
quire local or global knowledge of the domain. In this last case, in particular, the 
skeleton fully defines and allows an accurate decomposition of the domain. The 
second method consists of paving the domain from the boundary to the interior 
and of managing the front collisions. By its very nature, the performances of this 
method are closely related to  the boundary discretization. 

When a constant isotropic metric field is specified, these two classes of methods 
are likely to lead to the same results. In fact, in an advancing-front method, the 
front shape tends toward the skeleton. On the other hand, if a generalized metric 
map is specified, the second method is more likely to  respect the field. 
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0 Indirect methods. 

Given a triangular mesh of the domain, the indirect approaches aim at combining 
triangles to form quadrilaterals [Lo-19891, [Johnston at al. 19911, [Lee, Lo-19941, 
[Zhu et  al. 19911, [Rank et  al. 19931, [Lewis et  al. 19951 and lead to  two related 
merging processes. The triangle merging procedure is either driven by the quadri- 
lateral quality [Borouchaki, F’rey-19981 and may lead to mixed triangular-quadrila- 
teral meshes, or starts from the boundary and moves to  the interior of the domain, 
ensuring an even number of vertices when two fronts collide and results in pure 
quadrilateral meshes (if the boundary discretization has an even number of ver- 
tices). This second method requires a topological classification of the front colli- 
sions. 

The resulting quad meshes can be enhanced using a specific optimization proce- 
dure capable of optimizing the shape or the size quality of the elements16 (cf. Chap- 
ter 18). 

Figure 3.1 1: Triangular t o  quadrilateral conversion, indirect approach. Origi- 
nal triangular mesh  (left-hand side) and optimized quadrilateral mesh  (right-hand 
side). 

Mesh generation by local optimizations. In the context of moving (evolv- 
ing) mesh methods (such as those encountered in forming calculations for in- 
stance), it is often desirable to  allow the mesh topology to  change progressively 
rather than to build a new mesh. The local remeshing is required to  avoid element 
distortions due to large deformations and to adapt the mesh dynamically to the 
new conditions [Coupez-19951. 

An initial mesh of the domain can be optimized for any kind of criterion, for 
instance, one related to the volume of the elements. Starting from a very crude 
mesh (obtained, for instance, by connecting a node to  each face of the boundary 
of a non-convex domain, thus leading to overlapping elements), the optimization 

16While bearing in mind that merging two good quality triangles does not necessarily lead to 
a good quality quad or even a valid quad. 
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stage will attempt to  minimize the sum of the absolute value of the element volume. 
The improvement process tends to  optimize an element shape quality function and 
internal nodes can be introduced to remove locked configurations and to optimize 
the mesh, see Chapter 18. 

3.4 Surface meshing 

Surface meshes play an important role in numerical simulations using finite (vol- 
ume) element methods and the quality of the geometric approximation may affect 
the accuracy of the numerical solutions. In this context, a surface mesh is usually 
intended to  be the boundary description of a domain used in a three-dimensional 
finite element analysis. Therefore, the surface mesh must conform to specific 
properties, related for instance, to the geometry of the surface it represents and 
to the behavior of the physical phenomenon. The aim is to create an optimal 
piecewise planar approximation of the original surface in which the maximal dis- 
tance between the original and the approximating surface does not exceed a given 
tolerance. 

Depending on the surface definition, three techniques have been investigated: 
mesh generation via a parametric space (if a CAD modeling system has been 
defined, for instance), mesh generation for implicitly defined surfaces (e.g. iso- 
surfaces or levelsets) and, if the sole data is a given surface discretization (i.e., a 
surface triangulation), surface mesh optimization which proves especially useful in 
the study of large deformations in structural mechanics. 

3.4.1 

A regular surface parameterized by u, u can be defined using a function CT as: 

Mesh generation via a parametric space 

CT : a c R2 + c c R3, (u ,v)  - CT(u,u) , (3.3) 

where R is a domain of R2 and CT is a smooth enough function. The goal is 
to achieve the final surface mesh via a triangulation in the parametric (logi- 
cal) space. The two-dimensional mesh generation is governed by a set of met- 
rics related to  the intrinsic properties of the underlying surface. These metrics 
correspond to sizing and/or directional specifications. The control induced in 
this way is then explicitly written as a criterion about the lengths of the mesh 
edges; see [Dolenc, Makela-19901, [Samareh-Abolhassani, Stewart-19941, among 
many others. 

General scheme. Let be the domain in R2 corresponding to the parame- 
terization of a surface C. The parameter space is supplied with a Riemaniann 
structure, used to  govern the meshing process, which is constructed according to  
the nature of the expected mesh (isotropic, anisotropic, specified sizes, constant 
sizes, etc.). Actually, the metric of the two fundamental forms of the surface is 
involved. The issue here is to mesh R with normalized unit length mesh edges 
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Figure 3.12: Parametric surface meshing, analytical example. The surface is  de- 
fined as: z ( x , y )  = 2.5e- o.1(z2+Y2)  sin(2x) cos(2y) in the domain [-6,6] x [-6,6] 
of the O x y  plane. Left-hand side: constant-size surface mesh, right-hand side: 
geometric surface mesh. 

(with regard to the metric) and in such a way that the resulting elements are of 
good quality. 

The domain meshing process consists of three stages. The two first concern 
the parametric space and consist of meshing the boundary of R and then meshing 
R using this boundary mesh as input data. The final stage consists of mapping 
this mesh onto the surface. 

Meshing a surface boundary. The discretization of the curves defining the 
surface boundary enables us to construct a geometric support using a well-suited 
mathematical representation. This support is approximated by a polygonal seg- 
ment whose constitutive segments are unit length segments. This polygonal seg- 
ment is the sought mesh (Chapter 14) unless a map that is not necessarily of 
compatible size must be adopted. This mesh is constructed using a mesh of the 
boundaries of R and, at completion, the boundary discretization is achieved. 

Meshing the domain. To complete the surface mesh, we construct, using a 
suitable method (Delaunay or advancing- front, in general), a mesh whose vertices 
are the points of the boundary discretization together with a series of internal 
points such that unit edges and good quality elements are obtained (with respect 
to an appropriate metric). This construction is made in fd using the discretization 
of the sides of this region as previously created. 

Mapping onto the surface. Mapping the mesh in R onto surface C is rather 
easy; it is merely necessary to apply function o. The vertex positions are the 
image by o of the vertices in the parametric space. The connections are those of 
this planar mesh. 

Remark 3.11 This technique can be applied to surfaces defined using several 
patches, each of which corresponds to a parametric space. I n  this case, the meshing 
procedure starts by  meshing the interfaces between the patches so as to insure the 
overall mesh conformity. I n  this way, a patch-dependent mesh is  obtained. This 
constraint can be overpassed by  using local remeshing procedures (Chapter 15). 
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3.4.2 Implicit surface triangulation 

Recent years have witnessed increasing interest in the use of implicit functions for 
defining geometric objects, for instance, in the field of Computer-Aided Geomet- 
ric Design [Requicha-19801, [Ricci-19721, [Wyvill et al. 19861, [Pasko et al. 19951 
or in applications where the domains involved are obtained using tridimensional 
scanning and sensing devices (e.g. biomedical imaging systems). They are called 
implicit because they represent subsets of R3 that are not specified explicitly by 
their boundaries or parameterizations. 

An implicit algebraic surface can be defined as the set of points (x, y, z )  in R3 
that conform to an equation such that: 

A geometric object is considered as a closed subset of R3 with the definition 
f (x, y, z )  2 0. The boundary of such an object is a so-called implicit surface 
and is the two-dimensional manifold in R3 such that f (x, y, z )  = 0. The defining 
funct ion f may be defined or approached in different ways, depending on the field 
of application. 

Scheme of the method. There are relatively few papers17 on implicitly defined 
surfaces (cf. [Ning, Bloomenthal-19931 for an overview). The classical scheme pro- 
posed by [Allgower, Schmidt-19851 is now well recognized in most of the approaches 
is based on two operations: 

a a sample of the function values at the vertices of a covering-up set of the 
domain, 

the connection of these vertices in order to  obtain a mesh. 

The sampling step aims at creating a set of points, all belonging to  the implicit 
surface. This task is delicate as, in general, it is necessary to solve non-linear 
equations. The aim of the connection step is to construct a topology similar to  
that of the surface and, in addition, such that a well-suited surface approximation 
is obtained, from a geometric point of view. 

Various approaches. A popular technique consists of sampling the basis func- 
tion in the space and uses a numerical method to  find the zeros of this function. 
The mesh vertices will then correspond to the roots of the equation. In practice, 
a spatial decomposition of the domain is developed (for instance, using an octree) 
and the function is approximated locally (in each cell) by a piecewise linear sur- 
face. The global conformity of the mesh is insured by the cell subdivision rule 
with the same idea as in an octree type method. The cell size may depend on 
the local curvature or on some other explicitly defined parameters. There are two 
classes of algorithms depending on the nature of the data. In the case of discrete 
data, the implicit function is not exactly accessed since the sole values available 

171n comparison with the literature on parametric surfaces. 
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Figure 3.13: Example of implicit surface meshing, the domain is  defined as the ex- 
trusion of a sphere from a cube using CSG primitives. Left: original triangulation 
based on a regular grid partitioning; right: optimized geometric surface mesh. 

are those at the vertices of the covering-up. A linear interpolation can then be 
used to compute the values of the function everywhere in the domain and thus 
find the intersections between the function and the edges of the covering-up. 

A simple numerical technique for constructing such a covering-up uses an oc- 
tree [Bloomenthal-19881. Lorensen and Cline introduced an algorithmla which 
is now commonly used for constructing a polygonal representation of a constant 
density surface using voxels, and numerous algorithms to guarantee topological 
correctness of the polygonization of isosurface have been proposed since then, 
see [Lorensen, Cline-19871. Also, a Delaunay mesh of the convex hull of the points 
in the sample can be used to construct this covering-up [F'rey, Borouchaki-19961. 
The meshes obtained by any of these techniques are then optimized (for instance, 
according to size specifications) using classical mesh modifications operations (cf. 
Chapter 19). This is due to the fact that no special attention is paid to the quality 
of the triangles at the time they are constructed since the only concern is to track 
the surface. 

3.4.3 Direct surface meshing 

This approach consists of applying a classical meshing technique directly to the 
body of the surface, without using any kind of mapping [Shephard, Georges-19911, 
[Nakahashi, Sharov-19951, [Chan, Anatasiou-19971, [McMorris, Kallinderis-19971. 
In such approaches, the mesh element sizes and shapes are controlled by analyzing 
the local surface variations. At first, the curves representing the surface boundary 
are discretized, then the surface mesh is created using any unstructured meshing 
technique. The difference between the various approaches proposed lies in the 
algorithm used to find an optimal point location on the surface. An optimization 

18The secalled Marching Cubes. 
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stage is usually required to  improve the element shapes after the generation of the 
initial surface mesh. 

Figure 3.14: Example of direct surface meshing (octree-based method with 
curvature-based refinement). Left-hand side: original triangulation (data courtesy 
of MacNeal-Schwendler Corp.); right-hand side: optimized surface mesh. 

3.4.4 Surface remeshing 

Although the surface meshing approaches described in the previous sections seem 
appropriate, in many cases the domains are not defined in terms of analytical func- 
tions but rather by means of a surface triangulation. Such applications include: 
numerical simulations where the surface results from measurements, biomedical 
engineering where the domain is provided by a sensing or scanning device, nu- 
merical simulations that involve remeshing (e.g. forging problems, fluid-structure 
interaction problems, etc.). In this context, we consider the problem of generating 
geometric finite element meshes given an arbitrary surface triangulation represent- 
ing the surface, possibly supplied with geometric specifications (ridges, singular 
points, etc.) [Lohner-1996a], [Frey-20001. 

Problem statement. We are concerned with a case where the surface is defined 
through an initial triangulation enjoying some geometric propertieslg. From this 
triangulation, a continuous mathematical support is constructed, which will be 
used to collect the required information by a system of queries. The problem 
then involves constructing a new mesh, conforming to the given specifications, by 
means of successive modifications applied to  the initial triangulation. The required 
information are as follows: 

0 the placement of a point on the surface, 

0 the surface property collection at  a local level (discontinuities, minimum 
radius of curvature, main curvature radii, normals and tangents, etc.). 

191f a CAD model is available, the surface is known using a series of queries to the modele. 
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The remeshing procedure uses local modification operators that can be of a topo- 
logical nature (to control the geometric approximation) or of a metric nature 
(subdivision of edges that are too long, vertex removal, vertex relocation, etc.). 

Figure 3.15: Surface mesh optimization. Polyhedral biomedical iso-surface recon- 
struction from volumetric data (public domain data, Naval Air Warfare Center 
Weapons Division). Initial triangulation (left-hand side) and optimized surface 
mesh for  a tangent plane deviation bounded by 37 degrees (right-hand side). 

Control of the geometric approximation. The initial surface triangulation 
is optimized in accordance with the geometry to obtain a so-called geometric mesh 
(regarding the geometric approximation of the surface) and also to the element 
quality, in other words, a mesh which best fits the surface geometry. In such a 
mesh, the maximal gap between an edge of the discretization and the real surface 
is bounded by a tolerance threshold value. Additional constraints regarding the 
element shape and size can be enforced. 

Remark 3.12 The problem is to start from an initial surface triangulation which 
contains a reasonably small number of elements and still represents an accurate 
polyhedral approximation of the surface. Usually, the given initial surface triangu- 
lation needs to be geometrically simplified (with respect to a geometric tolerance), 
prior to building the geometric support. 

Governed surface remeshing. The given triangulation initializes the current 
mesh. In this mesh, we identify the singularities (corners, ridges, Co-disconti- 
nuities). A size map is constructed by evaluating in a discrete manner the intrinsic 
properties of the surface (Chapter 19). The edges in the current mesh are then 
analyzed one at a time so as to obtain unit mesh edges. This leads to: 

subdividing any edge with a length greater than “one” into sub-edges of unit 
length (or a value close to one), 

a removing any short edge, provided the topological consistency is preserved. 
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Point enrichment or removal are combined with edge swap (cf. Chapter 18) in 
order to  enhance element quality. This process is repeated until all edges conform 
to th  e given specifications. At completion, the surface mesh conforms to  the 
intrinsic size map (i.e., the geometric map) or to any other given map. 

3.5 Mesh adaptation 

Solution-adaptive meshing is a very promising technique that improves the nu- 
merical accuracy of the solution at a lower computational cost. It relies on a more 
efficient (optimal) point distribution (in terms of their number and their location), 
and also on the shape of the element in the mesh (isotropic or anisotropic shape, 
for instance). A new mesh is then constructed (using one of the approaches dis- 
cussed in this chapter or by using a remeshing procedure), then the process is 
repeated. The new mesh is assumed to better capture the physics of the problem 
in hand. The successive iterations aim at optimizing this distribution based ona 
priori or a posteriori error estimate. Starting from an initial mesh, an initial so- 
lution is computed. It is then analyzed by an error estimate and this analysis is 
converted in terms of size specifications used in turn to  govern the mesh adapta- 
tion. The solution accuracy is also strongly related to  the interpolation step from 
the computational mesh (the previous iterate) and the current mesh. 

Mesh adaptation scheme 

Despite several differences between the possible approaches suitable for adaptive 
meshing, the following steps are usually representative of an adaptive meshing 
strategy: 

0 Construction of an initial mesh z. 
0 Computation of the initial solution ui on z. 
0 (A) Estimation of the local error in ui. 

0 (Re-)Construction of a mesh z+1 according to  the estimated error values: 

- construction of the control space CSi associated with ui, 

- construction of the governed mesh z+1 with respect to  CSi. 

0 Transfer of solution ui on z+1. 
0 Resumption of the solution procedure: return to (A) with i = i + 1. 

Mesh adaptation techniques 

Adaptation methods can be broadly classified into three categories. The first 
category consists of a local or global modification of an initial mesh so as to  
adapt it to the computational requirements. The second category includes the 
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Figure 3.16: Adaptively generated mesh for the computation of a supersonic flow 
(Mach 3) over a Scramjet. Left-hand side: initial mesh (4,000 vertices); right- 
hand side: final mesh (90,000 mesh points). 

global methods that reconstruct the whole mesh at each iteration step. Finally, 
some other methods attempt to combine these two approaches. The adaptation 
is first made at  a local level during a few iterations, then the mesh is entirely 
reconstructed prior to  being locally updated again. In this classification, we can 
distinguish between r-methods, h-methods, p-methods and the coupling of these 
last two resulting in hp-methods (cf. Chapters 21 and 22). 

Adaptive remeshing. The mesh on which a solution has been computed be- 
comes the background mesh for the next iteration step. A discrete element-size 
specification function is defined at the vertices of the background mesh, for in- 
stance, from a Hessian-based criterion or any type of error analysis method. A 
new unstructured mesh is then generated by a classical mesh technique governed 
by this new size map [Peraire et al. 19871, [Shephard et al. 19881, [Lohner-19891, 
[Mavriplis- 19901. 

Mesh modifications. Local remeshing (refinement, coarsening) is an alterna- 
tive and sometimes a less computationally expensive approach to  mesh adaptation, 
based on mesh optimization techniques. The current mesh is modified in the re- 
gions where the discrepancies between the current and the specified element size 
are too large [Rivara-l984b], [Cendes, Shenton-1985a1, [Rivara-19911. Subdivision 
refinement (h-refinement) can be used to produce nested meshes (i.e., containing a 
subset of the initial mesh vertices), thus allowing an accurate transfer of variables 
from one mesh to  another (in multigrid approaches, see [DBsidBri-1998]). 

3.6 Parallel unstructured meshing 

The requirement to develop fast and reliable unstructured mesh generation algo- 
rithms is common to several computational fields of application. Moreover, large 
meshes (in excess of several million elements, for instance, in some CFD problems 
or wave propagation) are now frequently managed in these disciplines. In order to  
benefit from parallel architectures, the whole simulation process (including mesh 
generation, numerical solving, adaptive remeshing and visualization) need to be 
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efficiently parallelized. Parallel computing is then a way to solve very large size 
problems (irrespective of the cost). 

The unstructured mesh generation techniques commonly used are intrinsically 
scalar as they create one entity (point or element) at a time. Parallelism can be 
achieved if the points to be inserted are sufficiently far apart (the neighborhoods as- 
sociated with these points are distinct). As pointed out by [Shostko, Lohner-19951, 
distance is the enabling factor for parallelism. Moreover, parallel mesh generation 
is a tedious task as it requires the ability to  decompose the computational domain 
into sub-regions that can be meshed separately on different processors. This is 
referred to  as the part i t ioning stage. 

Parallelism and meshing processes 

The strategy of parallel mesh generation can be divided into two categories: 

0 the mesh generation method includes parallelism, 

0 the mesh generation process is parallel while based on a serial mesh genera- 
tion method. 

The first approach introduces parallelism at  the mesh generation method level, 
while the second consists of using a given meshing method in parallel. This ap- 
proach leads to  meshing each sub-domain separately after the definition of the 
various domain interfaces and after a mesh of these interfaces have been com- 
pleted. 

The second approach avoids the specific tests about the boundaries of the dif- 
ferent meshes (in terms of conformity). On the other hand, meshing the interfaces 
is relatively tedious [Shostko, Lohner-19951. 

The mesh generation methods resulting in unstructured meshes as seen in this 
chapter are basically scalar methods. Indeed, in general, they allow the creation 
of one point or one element at a time. It is possible to  include some degree of 
parallelism if the points they try to  insert are sufficiently far. In other words, apart 
when considering a point, there exists a certain neighborhood with no intersection 
with another one. Distance is then the key factor in meshing parallelism. On 
the other hand, a solution method based on a domain decomposition technique 
requires the construction of several sub-meshes whose union provides a covering- 
up of the whole domain. Then, each sub-domain is dealt with in one processor. 
One of the difficulties is therefore to transfer the data values associated with one 
sub-domain (and then belonging to one processor) to  another sub-domain (another 
processor). The efficiency of the method then relies on the load balancing between 
the different processors (Chapter 24). 

Domain decomposition 

The aim of domain partitioning is to minimize the amount of inter-processor com- 
munication as well as to balance the computational load per processor. The parti- 
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tioning process can be subdivided into three classes depending on how the domain 
is split [decougny-19971: 

0 partitioning of an initial (coarse) mesh [Wu, Houstis-19961, 

0 partitioning of the domain (and not a boundary mesh) using a spatial de- 
composition method [Saxena, Perucchio-19921, 

0 direct partitioning (also called pre-partitioning) of the mesh of the domain 
boundaries (a surface mesh in three dimensions) [Galtier, George-19961. 

Once the partitioning has been completed, sub-domain meshing is performed 
in parallel with or without inter-processor communication. 

A posteriori partitioning. Provided with a mesh of the domain under interest, 
an a posteriori partitioning method consists of splitting this mesh into several 
sub-meshes so as to  have the sub-domains defined. Various techniques have been 
proposed for this purpose (cf. [Simon-19911, [Farhat, Lesoinne-19931 for instance). 

The main drawback of such a method is related to its memory requirement. In 
fact, it is necessary to  store the initial mesh and, at least, one of the sub-meshes. 
Moreover, all the problems related to any partitioning methods must be addressed 
(load balancing, interface smoothness, etc.). 

A priori partitioning. The purpose of this approach is to construct a priori 
a partition of the domain, from the data of a coarse mesh of it or directly from 
a discretization of the domain boundaries. Once this partition is available, the 
resulting sub-domains are meshed in parallel thus taking advantage of the parallel 
capabilities of the computers right from the meshing stage. 

The main difficulties in this approach are related to the load balancing aspect 
(that must be deduced from the coarse mesh or the domain boundary) and to  the 
proper management of the domain interfaces. The coarse mesh may be an empty 
mesh (without internal vertices), for instance, resulting from a Delaunay method. 
The interface between two sub-domains is constructed either from the data of the 
coarse mesh or from the data of the domain boundary discretization. 



Chapter 4 

Algebraic, PDE and Multiblock Methods 

This chapter describes some algebraic methods, some methods based on the so- 
lution of PDEs and multiblock-type methods. An algebraic method is designed 
to carry out the mesh construction of domains having an analogy with a simple 
shaped logical domain (such as a square or a quadrangle, a triangle, etc.). A PDE- 
type method is designed to  handle domains that can be mapped onto a square (a 
cuboid in three dimensions) using different kinds of analogies. These methods are 
therefore limited regarding the shape of the domains they can successfully deal 
with. A multiblock type method is one possible solution to  carry out arbitrarily 
shaped domains. First, the domains are decomposed into simply shaped regions 
where the previous methods can be used. Then, the mesh of the entire domain is 
obtained as the union of the local meshes corresponding to the above regions. 

* * *  
The first section discusses various algebraic methods based on a mapping func- 

tion which is defined a priori. The second section briefly considers PDE style 
methods where the mesh is obtained by solving an adequate system of differential 
equations. The third section shows how to define a multiblock method using one 
of the above methods as a local meshing process. 

4.1 Algebraic methods 

Any algebraic mesh generation method consists of constructing a mesh on a (real) 
domain using a given function that is explicitly defined. Main references about 
algebraic methods, mostly for quad or hex geometries, include [Gordon, Hall-19731, 
[Cook-19741 and, for transfinite interpolation style methods suitable for simple 
shapes, a synthesis by [Perronnet-19981. The given function is used to  map an 
easily defined mesh in a logical domain fl geometrically simple (unit square, unit 
triangle, etc.) onto the real domain R (see Figure 4.1). The logical mesh thus 
created is in essence a structured mesh. In general, the mapping function consists 
of polynomials defined in such a way as to  ensure certain properties. 

Mesh Generation : Application to Finite Elenzents 
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In this section, we assume that a suitable domain boundary discretization is 
supplied as input data and we show how to construct a mesh covering the domain 
thus defined. In two dimensions, the boundary discretization consists of a series of 
segments (a polygonal line) enjoying some specific properties. In three dimensions, 
this discretization is a surface mesh which also conforms to  a peculiar type. 

Figure 4.1: General principle of any  algebraic method in the case where the domain 
R i s  considered as a quad. Three steps are involved, the data mapping o n  the 
boundary, the mesh  construction in to  the reference square and the mapping of this 
mesh  onto the actual domain (steps denoted by 1, 2 and 3 in the figure). 

4.1.1 Trivial mapping functions 

It seems natural to use as the mapping function the shape function corresponding 
to the shape of the domain. The mapping function is then the shape function of 
the finite element with the corresponding geometry. Thus, in the case where the 
domain “looks like” a triangle, the mapping function can be defined by: 

F(5,17)=(1-5-17)a1 + < a 2  +71a3, (4.1) 

where ai is the corner with index i (see hereafter) of the real domain. Obviously 
such a function only matches the corners of the domain. In other words, given a 
mesh on the logical triangle, the resulting mesh does not match the given boundary 
discretization unless the latter is composed of straight lines. As indicated, the 
above function is the shape function of the classical P1 triangle (Chapter 20). 

To improve the accuracy of the approximation of the domain, a more compli- 
cated shape function can be used, i.e., by reference to  a more sophisticated finite 
element. For instance, the mapping function: 

F(5,  17) = (1 - 5)(1 - 17)U - 25 - 271) a1 + 5(1 - 17)(25 - 217 - 1) a2 

- 571(3 - 25 - 217) a3 + (1 - 5 ) ~ ( - 2 5  + 217 - 1) a4 
( 4 4  + 4 6 ( 1 - 1 ) ( 1 - 7 ) a 5  + 4117(1-17)a6 + 41(1-17)17a7 

+ 4(1 - 1)7(1 - 7) a8 7 

insures the respect of a boundary composed by arcs of parabola for a domain 
(Figure 4.2) similar to  a quad (ai is a the corners while ai+4 is an edge midpoints, 
for i = 1,4) .  
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841 87 83 - 

Figure 4.2: Quadrilateral domain whose boundary is  approximated by several arcs 
of parabola. 

Since the above functions, as well as the similar functions that can be easily 
found for the other shape analogies, do not guarantee sufficient properties, other 
types of functions must be developed. 

4.1.2 Quadrilateral or triangular analogy 

Quadrilat era1 analogy 

In this case, the given discretization of the real domain can be considered as a 
set of four logical sides, each of which consists of a series of segments. Thus, 
an analogy with a quadrilateral is exhibited. The endpoints of the sides are the 
so-called corners, ai ,  i = 1 ,4 ,  defined counterclockwise. Similarly, the domain 
is assumed to  be on the “left-hand side” of the boundary which is also defined 
counterclockwise. The first side, defined from a1 to a2, consists of a series of nl 
segments. The second side, from a2 to a3 includes n2 segments. For the sake of 
simplicity, the third side ( ~ 4 , ~ s )  is formed by n1 segments while the fourth side 
(a1,a4) has n2 segments. This means that the number of segments of the side 
discretization is the same for two logically opposite sides. In other words, two 
opposite sides must enjoy some similarity (for instance, in terms of length) so that 
only two subdivision parameters, nl and n2, can be used. 

Let $i(.) be the discretization of side i. In fact, $i(.) is defined as a series of 
straight segments joining two consecutive points of the given boundary discretiza- 
tion. 

Logical mesh on the unit square boundary. Let a; be the j t h  point serving 
to define the discretization of the real side i with ad the first corner of side i and 
a; the other endpoint this side (where n stands for n1 or n ~ ) ,  then a discretization 
of side a of the unit square can be constructed in such a way as to conform to the 
discretization of the real corresponding side, in terms of relative distances from 
point to  point. Let (omitting index a associated with the side under treatment) 
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l j  = laj,a,+l be the distance between aj and aj+l for j = 0,1, ..., n - 1; then 

Figure 4.3: Logical mesh on  the unit 

for the construction. 

square. The dotted lines show the two 
families of lines serving as a support 

,E 

n-1 

ls ide = l j  

j = O  

with this notation, the j t h  point on the logical side, say i i j ,  is constructed on the 
relevant side by means of a formula like 

j-1 

c lk 
6 ,  - k=O 
- ls ide ' 

This process is then repeated for the four sides, resulting in the desired points 
i i i . , i = l , 4 .  3 

Logical mesh on the unit square. The above 6; are now used to  define a 
simple mesh on the unit square. We define the lines joining two opposite points. 
Then considering a line joining side 1 and side 3 together with a line joining line 
2 and side 4, an intersection point can be found. Actually, the intersection points 
result from the intersection of two families of lines. Applying this process for all 
the lines results in a valid mesh in the unit square. Both the connectivities (i.e., 
the element vertex connectivities and numbering) and the vertex positions of this 
logical mesh are trivially obtained. 

Mapping onto the real domain. The aim is now to map the above logical 
mesh onto the real domain. To this end, a suitable mapping function, F ,  is 
needed. The question is how to construct such a function. Indeed, several choices 
are possible leading to different mesh generation methods. To help the choice, it is 
necessary to  define what properties must be ensured. In this respect, we introduce 
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three categories of properties which concern some suitable invariances and some 
degree of regularity. 

0 Prl: the image of a logical corner is a real corner. This is the well-known 
corner identity. For instance, F(0,O) = a l .  

0 Pr2: the image of a logical side matches the corresponding real side. Thus, 
F(I ,O)  = $1 (I ,  0 )  = $1 (I)  (and similar expressions for the other sides). 

0 Pr3: the image of a regular logical mesh is a regular real mesh. In fact, this 
means that a regular mesh is obtained for a real domain whose boundary 
discretization is uniform (for the two possible pairs of opposite sides). This 
leads to an invariant property of F when applied to  the logical mesh itself. 
Then, F ( I , q )  = (I ,  q) ,  point of coordinates I and 71 is mapped onto itself. 

We initially restrict ourselves to simple polynomials (in fact, forms of polynomials 
of first order for each of the variables). Then one possible method corresponds to: 

4 

C ai $i ( I ,  71) 
i= 1 

F(I,71) = 4 7 

C ai 
i= 1 

where and 71 live in [0,1]. The ai’s are functions of and 71 defined as: 

(4.3) 

Remark 4.1 Note that the sum’ of the ai’s i s  1. Thus,  in the previous formula, 
the denominator can be removed. 

For this function, Prl and Pr2 are satisfied while Pr3 does not hold. Thus, another 
type of function may be sought. For instance, the function 

4 

C Pi $i(I,q) 
i=l 

F(I771) = 4 I 

C ai 
i= 1 

where now: 

P1 = (a1 + a3) (1 - 71) , P 2  = (a2 + a4) I ,  
P4 = (a2 + a4) (1 - I ) .  P3 = (a1 + a3) 71 ,  

Remark 4.2 Obviously, the s u m  of the Pis is  also equal t o  one. 

With this method, Pr1, Pr2 along with Pr3 hold. 

(4.4) 

‘A system like Mapple can be used to verify this property. 
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Proof. First, it is obvious to see that P r 2  holds. For instance, for 71 = 0, a 2  = 

a4 = 0, then P 2  = P 4  = 0 and P 3  = 0. Thus, F(5,  0) = PI $I(<, 17). As PI = a l + a 3 ,  

then PI = C a i  - a 2  - a4 = 1, which implies that F(5,  0) = $I(<, 0) = $I(<). 
Now, obviously Prl holds. For instance, if 6 = 0, the above relation leads to  

Property P r 3  leads to  checking whether the image of point ( 5 , ~ )  is this point 

when the real domain is the logical domain. So, we have to  compute C /3i &((, 71) . 

F(0,O) = $ l ( O )  = ~ 1 .  

4 

The first component of this expression is /31( + /32 + /33 6 whose value is: 

4 

6 (l-71) ( a l + a 3 )  + 6 ( a 2 + a 4 )  + 5 ( a l + a 3 )  71 = 5 ( a l + a 3 ) + 6  ( a 2 + a 4 )  = c a i  6 
i= 1 

that is 5. Similarly, the second component is 17, thus: 

and the proof is completed. 0 

Another popular method is the transfinite interpolation which is defined in 
a slightly different manner. In fact, the corresponding function is not only a 
combination of the $i’s but involves such a combination coupled with a correction 
term based on the corners. Note that a tensor product is used to  define the main 
part of the expression and the correction term is then added to  meet the desired 
properties: 

(4.5) 
F(5,  71) = (1 - 71) $ 1 ( 0  + 542(71)  + 71$3(1) + (1 - 0 $4(71) 

- ((1 - <)(I - 17) a1 +<(I - 71) a 2  + 517a3 + (1 - 5) 17a4). 

Exercise 4.1 Show that function F satisfies the three above properties (hint: fol- 
low the scheme of the above proof). 

The mesh of the real domain is then easily obtained. Its connectivity is that 
of the logical mesh. The coordinates of its vertices are known by applying F to  
the above 6;s. 

The question is to  decide which function F is the best among (4.3), (4.4) or 
(4.5). Clearly the function of Relation 4.3 is probably not so good. To select one 
of the two others, we have to  look at  the limitations of the method. 
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Figure 4.4: Image of a uniform unit square when using the function of Rela- 
tion (4.3), left-hand side, and that of Relation (4.4) or (4.5), right-hand side. 

Limitations. Unfortunately, the above method is unlikely to  be suitable when 
handling complex four sided geometries. Actually, if the real domain is convex, 
the resulting mesh is valid, while for some non-convex domains, two complications 
may arise. First, the image of a point inside the logical mesh may fall outside 
the real domain and, on the other hand, the image of a valid quadrilateral in the 
logical mesh may be a quadrilateral with a zero or negative surface area, thus 
resulting in overlapping elements and an invalid mesh. 

In other words, such a method is suitable only under some restrictive conditions 
about the shape of the real domain (in addition to its quadrilateral analogy). 

Nevertheless, we would like to give some examples. In Figure 4.4, we consider 
how the three above functions act with regard to Pr3. Then, as previously men- 
tioned, Relation (4.3) is unlikely to  be suitable. In Figure 4.5, we show the mesh 
obtained using methods (4.4) and (4.5) for a non-convex domain. Both meshes are 
wrong but it seems that method (4.4) is less sensitive to the non-convex geometry. 
Nevertheless, other non-convex geometries seem to indicate that the method of 
Relation (4.5) is more robust in most cases. 

It can also be observed that it is not possible to enforce some orthogonality 
properties in the element edges (in contrast to  the PDE methods presented below). 

A final comment about this mesh generation method concerns its lack of flex- 
ibility. Indeed, as for all structured meshes, the type of connectivities from point 
to point results in a certain level of rigidity which means that it is not easy to  deal 
with a problem where some flexibility (in terms of sizes, variations from region to  
region, etc.) is needed. 

Variations. The two parameters n1 and 722 allow for some flexibility in the 
method. The restriction leading to only two parameters being considered can be, 
to some extent, over-passed. Indeed, it is possible to  define four parameters, one for 
each side, and to  define a more sophisticated method based on the same approach. 
Such a construction results in a mesh consisting of quadrilateral elements as well 
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Figure 4.5: Non-convex domain meshed using the function of Relation (4.4), left- 
hand side, and that of Relation (4.5), right-hand side. 

as some triangles to  ensure a transition between the layers of elements. 

Triangular meshing for a quadrilateral domain. In essence, this algebraic 
method completes a mesh whose elements are quadrilaterals except in the case 
where four parameters are defined. To meet a triangular mesh, the quads must be 
split into two triangles to maintain the same number of vertices. Such an operation 
is trivial at the time a criterion is selected to  decide which diagonal is used to split 
a given element. In this respect, a given direction for the diagonals, the diagonal 
lengths, the element qualities, etc., can be chosen to govern the process. It should 
be noted that, in general, it is advisable to pay special attention to the elements 
that have one of the corners as a vertex. In this case, considering the diagonal 
that includes such a corner as endpoint is often a nice solution (see Chapter 18 
about the notion of an over-constrained mesh). 

Computational aspects. 
(whatever the function F may be), several remarks can be made. 

As for the computer implementation of the method 

First, one should note that the memory resources that are required can be 
easily known (or estimated) using the two (four) parameters defining the 
boundary discretization. 

The key idea to complete the logical mesh is the intersection of two families 
of lines, thus no difficulties are expected as such intersections are well defined 
(in contrast to the case of a triangular analogy, as shown below). 

Applying Relation (4.i) (i  = 3,5) is easy at  the time the terms qh(.)’s are com- 
puted. Actually qh(.)  is known in a discrete manner. For instance, qhl(7,O) 
is the polygonal line written as (u! ,  u?j) (a;,  u i )  ... ( u : ~ - ~ ,  uA1). This implies 
the use of an interpolation scheme. Thus, the computational process can be 
as follows: 
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- Given h;r a vertex in the logical mesh with coordinates 5 and 17, we 
pick the interval (6i,6i+l) within which falls 5 as well as the interval 
( G i ,  G i + l )  (in terms of the third logical side). Similarly we find the two 
intervals (sides 2 and 4) corresponding to 17. 

- We find the relationships between 5 and 6; and ~ ? j ’ + ~  and we map the 
same ratio between uj’ and (say the discrete form of 41). Similarly 
we find the three other relationships for the three other sides. 

- Then, the desired function is used by replacing the terms $ j ( . ,  .) by the 
above interpolations. 

a Zero or negative surface area elements must be checked explicitly. To this 
end, associating four triangles with a given quad (i.e., by using the two 
diagonals, each of them making it possible to  define two triangles) proves 
to  be an efficient way to  detect the cases where the method fails (see also 
Chapter 18). 

As a consequence, implementing such a method, in its range of application, results 
in a rather inexpensive mesh generation method and, actually, is a quite easy task. 

Triangular analogy 

An analogy with a triangular shape is exhibited in the case where the given dis- 
cretization of the real domain can be considered as a set of three logical sides 
(consisting of a series of segments). In addition, we assume that each side in- 
cludes n segments, thus only one parameter is defined. Then the algebraic mesh 
generation method follows the same principle as for the previous case. 

11 

\ / 

\ \  1 

\ (  
-\- L - - - 

I \ Figure 4.6: Logical mesh on  the 
unit triangle. In dotted lines are 
the three families of lines serving 
as a support for  the construction. 
A close-up shows the region de- 
fined by  the intersection of three 
lines that serves to find a unique 

I \  

1 intersection point. 

The boundary discretization is mapped onto the unit logical triangle. The 
logical corners 61, 62 and 63 are the points ( O , O ) ,  ( 1 , O )  and (0 , l )  and the three 
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logical sides are defined as i21 - 62 for the first, i22 - 63 for the second and 
61 - i23 for the third. Three families of lines are constructed. Points 6; , i = 1 , 3  
are obtained by intersecting these lines. It should be noted that now the desired 
intersections are not well defined in the sense that the three relevant lines do not 
define a point as a solution but a small region. Nevertheless, a point, for instance, 
the centroid2 of such a region, can be defined which allows us to  reach what we 
are seeking. In this way the logical mesh is obtained. 

To map the above mesh onto the real domain, we use the same idea as for 
the above quad method. In fact, several categories of functions can be used. For 
instance, a function may be used like: 

where the ais are the functions of < and 17, defined as: 

For this function, Prl and Pr2 are satisfied while Pr3 does not hold. 

Remark 4.3 Note that the s u m  of the ais i s  1. 

Figure 4.7: Transfinite interpolation for a “quadrilateral” domain, left-hand side 
and same type of interpolation for a “triangular” domain, right-hand side. 

21n principle, the point minimizing the distances to the three lines is the best possible solution. 
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A form similar to  Relation (4.5) is the following: 

while a form involving rational polynomials is: 

(4.8) 
F ( I ,  71) = * 41(0 + 42(71) + &j 43(1+ 71) 

- (&(I - 5 - 71) a1 + *<a2 + &71a3). 

The previous functions satisfy the three desired properties. Limits and varia- 
tions of the present method are of the same nature as for the above case. Compu- 
tational issues do not lead to  major difficulties. 

Application examples 

In this section, two simple application examples are provided where the domains in 
question are not strictly convex. Nevertheless, Figure 4.7, the resulting meshes are 
valid. The last example, Figure 4.8, concerns a case where the (transfinite interpo- 
lation) method fails. Indeed, due to the geometry of the domain, some overlapping 
elements are constructed (i.e., negative elements exist). To some extent, it is pos- 
sible to  untangle such an invalid mesh so as to  obtain a suitable solution. For 
instance, in this test example, successive iterations of point relocations allow the 
mesh to be corrected. 

Figure 4.8: Domain inducing degeneracies (overlapping elements are present), left- 
hand side, and mesh resulting from local corrections, right-hand side. 

4.1.3 Surface meshing 

The above two types of methods also provide a way to  mesh a surface following 
the desired analogy which is defined by a discretization of its four (three) bound- 
ary edges. It should be noted that the resulting surface is only controlled by its 
boundary discretization. Thus, while rather easy to  implement, such a method 
may result in a poor approximation of the real surface or even may result in unde- 
sirable twists or folds (see Chapters 13 and 15 where the transfinite interpolation 
is used for surface definition). 
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4.1.4 

Methods similar to those previously described can be defined so as to handle 
three-dimensional domains that can be considered as analogous to a simple logical 
domain. 

Hexahedral, pentahedral or tetrahedral analogy 

Hexahedral analogy 

In this case, the real domain is assumed to be similar to a cuboid. Actually, eight 
corners can be identified as well as six faces which are similar to quadrilateral 
faces. To follow a mesh generation method similar to those in two dimensions, 
the discretization of the faces is assumed to be of the structured type. For a 
quad face, a typical discretization is a grid defined by two subdivision parameters. 
For a triangular face (see hereafter the pentahedral or the tet analogies), only 
one subdivision parameter is supposed. Thus, provided & ( . ,  ., .), (i = 1 ,6 ) ,  the 
adequate discretization of these faces, the logical mesh of the unit cube can be 
mapped on the real domain using the following function: 

where i = 1 , 3  with xj+1 = <, 17 or <, j = 0,2 (i + j  modulo 3) and T j  = 1 - x j .  As 
before, this function satisfies the "corner identities" and matches the boundary. 

Proof. 
j = 1 ,6 ) .  First, the ai's are such that: 

First, the following properties can be verified (held for i = 1 , 3  and 

0 xi-1 = 0 - ai = 1 and aj = 0 for j # i ,  

0 xi-1 = 1 - ai+3 = 1 and aj = 0 for j # i. 

Thus, we have: 

0 F(0 ,  0,O) = a1 where a1 is the first corner and we have similar relations for 
the other corners (i.e., property Prl holds). 

0 F(<,  17, 0) = $ I ( < ,  17, 0) where $1  stands for the discretization of the real face 
identified to the first face of the logical cube (i.e., the face < = 0), etc. Then, 
property Prz holds. 
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0 ai(Ti-I) = ai+3(Xi-l), ai(Ti) = ai(xi) and ai(Ti+l) = ai(xi+l), then Rela- 
tion (4.9) is symmetric in some sense, faces q5i and 4i+3 act in a symmetric 
way when Ti-1 replaces xi-1. Indeed, we return to  the discussion about 
Relation (4.4). While some symmetric features exist, property Pr3 is not 
satisfied. 0 

As for the quad analogy, a method can be easily derived so as to ensure Pr3. 
The idea is the same, we take as a function the following: 

with (for i = 1,3): 

(4.10) 

Pi = (Qi + Qi+3) Ti-1 pi+3 = (Qi + Qi+3 ) xi-1 . 

Proof. First, it is obvious that Prl holds. Regarding Pr2, the proof needs to  
have the &s defined by a transfinite interpolation. To show Pr3, we use the same 
method as before. I.e., we prove that the image of point (1, 71, 5) is invariant due 

0 to the peculiar form of the $is. 

Pentahedral analogy 

In this case, the same method can be followed with a mapping function like: 

where the ~ l i  are defined by: 
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5 71 l - 5  -- 
( 5 + 1 - I - 7 1 ) ( 2 - 5 - 7 1 - 5 ) ( 1 - 7 1 ) ( l - I ) .  

5 
a 5  = (I + 71) 

It should be noted that al(1 - 5) = ~ 4 ( 5 ) ,  which means that faces one and four 
play a special role (in fact, they correspond to the logical faces 5 = 0 and 5 = 1). 
With this definition, Prl and Pr2 hold while Pr3 is not achieved. Note that 
defining a function ensuring Pr3 is a tedious task. 

Tetrahedral analogy 

For a tetrahedral analogy, the following function could be retained: 

(4.13) 

where the ai are defined by: 

xi Xi+l xi+2 
Q i  = (1 - xi-1) 

(xi + xi-1) (%+l + 22-1) (.i+2 + xi-1) 

for i = 1 ,4  with xj+i = 5, 71, 5 or 1 - 5 - 71 - 5 for j = 0,3 (i + j modulo 4). In 
fact, we encounter the barycentric coordinates (which can be used in this case, as 
we are considering a simplex). In other words, we have: 

Thus, Prl and Pr2 hold while Pr3 is not satisfied. Note that it is not possible 
to partition a tetrahedron into uniform sub-tetrahedra (unlike the same problem 
in two dimensions, for a triangle). Nevertheless, it could be of interest to have 
the corresponding uniform distribution of points. However, exhibiting a function 
ensuring Pr3 is, a priori, not obvious. 
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4.1.5 

Other algebraic methods 

Other algebraic methods and alternative methods 

The above algebraic methods only infer point coordinates, in this sense, they are 
of a Lagrangian type. Thus, no way is provided to control directional features 
such as orthogonality (for instance, at the boundary level). Different algebraic 
methods can be investigated to enable such a control. For instance, a Hermitian 
type method can be defined involving not only point coordinates but also some 
derivatives. We will see in Chapter 13 the Coons patches which are based on a 
method that can also be used in this mesh generation context. 

An alternative to algebraic methods 

We consider in detail the case of a three-dimensional method. Apart for the hex- 
ahedral analogy, the two other shape analogies (tet and pentahedral) can be dealt 
with by the previously described algebraic method. Nevertheless, while simple to 
describe, these methods are not so easy to implement and most likely do not guar- 
antee property Pr3. Thus, a different mesh generation principle can be advocated. 
To start the meshing process, we follow the first three steps of a classical algebraic 
method, i.e., 

0 construct a discretization on the boundary of the logical domain in accor- 
dance with the given discretization of the boundary of the real domain, 

0 complete the mesh of the logical domain following the above boundary defi- 
nition, 

0 map the logical mesh onto the real domain by means of the classical P1 
interpolation scheme corresponding to the shape analogy. 

Figure 4.9: Deformat ion  governed by  the  boundary points ,  (left-hand side). 
Straight m e s h  (middle)  and  result ing m e s h  (right-hand side). 

The resulting mesh is then modified using a deformation technique. If M is a 
point of the current mesh, we compute a new location for M as follows 

(4.14) 
1 

M = M + - u ( M )  a k  d e f ( u k )  a 
a k E r  
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case 2 

case 3 

5,984 29,791 6.56 912 4,541 

2.601 4.096 1.24 2.097 3.303 
case 4 
case 5 

case 6 
case 7 

Table 4.1: Statistics related to some selected examples (the first two lines concern 
a tet analogy while the following three concern a pentahedral analogy and the last 
two concern a hexahedral analogy). 

5,566 9,261 4.51 1,234 2,053 
16,896 29,791 31.27 540 952 

2,744 2,197 1.68 1,633 1,307 
17.576 15.625 44.08 398 354 

where the aks are the members of r the boundary of the domain (i.e., the aks 
are the boundary vertices of the real domain) and the quantities involved in the 
formula are: 

def(ak) ,  the distance between the (real) point ak and the image of the cor- 
responding & ,  

Qk is a weight associated with ak. Actually, the average length of the edges 
sharing ak acn be computed, 

a a,  a normalization factor defined as 

(4.15) 
ak €I- 

Wk(M),  a coefficient associated with ak, is defined as d;’(M) where @ is a 
value of attraction (for instance, 4) and dk(M)  is the distance between the 
image of & and M .  

Now, note that def(ak)  vanishes at the corners3. 

Computational issues. While almost quadratic, the above algorithm has proved 
to be robust enough to carry out some non-trivial geometries. Nevertheless, a “too 
non-convex” domain will be quite difficult to handle with success. 

The theoretical analysis of this method is quite easy. Actually, each point 
creation needs the analysis of the members of r. Thus, for a hexahedral domain 
whose subdivision parameters are equal (nl = n2 = n3 = n) ,  the cardinality of r 
is of the order of (n + 2)2, i.e., n2, while the number of points is something like 
n3. Then, the number of operations is in n5 resulting in a complexity in n2, say 
O ( n 2 ) ,  n now being the number of vertices. As a consequence, the method is in 
essence almost quadratic. 

3Due to the use of the interpolation function which preserves the corner identity. 
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In Table 4.1, n p  is the number of vertices, n e  is the number of elements, t 
is the CPU time in seconds while up indicates the number of points dealt with 
within one second and u, the number of elements created in the same time. The 

ratio (g) ' between t 2  and tl could be observed where ti (i = 1,2) is the time 

required for creating npi points. While the behavior is the same for the three 
types, the global efficiency is related to the number of members in r compared 
with the number of points (thus, the constant from case to case is rather different). 
Indeed, this constant is related to  the number of face vertices of the logical element 
as compared with the number of vertices of the real mesh. 

5 

Extensions. It should be noted that the above meshing method by means of 
deformations is also a way to update a given mesh whose boundary discretization 
moves from one step to  another of a given iterative process. 

Remark 4.4 The same method applies in two dimensions. I n  this case, it is very 
easy to define. Moreover, its complexity remains reasonable as it is  something like 
n:, say o(n:). 

4.2 PDE-based methods 

PDE mesh generation methods represent an elegant alternative to algebraic meth- 
ods and may be used when the domain (a with boundary denoted by r hereafter) 
can be identified by a quad (in two dimensions), or a cuboi'd (in three dimensions). 
The major reference for PDE type methods is [Thompson et al. 19851. Contrary 
to any algebraic methods, a transformation from the domain to  this quad (cuboid), 
the logical domain, is sought. A generation system is associated with such a trans- 
formation, which allows us to  compute the required mesh. 

4.2.1 Basic ideas 

In what follows, variables x ,  y ,  (resp. x ,  y ,  z )  describe the domain (Figure 4.10) 
while the logical region is described using variables <,q, (resp. 6, 17, <). The prob- 
lem now becomes one of finding the functions 

or 
2 = 41971, C )  9 Y = Y(19 71, C )  9 and z = 46,179 <I , 

according to the spatial dimension, assuming that the transformation maps the 
logical region one-to-one onto the domain and that the boundaries are preserved. 

The one-to-one property is ensured by requiring that the Jacobian of the trans- 
formation is non-zero. The transformation (for example, in two dimensions) is 
defined bv the matrix: 
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Figure 4.10: Logical domain (a unit square), left-hand side, and real domain, right- 
hand side. 

where xc stands for g, xo stands for $, and so on. The Jacobian J is xcyo-xoyc.  
As it is assumed to be non-zero, the inverse of the transformation exists and 
variables 6 , ~  can be expressed in terms of x ,  y as follows: 

I = ( ( 2 7  Y )  and V = V ( X ,  Y )  

The two ways of expressing the variables are mathematically equivalent and lead 
to two possibilities for solving the problem. If variables I ,  v are expressed in terms 
of x ,  y ,  the logical mesh can be transformed into a mesh on the domain, and the 
physical problem is solved in the domain as in the classical way. On the other 
hand, if variables x ,  y are expressed in terms of 6, 7 ,  either the physical problem 
can be written in terms of these variables and then solved in the logical region, or 
we return to the above classical solution. 

As a simple example of PDE methods, we briefly consider the following gen- 
eration system based on the regularizing properties of the Laplacian operator A. 
We consider the two following systems: 

(4.16) 
= 0 in R, { Bounk;&klitions on dR 

and 

(4.17) Boundary conditions on aR  

which are then inverted in order to  find x ( 6 , ~ )  and y ( c ,  v ) ,  thus we obtain as the 
generation system: 

Vxx + VYY = 0 in R, 

(4.18) 
911Xff + g22xq7) + 2g12q17 = 0. 
S11Yff + Q22Yo17 + 2912Y& = 0. 

with 
2 

gij = C A ~ ~ A ~ ~  
m=l 

where Ami = (-l)i+m(Cofactorm,i of [MI) and [MI is the above matrix. 
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This results in a system expressed in the logical space (where a mesh exists). 
It is a non-linear coupled system which can be solved using relaxation techniques 
or, more generally, iterative methods after an initialization by a solution in which 
the real boundary conditions are prescribed. 

Variants. Variants of the previous generation systems can be experimented with 
to obtain special properties. For example, adding a non-zero right-hand side and 
considering: 

(4.19) 
= P  { Bouncf;jfi:kitions 

along with 

rlxx + rlyy = Q  
Boundary conditions 

(4.20) 

enables us to control the distribution of points inside the domain. In this situation, 
the inverse system is: 

(4.21) giixcc + ~ 2 2 x q q  + 2gizxcq + J2(Pxc + Qx,) 
g11YEE + ~ 2 2 ~ q q  + 2912~~17 + J2(Py€ + Q Y ~ )  

= 0, 
= 0. 

using the same notation and J, the Jacobian, being defined by J = d e t ( [ M ] ) .  

The right-hand sides P and Q interact as follows: 

For P > 0, the points are attracted to the “right”, P < 0 induces the inverse 
effect. 

For Q > 0 the points are attracted to the “top”, Q < 0 leads to the inverse 
effect. 

Close to the boundary, P and Q induces an inclination of lines 5 = constant 
(or 71 = constant). 

P (Q) can also be used to concentrate lines 5 = constant or 17 = constant 
towards a given line, or to attract them towards a given point. To achieve this, 
the right-hand side can be defined as follows: 

i= 1 i= 1 

where n and m denote the number of lines in 5 and 71 of the grid. Such a control 
function induces the following: 

for ai > 0, i = 1, n, lines 5 are attracted to line &, 

for bi > 0, i = 1, m, lines 5 are attracted to point (ti, ~ i ) .  
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These effects are modulated by the amplitude of ai (bi) and by the distance 
from the attraction line (attraction point), modulated by coefficients ci and di .  
For ai < 0 When 
ai  = 0 (bi = 0), no particular action is connected to  line & or point (ti, qi). 

(bi < 0), the attraction is transformed into a repulsion. 

A right-hand side Q of the same form produces analogous effects with respect 
to 17 by interchanging the roles of 5 and 17. 

The major difficulty for automating this class of mesh generation systems is 
how to choose the control functions ( P ,  Q, etc.) and the parameters they involve. 
However, these methods can be extended to  three dimensions and, for a complete 
discussion, the reader is referred to  [Thompson-l982a], where other forms of right- 
hand sides P and Q producing other properties are discussed (for example, the 
concentration of lines < or 71 towards an arbitrary line and not only towards a par- 
ticular one (I = constant or 17 = c o n s t a n t )  or towards a given point to increase the 
mesh density near this point). In the above mentioned reference, and some others 
(for instance, [Knupp, Steinberg-1993]), other types of generation systems, includ- 
ing parabolic and hyperbolic operators, are discussed and numerous examples are 
provided. 

How to define the quadrilateral (cuboid) analogy. When using a gener- 
ation method of the present class, it is convenient to find the best analogy from 
the domain to  a logical shape (quadrilateral or cuboi'd). Such an analogy is often 
obtained either by partitioning the domain into several simpler domains, or by 
identifying the domain with the required shape, using several methods. 

0-type C-type H-type 

Figure 4.11: 0- type ,  C-type and H-type decompositions. 

For example, in two dimensions, there are several major classes of decompo- 
sitions of the domain under consideration from which different kinds of grids will 
result in order to capture the physics of the problem as well as possible. In this 
respect, a domain can be discretized following an 0-type, C-type or H-type anal- 
ysis (Figure 4.11). To obtain such an analogy, artificial cuts must be introduced. 
Such analogies extend to a greater or lesser degree to  three dimensions. 
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4.2.2 

PDE-based methods can also be employed to  generate surface meshes or domains 
having more complex geometries as local mesh generation processes (as will be 
discussed below in the multiblock method). 

Surface meshing and complex shapes 

4.3 Multiblock method 

As algebraic methods and PDE methods are unlikely to  be suitable for complex 
geometries, other methods must be used to  deal with such geometries. Multiblock 
type methods are an initial answer to this problem. The underlying idea of such 
methods is to take advantage of a local meshing process such as an algebraic or 
a PDE meshing algorithm and to overpass its limitations by applying it in its 
successful range of applications. 

4.3.1 Basic ideas 

Provided with a local meshing process (of the algebraic or PDE type) the aim 
is to split the geometry in terms of regions where the local meshing process ap- 
plies. Thus, in two dimensions, a domain is decomposed in terms of convex (or 
not too deformed) triangles or quadrilaterals (when an algebraic method is used) 
or in terms of quadrilaterals only (when a PDE method is involved). In three 
dimensions, the partitions that can be handled successfully are made of tetrahe- 
dral, pentahedral or hexahedral regions (when algebraic methods are considered) 
or hexahedral regions only (when PDE methods are used). 

Thus the key point is to  obtain such a suitable partition. Two kinds of parti- 
tions may be considered. The first type considers a partition to be conformal in 
itself while the second does not require such a property (Figure 4.12), see Chapter 3 
where three categories of multiblock methods are introduced. In what follows, we 
consider a composite method which is more demanding, in terms of continuity, at 
the block interfaces. Note that patch or overlapping type methods are less de- 
manding in this respect but, for some aspects, can be based on what is described 
below. 

Conformal partitions lead to  a very simple method as the union of the meshes 
of two distinct members of the partition automatically results in a conformal mesh. 
Otherwise some care must be taken to partition the domain, unless if a non con- 
formal mesh is desired, as it is for some solution methods. For instance, in the 
example in Figure 4.12 (right), the continuity between the lower line of the upper 
region with the upper lines of the two lower blocks must ne enforced. 

Obtaining a partition is a tedious task and generally it is the user who must 
undertake the task, which means that automating such a process is not so easy 
(see Chapter 9). 

Some constraints must be considered to construct the partition of the whole 
domain, especially when a conformal partition is expected. A member of the 
partition is called a block4 or a super-element, and some consistency is needed 

4And as several blocks are created, the method is called a multiblock method. 
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Figure 4.12: Conformal and non-conformal decomposition of a two-dimensional 
domain. Three quad regions are defined which f o r m  a conformal partition (left- 
hand side) and a non-conformal partition (right-hand side). 

from block to block (or super-element to super-element). Thus, the problem is 
one of finding an adequate partition into blocks or super-elements such that the 
interfaces between the blocks are consistently defined. 

4.3.2 Partitioning the domain 

This task is done by the user and, in this sense a multiblock method can be 
regarded as a semi-automatic method. The aim of this task is to define the different 
blocks necessary to  define the domain in such a way that each block is a priori 
suitable for the local meshing process which will be applied to  it. At the same 
time, some consistency must be ensured from block to block. Moreover, while 
following these constraints, an accurate approximation of the geometry must be 
obtained together with a control of the nature of the expected mesh (in terms of 
the number of elements, element sizes, etc.). To this end, both the way in which 
the partition is defined and the choice of the different subdivision parameters must 
be properly carried out. 

To illustrate this multiple aspect, we consider a problem in two dimensions 
where two kinds of local meshing processes are available, one capable of carrying 
out triangular regions, the other suitable for quad regions (see Figure 4.13 where 
one can see how the subdivision parameters of the various blocks are related to  
one another). There remain two subdivision parameters, one for the triangle anal- 
ogy and another one for the quad regions. The problem is now to choose these 
parameters appropriately in order to  define a suitable partition. 

Geometric aspect. This step is motivated by two goals. First, the geometry 
of the domain must be well approached by the blocks and, on the other hand, 
the shape of the blocks must be as close as possible to a convex region (to insure, 
in addition, a successful application of the local meshing process). With regard 
to these two aspects, a certain number of blocks must be constructed. A block 
is described by its corners, its edges (and its faces, in three dimensions). While 
several blocks may be useful, care must be taken of the interfaces from block to  
block. In two dimensions, this leads to  defining the block edges in such a way as 
to insure a nice continuity. In three dimensions, faces from block to  block must 
be carefully defined. 

A pertinent choice of the number of blocks, together with that of the possible 
subdivision parameters, enables us to obtain a good approximation of the geome- 
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Figure 4.13: Definition of the blocks defining the partition (left-hand side). Rela- 
tionships between the subdivision parameters so as to enforce the continuity (right- 
hand side). 

try. In the regions with high curvature, several blocks or a fine discretization (i.e., 
a large enough subdivision parameter) is one solution to suit the geometry. 

On completion to this step, several blocks are available in which corners, edges 
and faces are known. 

Conformal and consistency requirements. The previous coarse partition 
can, in some cases, be refined to  insure both the conformal aspect of the partition 
and the consistency between the items which are logically connected. Indeed, 
a subdivision parameter is associated with the block edges, but some edges are 
connected (in the same block and from block to  block), so the number of possible 
subdivision parameters can be reduced. See again Figure 4.13 where we have only 
two possible different subdivision parameters. 

4.3.3 Computational issues and application examples 

Given the previous analysis, the blocks are now well defined. This means that 
we have defined the necessary corners, edges and faces which are the constitutive 
entities of the blocks. Now, we have to consider all these entities in a global way. 
Thus, a possible synthetic scheme of a multiblock method is as follows: 

Step 1: corner definition. This stage involves a global numbering of the cor- 
ners of the different blocks so as to avoid a local numbering (when only a 
given block is considered) but a global corner numbering that could be used 
subsequently. 

Step 2: edge definition and meshing. The edges are defined by their two end- 
points (which are corners as previously introduced) and a subdivision pa- 
rameter (n). Then, according to the meshing capabilities, each edge is split 
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into n + 1 segments (meaning that n intermediate points are created along 
it). In terms of point locations, we face a curve meshing problem (see Chap- 
ter 14). In terms of point numbering, we have, as above, to  define a global 
numbering of the thus created vertices. 

Step 3: face definition and meshing. The faces are defined by their edges. Fol- 
lowing the type of the face (triangle or quad) and according to  the different 
subdivision parameters, the face is meshed using, for instance, an algebraic 
method or a similar surface mesh generation method which completes a 
structured mesh. The resulting mesh is then of a nature that will enable us 
to  continue the process (i.e., the surface meshes are of the structured type). 
As above, a global numbering of the created vertices must be done. 

Step 4: block definition and meshing. The blocks are defined by their faces and 
then, the local meshing process is applied. The numbering of the internal 
vertices can be then made sequentially starting from the first available index, 
i.e., the last number of the last face vertices plus 1. 

Step 5: global mesh construction. Actually, this step is automatically com- 
pleted since a global numbering of the vertices has been developed in the 
previous steps. 

Thus the idea is to process all the corners, all the edges and all the faces before 
processing the mesh of the different blocks. Relationships between corners, edges, 
faces and parent blocks are to  be properly defined. In peculiar, a given edge (face) 
shared by several blocks must be defined in a global and unique way but, from a 
block point of view, can appear in various ways. Thus, some flags are needed to  
insure consistency between the global definition (which is unique) and the different 
local definitions (which can vary based on the block considered). 

Global definition of the corners. The corners are introduced to match the 
previous requirements (geometry, consistency, etc.). An index (for instance, start- 
ing from index 1 for the first corner of the first block) is associated with each 
corner. 

Global definition of the edges and faces. Once the corners are given (let n p ,  
be the number of such corners), the edges must be defined in a global way. One 
solution is, when considering an edge, say ab where a and b are the two endpoint 
indices, to define the edge as ab if a < b and as ba otherwise. 

Then, when visiting an element like abc, we encounter edge ab whereas when 
looking at  element dba, we encounter edge ba. In terms of edge definition, edge ab  
as well as edge ba must be uniquely defined. Note that the previous convention 
allows this to  be done. 

The global definition of the faces follows a similar rule. Let us consider a quad 
face whose endpoints are a,  b, c and d .  These indices are sorted from the smallest 
to the largest and this new series of indices is the global definition of the face. In 
fact, if a is the smallest index among the four face indices, we consider the index 
of point b (which is next to  a )  and that of point d (which precedes a ) ;  then 
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0 if d < b, use ad as a basis for global numbering, 

0 otherwise, use ab (see below). 

Definition of blocks in terms of corners, edges and faces. The point is to  
identify the corners, edges and faces of the various blocks so as to  return to  the 
global definition of these entities. 

Let us consider a hexahedral block involving three subdivision parameters, ni 
(i = 1,3) .  The block definition involves 8 corners, 12 edges and 6 quad faces. The 
issue is to find the proper correspondence between these entities and the block and 
to know the indices of the points that are involved (the corners, the edge vertices 
and the face vertices) as well as the indices of the vertices which will be created 
inside the block. A simple way to  access all these vertex indices is to  associate a 
numbering matrix with the block. To this end, we introduce a matrix with three 
indices which conforms to  the following: 

where, for instance, M ( i , j ,  0), for i = 0, n1 and j = 0, nz corresponds to  the “bot- 
tom” face of the block. More precisely, M(O,O, 0), M(nl,O, 0), M(O,n2,0) and 
M(n1, n 2 , O )  are the four corners of the face and M ( i ,  O , O ) ,  M ( n l , j ,  0), M ( i ,  n2, 0) 
and M (0, j ,  0) where a and j vary corresponding to  the four edges of the face. Thus, 
the proper definition of the block involves filling its numbering matrix for the en- 
tities already known while the part of the matrix not yet known will be defined 
when the block is meshed. 

Global numbering of the edge vertices. The given edges are first dealt with. 
Let f r e e  = np,+ 1. Then, for the first edge we apply an algorithm as below. Next, 
the f r e e  value being completed, we turn to  the next edge until all the edges have 
been visited: 

Algorithm 4.1 Global numbering of the edge vertices. 

Procedure GlobalNumbering 
DO FOR i = 1,n (n  being the number of desired points 

along the current edge, after the subdivision parameter 
f r ee  = f r ee  + 1, 
vi = f r ee ,  i.e., vertex i of the edge is labeled 

END DO FOR z = 1,n 
with index f r e e ,  

Then, for edge ab, if a < b, the vertex indices are: 

a ,  f r e e ,  f r e e + l ,  ..., f r e e + n , b ,  

while if a > b, these indices are: 

a ,  f r e e + n ,  f r e e + n - l ,  ..., f r e e , b .  
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The adequate sequence of indices is put on the various numbering matrices 
which correspond to  the various blocks sharing this edge. Depending on the block, 
i.e., depending on the location of a and b in the block under examination, the 
sequence f Tee, f r ee  + 1, ..., f ree  + n or f ree  + n, f ree  + n - 1, ..., f r ee  is merged in 
the matrix at the relevant place. Actually, the matrix indices of interest are those 
of the line (of indices) “joining a and b”. 

Global numbering of the face vertices. Then we consider the face vertices. 
First, the vertices located along the face edges are already labeled (see above). It 
remains to  find a global label for the vertices interior to the face prior to filling the 
corresponding numbering matrices. The idea is to define (for the sake of simplicity, 
we consider a quad analogy) two directions of numbering. For instance, if f ree  is 
the first available label, the first line of the matrix could be: 

and, the second line could be: 

f r e e  + n + 1, f ree  + n + 2 ,  ..., f Tee + n + n. 
Thus, according to the global definition of a face, several systems of numbering 
can be found. Let ai be the four corners of the face. We pick the smallest index, 
say al,  and we examine the indices of the corners before and after a1 (see above), 
then 

0 if a2 < a4, the base of numbering is ( 1 1 ~ 2  meaning that a (sequential) varia- 
tion from a1 to  a2 is used, 

0 if a4 < a2, the base of numbering is ~ 1 ~ 4  meaning that a (sequential) varia- 
tion from a1 to  a4 is used, 

thus resulting, a1 being identified, in two possible situations. Then, depending on 
the case, eight possible numbering systems can be found. 

4 5 6  2 5 8  
1 2 3  1 4 7  

Table 4.2: The two “global” index systems when a1 is the smallest index among 
the four ai’s and, left, when a2 < a4 or, right, a4 < a2 (in this table, for the sake 
of simplicity, we assume f r ee  = 1 (which is obviously not possible, as in practice 
a shift must be made) and n = 2 for both pairs of edges). 

Now, the global indices of the face vertices are stored onto the numbering 
matrices at the proper places depending on what the ai’s are. 
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Global numbering of the internal vertices. Once again, let f r e e  be the 
last index used when labeling the face vertices, then the internal vertices are 
sequentially numbered. Three directions are used (in terms of index variation), 
an i-direction, a j-direction and a k-direction. Given the corners of the block, 
the i-direction follows edge a l ,  a2, the j-direction follows edge a l ,  a4 and the third 
follows edge a1 , a8 (for a hex block). 

Element vertex enumeration. At this stage, a global numbering system is 
available for all the vertices. In fact, a vertex is also known through its logical 
position in a given block. This is done using the matrix M associated with the 
block (we assume the same hex example as above). Then, the enumeration of 
the vertices of the different elements of the resulting mesh is easy to  obtain. For 
instance, given i ,  j and k ,  the vertices of the corresponding (final) element are the 
values contained in: 

for the bottom (resp. top) face of the element. 
Note that while this enumeration is trivial for a hex or a pentahedral analogy, 

it requires some care for a tet analogy. This is due to the fact that, on the one 
hand, the final mesh is not formed of similar layers of elements and, on the other 
hand, that a region bounded by two triangles leads to the construction of one, 
two or three tet (in contrast to  the other cases where two faces on two consecutive 
layers define only one element). 

Thus the tet case is more tedious. Actually, given a face (say the bottom face 
of the block), we can classify the triangles covering this face into four categories. 

those resulting in three tets when considering a layer (say, in terms of index 
k, when going from k to k + 1) .  Here, we must fill a small pentahedron, 

a those also resulting in three tets (although they are inverted as compared 
with the previous ones), 

those resulting in two tets (those sharing a point with the “blended” block 
face), where the region to  be meshed reduces to  a prism (a pentahedron from 
which a tet is removed), 

a those resulting in one tet (those sharing an edge with the “blended” block 
face or those located at  a corner a t  level n - 1). In this case, only a small 
tet must be meshed. 

Exercise 4.2 Find the four patterns encountered when dealing with a tet. Find 
the vertex indices (prior to applying the numbering matrix) of the jinal mesh based 
on these cases. 
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Limitations. In principle, a multiblock method has the same range of applica- 
tions than the local meshing processes that are used. Nevertheless, as the parti- 
tion of the domain is made so as to  overpass these limits, a multiblock method 
can successfully handle any arbitrarily shaped domain. In fact, the user is largely 
responsible for the success of the method by constructing a partition in suitable 
blocks. 

Remark 4.5 Applied in the surface case, for example i f  the blocks consist of tri- 
angles and quads in R3, the multiblock method provides a way to mesh a surface. 
Note that, in this case, the geometry of the surface is  only related to the edges of 
the partition (see also Chapters 13 and 15). 

Application examples 

The example in Figure 4.14 is a two-dimensional application of a multiblock 
method. The coarse partition consists of 10 quad regions and 8 triangular regions. 
There are 18 corners and 33 edges. Actually, only one subdivision parameter 
is used (for consistency reasons), leading to  rather different element density. It 
should be noted that different block partitions can be used in this case resulting 
in different global meshes. 

Figure 4.14: Input data for the multiblock method (left-hand side), resulting mesh 
(right-hand side) (two-dimensional example). 

Figure 4.15 depicts a simple three dimensional application example. The figure 
on the left shows the part of the domain effectively considered. It consists of 
seven blocks. The figure on the right displays the mesh of the whole domain 
obtained from the previous mesh after several symmetries and (sub)mesh merging 
operations (see Chapter 17 for such mesh manipulation operators). 
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Figure 4.15: Detail of the part effectively dealt with and resulting mesh after post- 
processing (three-dimensional example). 

* * *  
Algebraic, PDE-based and multiblock methods are usable in some specific cases 

while general situations require using more flexible methods as those decribed in 
the next chapters. 



Chapter 5 

Quadtree-octree Based Methods 

Spatial decomposition methods were originally proposed as a way to represent 
approximations of geometric objects [Knuth-19751, [Samet-19841. Quadtree- and 
octree-based mesh generation methods have been a topic of research for about 
three decades (see especially the surveys of the literature on spatial decomposi- 
tion algorithms for mesh generation by [Thacker-19801 and [Shephard-1988]). In 
this context, decomposition approaches' have been designed to  meet the needs of 
fully automatic mesh generation of arbitrary complex non-manifold objects and to  
reduce the extensive amount of time and effort required to generate meshes with 
semi-automatic methods [Yerry, Shephard-19831. These approaches have proved 
to be robust and reliable and are commonly used in a wide range of engineer- 
ing applications, see for instance, [Kela e t  al. 19861, [Perucchio et al. 19891, and 
[Shephard, Georges-19911. 

In this type of approach applied to  mesh generation, the object to be meshed 
is first approximated with a union of disjoint and variably sized cells representing 
a partition of the domain. These cells are obtained from a recursive refinement 
of a root cell enclosing the domain (i.e., a bounding box). Therefore, we obtain a 
covering up of a spatial region enclosing the object rather than of the object itself. 
In a second stage, each terminal cell is further decomposed into a set of elements 
whose union constitutes the final mesh of the domain (cf. Figure 5.1). The basic 
principle behind the method is that as the subdivision becomes finer, the geometry 
of the portion of the region in each cell becomes simpler, which simplifies the task 
of the second stage. One of the main features of the approach is its ability to  
proceed either directly from a given discretization of the domain boundary or, 
more generally, to  interact with a geometric modeling system (a CAD system) 
and generate the boundary representation of the domain as a part of the whole 
meshing process. 

* * *  
So-called because they combine quadtree/octree decomposition techniques with quadrant- 

octant level meshing procedures. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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This chapter is divided into five sections. The first section is devoted to  the 
main concepts underlying spatial decomposition approaches and reviews the prin- 
cipal algorithms for constructing and searching with hierarchical structures. The 
second section discusses the construction of the tree representation and describes 
the algorithm used to  subdivide the boxes into finite elements. The third sec- 
tion extends the tree decomposition to  the generation of meshes governed by a 
size distribution function. In the fourth section, techniques that combine tree de- 
composition and other meshing techniques are introduced. In the fifth section, 
extensions to the generation of surface meshes and adapted meshes are briefly 
mentioned. 

5.1 Overview of spatial decomposition met hods 

In this section, we recall some terminology and the basic definitions of the spatial 
decomposition structures in two and three dimensions, within the framework of 
mesh generation. PR-quadtrees will be used here as meshing structures (Chap- 
ter 2). 

In order to fix the terminology, let us consider a meshing problem for which 
the domain to be meshed is an arbitrary non-convex domain R in R2 (resp. R3) 
represented by a boundary representation. The latter is in fact a polygonal (resp. 
polyhedral) contour I'(f2) composed of a set of vertices V ,  a list of edges E and, in 
three dimensions, a list of edges and faces 3. 

Terminology and definitions 

The basic concept of any spatial decomposition consists first of enclosing an arbi- 
trarily shaped domain f2 in an axis-aligned bounding box, denoted B(f2), (a square 
or a rectangle in two dimensions and a cube or a parallelepiped in three dimen- 
sions). This box is then subdivided into four (resp. eight) equally-sized cells, each 
of which may possibly be recursively refined several times. The size of a cell c 
is the length of the longest side of c. The stopping criterion used to subdivide a 
cell can be based on the local geometric properties of the domain (e.g., the local 
curvature of the boundary) or user-defined (the maximum level of refinement, for 
instance). 

Remark 5.1 The stopping criterion used for finite element mesh generation is 
usually different f rom the standard geometric criterion used in classical space par- 
titioning procedures. 

The four (resp. eight) vertices a t  the corners of a cell are called the comers. The 
edges (resp. faces) connecting two (resp, four) consecutive corners are the sides of 
the cell. The edges (faces) of the decomposition that belong to the boundary of 
the cell are called the edges (faces) of the cell. Hence, each side of a cell contains at 
least one edge (resp. face). By definition, two cells are said to  be adjacent if they 
share an edge (cf. Figure 5.2, right-hand side). The set of cells composes the tree 
(the tree structure) associated with the spatial decomposition. The subdivision 
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ii) 

iv) 

iii) 

Figure 5.1: A two-dimensional domain R i); spatial decomposition of B(R), the 
bounding box of R ii); the resulting mesh iii); and the final mesh of R iv). 
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of a cell consists of adding four cells to  the node of the tree for that cell. 
bounding box B(R) is the root of the spatial decomposition tree. 

The 

side 1 

-7 corner SOUTH 

Figure 5.2: Terminology: side, edge and corner of a cell (left-hand side). Adjacent 
cells sharing a common edge, canonical notations (right-hand side). 

The level of a cell corresponds to its depth in the related tree (i.e., the number 
of subdivisions required to reach a cell of this size). The bounding box is at level 
0. The depth of the tree corresponds to  the maximum level of subdivision. In 
Figure 5.3, the depth of the tree is 4. A cell that is not subdivided further is called 
a terminal cell or a leaf. Each non-terminal cell is called an internal cell. 

In the classical spatial decomposition scheme, the current cell is subdivided 
into four (resp. eight) cells, the quadrants (resp. octants) and the set of points V 
is partitioned accordingly into several subsets. The insertion of a point into the 
tree consists of identifying the cell containing it. If this cell is empty, the point is 
inserted. Otherwise, the cell is refined and the process is iterated on each of the 
sub-cells. The recursive subdivision stops when the set of points associated with 
a cell is reduced to a single point or is the empty set. Initially, the choice of the 
bounding box is arbitrary and is usually a square (resp. cube) containing all of 
V .  This box is determined by computing the extrema of the coordinates of the 
points in 2, y (and z )  directions (note: the corresponding algorithm is linear in 
time: O ( n p ) ,  where n p  = C a r d ( V ) ) .  

Remark 5.2 At each stage, a cell can be subdivided into sub-cells. This does not 
automatically imply that the set of points V is  split accordingly: all points can 
belong to the same sub-cell. I n  this case, the resulting decomposition tree will be 
quite unbalanced (the number of subdivision levels not being constant in each cell). 

From the previous remark it can be seen that the size (i.e., the number of cells) 
and the depth of the tree are not determined only by the number of points in V .  
The depth of the tree is related to  the smallest distance d between two points of 
V as well as to the length of a side of the bounding box, as stated in the following 
lemma, in two dimensions: 
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d 

Figure 5.3: Quadtree decomposition and corresponding data structure (here the 
tree depth i s  p = 4). 

Lemma 5.1 T h e  depth p of the quadtree obtained by inserting all points  of V i s  
bounded by p < log(b/d) + 1/2, with d the smallest distance between two points  of 
V and b the length of a side of B(R). 

Proof. In a quadrant (a square for the sake of simplicity), the largest distance 
between two corners (i.e., the diagonal) is la), with 1 the length of a cell side. At 
each level of refinement, the size 1 of a cell is divided by two. At level i ,  the size 
1 is then equal to b/2i, with b the size of the bounding box and thus the length 
of the diagonal is equal to f ib /2 i .  The smallest distance between two points of 
V being d ,  we must have J2/2i 2 d ,  which relates the level of a non-terminal cell 
(i.e., containing at  least two points) to the distance d.  The maximum level sought 

0 (the depth of the tree) is then: p 5 1 + log(&/d) .  

Exercise 5.1 Find the corresponding upper bound in three dimensions. 

The previous remark about tree balancing leads to the following rule, which can 
be justified by the need to somehow control the mesh gradation in finite elements 
methods (i.e., the size variation between neighboring elements). 

Definition 5.1 [2:1] rule. A tree subdivision i s  balanced i f  every side of a ter- 
minal  cell contains at m o s t  one corner (cf. Figure 5.4). 

This definition is equivalent to writing that the sizes of any two adjacent cells 
differ by at  most a factor of two. 

Moreover, a key aspect of spatial decomposition methods is their ability to  
classify the cells with respect to the domain R. The minimum classification requires 
a decision about whether a cell is fully inside the domain, fully outside the domain 
or contains portions of the domain boundary r ( R )  (e.g., the cell contains a point 
of V or is intersected by an edge of E or a face of 3, the list of faces). These cells 
are respectively denoted as Z (inside), 0 (outside) and B (boundary). 

Operations on trees 

Two kinds of operations are commonly performed on trees: 
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Figure 5.4: Balanced tree according to [2:1] rule. Initial and balanced quadtrees. 

0 topological operations: creating four (resp. eight) cells from a given cell, 
finding the cells adjacent to the current cell in a given direction, 

0 geometric operations: finding the cell containing a given point, calculating 
the intersections between an edge of & and the sides of the current cell. 

These operations do not all have the same frequency or the same computational 
cost. The neighbor finding operation concerns seeking the cells adjacent to a given 
cell: let c be a cell and consider a direction, the problem is to find a cell c’ adjacent 
to c in the given direction. Usually, c is a leaf and the problem is one of finding 
the adjacent cell that is of level less than or equal to that of c (i.e., the size of 
c’ must be greater or equal to the size of c). Basically, the algorithm checks the 
current cell and compares the direction with the relative position of the cell in its 
parent cell c‘ (the non-terminal cell containing c) .  Notice that in two cases (i.e., 
directions), the adjacent cell belongs to the same parent of the current cell. In 
the other cases, the algorithm analyzes the parent of c to find a neighbor c’ in the 
given direction. If c’ is a leaf, c’ is the neighbor of c,  otherwise the neighbor of c 
is any of the children qi corresponding to the subdivision of c’. 

In two dimensions, the neighbors are identified by the four cardinal directions, 
{NORTH, SOUTH, EAST, WEST) and the quadrants obtained during the re- 
finement of a cell are identified by their relative position within the parent cell: 
{NW, NE, SW, SE} (cf. Figure 5.2). These quadrants are so-called siblings to 
indicate that they result from the subdivision of the same cell. The notation 
SE - child(parent(c))  denotes the SOUTH - EAST quadrant (not necessarily a 
leaf) of a cell c. Algorithm 5.1 searches for the EAST-neighbor (not necessarily a 
leaf) of a cell c in a quadtree Q. The following lemma specifies the complexity of 
this algorithm. 

Lemma 5.2 Let Q be a quadtree of depth p.  The searching algorithm used to 
identify the neighbor of a cell c E Q in a given direction is  of complexity O ( p +  1). 

Proof. First, notice that the tree is not assumed to be well balanced (the size 
difference between adjacent cells is not bounded). For each recursive call, the local 
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complexity is in O(1) and the depth of the sub-tree traversed is decreased by 1. 
0 

Algorithm 5.1 Search for the EAST neighbor of depth not greater than that of 
a given cell c in the tree Q. 

Thus, the complexity of the algorithm is linear in the depth of the tree. 

Procedure EastNeighbor(Q,c) 
IF c = B ( 0 )  (look f o r  the root of &) 

IF c=NW-child(parent(c)) THEN (c has a sibling on this side) 
RETURN NE-child(parent (c) ) 

IF c=SW-child(parent (c)) THEN 
RETURN SE-child(parent (c) ) 

c’ = EastNeighbor(&,parent (c)) (recursive call) 
IF IsLeaf(c’) THEN 

ELSE 

RETURN B ( 0 )  

RETURN c’ 

IF c=NE-child(parent (c)) THEN 
RETURN NW-child(parent (c’)) 

ELSE 
RETURN SW-child(parent (c’)) 

END IF 
END IF. 

Exercise 5.2 Update Algorithm (5.1) to always return a terminal cell. Write a 
more general algorithm to return a neighbor in any direction. 

This algorithm is only one of the components of the a posteriori tree balancing 
algorithm. The quadtree is balanced in a post-processing step that immediately 
follows the construction stage. Each and any leaf must conform to the [2:1] rule 
introduced previously. Hence, the computational cost of the balancing stage is 
related to the number m of leaves in the tree. According to [de Berg et al. 19971, 
the balancing operation is of complexity O ( m ( p  + 1)). 

Exercise 5.3 I t  is possible to balance a quadtree during the construction stage, 
without first constructing the unbalanced version. Describe such an algorithm and 
analyze its complexity. 

From the geometric point of view, the searching operation to  find a cell enclos- 
ing a given point of V is an operation based on a comparison of the coordinates of 
the corners of a cell a t  a given level. Depending on the result of the comparison, 
a cell containing this point is identified and becomes the new current cell. The 
operation is then repeated recursively until a leaf is found that contains the point. 
Similarly, the intersections of an edge of & with a tree Q can be found. 

Data structures 

From the algorithmic point of view, D. Knuth identified in his book three possible 
approaches to  representing trees [Knuth-19751: 
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1 2 3 4 5 6  

a A tree structure using pointers. In this natural  approach, each non-terminal 
cell requires four (resp. eight) pointers, one for each of the subtrees and some 
information to indicate the cell classification. In addition, extra pointers can 
be added to improve the efficiency, such as links to the parent cell, links to 
neighboring cells, etc. 

A list of the nodes encountered by a traversal of the structure. Within 
this implementation, intersection algorithms can be efficiently performed, 
although other algorithms may be less efficient. For instance, visiting the 
second subtree of a cell requires visiting each node of the initial tree to locate 
the root of the subtree. 

A system of locational codes, for instance, with a l inear quadtree (see below). 

For example, Figure 5.3 (right-hand side) shows a tree representation associated 
with the quadtree decomposition depicted in the same figure (left-hand side). In 
practice, the context in which the method is applied dictates which of the three 
possible representations should be used. For instance, the need to quickly iden- 
tify neighbors leads to favoring a linear structure or a pointer-based structure 
containing pointers to the parent cell and siblings. 

An example: the linear quadtree. 
We show here the linear quadtree implementation in two dimensions. The 

quadtree decomposition approach can be implemented as a hierarchical grid (Chap- 
ter 2), the number of boxes in any direction then being a power of two. A linear 
quadtree avoids the allocation of explicit pointers to maintain the spatial order 
of quadrants, a single array index being used to access the data structure. The 
idea behind the representation is rather simple. Each quadrant is represented by a 
number using a systematic scheme. For instance, label 1 corresponds to the bound- 
ing box, labels 2-5 represents the four quadrants of the bounding box. The labels 
are used as array indices to access the cell information. Each possible subdivision 
of a quadrant leads to four consecutive indices referring the four sub-quadrants 
(cf. Figure 5.5). 

:.II”~ 
7 10 11 

Figure 5.5: Linear  quadtree encoding: spatial addressing s tructure and  numbering.  

Hence, it is pretty easy to calculate the index of any cell in the tree from its 
size and location. For instance, the four children of a cell c are given by 4c - 2 +j, 
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j = 0,3  and its parent cell is trivially obtained as: E ((c + 2)/4) where E( i )  
denotes the integer part of i. Conversely, from this index, the size and position of 
any quadrant are easy to retrieve. 

Exercise 5.4 Indicate how to determine the neighbor indices of a given cell c. 
Write the algorithm to f ind  the index of a cell enclosing a given point P E V .  

If the lowest level grid requires n2 cells, the maximum depth p of the linear 
quadtree is given by: p = log, n. Although the address of a box can be easily com- 
puted, this representation carries a storage penalty. Indeed, the total amount of 
memory m required to store the whole tree (in the worst case scenario) corresponds 
to the sum of a geometric series of ratio 22, i.e., 

As compared with n2 boxes required for its lowest level (corresponding to a 
regular grid of size n) ,  1/3 more memory in two dimensions is required for a 
hierarchical linear tree. 

Exercise 5.5 Establish the previous formula and justify the extra storage penalty 
carried out by the structure as compared with a classical tree structure using point- 
ers. How much more storage memory is  required in three dimensions to store a 
hierarchical linear tree as compared with a regular gr id  of same resolution? (Hint: 
see [Gargantini-1982] or [Ibaroudene, Acharya-19911 for  a possible solution.) 

Remark 5.3 An alternative implementation approach consists of using a binary 
encoding: the locational index of each quadrant is  composed of a sequence of digits 
ci in base 4, each ci being obtained by concatenation of the xis and yis of the binary 
representation of the box coordinates x, y .  

5.2 Classical tree-based mesh generation 

The use of a quadtree decomposition for meshing purposes was pioneered about 25 
years ago, in particular by [Yerry, Shephard-19831. Several variants have been pro- 
posed (see for instance, [Kela et al. 19861 or [Perucchio et al. 19891). Currently, 
such a meshing technique is usually based on three successive steps: 

Stage 1: the parameterization of the mesh (specification of the element size dis- 
tribution function, discretization of the boundary, etc.). 

Stage 2: construction of a spatial covering up from a bounding box of the do- 
main. 

Stage 3: internal point and element creation. 

This general scheme is somewhat different from that used in advancing-front or 
Delaunay type methods (see Chapters 6 and 7), in which the boundary discretiza- 
tion is a necessary input of the problem. In fact, in this approach, the construction 
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of the covering up can be either based on a given boundary discretization2 or per- 
formed using geometric queries to a geometric modeling system. The covering up 
is such that its cells 

have a size distribution compatible with the desired mesh gradation, 

maintain an efficient hierarchical data structure and 

store all the information required by the meshing step to generate a valid 
mesh of the geometric model (Stage 3 of the previous scheme). 

In a spatial decomposition method, the mesh vertices are created by the element 
creation procedure. However, unlike other mesh generation techniques (advancing- 
front or Delaunay type, for example), the internal vertices are usually the vertices 
of the decomposition (i.e., the corners of the cells). The boundary vertices are the 
initial points of V and some additional points, created during the tree construction 
and corresponding to the intersection of the boundary with the tree. Therefore, 
the initial boundary discretization is not usually preserved in this approach. 

General scheme 

Let us consider here a boundary discretization represented by a polygonal (polyhe- 
dral) contour described as a list of points, a list of edges and possibly a list of faces 
(in three dimensions). For the sake of simplicity, the boundaries of the domain are 
considered as straight segments (for curved boundaries, see Section 5.4). 

Formally speaking, the spatial decomposition technique is an iterative proce- 
dure that builds the covering tree of the domain from its description before meshing 
each terminal cell. At each stage of the tree construction, each leaf is analyzed 
and refined into 2d (with d the space dimension) equally sized cells, based on a 
specific criterion. Schematically, a spatial decomposition method reads: 

Stage 1: preliminary definitions: 

a construction of a size distribution function defined by interpolation 

a boundary discretization (general case), 

creation of a bounding box of the domain. 

(governed mesh generation) or implicitly3, 

Stage 2: initialization of the tree by the bounding box. 

Stage 3: tree construction (insertion of each and any entities of the boundary 
discretization): 

a (a) selection of a boundary entity, in ascending order (points, edges and 

a (b) identification of the cell in the current tree that contains this entity, 

faces), 

21n which case, the points and the elements created at Stage 3 are internal to the domain. 
3 ~ e e  Section 5.3. 
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0 (c) analysis of the cell, if it already contains an entity of the same 
dimension then refine the cell, otherwise back to  (b), 

0 (d) insertion of the entity in the cell and back to (a) 

Stage 4: tree balancing, the level difference between any pair of adjacent cells is 
limited to one. 

Stage 5: point filtering, in each terminal cell intersected by the boundary. 

Stage 6: creation of the internal points and the mesh elements: 

0 predefined patterns (the templates) are used to mesh internal cells, 

0 boundary leaves are meshed using an automatic technique (decomposi- 

0 removal of the external element, using a coloring algorithm, 

0 intersection points are then adjusted on the true geometry. 

tion into simpler domains, etc.), 

Stage 7: mesh optimization. 

Despite conceptual differences among the various approaches published, several 
aspects of any tree-based approach used for meshing purposes are consistent: 

0 the data structure is used for localization and searching purposes, 

0 the mesh generation has two stages, first the tree is generated, then the mesh 
is created based on cell classification within the tree, 

0 the cell classification drives the mesh generation stage (although boundary 
cells may need special care), 

0 the cell corners are generally used as mesh vertices, 

0 the mesh gradation is controlled by the level of refinement of the cells (for 
instance, according to  the [2:1] rule described above). 

In the following sections, we will describe the classical tree-based meshing ap- 
proach as described in the previous scheme, and indicate the main difficulties that 
may arise. 

Main difficulties. The general scheme above hides several potential difficulties. 
Most of these problems only occur in three dimensions, especially regarding the 
robustness of the method. In fact, the construction of the tree requires enforcing 
a specific criterion, the latter possibly being incompatible with the geometric re- 
quirements. For instance, we could specify a maximum level of refinement, thus 
leading to problems when trying to discriminate closely spaced entities (when the 
distance is much smaller than the specified cell size). Expected difficulties can 
easily be identified and are usually related to: 

0 the knowledge of the local neighborhood of a (boundary) entity during its 
insertion in the current tree, 
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a the intersection computations during the insertion of the entity, 

a the filtering of closely spaced points, which requires a robust algorithm in 
order to preserve the topology and the geometry of the domain. 

Notice that in this approach, the points are not optimal (in the sense that they 
do not necessarily lead to the creation of optimal elements, Chapter l), but result 
from intersection calculations (boundary/cells) or correspond to the corners of the 
cells. Therefore, the resulting meshes must be optimized (Chapter 18). 

Remark 5.4 These dificulties are essentially twofold, numerical (intersection 
calculations) and algorithmical (neighborhood, . ..). 

Preliminary requirements 

Unlike the advancing-front method (Chapter 6), no specific assumption is made 
on the nature of the input data for boundary discretization. Obviously, the data 
structures are important in this approach, the decomposition tree acting as a 
neighborhood space as well as a control space (Chapter 1). 

Boundary mesh. Similar to Delaunay-type methods, the boundary mesh is not 
necessarily oriented. However, for efficiency purposes during the insertion of the 
boundary entities, it may be useful to enforce an orientation of the discretization, 
so as to insert sequentially neighboring entities during the tree construction stage, 
thus reducing tree traversals as much as possible (in searching operations). 

Data structures. As searching and insertion operations are usually local fea- 
tures, it is important to use suitable data structures in the process. So, the tree 
structure (quadtree in two dimensions and octree in three dimensions) should con- 
tain in each terminal cell all the information required for a further analysis of the 
cell. Therefore, the boundary items are stored in the terminal cells of the tree. 
Two adjacent cells can share some common information (an intersection point, for 
instance), so it is desirable to refer to this information in the cell rather than du- 
plicating it (to avoid numerical errors). Further updates of the tree (for example, 
a cell refinement operation) will then propagate the information to the terminal 
cells. The tree construction requires only refinement operations; no cell deletion 
is involved. 

Tree construct ion 

The tree representation of an arbitrary domain R is defined from the bounding 
box B(R) that fully encloses the set of points of V of the boundary discretiza- 
tion I'(R). The tree is initialized by B(R). The items of I'(f2) are iteratively 
inserted into the cells of the current tree, so that each terminal cell contains at 
most one item of I'(R). Any cell that contains more than one such item is refined 
into 2d identical sub-cells and the insertion procedure is resumed for each cell of 
the sub-tree. 
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The insertion of the boundary items is a tedious process that can be imple- 
mented in many ways. The common method consists of inserting the items accord- 
ing to  the ascending order of their dimensions (points, edges and faces). Moreover, 
if the boundary has been oriented, it may be interesting to  insert adjacent items, 
so as to  benefit from the local aspect of the operations and thus to  limit somehow 
the tree traversals. Generally speaking, it is desirable to avoid: 

0 the loss of previously computed or known information (for example, numer- 
ical values related to the intersection points), 

0 the degradation of the computational cost of tree operations (cache default, 
Chapter 2). 

Point insertion. The localization of the cell containing a boundary point or 
intersected by a boundary item requires special care (especially in three dimen- 
sions). Actually, a point can be located inside a cell, along a cell side (and then 
it belongs to two adjacent cells) or even on a corner (it is then associated with all 
the cells sharing this common corner). It can be easily imagined that numerical 
problems can arise when trying to correctly identify the different configurations. 

Remark 5.5 A commonly used technique consists of slightly modifying the po- 
sition of the point so that it belongs t o  only one cell. I t s  initial position will be 
restored after the mesh generation. 

When the cell containing a point has been identified, two situations can arise. 
First, if this cell is empty (i.e., does not include any boundary item), the process 
consists of associating the related information with the cell. Otherwise, the cell is 
refined into 2d identical cells and the analysis is propagated to each of the sub-cells. 

In practice, the processing is even more complex if the item is an edge or a face 
as several sub-cells can be intersected. 

Peculiar points. From a computational point of view, two kinds of points re- 
quire specific attention, the corners and the non-manifold points. Corners are 
boundary points at which incident items form a small (dihedral) angle (cf. Fig- 
ure 5.6, left-hand side). In two dimensions, non-manifold points are boundary 
points with more than two incident edges (cf. Figure 5.6, right-hand side). In 
three dimensions, this concept is more tedious to handle as non-manifold edges 
(shared by more than two faces) have to be defined first, their endpoints then 
being non-manifold points. 

The test making is possible to  decide whether a terminal cell must be further 
refined is called the stopping criterion. Several such criteria have been suggested 
in the context of mesh generation. 

Stopping criteria. Usually, the stopping criterion must take into account the 
different types of items to be inserted. The most commonly used criterion is such 
that any leaf of the tree contains at most one connected component of r(0). If a 
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Bi: 
Figure 5.6: Identification of corners (left-hand side) and non-manifold points 
(right-hand side) in two dimensions. 

Figure 5.7: Dee refinements based on  two different stopping criteria in two di- 
mensions: any leaf contains at most one vertex of r(n) (left-hand side), each leaf 
contains at most one point (shared by  two edges) or a small part of an edge of the 
discretization (right-hand side). 

leaf contains no point of V ,  then it should contain at  most one edge or portion of 
an edge (resp. face) of r(n) (Figure 5.7, right-hand side). 

For arbitrary domains, the stopping criterion is of importance and affects the 
depth of the resulting tree and thus the complexity of the whole algorithm. Fig- 
ure 5.7 illustrates the impact of the stopping criterion on the decomposition. On 
the left, the quadtree is intersected by three segments and contains one point of 
r (R) .  The corresponding criterion consists of stopping the decomposition when 
each cell contains no more than one point. On the right side, the stopping criterion 
is such that each cell must be intersected by no more than one edge (or part of an 
edge) if it does not include a vertex of V .  

Remark 5.6 I n  two dimensions, the most strict stopping criterion consists of 
forcing each cell side to include no more than one intersection point, unless the 
cell contains a corner or a non-manifold point [Frey, Mare'chal-19981. 

Remark 5.7 I n  three dimensions, the classical criteria assign control parameters 
to the boundary items (for instance, related to the local curvature of the geometric 
features; see Section 5.5). 
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The construction stage attempts to  separate two opposite sides of the domain 
based on a distance criterion. In other words, if the domain is such that locally two 
sides are very close to each other, with really different discretization sizes, the tree 
decomposition will automatically reduce this shock between the sizes, by inserting 
additional points and refining the boundary items. This is in fact equivalent to  
refining the tree until the cell sizes become compatible with the local distance 
between the opposite sides of the domain. The resulting mesh gradation is thus 
controlled in an implicit fashion. Moreover, this control is also increased by the 
balancing stage (see above). 

Remark 5.8 As  the tree construction stage may introduce additional points, the 
initial boundary discretization is no longer preserved (unlike the advancing-front 
or Delaunay-based mesh generation methods, for which the boundary discretization 
is  a constraint that has to be strictly preserved). 

Remark 5.9 The specification of additional (non-boundary) points in the input 
dataset does not lead to substantial modification of the classical algorithm. These 
points will be inserted in the tree just after the insertion of the vertices of the 
boundary discretization. 

Figure 5.8 depicts the different steps of the tree construction of the decom- 
position of a planar domain in two dimensions. The domain is illustrated on the 
left-hand side of the figure. The tree (Figure 5.8, middle) corresponds to  the de- 
composition obtained after the insertion of all boundary points. At this stage of 
the process, no additional point has been created. Finally, the insertion of bound- 
ary edges leads to  the domain decomposition shown in Figure 5.8 (right-hand side). 
Several intersection points have been created and the tree has been locally refined 
to accommodate the stopping criterion. 

Figure 5.8: Quadtree decomposition of a two-dimensional domain. Initial dis- 
cretization (left-hand side), resulting quadtree after the insertion of the set of points 
V (middle) and after the insertion of the edges of & (right-hand side). 

Exercise 5.6 [de Berg et al. 19971 Let us consider a two-dimensional domain R 
such that the points of V have integer coordinates and that each boundary edge 
makes an angle of 0",45",90" or 135" with the x-axis. The stopping criterion 



178 MESH GENERATION 

could be such that a quadrant is  not subdivided i f  the intersection between an  edge 
of & and i t s  sides i s  empty or i f  the minimal size is  reached. Show that the interior 
of the quadrants can be intersected by the polygonal contour only in a single way. 
Write the resulting construction algorithm for  this specific stopping criterion. 

Notice that a variant of the construction procedure described above has been 
proposed by [Yerry, Shephard-19831. In this approach, a limited number of inter- 
sections (i.e., of segments coming from boundary edges intersections) is tolerated 
in boundary quadrants. To preserve the basic structure, intersection points are 
chosen as quarter, half or endpoints of the quadrant’s sides. This technique does 
not improve the geometric accuracy of the representation, although it improves 
the numerical approximation and the consistency of the algorithm. It allows the 
use of integer coordinates to represent the domain boundary discretization. 

The result of the tree decomposition is a covering up of the bounding box of 
the domain in which adjacent cells may have dramatically different sizes. In other 
words, the quadtree may be quite unbalanced. This feature can become a major 
drawback during the element mesh generation stage (as the mesh gradation is not 
explicitly controlled). To overcome this problem, a balancing stage is applied. 

Tree balancing 

As mentioned previously, the tree construction rules concerned the boundary items 
of the given discretization. Hence, the tree resulting from the general scheme can 
be rather unbalanced (according to Definition 5.1). This feature, related to the 
difference between the levels of each pair of adjacent cells, can be inconvenient in 
many ways. First, the size variation between neighboring cells tends to increase 
the cost of tree traversals (in searching operations), the number of levels explored 
varying from one cell to  the next one. Then, as spatial covering up is used to  
generate a mesh, the mesh edges will have a length close to the cell size that is used 
to generate them. In fact, when the size distribution function is implicitly defined 
(no user-specified function is explicitly supplied), the cell size reflects the average 
size of the elements generated in this cell. Finally, as a cell can be surrounded by 
cells of arbitrary dimensions, the number of possible combinations is not limited, 
thus preventing the use of an automatic procedure (based on predefined patterns) 
to mesh the cells. 

Therefore, in order to control mesh gradation and also to  simplify the mesh 
generation stage, another rule is introduced so as to limit the difference between 
the levels of two adjacent cells to a factor 1 at  most. This rule is the so-called [2:1] 
rule. 

This procedure affects the spatial decomposition of the domain obtained using 
the former construction rules. In particular, it leads to  refining several cells and 
thus propagates the refinement recursively throughout the tree, to the neighboring 
cells. The final decomposition usually contains (experimental result) up to 10% 
more leaves than the initial one. 
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Implementation of the [2:1] rule. From a practical point of view, the [2:1] 
rule can be added to the construction rules. This is equivalent to saying that it 
is not necessary to initially construct an unbalanced tree, on which the balancing 
rule is applied a posteriori. In fact, if the current tree is already balanced, it 
is sufficient to check whether the balancing rule is enforced in each leaf that is 
subdivided during the construction stage, otherwise, the levels of the adjacent 
cells are adjusted (refined) until the balance has been achieved. In practice, it can 
be observed that the propagation of the refinement is usually contained in two cells 
adjacent to the current cell. This feature results in a local balancing procedure, 
which is easy to implement and computationally inexpensive as only limited tree 
traversals and updates of the tree structure are involved. 

Remark 5.10 Notice that, similarly to the construction stage, the corners and 
non-manifold points are not concerned with the balancing stage (i.e., the cell con- 
taining such a point is  not refined). Figure 5.9 illustrates such a situation where 
the tree is  locally unbalanced because of a non-manifold point. 

Figure 5.9: Example of an unbalanced tree in the vicinity of a non-manifold point, 
in two dimensions. Spatial decomposition of the whole domain (left-hand side) and 
close up in the vicinity of the cell containing the non-manifold point corresponding 
to the intersection of three boundary edges (right-hand side). 

Remark 5.11 It  is however possible to balance a given tree a posteriori. To do 
so, a procedure based on  a breadth-first tree traversal is  applied (starting from the 
root of the tree). 

The tree construction procedure can potentially introduce some points that 
are not part of the initial dataset. For instance, the points resulting from the 
intersection between the cell and the boundary discretization. These intersection 
points can be very close to the cell sides, thus leading to the creation of poorly- 
shaped elements. To overcome this problem, a filtering procedure is carried out 
on the boundary points. 
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Filtering of the intersection points 

Figure 5.10 (left-hand side) illustrates one of most common cases of intersection 
points creation during the insertion of a boundary edge into the current tree, in two 
dimensions. The two intersection points that belong to  the upper-left quadrant are 
spaced closely to  each other as well as close to the quadrant corner. This usually 
leads to the generation of a triangle which has these three points as vertices and 
whose size does not match the local size specified by the distribution function. 

/ 

Figure 5.10: Insertion of the boundary edges in the tree. Left, two intersection 
points are close to the quadrant corner. Right, the points have been merged together 
into a single one, the quadrant corner then being moved toward the resulting point. 

As the construction rules do not explicitly take into account inter-point dis- 
tances (the discretization of the domain boundary is the input data), a post- 
processing stage applied on the resulting tree appears to  be the only solution to  
this problem. 

The intersection points filtering procedure consists of removing some vertices 
in the tree based on a distance criterion. This tedious operation is not easy to  
implement as it affects the geometry of the spatial decomposition. The local 
geometric modifications carried out mainly consist of 

a associating a cell corner with the closest (boundary or intersection) point 
belonging to  the cell side, 

merging two intersection points into one, 

associating an intersection point and the closest boundary point within the 

All these checks can be carried out provided the topology of the geometric model 
and that of its decomposition are not altered. Thus, two intersection points can be 
merged together if and only if they are classified onto the same geometric boundary 
item. Moreover, the geometry of the initial boundary discretization should not be 
modified. For instance, the deletion of a boundary point (a vertex of V )  is not 
allowed. 

At completion of the procedure, there should be no point closer to  another one 
than a given tolerance value4. Figure 5.10 (right-hand side) depicts the merging 

same cell. 

4This tolerance can vary according to the type of entity to be snapped. 



QUADTREE-OCTREE BASED METHODS 181 

between two intersection points followed by the relocation of the quadrant corner 
onto the remaining intersection point. 

Remark 5.12 As  the filtering procedure may change the coordinates of a quadrant 
corner, this cell may lose its axis-alignment property. This can result in additional 
dificulties for  the searching procedure (e.g. to identify which quadrant contains a 
given vertex). 

Figure 5.11 shows the result of the filtering stage on a two-dimensional compu- 
tational domain. We can clearly see (right-hand side) the quadrant deformation 
due to the relocation of the tree vertices. Although many extra intersection points 
have been discarded, the initial boundary discretization is not preserved (i.e., some 
of the intersection points still remain). 

Figure 5.1 1: Initial decomposition of a two-dimensional computational domain 
(left-hand side) and resulting decomposition after the filtering of the intersection 
points (right-hand side). Notice the deformation of the spatial decomposition struc- 
ture. 

Remark 5.13 As the topological consistency of the tree representation is rather 
dificult to preserve (especially in three dimensions), in some of the proposed ap- 
proaches points are not filtered, [Frey, Mare'chal-19981. I n  this case, the resulting 
mesh elements that may have an unacceptable size or quality are further processed, 
during the optimization stage. 

The filtering stage marks the end of the processing on the tree structure. At 
completion of this stage, the tree structure remains unchanged and the following 
steps are exclusively based on tree traversals, especially the element creation stage. 

Vertex and element creation 

At this stage of the procedure, we have to go from a spatial decomposition structure 
to a mesh of the domain. To this end, the basic idea of this approach is to mesh the 
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leaves of the tree independently of one another. The final mesh will be the union 
of all the elements created at the cell level, the global conformity being ensured 
by the conformity of the cell side discretization. 

Vertex creation and insertion. The creation of the mesh vertices consists of 
sequentially inserting each cell corners and each intersection point in the mesh 
structure. From a practical point of view, it may be noticed that the number of 
mesh vertices is known beforehand and corresponds to the sum of the number of 
boundary vertices, the number of the cell corners and the number of intersections 
points (if any). This allows the data structures to  be allocated correctly a t  the 
beginning of the program. This step is based on a tree traversal to find all terminal 
cells. Here, we encounter again the need to  have an efficient and flexible data 
structure. 

Figure 5.12: A set of six plausible patterns to triangulate the internal quadrants 
(the other patterns can be retrieved using the rotational symmetry properties) and 
four patterns used to mesh boundary quadrants (in the last two patterns, the in- 
tersection point sees the other quadrant points). 

Mesh element generation. The creation of the mesh topology (i.e., the mesh 
elements) is a more tedious operation. First notice that the balancing rule led to  
a substantial reduction in the number of possible configurations for a given cell, 
as compared with its neighbors. Therefore, knowing of the sizes of the adjacent 
cells is sufficient to be able to  mesh a terminal cell. However, it is necessary to  
distinguish the case of boundary cells from that of internal cells. 

The case of an internal cell is indeed very simple as it involves a set of predefined 
patterns (the so-called templates) used to  get the list (the connectivity) directly 
of the elements that form a conforming covering up of the cell. Global mesh 
conformity is automatically ensured, as seen above. 

In two dimensions, one has to consider 24 = 16 possible configurations for each 
internal cell. From the computational point of view, this number can be reduced 
to only six templates using the various symmetry properties. Figure 5.12 depicts 
a set of templates used to  mesh internal cells. 

In three dimensions, 212 = 4,096 possible configurations must be considered 
for each internal cell, this number could be reduced to only 78 (according to  
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[Yerry, Shephard-19841) using the various symmetry and rotational properties, as 
in two dimensions. As the full enumeration of these cases is error-prone, a simpler 
approach is preferred to  mesh any internal octant. In practice, any octant having 
all its neighbors equally sized is decomposed into six tetrahedra, otherwise, the 
octant is decomposed into six pyramidal elements, the vertices of which are the 
octant corners and the centroid of the octant. These pyramids are then decom- 
posed into tetrahedral elements according to the neighboring octant configurations 
(cf. Figure 5.13). 

Figure 5.13: Automatic  triangulation of a n  internal octant. The  octant i s  subdi- 
vided into six pyramids that are then  meshed according to  the neighboring octant 
sizes. 

When dealing with boundary cells, the procedure requires more attention. 
Mesh elements are created in two steps [Grice et  al. 19881: 

a the sides of the cell are first discretized so as to  ensure conformity with the 
neighboring cells, 

the barycenter of all points within the cell (boundary, intersection points and 
corners) is inserted and then connected to  these points to form tetrahedral 
elements, in three dimensions. 

Obviously, it is necessary to check that the edges and faces corresponding to  the 
boundary discretization are correctly formed in this procedure. In particular, two 
intersection points issued from the same edge must be connected with a mesh edge 
(to preserve the topology of the domain). 

From the algorithmic point of view, the procedure is based on a tree traversal (a 
depth-first or a breadth-first traversal, the order not being significant at this stage). 
The data structure should allow the quick identification of the neighbors of a given 
leaf. Moreover, the topology of the resulting mesh is explicitly given as a list of 
elements, each element being described by the references of its vertices. Therefore, 
a mesh data structure can be very simple, as it is not used for neighborhood 
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searching purposes, for instance. This is indeed a difference with the advancing- 
front type methods, for which the current mesh is always searched to  determine 
the candidate points in the vicinity of a given point (Chapter 6). 

Remark 5.14 The proposed method leads to a simplicia1 mesh of the domain 
(with triangular or tetrahedral elements). I n  two dimensions, it is also possible to 
obtain a mixed mesh (composed of triangles and quadrilaterals); other conforming 
patterns then need to be defined. 

Removal of external elements. The spatial decomposition obtained at com- 
pletion of the previous stage is a covering up of the bounding box of the domain 
rather than a covering of the domain. The resulting mesh is then a mesh of the 
bounding box of the domain (similar to that obtained by constrained Delaunay 
methods; see Chapter 7). The boundary discretization is present in the current 
mesh, thus making it easy to  identify internal elements. 

A very clever and simple algorithm, based on a coloring scheme (see Chapter 2), 
is used to  mark the different connected components of the domain. It is then 
possible to keep the mesh of one specific component only. This algorithm can be 
summarized as follows: 

1. Assign the value w = -1 to all bounding box mesh elements and set c = 0. 

2. Find and stack an element having a value equal to  -1. 

3. Pop an element, while the stack is not empty, 

0 if the value associated with the element is different from -1, go to  Step 

0 assign the value 

0 stack the three (resp. four) adjacent elements if the common edge (resp. 

0 back to Step 3. 

4, 
= c to the element, 

face) is not a boundary item, 

4. Set c = c + 1 and while there exists an element having a value w = -1, go 
back to  Step 2. 

Other techniques can be used to achieve the same result, all based on the 
identification of the various connected components of the domain. 

Boundary points relocation. So far, we have considered the items of the 
boundary discretization to  be straight segments. Thus, the introduction of inter- 
section points during the tree construction does not pose any particular problems. 
However, if the boundary discretization is a piecewise polygonal (resp. polyhedral) 
approximation of the true boundary, it is fundamental that the resulting mesh ver- 
tices all belong to  the true underlying curve (resp. surface). Indeed, for numerical 
simulation purposes, it is desirable to  have a polygonal (resp. polyhedral) repre- 
sentation of the curve (resp. surface) for which the gap between the underlying 
geometry is bounded by a given tolerance value E .  
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If a geometric model is available, queries to the modeling system provide the 
exact position of vertices corresponding to the intersections of the tree cells and the 
curve (resp. surface). This operation usually concerns a small number of vertices 
and does not lead to a substantial increase in the computational cost. 

When the boundary discretization is the only data available, it is possible to 
construct a G1 continuous geometric support that reasonably emulates the features 
of a geometric modeling system (especially, given a point, to find the closest surface 
point in a given direction; see Chapter 19). 

Notice that, if the initial boundary discretization is a geometric one (for which 
the edge lengths are proportional to the local curvature of the surface; see Chap- 
ters 14 and 15), the final position of a point onto the geometric support is usually 
very close to its initial position. However, if the discretization is arbitrary, the 
node relocation can lead to the creation of invalid elements. That is why, in some 
cases, the relocation may be refused. Figure 5.14 illustrates the notion of geometric 
approximation for a given tolerance value (see also Section 5.4.1). 

Figure 5.14: Geometric approximation using a polygonal segment with respect to 
a given tolerance value E = 0.08 (left-hand side) and E = 0.01 (right-hand side). 
The relative tolerance is such that h l d  < E ,  with h the distance between a point 
and the supporting edge and d the edge length. 

Optimization 

When all decomposition points have been inserted and all elements have been 
created within the terminal cells, we obtain a mesh of the domain that can be 
optimized. The goal is to obtain a finite element mesh and the optimization 
criterion must reflect this objective. A quality measure for a mesh element K is 
given by the following formula (see also Chapter 18): 

with h,,, the diameter of K and p~ the radius of the inscribed circle (sphere). 
This leads to a raw value at the mesh level: 

QT = max QK . 
K E I  

The optimization stage aims at minimizing this value. Notice, however, that 
this quality measure has not been explicitly taken into account during the tree 
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construction or during the element creation step. Moreover, the mesh vertices 
corresponding to  the cell corners confer a certain rigidity to  the resulting mesh. 
Therefore, the optimization stage concerns, a priori, all mesh elements, noticing, 
however, that the elements created in internal cells are usually well-shaped. 

Optimization procedures. The basic idea is to locally modify the mesh so as 
to progressively and iteratively improve its global quality. We commonly identify 
two categories of local modifications (see Chapter 18): 

0 topological modifications that preserve the point positions and modify the 
connections between mesh vertices and 

0 metric modifications that change the point positions while keeping their con- 
nections. 

Several operators allow these local mesh modifications to  be carried out, and, more 
precisely, to: 

0 move the points (for example using a weighted barycentrage technique), 

0 remove points, 

0 remove edges by merging their endpoints, 

0 flip (swap) edges (in two dimensions) or flip edges and faces (generalized 
swap in three dimensions). 

The quality of the final mesh is improved by successive iterations, a judicious 
combination of these operators allowing a gain in quality. Notice also, that this 
optimization stage is (almost) identical to the one involved in other simplicia1 mesh 
generation methods (see Chapters 6 and 7). 

Remark 5.15 If the filtering stage has not been carried out, the optimization 
stage can be more time-consuming. I n  particular, it is  necessary to deal first with 
the mesh elements which have a size that is not compatible with the given size 
specification and resulting from the intersections with the cell sides. 

Computational issues 

As clearly appears in the general scheme, the efficiency of a spatial decomposition 
method is strongly related to  the criteria used during the tree construction stage. 

Basic algorithms. A careful analysis of the general scheme shows three key 
points. They are related to the tree construction and the tree structure manage- 
ment, the insertion of the boundary discretization (intersection problems) and the 
implementation of predefined patterns for triangulating terminal cells. 



QCADTKEE-OCTKEE BASED METHODS 187 

Figure 5.15: Two dimensional mesh optimization. The initial raw quadtree mesh 
(left-hand side) and the final mesh after optimization (right-hand side). 

0 Construction and management of the tree structure. 

The tree structure is a dynamic structure that is updated during the insertion of 
the boundary discretization items and during the balancing stage. The use of a 
suitable data structure adapted to such operations (tree insertion, point searching 
operation, neighborhood, etc.) greatly facilitates the tree construction. A data 
structure enabling a direct access to the adjacent cells of a given cell should be 
favored so as to reduce tree traversals. 

The search for a cell containing a given point is a common operation based on 
numerical checks. During tree construction, all cells have a similar shape (a square 
or a cube), thus allowing a bounding box test to be used to find the cell (the point 
coordinates being bounded by the cell extrema). However, if a filtering stage has 
been carried out, the shape of the cells is no longer preserved, thus making the 
search operation more tedious. 

0 Insertion of the boundary discretization. 

The insertion of the boundary discretization involves numerical (metric) tests as 
well as topological tests (related to the neighborhood). Tree-like data structures 
are usually well suited to searching for items using adjacency relationships5 How- 
ever, the tree construction can lead to the division of a boundary item (for instance, 
because of its proximity to another item). In this case, numerical information has 
to be propagated in all related cells. We have already mentioned that it could 
be useful to slightly modify the coordinates of a point so as to avoid numerical 
problems when inserting it into the tree. The intersection checks concern the pairs 
edge-cell (hence, edge-edge) , edge-face and face-face. 

0 Template implementation. 

In order to improve the efficiency of the method, we have mentioned the use 
of predefined patterns to mesh the terminal cells (internal or external). From 
a practical point of view, each terminal cell is analyzed so as to determine its 
neighborhood and the result leads to a classification. A given pattern is associated 

5Moreover, they are used to this end in other mesh generation methods (see Chapters 6 and 7). 
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with each class corresponding to  a list of elements forming a conforming covering 
up of the cell. 

Decomposition-related issues. We have already noticed that boundary in- 
tegrity is usually not preserved with such methods. Moreover, the domain de- 
composition is related to  its geometry as well as to  its relative position in the 
classical frame of coordinates. In fact, each geometric transformation (translation, 
rotation) applied on the domain leads to  different decompositions, thus to  differ- 
ent meshes. Figure 5.16 shows different meshes obtained by rotating a rectangle, 
initially axis aligned, of angles of 10, 20, and 30 degrees respectively. 

ii) iii) iv) 

Figure 5.16: Decompositions associated with a unique geometry: initial domain i); 
rotations of angles a = 10" ii); a = 20" iii); and a = 30" iv). Notice that the 
resulting meshes are dramatically different. 

In two dimensions, no convergence problem is faced. The only tedious problem 
is related to the proximity of two sides (almost tangent) that the tree construction 
will try to  separate. This problem can be solved for instance, by slightly distorting 
a cell so as to insert one of its corners in between the two items. The same strategy 
can be used in three dimensions to  avoid convergence problems. 

Notice finally that tree-based methods allow isotropic meshes to be created. 
The generation of anisotropic meshes (in arbitrary directions, Chapter 21) appears 
almost impossible (except in some specific cases, for instance, in boundary layers, 
[McMorris, Kallinderis-19971). 

Memory requirements and data structures. Memory requirements corre- 
spond to  the data structures needed to store the tree and the mesh. The main 
structures must allow access to: 

0 the list of vertex coordinates, 

0 the boundary items, 

0 the list of element vertices, 

0 the element adjacency relationships (in the optimization operations), 
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0 the cell adjacency relationships, 

0 the list of boundary items per cell, 

0 other local resources. 

5.3 Governed tree-based method 

In numerous applications, the resulting meshes must satisfy specific properties, for 
instance, related to  the local element sizes, to  the density of the elements, etc. The 
construction scheme then involves using a so-called governed or controlled mesh 
generation method that makes it possible to match the desired requirements. 

Such a control can be defined using an element size distribution function. This 
input data is in fact common to most unstructured mesh generation methods. A 
widely used technique consists of using a grid or a background mesh in which the 
elements (cells) keep track of the information related to desired local element size. 
From the discrete information (associated with the vertices of this covering up), 
an interpolation scheme to construct a continuous size distribution function can 
be used. This approach consists of defining a control space (Chapter 1). In our 
case, the control structure is obviously a tree. 

Control space 

Suppose the size distribution function is known in a discrete manner, for instance, 
a t  the vertices of a background mesh. From this discrete specification, a continuous 
size map is constructed using an interpolation scheme. 

Tree-based construction of the size distribution function. Let P be an 
arbitrary point in the domain. The size h(P)  a t  this point can be interpolated 
from the sizes h(Pi), i = 1, ..d (with d the space dimension) at the vertices Pi of the 
element enclosing P .  Suppose that a decomposition tree is available (generated, 
for instance, according to the classical method described in the previous section). 
The points of the structure (the cell corners) will be assigned the size values. More 
precisely: 

0 For a given corner Q of a tree cell, 

- find the element K of the background mesh enclosing Q, 

- calculate h(Q)  using a Pl-interpolation of the sizes h(Pi) at the vertices 
of K .  

With this technique, we obtain a value h(Qi) associated with each corner of the 
tree cells. Then, to find the size a t  any point P in the domain, we can simply use 
a Q1 interpolation based on these sizes: 

0 For a given a point P, 

- find the cell containing P, 
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- calculate h(P)  using a Q 1  interpolation of the sizes h ( Q i )  at the cell 
corners. 

When the background mesh is an empty mesh (with no internal point), these 
techniques result in a size distribution function that is exclusively related to the 
boundary discretization. However, if no background mesh is provided, it is still 
possible to construct a continuous size distribution function after the tree con- 
struction stage. In this case, the average value of the side lengths of the cell 
surrounding a corner is associated with each cell corner. A so-called implicit size 
map is then defined, which takes into account the boundary discretization and the 
domain geometry. 

Remark 5.16 Notice that the discrete evaluation of the sizes as described above 
may result in an undesirable filtering effect i f  the cell sizes are not well adjusted. 

Governed tree construct ion 

Once the control space has been defined, it is possible to modify the classical 
method so as to create size compatible elements with respect to the given spec- 
ifications. As the elements sizes are related to the cell sizes they are created in, 
the basic idea is to modify the classical tree construction procedure to take these 
specifications into account. 

The first stage of the construction remains unchanged. The boundary dis- 
cretization items are successively inserted into the current tree. The resulting tree 
is thus adapted to the domain geometry (more refined in high curvature regions 
or when two sides are close and, conversely, less refined far from the boundary). 
Then, the tree is used together with the vertices of the background mesh to control 
the cell sizes. 

At this point two approaches are possible. The first one consists of constructing 
the size distribution function as described above. It is necessary to check that 
the size of each terminal cell (a square in two dimensions and a cube in three 
dimensions) is compatible with the average sizes associated with its corners. If 
not, the cell is recursively refined until the length of each sub-cell becomes less 
than or equal to the desired average length. 

An alternative approach consists of initializing the sizes at each cell corner with 
an average value between the length of the adjacent cells (implicit map). Then, 
each vertex of the background mesh is embedded into the tree. Given the size 
h(P)  at a mesh vertex P,  this size is compared with the size h’(P) obtained using 
a Q 1  interpolation at the cell corners. If h(P)  < h’(P), the cell is refined and the 
process is repeated on the sub-cell enclosing the point P. Notice that the values 
associated with the cell corners are updated during the cell refinement. 

In both cases, the tree is balanced according to the [2:1] rule. 

Governed optimization 

As mentioned in the classical case, it is usually very useful to optimize the mesh 
resulting from a governed spatial decomposition method. 



QUADTREE-OCTREE BASED METHODS 191 

nP nf ne 

Example 1 465 678 1,629 

Edge length. Let AB be a mesh edge and let h(t)  be the size variation along 
the edge, such that h(0) = h(A) and h(1) = h(B).  The normalized edge length 
~ A B  is defined as (Chapters 1 and 10): 

QM t (sec) 

4.3 12. 

with d A B  the Euclidean distance between the two endpoints A and B. Then, the 
edge AB is said to conform with the size specification if its length is such that: 

Example 2 2,548 4,028 8,761 
Example 3 5,792 7,506 22,681 
Example 4 10,705 9,412 48,667 

The coefficient fi can be retrieved when comparing the length of the initial edge 
with the lengths of the two sub-edges after splitting the original edge. We are 
looking for the configuration minimizing the error in distance to  the unit length. 

8.2 174.3 
8.2 346.5 
6. 115.8 

Local modifications. As for the classical case, the mesh quality is improved 
iteratively. The goal is to enforce unit edge lengths with respect to  the specified 
metric (that is locally conforming to  the size specification) for all mesh elements. 
Moreover, well-shaped elements are still aimed at. Therefore, a two-step optimiza- 
tion method is carried out, that first attempts to  remove ill-shaped elements before 
optimizing the mesh in a global fashion. The second stage tends to  improve shape 
quality as well as size quality using mesh modification operators (Chapters 17 
and 18). 

For practical reasons, the mesh elements are first optimized based on a size 
criterion and then the mesh shape quality is improved. 

Application examples 

In this section, several mesh examples obtained using a spatial decomposition 
method (classical or governed case) are proposed, in two and three dimensions. 
Figures 5.17 and 5.18 illustrate these examples. Table 5.1 gives some characteristic 
numerical values for different computational domains. 

Table 5.1: Statistics for different meshes obtained using a spatial decomposition 
method (the boundary discretization is the only data available to  construct these 
meshes). 
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ne I t (sec) I v 

Table 5.2: Efficiency and scalability of a spatial decomposition method, in three 
dimensions. 

In Table 5.1, n p ,  nf and ne denote respectively the number of vertices, the 
number of surface triangles and the total number of mesh elements, QM is the 
quality of the worst shaped element (after optimization) and t is the CPU time 
(Sun Ultra-1 Sparc workstation) required to mesh the domain. Table 5.2 shows 
the efficiency of the method, v is the average speed of the method (i.e., the num- 
ber of elements created per minute). After the tree construction, the terminal 
(internal and external) cells are triangulated using templates and the boundary 
cells are meshed in a fully automatic manner. In this table, t g  and tT denote 
the computational times devoted to tree construction (insertion of the boundary 
discretization) and the triangulation of non-boundary leaves, respectively. 

ranges from 8,500 to 27,000 elements 
per minute. The difference between the lower and upper bound can be explained 
by noting that as the number of mesh elements increases, the part devoted to  tree 
construction (boundary discretization) becomes dominant, but the triangulation 
of the non-boundary leaves remains quasi-constant in time. The variations can 
also be explained by the geometric complexity of the computational domains that 
affect the tree construction stage. 

As a conclusion, it could be observed that the theoretical complexity of tree- 
based mesh generation methods is not easy to  calculate. However, it can be 
noticed that the computational cost of meshing process for the internal cells 
is proportional to  the number of elements created in these cells and so to  the 
number of internal cells in the tree decomposition. The latter number is re- 
lated to  the geometry of the domain, which is not the case for advancing-front 
or Delaunay-type mesh generation methods. The complexity of this category of 
methods is theoretically O(nlog(n)), with n being the number of mesh elements 
[Schroeder, Shephard-19891. The term in log(n) can be explained by the use of a 
tree structure (in neighborhood and searching operations). In practice, the speeds 
observed are even closer to O(n) for the overall process. 

The results clearly show that the speed 

5.4 Other approaches 

In this section, we briefly mention several specific applications of the tree-based 
mesh generation method. In particular, we emphasize combined approaches (like 
Delaunay-octree, advancing-front-octree). 
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ii) 

i) iii) 

Figure 5.17: 
around the wing profile. 

Two-dimensional mesh of a computational domain and close-ups 

Figure 5.18: Examples of meshes obtained using an octree-based method in three 
dimensions (data courtesy of the MacNeal-Schwendler COT.). 



194 MESH GENERATION 

Combined approaches 

The strong point with tree-based decomposition methods is related to  their ability 
to combine a control space and a neighborhood space in a single data structure. 
On the other hand, the main drawback of such methods is the lack of a real 
strategy for internal point creation based explicitly on the element (shape) quality. 
Indeed, it should be recalled that the mesh vertices correspond to the terminal cell 
corners, which actually tends to  rigidify the resulting mesh6. Moreover, numerous 
numerical problems are related to  intersection computations in the vicinity of 
boundary items. This situation is due to  the fact that the boundary is somehow 
embedded into the tree structure without any specific geometric consideration. 

This is why some authors have found it useful to use the tree structure as 
a control space (to get the element sizes information) as well as a neighborhood 
space (to improve the searching operations), while using other approaches to create 
internal points and to  connect them (i.e., the mesh generation, strictly speaking). 

a Delaunay/octree method. 

Mesh generation based on a Delaunay-type algorithm generates a mesh point by 
point, each point possibly allowing the construction of several elements simultane- 
ously. More precisely, the Delaunay kernel (Chapter 7) is a procedure to connect 
the mesh vertices together (i.e., to generate the mesh topology). First, the decom- 
position tree is built as in the governed case described above. The element sizes 
are then associated with the cell corners, the cell sizes being locally compatible 
with the desired element sizes. The cell corners as well as possible internal points 
(whenever the size variations are too great) are then inserted into the current mesh 
using the Delaunay kernel procedure. 

Remark 5.17 Notice that the Delaunay algorithm used in this approach must be 
constrained so as to preserve the topology and the discretization of the boundary 
(cf. [Schroeder, Shephard-19881, [Sapidis, Perucchio-19931). 

a Advancing-frontloctree method. 

In this case, the internal points are created and inserted into the domain using 
an advancing-front technique (Chapter 6). The optimal location of a candidate 
point is determined from the local sizes associated with the cell corners (these 
possibly being corrected so as to enforce a given mesh gradation). This technique 
has been successfully applied in mesh generation for viscous flow 
computational fluid dynamics [McMorris, Kallinderis-19971. 

61n fact, it can be stated that this type of method is not really a 
method [Schroeder, Shephard-19901. 

simulations in 

mesh generation 
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Other approaches 

The spatial decomposition techniques can be applied to the mesh generation 
with quadrilateral or hexahedral elements. In the approach suggested notably 
by [Schneiders et al. 19961 in three dimensions, the root of the tree is subdivided 
into 27 cells7 which are then recursively subdivided until a given size criterion has 
been satisfied. 

5.5 Extensions 

In this section, we will mention the curve and surface mesh generation issues and 
make some comments on the use of a spatial decomposition method in the context 
of mesh adaptation and image encoding or compression. 

Curve and surface mesh generation 

In the previous sections, we have described the general scheme of the tree-based 
mesh generation method, under the assumption that the boundary discretization 
is provided. However, it is possible to  modify this scheme so as to  construct the 
boundary discretization as well, this stage possibly being followed by the classical 
mesh generation procedure. This approach assumes that an adequate representa- 
tion of the domain geometry is available (for instance, provided by a geometric 
modeling system). 

Problem statement. Surface mesh generation is a renowned complex problem 
notably related to  the nature of the surfaces. Two approaches are commonly used 
to generate surface meshes. Whichever approach is used, the goal is to obtain a 
so-called geometric mesh such that the gap between the mesh edges and the mesh 
elements and the underlying surface is bounded. This control can be expressed in 
terms of size specifications (i.e., the edge lengths are proportional to  the principal 
radii of curvature; see Chapters 14 and 15). 

The indirect approach is used for parametric surfaces. It consists of meshing 
the surface via a parametric space using a classical mesh generation technique 
(for instance, an advancing-front or a Delaunay-type method). The characteristic 
and the advantage of this approach is that the problem is reduced to a purely 
two-dimensional problem. The surface can be meshed using a two-dimensional 
mesh generation technique in the parametric space, then projecting the resulting 
mesh onto R3, via a (sufficiently smooth) transformation. However, to  obtain 
a suitable surface mesh, it is necessary to  use a mesh generation method able to  
generate anisotropic meshes, the metric map definition being based on the intrinsic 
properties of the surface. Unfortunately, this feature immediately excludes the 
tree-based method. 

7This 27-cell pattern has been chosen because of the relative ability with which a hexahedral 
mesh can be extracted from the tree structure. 
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On the other hand, if the surface is not considered via a parametric represen- 
tation, the following tree-based technique can be used to  create a surface mesh di- 
rectly, without any transformation ([Grice et al. 19881, [Shephard, Georges-19911). 

Control of the geometric approximation. The depth p of the tree can be 
related to the edge length h and to  the size b of the bounding box B ( n )  by the 
relation p = log,(b/h). As the edge size h is proportional to  the minimum of the 
principal radii of curvature, denoted p (cf. Chapter 15), we thus obtain a lower 
bound for the tree depth: 

where the coefficient of proportionality (u is such that (u = 2 d m ,  where E 

is a given tolerance value. More precisely, let h be the distance from a point to  
the supporting edge, and let d be the length of this edge, it is then necessary to  
enforce the relation: 

h 
- < & ,  
d 

E being the given relative tolerance value (cf. Figure 5.14, left-hand side). 

Tree construction. The proposed method follows the classical general scheme, 
with the difference that the tree construction stage is now based on an iterative 
algorithm for inserting the items of the geometric model (and not the items of 
the boundary discretization). The points (in fact, the singular points and more 
generally all points of Co discontinuity) are first inserted into the tree from the 
initial bounding box decomposition, according to  the classical construction rules. 
Then, at each cell level, the geometric model is questioned (using a system of 
geometric queries) so as to determine the intersections between the model edges 
and the cell sides. Depending on the number of such intersections, the current cell 
may be refined. The model faces are in turn inserted into the tree. 

The local intrinsic properties of the surface (principal radii of curvature, vertex 
normals, etc.) are used to  construct the tree. In practice, the cells are refined until 
the geometric approximation criterion is satisfied. 

Main difficulties. The difficulties related to  this kind of technique are essen- 
tially the numerical problems encountered during the calculation of the intersec- 
tions between the geometric model entities and the tree cells. 

The following example emphasizes the complexity of the tree construction 
stage. Consider a cell intersected by at least two model edges. In Figure 5.19, 
the curved edge is inserted into the current cell, thus leading to  the creation of 
a segment AB. Then, the edge PQ is inserted and results in the creation of the 
straight segment PQ, which partially overlaps segment AB. This kind of problem 
can be solved either by subdividing the two curved edges into several straight seg- 
ments (Figure 5.19, middle) or by refining directly the cell (same figure, right-hand 
side). 
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ii) 222) 

Figure 5.19: Insertion of two curved edges into the same tree cell. i); problem of 
overlapping straight segments coming from the discretization. ii); the problem is 
solved by  splitting the curved edge AB into two sub-segments. iii); the problem is 
solved by refining the quadrant. 

The difficulty is even greater in three dimensions. The intersections between 
the model face edges and the cell sides are calculated. The resulting intersection 
points are then connected, each octant face being processed separately, so as to 
approximate the intersection curves [Shephard et al. 19961. 

Remark 5.18 Finite Octree meshing method, for instance, is  a complete repre- 
sentation of the geometric model that has been partitioned. I t  maintains a hi- 
erarchical understanding of the portions of the model intersected by an octant. 
However, problems may occur, mostly related to the geometric tolerance, which 
may result in ambiguous configurations; Figure 5.20 shows such a problem: the 
sides intersected by  the curve and that intersected by  the discretization are not 
the same. Therefore, i f  the boundary discretization is  built at the same time, this 
configuration can lead to consistency problems when the intersections between the 
edges and the quadrants are propagated into the tree structure. 

Figure 5.20: Potential problem related to too great a tolerance value, in two dimen- 
sions. The sides of a quadrant intersected by  the discretization and that resulting 
from the intersection of the underlying curve are not the same. 
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Mesh adaptation 

The objective of the computational adaptation scheme is to  ensure the reliability 
of the solutions in the numerical simulation based on finite element methods. From 
a theoretical point of view, adapting the meshes to the physical properties of the 
considered problem should improve the accuracy of the numerical solutions and 
should guarantee the convergence of the computational scheme. The adaptation 
is based on a governed mesh generation method, in which the size map is provided 
by an a posteriori error estimate. 

Quadtree-octree based methods can 
ter 21. 

Image and quadtree 

thus be used in this context, see Chap- 

Figure 5.21: Image partitioning: The  ‘(Joconde” by Leonard0 da Vinci. Left hand- 
side: Initial image, a 289 x 440 matrix of pixels. Right hand-side: image after the 
quatree-based partitioning with a given compression factor. The quadtree i s  made 
up  of about 2,800 cells. 

The quadtree structure and the corresponding mesh can be used to  encode an 
image with a given compression ratio. For instance, in Figure 5.21, the initial 
image is a bitmap with 289 x 440 pixels, which can be seen, roughly speaking, as 
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a quad mesh with 126,432 elements while the resulting quadtree only includes a 
limited number of quads. 

Given the initial image, a n x m matrix of pixels, a quadtree is constructed 
where the refining criterion (thus the stopping criterion) is related to the difference 
between two “consecutive” pixels. Considering a series of pixels in a given cell, this 
quad is subdivided into four sub-cells if the colour changes more than a threshold 
value from a cell’s corner to the examined pixel. This simple application of the 
hierarchical aspect of the quadtree structure is clearly not competitive with modern 
method (such as in the jpeg format) but just an exercise about quadtrees. 

* * *  
Mesh generation methods based on a spatial tree decomposition technique are 

robust, efficient and flexible. Such methods allow the construction of classical as 
well as governed meshes (conforming to  a prescribed size map). The use of the 
spatial decomposition structure as a control space is also an idea common to other 
methods (and applies in other fields of applications such as image processing). 
Moreover, the boundary discretization of the computational domain can be cre- 
ated using this approach. However, this kind of technique is not able to  create 
anisotropic meshes (in which the stretching directions of the elements are arbi- 
trary). In addition, the use of the cell corners to define the mesh vertices rigidify 
the resulting meshes (the optimization stage is usually more computationally ex- 
pensive than with advancing-front or Delaunay-type mesh generation methods; see 
Chapters 6 and 7). 



Chapter 6 

Advancing-front Technique 
for Mesh Generation 

The advancing-front technique for mesh generation has been investigated for more 
than 35 years since the pioneering work of [A.George-19711, who studied a two- 
dimensional case. The classical advancing-front method, in its current form, was 
first described by [Lo-19851 and [Peraire et al. 19871. Numerous improvements in 
this technique have been proposed over the years, first by [Lohner, Parikh-19881, 
[Golgolab-19891 and more recently by [Mavriplis-19921 and [Shostko, Lohner-19951. 
This approach is now a very powerful and mature technique for generating high- 
quality unstructured meshes composed of simplices (triangles or tetrahedra) for 
domains of arbitrary shape. Variants of this technique have even been pro- 
posed to  generate quadrilaterals or hexahedra in two and three dimensions (cf. 
[Blacker, Stephenson-19911, [Blacker, Meyers-19931). 

Classical advancing-front approaches start from a discretization of the domain 
boundaries as a set of edges in two dimensions or a set of triangular faces in 
three dimensions. The name of this class of methods refers to a strategy that 
consists of creating the mesh sequentially, element by element, creating new points 
and connecting them with previously created elements, thus marching into as yet 
unmeshed space and sweeping a front across the domain. The process stops when 
the front is empty, i.e., when the domain is entirely meshed. The front is the 
region(s) separating the part (or parts) of the domain already meshed from those 
that are still unmeshed. Hence, depending of the strategy, the front can have 
multiple connected components (Figure 6.1) or not (Figure 6.2). 

One of the critical features of any advancing-front approach is the creation 
of internal points. This procedure should result in elements that, usually, satisfy 
size and shape quality criteria. Such a size criterion, and thus the corresponding 
element-size distribution function, prescribes the desired element shapes and sizes 
(review the notion of control space in Chapter 1). 

The main advantage of current advancing-front techniques is their heuristic 
mesh generation strategy, which tends to produce high-quality elements and nicely 
graded meshes. Moreover, in contrast to some other automatic methods, bound- 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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Figure 6.1: Various stages illustrating the multiple components of an evolving front 
in two dimensions depending of the selected strategy. 

ary integrity is always preserved, as the discretization of the domain boundary 
constitutes the initial front, which is not the case for some other mesh generation 
methods (for instance, see Chapters 5 and 7). On the other hand, convergence 

I i a r o i ,  O n  1 I i e r o i ,  O n  2 

I i m r o i ,  O n  3 I i e r o i ,  O n  4 

Figure 6.2: A different strategy, here by means of inflating the current front. The 
domain to be meshed is the volume between an aircraft (whose surface mesh is the 
initial front) and a bounding box. 
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problems can occur, especially in three dimensions, as it is not always clear how to 
complete a mesh of the entire domain. In other words, some regions can be found 
which are not easy to fill up with elements (mostly in three dimensions). 

* * *  
In the first section of this chapter, the framework of a classical advancing- 

front method is outlined, which takes into account most features of this class of 
techniques. The critical features of the approach are described with emphasis on 
specific topics such as optimal point creation, geometric checks and mesh gra- 
dation. Some indications are also given about convergence issues. The second 
section explains how robustness and reliability issues can be addressed using a 
control space. Then, in the third section, some details are discussed about a gov- 
erned method where the control corresponds to  the data of a control space. The 
coupling of the advancing-front method with a Delaunay technique is discussed 
in the fourth section and the capabilities of combined or hybrid approaches are 
raised. Finally, possible extensions of the method to  anisotropic mesh generation, 
surface mesh generation and mesh adaptation (for the mesh adaptativity problems 
discussed in Chapter 21) are introduced in the fifth section. 

6.1 A classical advancing-front technique 

An advancing-front technique is generally part of a mesh generation procedure 
including three successive steps: 

Step 1: mesh parameterization: boundary description. specification or con- 
struction of a function defining element size distribution, etc. 

Step 2: boundary discretization. 

Step 3: the creation of the field vertices and elements, in other words, the 
advancing-front method itself. 

This general scheme which will be found in other methods such as the Delaunay 
type method (Chapter 7), is slightly different from that of a quadtree-based method 
(Chapter 5). Indeed, in contrast to  the latter case, here the boundary mesh is an 
input data that must be preserved. 

Following a classical advancing-front approach (Step 3 of the above scheme), 
the mesh vertices are created as part of the procedure of mesh element cre- 
ation. Numerous variants of this technique have been proposed by [Bykat-19761, 
[Peraire et al. 19881, [Lohner, Parikh-19881 [Dannelongue, Tanguy-19911 and also 
[Jin, Tanner-19931 and [Farestam, Simpson-19931. Despite several differences be- 
tween these approaches, a classical advancing-front method is, inherently, based 
on a local insertion mesh generation strategy relying on geometric criteria. 

Although the fundamental steps of mesh generation are the same in two and 
three dimensions, the development of robust, reliable and efficient algorithms in 
three dimensions is much more tedious than that in two dimensions. 
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General scheme 

Formally speaking, the advancing-front procedure is an iterative procedure, start- 
ing from a given boundary discretization, which attempts to  fill the as yet un- 
meshed region of the domain with simplices. At each step, a front entity is se- 
lected and a new (optimal) vertex is created and possibly inserted in the current 
mesh should it form a new well-shaped simplex. The main steps of the classical 
advancing-front algorithm can be summarized as follows: 

Step 1: Preliminary definitions. 

data input of the domain boundaries (i.e., the boundary mesh 7) 

specification of an element-size distribution function (governed mesh 
generation) or the best possible construction' of such a function (clas- 
sical problem). 

Step 2: Initialization of the front 3 with 7 

Step 3: Analysis of the front 3 as long as 3 is not empty: 

(a) select a front entity f based on a specific criterion, 

(b) determine a best-point position Popt for this entity, 

(c) identify if a point P exists in the current mesh that should be used in 

(d) form an element K with f and Popt, 

(e) check if the element K intersects any mesh entity. If this check fails, 

preference to  Popt. If such a point exists, consider P as Popt, 

pick a new point P (if any) and return to 3.d. 

Step 4: Update the front and the current mesh: 

remove entity f from the front 3 and any entity of 3 used to form K ,  

add the entities of the newly created element K members of the new 

update the current mesh 7. 

front, 

Step 5: If the front 3 is not empty, return to Step 3. 

Step 6: Mesh optimization. 

In the following sections, we give some details about these steps while discussing 
the main difficulties involved in the process. 

'See Sections 6.2 and 1.6. 
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Main difficulties. The above scheme gives the principles of the method but 
does not reveal a series of delicate issues that must be addressed. In particular, 
there is no guarantee of robustness or convergence in three dimensions2. In fact, 
the key steps of the method are primarily concerned with: 

a the selection of one entity in the front, 

a the front analysis and the various possibilities for defining the optimal points, 

the element validation at the time an element is constructed, 

a the use of appropriate data structures. 

The three-dimensional implementation of this approach requires a great deal 
of attention to ensure a robust algorithm (especially regarding convergence, i.e., 
the guarantee that the method really completes the mesh) with a certain extent 
of efficiency. However, the main difficulties of an advancing-front type meshing 
process are relatively easy to identify. They are primarily related to 

a the proper identification of the local situation at some neighborhood of a 
point or a region, 

the adequate intersection identification (for edges, faces, etc.) used, for in- 
stance, to validate one element before inserting it or to detect if a point falls 
outside the domain, etc, 

a the definition of an optimal location for a point or the selection of an existing 
point when elements must be created based on a given front entity. 

Clearly, any newly-created mesh point must result in valid and well-shaped 
element(s), and must prevent, as much as possible, any configuration from further 
meshing difficulties. 

Remark 6.1 The dificulties are then related t o  the methodology (optimal point 
definition) or  to  numerical aspects (intersection checks, eficient access t o  some 
neighborhood of an  entity). 

Preliminary requirements 

The proper achievement of an advancing-front method relies on a certain number of 
assumptions (about the data input) and on a well-suited choice about the necessary 
data structures. 

2Although no specific difficulty is encountered in two dimensions. 
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About the domain boundary mesh. The boundary mesh is supplied together 
with an orientation convention. In a manifold case, this means, in two dimensions, 
that the polygonal discretization (the boundary mesh) consists of segments defined 
and traversed in a given direction (based on an orientation convention, for instance, 
the domain is in the region on the “right” of the given boundary). Similarly, in 
three dimensions, the faces members of the domain boundaries must be orientated 
in an adequate way, the domain still being defined by its position with respect to  
these faces. Furthermore, this requirement is used to identify the relative position 
of the domain with respect to a segment (a face) of the boundary (indeed, with 
respect to the half-spaces separated by this entity3). 

The non-manifold case is more subtle in the sense that two situations may arise. 
There is an edge (a series of edges) which is not a boundary of a connected com- 
ponent of this domain (such an edge could be an isolated edge or may have only 
one endpoint located in a boundary) or, conversely, such an edge belongs to the 
interface between two connected components. In the first case, there is no longer 
an orientation problem, as the domain is on one side of the entity and is also on the 
other side of it. In the second case, the entity separates two components and there- 
fore has a different orientation for each of these components. Figure 6.3 depicts a 
case where the boundary discretization includes several connected components. 

Figure 6.3: Orientation of a boundary connected component C.  Ent i ty  f mus t  be 
re-orientated in the case where the region to  be meshed i s  the shaded part. 

Data structures. Based on the nature of the operations needed in an advancing- 
front method, it is relevant to define some specialized data structures, [Lohner-19881, 
[Bonet, Peraire-19911. The objective is twofold: to make the management of the 
front fast and easy once the process progresses and, on the other hand, to provide 
easy access to  all the entities present in some neighborhood of a given point or a 
given region. 

The front management requires a topological data structures that enables the 
suppression or the insertion of an entity: an edge in two dimensions, a face in 
three dimensions; cf. Chapter 2. 

Access to some neighborhood of a point is made using a data structure like a 
neighborhood space (cf. Chapter 1). 

3Actually, an orientation convention can be retained such that the face normals are orientated 
towards the interior of the domain. 
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Analysis of the front 

The mesh elements are created based on the edges (faces) of the current front. 
The way to  do this is related to  the way in which the front is analyzed and thus 
to the choice of a particular front entity. 

The identification of a front entity from the generation front is a non-negligible 
task that can be performed in various ways depending on what benefit is expected. 
In general, the mesh generation does not proceed locally, but rather bounces ran- 
domly from one side of the domain to another. It seems obvious that this chaotic 
behavior has several undesirable side effects [Frykestig-19941: 

0 unnecessary complexification of the front, 

0 loss of the possibility of using the previously collected loacl information, 

0 overall degradation of the performances (due notably to an increase in cache 
memory management: see Chapter 2). 

It is always stated that these types of problems should not arise with a smooth 
element-size distribution function. In three dimensions, however, this is not really 
the case for various reasons. First of all, the front generally presents a chaotic as- 
pect (as previously mentioned), even in a simple geometric context and for smooth 
size functions (such as when a constant size is specified). Moreover, the desired 
size distribution can be tedious to  follow (for instance, in CFD problems where 
size chocks and/or boundary layers must be considered). 

More schematically, according to  [George, Seveno-19941, the front entity can 
be chosen in a set of mesh entities (a subset of all front entities) corresponding to: 

0 all entities satisfying specific properties (angles, areas, lengths, etc.), 

0 an offset of a part of the initial front (at the beginning) and of the current 
front after, 

0 all the front entities. 

Figure 6.4: Merging fronts of very 
dissimilar sizes is  a possible case 
of failure. The dashed lines illus- 
trate the optimal elements that can 
be formed based on  the selected front 
entities. 
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An ordering can be defined over this set using several criteria. For instance, 
the selected front entity can be the entity leading to  the smallest element, in order 
to avoid large elements crossing over regions of small elements [Lohner-l996b]. 
This can be useful in the case of two merging fronts, if the element size varies 
rapidly over the region between these fronts (as illustrated in Figure 6.4). Other 
approaches consist of using the shortest edge (of a face, in three dimensions) 
[Peraire et al. 19921, the smallest entity [Jin, Tanner-19931 or even ordering the 
entities with respect to their areas [Moller, Hansbo-19951. The selection of the 
front entity can also take the relative position of this entity with respect to its 
neighbors (incident entities). These approaches are usually carried out using a 
heap structure [Lohner-19881, for instance, based on binary trees (Chapter 2). 

As the objective is to  generate a good-quality mesh, another technique aims at 
locally creating the best element possible based on the worst front entity. This ap- 
proach clearly makes sense in three dimensions since in two dimensions it is a priori 
always possible to  form an equilateral triangle based on an arbitrary edge (provided 
the point to  be defined is inside the domain). This is true, specifically, only in the 
configurations with corners where, in two dimensions, it is impossible to connect 
two adjacent edges having a rather acute angle to  each other [Jin, Tanner-19931. 
Finally, the approach suggested by [Rassineux-1997] and [Seveno-19971 tends to  
minimize the size of the front and to take advantage of the (local) information 
previously collected. As a consequence, the number of intersection checks is also 
reduced, thus impacting favorably the overall meshing time. This approach is 
claimed to  make mesh generation easier as it seems to reduce the number of de- 
generate cases. In practice, the example illustrated in Figure 6.8, becomes highly 
unlikely to happen as the algorithm tends to  convezify the front. The approach 
starts from a given front entity and deals successively with any neighboring front 
entity that has not already been considered, thus resulting in a “spiral-like” pro- 
gression. 

Exercise 6.1 Implement the spiral procedure using a coloring algorithm and a 
FIFO (first in-first out)  data structure (see Chapter 2). Show that the previous 
algorithm proceeds by connected components. 

Remark 6.2 Regardless of the approach selected, the ma in  concern should always 
be to  design and implement a robust algorithm (i.e., for which convergence can be 
guaranteed) resulting in high-quality meshes. 

Field point creation 

Central to the advancing-front technique, the creation and insertion of an opti- 
mal point from a front entity requires a lot of attention. Let us assume that a 
front entity has been selected and that the desired element size can be known 
locally4. The objective is to discretize the domain in a set of well-shaped elements 
of arbitrary gradation. This can be carried out in the following steps: 

4See Chapter 1 for the use of a control space to locally determine the desired element size. 
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a a local stepsize, denoted h, (e.g. a node spacing function or an element size 
value) is associated with each mesh vertex, based on an average value of the 
edge lengths (surface areas) sharing the vertex for a boundary vertex and 
computed using function h for the mesh vertices after their creation, 

a for a given entity, a point is defined (see hereafter) which is then connected 
with this entity, 

a this choice is validated in accordance with the geometry and the size function. 
In the case of a point rejection, the previous step is repeated while picking 
another point. 

Three types of different points are tried as candidates for element vertices: 

the optimal point with respect to  the given front entity, 

a some already existing points in the current mesh which are close (in some 

a some (guest) points created in a given neighborhood of the above optimal 

As will be seen, these points will be the possible candidates from which the element 
vertices will be chosen. 

sense) to  the front entity under analysis, 

point. 

Optimal point. Several construction schemes have been proposed for deter- 
mining the location of the optimal point associated with a front entity. In two 
dimensions, a purely geometric idea defines as an optimal point that which allows 
for the construction of an equilateral triangle when combined with the given front 
edge. In three dimensions, the optimal point is that which allows the most regular 
tetrahedral element possible to  be built from a given front face (see Figure 6.5). 
An approach that takes advantage of the desired local size h(P)  (i.e., the edge 
length) in any point P is also a widely used solution. Specifically, this is a natural 
solution for a governed mesh generation method (as will be seen later). Thus, 
in three dimensions, the classical technique advocates positioning the point along 
the normal direction passing through the centroid of the front entity at a distance 
related to the magnitude of the desired element size (i.e., the average distance 
from this point to  the vertices of the front entity leads to  the desired element 
size) [Peraire et al. 19921, [Jin, Tanner-19931. 

Let K be a triangle of the front, whose centroid is denoted G, and let h(G) be 
the desired element size a t  point G. If n ' ~  represents the inward normal to  K ,  the 
position of the optimal point Popt can be calculated as follows: 

where a is a normalization coefficient such that if K is an equilateral triangle, the 
resulting tetrahedron will be regular (if the size map h is constant). 

Exercise 6.2 Determine the value of the coeficient a (hint: look at the specific 
above configuration). 
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A B 

Figure 6.5: Optimal point creation in two and three dimensions. 

Remark 6.3 This construction assumes that the selected front entity is well- 
shaped. Nevertheless, a correction procedure has been proposed to account for 
distorted entities [Frykestig-l99.4], which basically consists of performing the com- 
putation in a normalized space, obtained by scaling the coordinates by the inverse 
of the desired mesh size value locally. 

Remark 6.4 Once the optimal point Popt has been located, the element size h(Popt) 
at Popt can be used to relocate Popt so that the element size matches the desired 
element-size specification (cf. Section 6.2). 

The optimal point Popt (with respect to a given front entity) is not directly 
inserted in the mesh. Indeed, it is usually preferable to use an existing vertex 
as the optimal point rather than introducing a new one. Therefore, the other 
possible candidates are identified, collected and possibly ordered according to their 
suitability to form well-shaped elements with the selected front entity. 

Potential candidates. The identification of other candidate points is carried 
out according to a distance criterion. The closeness of a point is related to the 
local element size specification h(Popt) at the optimal point Popt. A point P can 
be considered as a candidate (i.e., is sufficiently close) if it belongs to the disk 
(ball) of radius h(Popt) centered at Popt, thus satisfying the following relationship: 

Remark 6.5 Given a front entity K ,  the points of the adjacent front entities Ki 
are automatically added to the set of admissible points, i f  the angles pi (the dihedral 
angles in three dimensions) between K and Ki are less than a given threshold value 
(cf. Figures 6.5 and 6.6) irrespective of their distances to Popt. 

Exercise 6.3 Explain how a neighborhood space (Chapter 1 )  makes it possible to 
eficiently identify the mesh entities closely spaced to the given optimal point. 
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Figure 6.6: Identification of all potential candidates for optimal point creation 
in two dimensions. Left: no candidate other than Popt exists. Right: the Pi’s 
represent all the possible candidates. 

Remark 6.6 Several authors [Jin, Tanner-1 9931, [Frylcestig-l994] advocate the 
use of tree points that are constructed on predetermined positions (close to Popt) 
to resolve complex front configurations. 

Remark 6.7 The input of specified points at the beginning of the construction 
(added to the boundary discretization) is  also a frequently encountered case that 
induces some slight modifications of the algorithm. 

The set of potential candidates Pi is ordered according to  the increasing dis- 
tance from the optimal point Popt. They will be considered for element generation 
with this ordering. The optimal point is also inserted in this set and will be 
considered prior to some of these points, according to  the distance criterion. 

Filtering. As the computation of the optimal point location Popt does not ex- 
plicitly account for existing vertices, an existing mesh vertex P can incidentally 
be closely spaced to Popt which must then be discarded to the advantage of P. 

Validat ion 

The candidate points, including the optimal point, must of course satisfy certain 
validity criteria prior to being considered as potential mesh vertices. The purpose 
of the criteria is to  ensure that the resulting mesh: 
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a is topologically and geometrically valid, 

a is of good quality, 

a conforms to  the specified element-size distribution function. 

Definition 6.1 A mesh is topologically and geometrically valid i f  all mesh ele- 
ments are conforming (Definition 1.2) and have positive surfaces (volumes). 

In practice, for a given candidate point Pi, conformity can be ensured by 
checking that none of the edges (faces) of the expected element intersects the 
front and that no existing mesh element contains point Pi. 

Exercise 6.4 Show that this geometric check can be used to determine whether a 
point Pi belongs to the domain (to the relevant connected component) or not. 

Definition 6.2 A candidate element is a valid element i f  none of its edges (faces 
in three dimensions) intersect any front entity and i f  it does not contain any mesh 
entity (for instance, a vertex or an element). 

Notice that this latter case (where an element exists) is a somewhat specious 
case. For instance, in two dimensions, we encounter one element (or a series of 
elements) fully included in the element under analysis. 

All this leads to  performing a certain number of validation checks which reduce 
to intersection checks. The intersection checks are relatively straightforward to  
carry out (as the elements are supposedly straight-sided). However, if the geometry 
checks are not carefully implemented, they can be impressively time-consuming. 
For instance, [Lohner, Parikh-19881 reported that more than 80% of the meshing 
time can be spent checking the intersections. Hence, the overall meshing speed is 
strongly related to  the algorithm used to check whether the elements intersect or 
not. Therefore, several efficient solutions have been proposed reducing the time to  
a mere 25% of the total meshing time [Lohner-19881, [Jin, Tanner-19931. In short, 
one uses data structures (binary tree or quadtree/octree, etc.) and filters so as to  
reduce the number of entities that must be checked (Figure 6.7). 

Remark 6.8 The complexity of the intersection checks is almost constant (i.e., 
does not depend on  the mesh size). Indeed, the complexity is  proportional to the 
number of neighboring elements collected, which is itself related to the size of the 
neighborhood. 

Additional checks. From the computational point of view, the notion of va- 
lidity as envisaged so far is not sufficiently reliable. Indeed, it is certainly not 
enough to  consider exclusively the new element to be created, as its insertion may 
affect the front configuration in such a way that further insertions may be virtually 
impossible5. Therefore, a practical approach consists of analyzing the distances 
between the edges of the element to  be inserted and the front edges. This check 
makes it possible to  control the space left after the element has been inserted. 

5This situation is especially acute in three dimensions. 
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Figure 6.7: For this example, a PR-quadtree structure (right-hand side) is better 
fitted to the domain geometry than an uniform gr id  (left-hand side) as a neighbor- 
hood space. 

In three dimensions exclusively, the worst problem encountered involves a con- 
figuration in which all front faces delimit a polyhedron that cannot be meshed 
without introducing a point. In this case, the problem comes down to determin- 
ing a possible location for the internal point (Figure 6.8). Convex polyhedra are 
easy to triangulate, but additional points may be needed to mesh a non-convex 
polyhedron [Lennes-l9ll], [Schonhardt-19281. 

This naturally leads us to convergence issues of advancing-front algorithms. So 
far, to continue the discussion, we assume that such a problem is not an issue, i.e., 
we assume that in the set of the candidate points there is always a non-empty set 
of a priori admissible points (for topologic and geometric validity). 

Quality checks. At this stage of the evaluation procedure, a candidate element 
has been declared acceptable based only on geometric considerations. As the aim 
is to create well-shaped elements (as regular as possible), the introduction of a 
quality check may be desirable. A candidate point that successfully passed the 
geometric checks is nevertheless discarded if the resulting element shape quality 
is poor. Several quality measures have been proposed (Chapter 18), a natural 
measure for a simplex K being: 

where hmax is the length of the longest edge of K ,  p~ is the in-radius of K and a a 
normalization coefficient (such that QK = 1 if K is the regular element, the quality 
function QK ranging from 1 to m). A candidate element K is thus discarded if 
its quality exceeds a user-specified threshold value 71, i.e., 

Q K > 1 7 .  (6.4) 

The 71 value is not necessarily fixed during the process, which leads to different 
strategies. It is possible to modify this threshold value (and degrade the shape 
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Figure 6.8: Schonhardt polyhedron: valid and non-decomposable (without adding 
a n  internal  point)  constrained triangulation of a regular pr i sm.  If this  pat tern 
localy occurs, it i s  necessary t o  f ind as  candidate a point  a priori n o t  found in the 
current strategy. 

quality) just to find a valid solution. It has been pointed out that a too strict 
a value leads to good quality elements but, on the other hand, may have some 
negative effect on the convergence, in some case. 

An experimental analysis. As seen at the beginning of this discussion, the 
principle of any advancing-front method is relatively simple (and admitted) but 
several strategies can be used in an actual implementation, all of them being based 
on heuristics. Thus, it seems to be of interest, since no theoretical issues can be 
involved, to look more closely at the behavior of such or such a strategy. To this 
end, it is necessary to have several implementations available so as to be able to 
make some comparisons. This fact is clearly unlikely to be realistic. Nevertheless, 
after [Seveno-19971, some statistics can be provided that give some interesting 
ideas. The method used relies on the above scheme and the element validation is 
performed using the tools previously described. A large enough set of examples 
has been obtained and the nature of the retained connections for element creation 
has been reported. This appears to be a useful piece of information obtained a 
posteriori, to give information about which strategy could be adopted (and also 
on how to optimize its implementation). 

Table 6.1 shows the frequency of the various connections between a front face 
and an entity when forming an element. In this table, n p ,  n e  and n f  represent the 
numbers of vertices, edges and faces, respectively created for a given front face. 
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Face K connected with n p  

1 adjacent face 

n e  nf frequency % 
0 1 2  59.4 

2 adjacent faces 
optimal point 
other cases 

Table 6.1: Frequencies of the connections with adjacent mesh entities, given a 
front face K in three dimensions. 

0 0 1  23.7 
1 3 3  13.4 
0 1 3  3.5 

It appears that the front face is directly connected to an existing mesh vertex 
from an adjacent entity in about 80% of cases. Hence, point creation represents at 
most 20% of the whole element creation process. Moreover, the table shows that, 
on average, two faces are created when constructing one new element. 

These statistics give us some indications. The first leads us to prefer, par- 
ticularly in three dimensions, an existing vertex instead of a new point. An- 
other issue related to convergence argues again for this choice that, in practice, 
reduces the number of delicate situations. The second indication, as proposed 
in [Golgolab-19891, leads to ordering the candidate points based on their proba- 
bility of being connected with a given front face. 

Convergence issues 

The notion of a convergence for a mesh generation method concerns its capability 
to complete a mesh in all situations. Here, it reduces simply to entirely “filling up’’ 
the domain. As previously indicated, this point is not really relevant in two dimen- 
sions. Indeed, the following theorem holds (as proven in [George, Borouchaki-19971, 
Section 3.3). 

Theorem 6.1 I n  two dimensions, any arbitrary domain defined by a polygonal 
non-crossing contour can be triangulated without adding an (internal) point. 

This interesting result has a direct consequence on the convergence of the 
iterative advancing- front scheme. 

Corollary 6.1 I n  two dimensions, an iterative advancing-front mesh generation 
technique always converges in a finite number of steps. 

Actually, at each time, the iterations of the method can be stopped and the 
remaining unmeshed region(s) can be filled up. 

In three dimensions, there is no similar issue. Indeed, irrespective of the numer- 
ical problems and provided an adequate strategy is used, the existence of a local 
configuration like that depicted in Figure 6.8 indicates that there is no guarantee 
of convergence. 

Remark 6.9 It  is worth noticing that this negative issue is still present in a De- 
launay type method where it appears an a different way. With an advancing-front 
method, the point is  to complete the mesh, while with a Delaunay approach, the 
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delicate point is  related to the enforcement of a given boundary entity (edge or 
face). 

Nonetheless, there are numerous examples (in three dimensions) of advancing- 
front based software which converge in most cases. As indicated, the strategies 
used try to  minimize the number of delicate situations. However, some authors 
propose, when faced with a bottle-necked situation, removing some previously 
created elements in some neighborhood so as to  suppress the locked configuration 
while taking care not to produce the same pathology again or to provoke a cyclic 
process of creation-removal. 

Point insertion and front updating 

Given a front entity f ,  once a point has been identified (among Popt, the candidate 
points, the trying points, etc.), and having successfully passed the different tests, 
it can be inserted in the current mesh. This stage consists of creating one element 
based on f and this point. 

Remark 6.10 As  an optimization, specific cases allow multiple elements to be 
created during the insertion of a single optimal point (cf. Figure 6.9, in two di- 
mensions). 

Figure 6.9: Creation and insertion of a single optimal point Popt resulting in the 
creation of two elements K1 and KZ in two dimensions (right-hand side). 

Updating the mesh simply involves adding this (these) element(s) into the list 

The last stage of the iterative procedure corresponds to the front update. In 

of elements already constructed. 

practice, this procedure: 

0 removes the (current) front entity from the front which is now a member of 
the element constructed, if a new point has been introduced or 

0 adds to the current front the edges (faces) of the constructed element not 
shared by any other element. 

We meet here the fact that the data structure devoted to front storage must 
be such that adding or suppressing any entity is made easy and fast. 
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Optimization 

Once all the points have been inserted and once the corresponding elements have 
been constructed, we have a mesh that could be optimized to some extent. The 
purpose is then to  optimize a quality criterion related to  the future application (a 
finite element style computation for instance). 

As previously mentioned, a well-suited quality measure for an element K in 
the mesh is: 

which, for the whole mesh, leads to  a global value like: 

The aim is then to minimize these values (including the global value). In 
fact, it could be observed that the method retained when choosing the points and 
thus when constructing (validating) the mesh elements have already considered a 
quality criterion. Nevertheless, for some convergence reasons, this criterion may 
have been violated in some cases. Also, the strategy generally leads to meshes with 
a majority of good quality elements (according to the threshold value q) .  Hence, 
in principle, the optimization stage is mostly of interest for a reduced number of 
elements. 

Optimization procedures. The current mesh is optimized by means of local 
modification tools. Two local techniques can be used (Chapter 18). In the first, 
the point positions are maintained and their connections are affected. In the other, 
the connections are unchanged and the node locations are improved. 

By using one or other of these techniques, we can use local optimization oper- 
ators that make it possible to  suppress some edges (by merging their endpoints), 
to swap (in two dimensions) an edge or to swap some edges or faces (this is the 
generalized swapping procedure in three dimensions). To end, notice that this 
optimization phase is common to all methods resulting in simplicia1 meshes (see 
Chapters 5 to  7). 

Practical issues 

As is now clear, any advancing-front method includes a large number of heuristics. 

About basic algorithms. A precise examination of the general scheme indi- 
cates that there are three points that must be carefully handled. They are con- 
cerned with the front management (initialization and updating), the visit of a 
given neighborhood of the front entity under examination (to collect the neigh- 
boring entities and find the corresponding sizing information) and the validation 
checks, essentially based on intersection checks. They need to find the neighboring 
entities and, from a numerical point of view, to  minimize the necessary CPU cost 
while guaranteeing valid results. 
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0 Front management and selection of a front entity. 

The front is a list of edges (faces) that is updated at each step by inserting or 
removing some edges (faces). Its management is then made easier by using a data 
structure well-suited to such operations (structures like a table or a dynamic linked 
list, see Chapter 2). 

Depending on the strategy used, choosing a front entity is related to a metric 
type criterion (thus a sort) or a topological style criterion (neighborhood). In 
the first case, the criterion (length, surface area, etc.) must be considered when 
dealing with the front which is easy using a heap or a tree type structure. 

In the second case, an easy access to the neighbors (edges or faces) of a given 
front entity is rather useful and we return to the notion of a neighborhood space 
that allows for this. Notice, in three dimensions, that the initial front is a triangular 
mesh whose vicinity relationships (in terms of edge adjacencies) are easy to obtain 
(Chapter 2). 

0 Neighborhood searching. 

Already mentioned above, the search for the entities (in the mesh and not only 
in the front) in some neighborhood of a given entity f is necessary in order to 
find the points and validate the elements resulting from the connection of f with 
these points. As a consequence, data structures like a tree (quadtree/octree) or 
a uniform grid (in view of bucket sorting) allow easy access to the entities close 
(in terms of distance) to the given entity (the edges (resp. faces) in the mesh are 
encoded in this structure to make this searching task easy). 

Figure 6.10: Illustration of how to store and to retrieve a face in a grid. Range 
searching. Left-hand side: face K is coded in each cell it intersects. Right-hand 
side: a common problem with a regular gr id ,  the size of the grid cell is  not com- 
patible with the size of faces Ki. 
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0 Remarks about intersection checks. 

The neighborhood space (or any equivalent structure) is the key support for fast 
access to  the entities close to the region under analysis. The use of filters then 
makes it possible to  quickly reject the entities that are clearly not relevant (in terms 
of intersection). Indeed, it is obvious that a segment [AB] such that X A  < XB does 
not intersect the segment [CD] such that xc < XD if, for instance, xc > XB. Thus, 
the intersection checks related to some adequate enclosing boxes show whether the 
corresponding entities may intersect or not. In the first case, an exact intersection 
check is made to give the decision, otherwise a rapid reject leads to  a reduction in 
the cost. Intersection checks and tests are concerned with the following pairs: 

0 (box - box), 

0 (edge - edge), 

0 (edge - face), 

0 (point - element). 

Remark 6.11 A case where there is not really an intersection but where the two 
entities in comparison are rather close to each other one must, in general, be 
considered as an intersection case. I n  fact, constructing an element in such a con- 
figuration will lead, for instance, to defining some edges very close to this element 
and then a rather small yet unmeshed space will be formed, which will furthermore 
be rather dificult to f i l l  up. 

Convergence issues. In two dimensions, a theoretical convergence result holds 
(Theorem (6.1)). From a practical point of view, the only trouble that is expected 
is when two fronts meet and the edge sizes are rather different. This potential 
drawback can be avoided if the sizes are globally considered, which means that 
such a situation is avoided. 

In three dimensions, the convergence results from a strategy which tends to  
minimize the number of impossible cases and, in the case of such a pattern, a 
procedure able to  remove some elements. This consists of going backwards so as 
to modify the local context and, in this way, remove the bottleneck. 

Memory resources and data structures. Necessary memory resources cor- 
respond to the data structure used to  store the useful values (vertices, mesh ele- 
ments, etc.) and to the implementation of the basic algorithms (front management, 
vicinity, etc.). 

The main internal data structures must be suitable to  contain the following 
information6: 

6Their internal organization depends on the programming language used. 
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0 point coordinates, 

0 point sizes, 

0 the vertices of the front entities, 

0 element vertices, 

0 adjacent elements to a given element (in terms of edge or face adjacencies) 
and 

0 some other resources, a priori with a small memory requirements as com- 
pared with the previous ones (for instance, to  encode the neighborhood 
space). 

6.2 Governed advancing-front method 

Constructing meshes that satisfy some specific properties (variable mesh density 
from one region to  another, i.e., variable element sizes) is required in numerous 
applications. The construction scheme then leads to using a governed mesh gen- 
eration method where the desired control is specified, as described below. 

The specification of the desired element-size distribution function is indeed 
the desired information. Notice that this data, common to most mesh generation 
algorithms (see, for instance, Chapters 5 and 7), can be rather delicate to provide. 
The earliest approaches used a grid or a background mesh whose elements encode 
the desired sizing values. This data is then known everywhere in the domain. In 
fact, the purpose of this grid (mesh) was to  provide a covering-up of the domain 
with which a continuous element-size distribution function is associated. This is 
exactly how a control space can be defined (Chapter 1). In terms of the spatial 
aspect, the control structure may be defined in various ways: using a regular grid, 
a quad- and octree decomposition or a background mesh (usual mesh or a mesh 
with no internal point, for instance, as will be seen in Chapter 7). In the coming 
sections, we briefly recall what a control space is. 

Control space 

Let us consider a background mesh of the domain as a control space7. The element- 
size function is known at  the vertices of this background mesh. From the discrete 
size specification map, a continuous size function can be obtained using an inter- 
polation scheme. 

Direct use of a background mesh. Let P be an arbitrary point in the domain, 
the size h(P)  at P is computed as the PI-interpolate of the sizes h(Pi), i = 1, ..d+l 
(d  being the space dimension) a t  the vertices Pi of the mesh element containing 
P (Figure 6.11). Schematically, the sizes h(Pi) are computed as follows: 

7For instance, a background mesh can be obtained using a Delaunay-based mesh generation 
algorithm, after the insertion of the boundary points and the boundary recovery (Chapter 7). 
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0 For all grid vertices Pi: 

- find the element enclosing the cell vertices Pi, 

- compute h(Pi) as the PI-interpolate of the vertices of the element. 

Using a grid built on the background mesh. Again, let P be an arbitrary 
point in the domain (cf. Figure 6.11). We are given a uniform grid and we note Pj 
its vertices. Schematically, the size value h(P)  is found after two steps. At first: 

0 For a given point Pj, a grid corner: 

- find the element within which Pj falls, 

- compute h(Pj) as the Pl-interpolate of the sizes h(Pi) at  the vertices 

which simply reduces to  using the above algorithm (so as to equip the grid corners 
with a size value). Then, for a given point P :  

Pi of this element, 

0 find the grid box within which P falls, 

0 compute h(P)  as the Q1-interpolate of the sizes h(Pj) at  the corners Pj of 
this cell. 

Figure 6.11: Construction of the control space. Left: The size h (P)  at P i s  ob- 
tained by interpolation between the sizes h(A),  h (B)  and h(C) at A, B and C ,  
respectively. Right: a regular grid is  combined with the background mesh, which 
can be discarded later. 

Remark 6.12 In such an  approach, the size of the grid cells mus t  be in accordance 
with the size of the elements in the background mesh. If not, a filtering effect can 
arise leading t o  a lack (dilution) of information (cf. Chapter 5). 

Remark 6.13 Notice also that the grid can be used as a neighborhood space only. 
For a given point P, the cell enclosing it is  found. This cell acts as a pointer o n  
an  vertex in the background mesh, thus making it easy t o  quickly find an  element 
enclosing P .  The algorithm given at first can be then used to  evaluate the desired 
size at P .  
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Remark 6.14 In the case where the background mesh is an  “empty” mesh, these 
approaches result in a size distribution function strongly related to  the boundary 
discretization. Indeed, the h’s (size values) are ‘$guessed” f rom this sole data. 

In place of a uniform grid, a decomposition like a PR-quadtree can be used that 
provides a priori a way to have as the spatial part of the control space a covering 
up that is better adapted to the geometry (Figure 6.12). The size of the tree cells 
is then related to the values of the size function and to local information (source 
points, etc.) if any. Therefore, the control structure is finer in high curvature 
regions and coarser elsewhere, specifically inside the domain (say, far away from its 
boundaries) [Shephard, Georges-l991], [Rassineux-1995]. Thus, the above filtering 
effect is avoided to some extent. Other methods for size prescriptions can be found 
in [LOhner-l996b] which combine a general aspect and finer information. 

Figure 6.12: Computing a n  implicit size map  using a quadtree type decomposition. 
Left-hand side: the cell sizes increase as the distance f rom the boundary becomes 
greater. Right-hand side: the cell sizes is  related t o  the domain geometry. The  
small cells make it possible t o  separate two entities belonging t o  two close boundary 
sides. 

Field point creation 

Once the control space is ready, it is possible to develop a robust and flexible 
procedure for the field point creation designed in accordance with the information 
encoded in this space. Recall that for a given front entity, the goal is to create an 
optimal point such that the resulting element is well-shaped and its size conforms 
to the desired size. It can be seen (Chapter 1) that such conditions can be satisfied 
if the edges of the optimal element are unit edge (close to one, in terms of length) 
with respect to the size map. A mesh whose edges are unit edges is said to be a 
unit mesh. 

Edge length. Let AB be a mesh edge and h(t)  be the size specification along 
AB such that h ( 0 )  = h(A) and h(1) = h(B) ,  the normalized length of AB, denoted 
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~ A B ,  with respect to h(t)  has been defined as (Chapters 1 and 10) 

1 

where dAB stands for the Euclidean distance between A and B. Edge AB is said 
to be conformings to the size specification if 

and the goal is then naturally to create an optimal element (based on the front 
entity and the optimal candidate point) having all its edges conforming to the 
desired size. 

Optimal point creation. The optimal point creation strategy is very similar 
to the classical case. In addition to the quality check, the algorithm attempts to 
create unit edge lengths for this element. In practice, an iterative algorithm is 
designed (both in two and three dimensions), which, given a front face ABC, its 
normal n F i  and its centroid, reads: 

1. Compute the optimal point location Popt (via the standard procedure) as 

where a is a normalization coefficient leading to a regular tetrahedron. 
Set it = 1, the number of iterations. 

2. Query the desired size h(Popt) at Popt via the control space (an interpolation 
scheme can be used to find h(P) based on the size specifications at the 
vertices of the control space element enclosing Popt). 

3. Compute the normalized edge lengths l ~ p , , ~ ,  lBpopt and l ~ p , , ~  of the optimal 
element. 

4. Compute the locations of the pseudo-optimal points PL, P&, P& along each 
edge APopt, BPopt and CPopt such that 1Aph = 1, LBpA = 1, 1cp;1 = 1 (close 
to 1, Relation (6.8)). 

5. Compute PLpt the weighted barycenter of points PA, PA, P&. 

6 .  Move Popt towards PLpt, using a relaxation coefficient w (Figure 6.13), 

PLPt = Popt + w Popt PLPL . 

7. Set Popt = PLpt, fix it = it + 1 and, if it < itmax, return to Step 2. 

'The coefficient fi is related to the fact that an edge can be split if the lengths of the two 
subedges minimize the error distance to the unit length as compared with the initial length. 
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Remark 6.15 The procedure converges rapidly (practically i t m a x  < 5) toward 
an optimal point Popt. The purpose of using an iterative approach is to take into 
account the potential gradation shocks ahead of the front face (for instance, when 
merging two fronts of widely differing sizes). 

B 

Figure 6.13: Optimal point Popt creation, given a front face ABC, the resulting 
tetrahedron K is considered optimal as it has conforming edge lengths. 

Remark 6.16 The field point creation algorithm must also check the shape quality 
of the new element. I n  fact, the method tends to create conforming edges with 
respect to the control space. I n  three dimensions, however, this condition is not 
suficient (e.g., the volume of a sliver is close to 0 ,  even though all edge lengths 
are conforming; see Chapter 18). 

Optimization 

As seen in the classical mesh generation problem and a fortiori in a governed 
case, it is usually useful to optimize the mesh resulting from the advancing-front 
governed algorithm. The goal is to produce the best regular element possible in 
accordance with the control space. Notice that the assumption of optimal field 
point generation has governed the entire procedure. Nevertheless, a two-stage 
optimization is applied to  remove the worst elements in the mesh. This consists 
of improving the element quality (the shape as well as the size quality) using local 
topological mesh modifications (see Chapter 17, for more details). It seems to  be 
efficient to optimize at first the size criterion and then to turn to the shape aspect 
(considering both criteria is probably elegant but tedious to  do and is unlikely to  
be more efficient). 
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6.3 Application examples 

In this section, several application examples of meshes in two and three dimensions, 
obtained using classical as well as governed advancing-front methods are proposed. 
Figures 6.14 and 6.15 illustrate a few meshes in two and three dimensions and 
Table 6.2 reports some characteristic values related to  these examples. 

Table 6.2: Statistics related to  the selected meshes (the boundary discretization is 
the sole data used to  generate the isotropic meshes). 

Figure 6.14: Two- and three-dimensional advancing-front meshes (left: data cour- 
tesy of TELMA, right: data courtesy of ANSYS, COT.). 

The statistics relative to the different meshes are provided in Table 6.2, where 
n p  and n e  represent the number of mesh vertices and mesh elements respectively, 
QM denotes the shape quality of the worst-shaped element in the mesh, after the 
optimization stage. In two dimensions, the mesh quality should be close to  one, 
regardless of the domain boundary discretizationg. In three dimensions however, 
the mesh quality must be compared with Qth which represents the quality of the 
best element that can be theoretically created based on the worst face of the 
boundary mesh. The row 1 - 2 represents the percentage of elements having a 
quality ranging between 1 and 2 (according to Relation (6.3)) and t is the CPU 

gProvided the optimal point belongs to the domain! 
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time (DEC ALPHA 2100/500 workstation) required to complete the final mesh 
(including the i/o). 

case 1 
case 2 
case 3 

Figure 6.15: Three-dimensional mesh of a car used for computational fluid dy- 
namics (CFD) computations (data courtesy PSA). Left: computational domain 
(boundary mesh, local enlargement). Right: mesh in the vicinity of the car (sec- 
tion). 

nP ne t (sec., DEC 2100/500) 21 

20,674 107,085 192 33,464 
36,856 194,663 422 27.677 
72,861 421,444 807 31,334 

In addition, Table 6.3 is given so as to  appreciate the efficiency and the scala- 
bility of the advancing-front algorithm, where u represents the number of elements 
created per minute. 

case 4 
case 5 

220,177 1,234,457 1,682 44,035 
327,092 1,832,038 2,153 51,055 

Table 6.3: Efficiency and scalability of the advancing-front meshing algorithm. 

The results show that the speed-up ranges from 25,000 to  around 50,000 ele- 

0 the size of the underlying data structure used as neighborhood space (here a 
regular grid has been used) which may be inappropriate with regard to  the 
element sizes (for instance, in case 2), or 

0 the small part devoted to  intersection checking in some examples (for in- 
stance, when the computational domain is geometrically simple as in case 5 
or for domains with high volume to surface area). 

To conclude, notice that the theoretical complexity of any advancing-front 
method is not so obvious to investigate. We have already observed that the com- 
putational cost of the intersection checks is proportional to the number of entities 
close (in some sense) to  a given entity and, for this reason, does not a priori depend 
on the mesh size. Also, we have pointed out that the geometrical aspect of the 
domain is not a parameter in terms of cost (since, after a few fronts, the remain- 
ing region is an arbitrarily shaped region, except for very specific cases where, in 
addition, a regular gradation is possible. 

ments per minute. This difference can be explained by two factors: 
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Figure 6.16: Front evolution during the construction (cut through a three- 
dimensional mesh after a few iterations). 

Nevertheless, in [Peraire et al. 19881 and [Bonet, Peraire-19911, for instance, 
a complexity in o(nlog(n))  is reported where n is the number of elements in 
the mesh. In these references, the factor in log(n) results from the use of a tree 
structure (an alternated digital tree). However, if the generation of a single element 
could be made in a constant time, then the triangulation of the whole domain will 
be linear in time. [Krysl-19961 also showed that a linear complexity is obtained 
in two specific problems, namely front management (using a hashing technique) 
and the search for the entities neighboring a given entity (using a neighborhood 
space, Chapter 1). 

6.4 Combined approaches 

The main drawback of the (standard or governed) advancing-front approach mainly 
relates to its efficiency (especially when compared to a Delaunay method). The 
intersection checking routine is a relatively expensive procedure for ensuring the 
acceptability of a new element. 

In addition, advancing-front approaches often have problems with robustness, 
mainly because of the lack of a correct definition of the region of interest (i.e., the 
neighboring elements of a mesh entity) 

An approach combining the Delaunay criterion (Chapters 1 and 7) and the 
advancing-front technique is a solution that has proved especially useful to over- 
come some difficulties. Using this it is possible to construct several elements at a 
time and, moreover, to  allow the proper merging of two fronts of different length 
scales, which represents a classical type of failure in the standard algorithm (es- 
pecially in three dimensions). 
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Advancing-front Delaunay approach 

The Delaunay based methods are regarded as faster than the advancing-front style 
methods mainly because the mesh is constructed point by point and each point 
allows for the creation of several elements. From a local point of view, the number 
of elements constructed from a point is a function of the local situations, running 
from a few elements to several tens of elements (see, in Chapter 7, the notion of 
a cavity). However, since the elements are constructed and removed during the 
algorithm, a more precise analysis is needed to  make sure that the global efficiency 
is related to this point. 

The idea suggested by [Mavriplis-19921 leads to defining an advancing-front 
strategy that automatically locates the new points and constructs as elements 
those which conform to the Delaunay criterion so as to achieve the efficiency of 
these methods". The algorithm mainly consists of identifying the three following 
configurations: 

0 some neighborhood of Popt is empty (no point is included inside this region) 
or not, 

0 this zone is empty but there are some circles (spheres) circumscribing some 
elements of the current mesh that enclose the selected candidate point, 

0 this zone is empty and such circles (spheres) do not exist. 

Then, for each of these patterns, the collected information allows us to  antici- 
pate the nature of the local context. 

Figure 6.17: Insertion of a new point Popt and element creation. Left-hand side: 
classical approach, failure to locate the end points of a large edge (the face is not 
coded in all cells of the background space). Right-hand side: the circumcircles of 
K1 and K2 are intersected, neighbors of K2 are searched and one is  found to have 
its circumcenter intersected. 

'OThis point of view is also suggested in [Merriam-19911, [Muller et al. 19921 and [Rebay-19931. 
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Remark 6.17 The inverse coupling of Delaunay advancing-front type is also a 
possible solution. The Delaunay method is used to connect the vertices while an 
advancing-front strategy is used to locate the field points; see [Frey et al. 19981 and 
Chapter 7. 

Computational issues. The efficiency of the combined method is related to  
the fact that additional information is available, provided by the Delaunay crite- 
rion. In particular, this means that we automatically have certain knowledge of 
the neighborhood of the considered area, which, in the classical advancing-front 
approach, can only be obtained by a tremendous computational effort and through 
relatively complex data structures. The robustness of the method is also improved 
following this approach, as the Delaunay criterion makes it possible to anticipate 
and to  avoid potential collisions between two fronts, to use a criterion to decide the 
deletion of conflicting elements and, finally, to handle and create several elements 
simultaneously. Moreover, if the internal points are well located, the Delaunay 
criterion offers a certain guarantee of the resulting element (shape) quality. 

Advancing-front with preplaced interior points 

As the advancing-front methods work from the boundary towards the interior of 
the domain, special care must be taken regarding the generation of mesh elements 
in the vicinity of the boundary. However, for domains with high volume to  surface 
area, the internal point creation stage can be improved. 

front method, used to  create internal points close to  the boundary, with a quadtree- 
octree based spatial decomposition method to  generate the internal elements (re- 
turn to Chapter 5). More precisely, the general scheme of this technique consists 
Of: 

The approach suggested by [Rassineux-19971 consists of combining the advancing- 

0 building the spatial decomposition of the domain using a tree structure 
(quadtree in two dimensions and octree in three dimensions), 

0 marking the internal cells and the boundary cells, 

0 meshing the internal cells using predefined patterns (templates), 

0 meshing the boundary cells using an advancing-front approach. 

An optimization step is then carried out to improve element (shape) quality, es- 
pecially in the transition zones, between the regions where different meshing tech- 
niques have been used. 

Notice that in this approach, the mesh gradation is governed by the tree bal- 
ancing rule (element sizes are directly related to cell sizes). Moreover, the cell 
corners give the resulting mesh vertices, thus providing the final mesh with a 
certain rigidity. 
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Hybrid approaches 

It is often desirable to  generate stretched meshes for viscous flow computations, 
particularly in boundary layers and wake regions. This can be achieved using a 
hybrid technique which consists of creating a structured mesh in the boundary 
layers and wake regions combined with an unstructured mesh elsewhere. 

The structured mesh consists of prisms (which can later be subdivided into 
tetrahedra, if necessary) obtained by offsetting the surface triangles along the 
normal directions at  the vertices, thus defining a sort of homothetic surface to  
the initial one. The thickness of the layers is related to  the vertex normals, the 
distance between the nodes being related to  the Reynolds number and to the other 
parameters of the given problem. However, the stretching of the elements is that 
of the initial mesh. 

The unstructured mesh is then created using a classical advancing-front tech- 
nique. The internal points are calculated so as to generate well-shaped elements, 
which are as regular as possible. The mesh gradation is controlled so as to achieve 
a smooth transition of element sizes between the structured and unstructured 
meshes. 

The tedious part of this approach concerns the proper definition of the bound- 
ary layer features and other regions where the elements have to be stretched, as 
well as the definition of the parameters (thickness, number of nodes, node stretch- 
ing function). It is also necessary to ensure a smooth transition between the 
structured and unstructured meshes. 

This kind of approach has been primarily studied in computational fluid dy- 
namic applications, for instance, by [Muller e t  al. 19921, [Johnston, Sullivan-19931, 
[Pirzadeh-19941, [Hassan et al. 19961 and [Lohner e t  al. 19921. 

6.5 Extensions 

In this section, we mention some peculiar applications of the advancing-front 
method, that allow it to  increase its potential field of application to non-conventional 
meshing problems. In particular, we mention anisotropic mesh generation, which 
is then extended to surface mesh generation. Finally, we comment briefly on the 
use of an advancing-front technique within an adaptive mesh generation scheme. 

Anisotropic mesh generation 

So far, the general scheme of the advancing-front method has been designed to  
handle isotropic meshes. However, most of the proposed approaches have been 
conceived for isotropic meshing purposes and are not able to  handle high-aspect 
ratio element generation (such as those involved in Navier-Stokes computations, 
for example). 

The general classical scheme of the advancing-front method can be modified 
to generate such elements. More precisely, the internal point creation stage is 
adapted to the creation of anisotropic elements. 
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Edge length in an anisotropic metric. We use here a more general formula- 
tion of the normalized edge length calculation (cf. Relation (6.7)). Let AB be an 
edge, defined using a parameterization such that AB(t) = A + ta , t E [0,1] 
and let M ( M ( t ) )  be the 2 x 2 matrix (in two dimensions) defined by: 

(resp. a 3 x 3 matrix in three dimensions), where h( t )  denotes the expected size at 
point M ( t ) .  The length ZM(AB) of the segment AB in the metric corresponding 
to the matrix M is then defined by (see also Chapter 10): 

(6.10) 

Optimal point creation. The optimal point creation based on a given front 
item in order to  create an anisotropic element is carried out by replacing the edge 
length computation in the classical scheme by an edge length calculation in the 
anisotropic metric. More precisely, we use the previous definition of the normalized 
edge length, replacing the matrix M ( M ( t ) )  by the matrix (in two dimensions): 

(6.11) 

The matrix R(t) makes it possible to  specify two privileged directions at  point 
M ( t )  and h l ( t )  (resp. hz( t ) )  indicates the desired size in the first (resp. second) 
direction at  this point. The adjusting strategy of the optimal point location is 
then identical to  that of the governed isotropic case. 

Optimizations. As for the governed isotropic case, an optimization stage is 
carried out to  improve the size and the shape qualities of the resulting anisotropic 
mesh. This stage is based on local topological and geometrical modifications. 

Surface mesh generation 

The generation of finite element surface meshes is a topic that has received a lot of 
attention over the last few years. The reason is manifold. At first, surface meshes 
are important because of their effect on the accuracy of the numerical solutions 
(partly related to the boundary conditions) and the convergence of the compu- 
tational scheme in numerical simulations based on finite (or boundary) element 
methods. On the other hand, three-dimensional meshing techniques often rely on 
surface (boundary) meshes. This is especially the case for quadtree-octree (Chap- 
ter 5), advancing-front (see above) and Delaunay-type methods (Chapter 7). Two 
approaches, direct and indirect, can be envisaged for surface meshing. 
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Direct surface meshing. This approach consists of applying a governed mesh- 
ing technique (here the advancing-front) directly to the body of the surface, with- 
out using any kind of mapping related to any arbitrary parameterization. The 
mesh element sizes and shapes can be controlled by monitoring the surface vari- 
ations. The approach proceeds by first discretizing the curves representing the 
surface boundary, then it triangulates the surface. The reader is referred to 
[Nakahashi, Sharov-19951 and [Chan, Anatasiou-19971, among others, for more de- 
tails. 

The general scheme of surface meshing using a direct approach is based on the 
same steps as the classical advancing-front technique. The main difference lies in 
the iterative algorithm used to find an optimal point location given a front edge. 

More precisely, given an edge AB, the optimal point P is computed to construct 
a triangle determined by an angle a between the stretching direction and the 
tangent at the midpoint M of AB (or using an average tangent plane and setting a 
to zero). The point P is then projected onto the surface, its location being obtained 
through a query to a geometric modeler [Steger, Sorenson-19801. Candidate points 
are identified as those which lie in the circle of center at P and radius K x 6, where 
K is a positive coefficient (e.g. 0.7 according to [Nakahashi, Sharov-19951). The 
size of the triangle is locally adapted to the surface curvature (see Chapter 15). 
An optimization stage is required to globally improve the element shapes (cf. 
Chapter 19). 

Notice that the edge lengths are calculated based on straight segments; how- 
ever, points are further moved onto the true surface and the computed length 
can thus be quite different from the true edge length. It is therefore quite a te- 
dious approach to implement, especially when the surface contains large curvature 
variations. 

Parametric surface meshing. The indirect approaches essentially concern 
parametric surface meshing. The generation of a mesh for such a surface is ob- 
tained through a parametric space, which in fact is equivalent to a purely two- 
dimensional problem (although it uses surface related information). Let fd be a 
domain of R2 and cr a sufficiently smooth function; then the surface C defined by 
the application cr : R - R3, (u, w) H ~ ( u ,  w) can be meshed using a two- 
dimensional meshing technique in R ,  then mapping this mesh via c onto R3. To 
this end, it is necessary to use a mesh generation technique with anisotropic fea- 
tures, the metric map being based on the intrinsic properties of the surface. The 
general scheme of this approach is based on three successive steps: the parameter- 
ization of curves and surfaces, the unstructured mesh generation in R and, finally, 
the mapping of this mesh from the parametric space to the real space so as to 
obtain the final mesh. An optimization stage can complete the mesh generation 
process. 

Several authors have used an advancing-front for parametric surface meshing 
(see, for instance, [Peraire et al. 19871, [Samareh-Abolhassani, Stewart-19941, and 
also [Rypl, Krysl-19941 [Moller, Hansbo-19951, [Lohner-l996b] and [Marcum-19961). 
Notice that the intersection calculations can be directly performed in the paramet- 
ric space [F'rykestig-19941. 
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Mesh adaptation 

The basic idea of mesh adaptation is to improve the accuracy of the numerical 
solutions as well as to reduce the computational cost of the numerical operations. It 
requires a quasi-optimal node distribution at each iteration. The mesh adaptation 
problem will be discussed in greater detail in Chapter 21. 

The mesh adaptation is based on a governed mesh generation technique, the 
size map is supplied by an a posteriori error estimate. The governed advancing- 
front strategy can be applied, almost without modification, to the creation of 
adapted meshes" 

* * *  
Advancing-front type methods are efficient, robust and polyvalent. They allow 

classical or governed meshes (i.e., conforming a prescribed size map) to be con- 
structed. They are also of interest in the context of adaptation problems (Chap- 
ter 21) and, in addition, allow surface meshes to be constructed (taking advantage 
of the anisotropic features). 

"The adaptation is based on the regeneration of the whole mesh and not on a mesh optimiza- 
tion. 



Chapter 7 

Delaunay- based 
Mesh Generation Methods 

Delaunay triangulation and the construction methods resulting in this triangu- 
lation have been extensive fields of research for a very long time. In particu- 
lar, these topics are one of the major concerns in computational geometry (CG 
for short). It is therefore not really surprising to find a great deal of literature 
about Delaunay triangulation, starting with the pioneering paper by Delaunay 
himself, [Delaunay-19341. Relevant references include [Shamos, Preparata-19851, 
[Joe-19911, [Fortune-19921, [Rajan-19941, [Boissonnat, Yvinec-19951 together with 
[Ruppert-19951 among various others. Delaunay triangulation problems are of 
interest for a number of reasons. Firstly, numerous theoretical issues can be inves- 
tigated. Then, a wide range of applications in various disciplines exists including 
many engineering problems where theoretical results are used or revisited so as to 
obtain concrete algorithms. 

Delaunay triangulation problems are of great interest as they can serve to 
support efficient and flexible mesh generation methods. In this respect, people 
concerned with engineering applications have investigated Delaunay-based mesh 
generation methods. The main references for this topic include [Lawson-19771, 
[Hermeline-19801, [Watson-l981], [Bowyer-l981] in the early 1980s and many oth- 
ers in the next decade such as [Weatherill-19851, [Mavriplis-19901, together with 
[George, Borouchaki-19971. 

Ir 
I r k  

This chapter includes six parts. The first recalls some theoretical issues re- 
garding Delaunay triangulation. The second discusses the notion of a constrained 
triangulation. We then show how to develop a Delaunay-type mesh generation 
method. The fourth part briefly introduces several variants. Finally, extensions 
are proposed. We explain how to complete a mesh conforming to a pre-specified 
size map and how to generate anisotropic meshes (used, in particular, when dealing 
with parametric surface; see Chapter 15). Comments are added about weighted 
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Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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and anisotropic diagrams and triangulations together with potential applications. 

7.1 Voronoi' diagram and Delaunay triangulation 

The Delaunay triangulation can be introduced in various ways (depending on the 
context of application). A convenient way is to use the dual of this triangulation, 
the Voronoi' diagram. 

The VoronoY diagram 

Let S be a finite set of points (Pi) i=~, . . . ,~  in d dimensions. The Voronoi' diagram 
for S is the set of cells, V,, defined as: 

V,  = { P  such that d(P, Pi) I d(P, Pj), V j  # i }  (7.1) 

where d( . ,  .) denotes the usual Euclidean distance between two points. A cell V,  is 
then the set of the points closer to Pi than any other point in S. The V,'s are closed 
(bounded or not) convex polygons (polyhedra in three dimensions, d-polytopes in d 
dimensions); these non-overlapping cells tile the space, and constitute the so-called 
Voronoi' diagram associated with the set of points S in Rd. 

Figure 7.1: Left-hand side: Voronoi' diagram (in two dimensions). Right-hand 
side: corresponding Delaunay triangulation. 

Delaunay triangulation and Voronoi' diagram 

A triangulation problem typically concerns the construction of a triangulation of 
the convex hull of the Pi's such that the Pi's are element vertices. The construction 
of the Delaunay triangulation of this convex hull can be achieved by considering 
that this triangulation is the dual of the Voronoi' diagram associated with S. 

Based on Definition (7.1)' each cell V, of the Voronoi' diagram is a non-empty set 
and is associated with one point in S. From these V,'s,  the dual can be constructed, 
which is the desired Delaunay triangulation. For instance, in two dimensions, the 
cell sides are midway between the two points they separate, thus, they are segments 
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that lie on the perpendicular bisectors of the edges of the triangulation. In other 
words, joining the vertices in S belonging to  two adjacent cells results in the 
desired triangulation. The latter is unique and consists of simplices (triangles or 
tetrahedra according to  d )  provided the points in S are locally in general position 
(cf. Chapter 1 for this notion). Otherwise, elements other than simplices can 
be constructed which can be easily split into simplices (thus resulting in several 
solutions for a unique set of points). 

Theoretical issues 

This section recalls some classical theoretical issues about the Delaunay trian- 
gulation. In this respect, a fundamental theorem, the so-called “lemme giniral 
de Delaunay”, will be given. But first, we need to provide the definition of the 
well-know empty sphere criterion. 

Figure 7.2: B.N. Delaunay and his famous criterion. I n  this two-dimensional 
example, the (empty sphere” criterion is  violated as the open disc of triangle K 
encloses point P.  Note that this example is special as the point P is the vertex of 
a triangle adjacent to K which is  opposite the common edge. 

The empty sphere criterion. In two dimensions, this definition refers to the 
open disk circumscribing a triangle while in three dimensions it concerns the open 
ball circumscribing a tetrahedron. This criterion is also referred to  as the Delaunay 
criterion. Note that the criterion is referred to  as the empty sphere criterion while 
would be better referred to  as the empty ball criterion. 

The “lemme giniral de Delaunag can be enounced as follows1 

lPublished in French in 1934, see [Delaunay-19341, the original lemma is, in extenso, as 
follows: “Soient T des t t tmbdres tout  ci fa i t  arbatmares qua partagent u n i f o m t m e n t  l’espace ci 
n dimensions t t a n t  contigus par des faces entibres ci n-1 dimensions et  tels qu’un domaine 
quelconque limit6 (c’est-&-dire ci diambtre l imi t t )  ait des points communs seulement avec un 
nombre limit6 de ces te‘tTabdTeS, alors la condition ntcessaire e t  su f i sante  pour qu’aucune sphbre 
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General lemma. Let 7 be a given arbitrary triangulation of the convex hull 
of a set of points S .  If for  each and every pair of adjacent simplices in 7,  the 
empty sphere criterion holds, then this criterion holds globally and 7 is  a Delaunay 
triangulation. 

Remark 7.1 This lemma provides a rather simple characterization of the Delau- 
nay triangulation. Note that a local property about the Delaunay criterion for  two 
adjacent elements results in a global property for  the entire triangulation. 

The proof of this lemma can be achieved in several ways and can be found in 
numerous references. For the sake of simplicity, we assume, in the following sec- 
tions, that the given points are locally in general position. With this background, 
we discuss one method (among many others) that allows the construction of the 
Delaunay triangulation of the convex hull of a given set of points. 

Incremental method. Given Z, the Delaunay triangulation of the convex hull 
of the first i points in S, we consider P the (i  + l)th point of this set. 

The purpose of the incremental method is to construct z+1, the Delaunay 
triangulation including P as an element vertex, from z. To this end, we introduce 
a procedure, the so-called Delaunay kernel which can be simply written as: 

Z+l = Z - C p + B p ,  

where C p  is the cavity and B p  is the ball associated with point P. Without loss 
of generality, we assume that P is included’ in z; then: 

0 cavity C p  is the set (the union) of elements in Z whose open circumballs 
contain point P and 

0 ball B p  is the set of elements formed by joining P with the external faces of 
the above cavity. 

From a practical point of view, the directly usable decisive result is that the 
cavity is a star-shaped set with respect to point P. 

Theorem 7.1 Let Z be a Delaunay triangulation and let P be a point enclosed 
in z. The above construction scheme completes Z+l, a Delaunay triangulation 
including P as an element vertex. 

There are several ways to  prove this theorem. Here, we give two different proofs 
based on what is assumed and what must be proved (a proof, using the Voronoi’ 
duality, can be found in various references and in [George, Borouchaki-19971). 

circonscrite & un tel t t tmbdre n e  contienne dans son  in t t r ieur  aucun sommet  d’aucun de ces 
t t tmbdres est que cela ait lieu pour chaque paire de deux de ces te‘tTabdTeS contigus par u n e  face 
& n-1  dimensions, c’est-&-dire que dans chaque telle paire le sommet  d’un de ces t t tmbdres n e  
soit in t i r ieur  & la sphbre circonscrite & l’autre, e t  rtciproquement.” 

21n fact, three situations are possible including this case. The other cases are when P is 
outside all elements although it belongs to a circumscribing ball and the case where P is outside 
all elements and balls. In such cases, the definition of the cavity is slightly different but the same 
construction scheme holds. 
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Proof 7.1.a. shows that Z+1 is a Delaunay triangulation and establishes that 
B p  conforms to the previous definition. Proof 7.1.b. shows that Relation (7.2) 
where B p  is defined as above results in a Delaunay triangulation since Z is De- 
launay. 

Proof (7.1.a.) This proof is completed in two parts. First, Z+1, a Delaunay 
triangulation, exists as the dual of the corresponding Voronoi' diagram. Moreover, 
for the same reason, Z+1 is unique. Thus, the only thing we have to  show is that 
x+1 is the triangulation as defined by Relation (7.2), meaning that C p  and B p  
are exactly the same as the previously introduced sets. 

As the elements that violate the Delaunay criterion are those of C p  (and only 
those), the remaining part of Z remains unchanged and this part becomes a part 
of triangulation Z+1. Then, we just have to establish that B p  is the appropriate 
construction to  replace Cp. 

Let R p  be the re-triangulated cavity in x+1. We will show that R p  is the 
above Bp. The set R p  is a set of elements having P as a vertex. This is proved 
by contradiction. To this end, let us assume that there exists one element in R p  

without P as one of its vertex, this element is then necessarily a member of C p  
and thus violates the Delaunay criterion. Therefore, all elements in R p  have P 
as a vertex. As a consequence, they can be written as (P, f) where f is a face. 
Assume that f is not an external face of C p ,  then there exists an element in R p  

that shares the face f with the element (P, f). In other words, this element can 
be written as (Q ,  f), where Q is different from P. This leads to a contradiction, 
hence f is necessarily an external face of Cp. This enables us to conclude: the 
solution exists, is unique and R p  = B p  is a valid way to  replace the cavity. This 
particular solution is then the desired solution. 0 

We now turn to a different proof. Before giving it, however, we recall a funda- 
mental lemma. 

Lemma 7.1 The Delaunay criterion fo r  a pair of adjacent elements i s  symmetric. 

We consider a pair of adjacent simplices sharing a face and P (respectively Q) 
the vertex in these simplices opposite that face. Then, 

where Bp (resp. BQ) denotes the ball associated with the simplex having P 
(resp. Q )  as a vertex. 

Proof (7.1.b). In this discussion, we do not infer the duality between the 
Voronoi' diagram and the Delaunay triangulation (so as to prove the existence 
of a solution). Consider Z, a Delaunay triangulation, and a point P contained in 
some elements but not a vertex element. We would like to  show that the above 
construction completes Z+1, a Delaunay triangulation, with P as an element ver- 
tex. 

At first, P is an element vertex of Z+1 according to the definition of Bp. Then, 
we just have to  establish that Z+1 is a valid Delaunay triangulation. 
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We first establish that the triangulation is valid (regarding the topology) as 
C p  is a connected set of elements. Assume that C p  consists of two connected 
components, one of these including an element, denoted by KO, which separates 
this connected component from that enclosing P. Then define the segment joining 
the centroid of this element to P. This segment intersects one face of KO, we 
consider then the element, say K1, sharing this face with KO. By definition, before 
introducing point P,  the pair KO and K1 complies with the Delaunay criterion (as 
members of z). Thus, the vertex of K1 opposite the common face is outside the 
circumball of KO. As a consequence, the circumball of K1 necessarily encloses 
P and thus K1 is a member of Cp. Repeating the same discussion, it is shown 
that all elements between the two connected components of the cavity are in fact 
members of this set. Hence the cavity is a connected set. The triangulation of B p  

is then valid, in terms of its connections. 

Moreover, since the external faces of C p  are visible by P,  this triangulation 
is valid (regarding the geometry). The reason is obvious in two dimensions. We 
proceed by adjacency from triangle KO, the triangle within which point P falls. 
Then, the three edges of KO are visible from P. Let K1 a triangle sharing an edge 
f 1  with KO. Then if K1 violates the Delaunay criterion, it is in the cavity and the 
faces of K1 other than f l  are visible by P. This is due to  the fact that P is inside 
the circumball of K1 and that f l  separates P and the vertex of K1 opposite f 1 .  

Thus, applying the same discussion makes possible the result for all the triangles 
in the cavity. However, the same argument does not extend in three dimensions 
as a face does not have the required separation property. Indeed, following the 
same construction from KO, it is possible to  meet as tetrahedron K1 an element 
whose faces other than f 1 ,  the face common with KO, include one face, g ,  which 
is not visible by P. In this case, Kz, the element sharing the face g with K1 is 
necessarily in the cavity, thus leading to  the desired property. 

Exercise 7.1 Given the above situation, prove that Kz is a member of the cavity 
of point P.  Hint: examine the region within which P falls. 

To complete the proof, we have to show that Z+1 is a Delaunay triangulation. 
To this end we use the above general lemma. Then, the only thing which must 
be established is that the empty sphere criterion holds for all and every pair of 
adjacent elements. To account for all possible configurations of such pairs, the 
elements in Z+1 are classified into three categories: 

i )  those in B p ,  

ii) those having one element outside B p  and sharing an external face of C p ,  

iii) the remaining pairs. 

Obviously, the elements falling in the third category conform to the Delaunay 
criterion. Those of category ii) are Delaunay too. Actually, while their circumballs 
do not enclose P,  all the vertices opposite the face shared with the cavity are 
not inside the circumballs associated with the elements in Bp. This is due to  
the symmetric property of the Delaunay criterion. Those of category i )  are also 
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Delaunay. The proof is again obtained by contradiction. We consider an external 
face of the cavity, say f ,  and we consider the element of this cavity having this 
face (a former element of 7J. Let Kold be this element, together with the new 
element constructed with this face, K,,,. Then, assume that the circumball of 
K,,, includes a vertex, that is necessarily outside the circumball of K o l d  and is 
therefore outside the cavity. While the elements outside the cavity are Delaunay, 

0 this results in a contradiction. Thus, the entire proof is completed. 

Practical issues 

In this section, we briefly consider some practical issues that can be derived from 
the above theoretical background. 

First, the incremental method can be used to define a constructive triangulation 
method even in the case where the given points are not in general position (i.e., 
when four or more co-circular, or five or more co-spherical points are in the initial 
set with corresponding empty circumballs, which is not likely to be plausible for 
realistic engineering applications, apart from a case where all the points in the set 
are co-spherical). 

Then, after replacing the problem of constructing a triangulation of the convex 
hull of the given set of points by that of triangulating a convex “box” enclosing all 
the initial points, we can compute a solution using the same incremental method. 
Indeed, the box defines a convex hull problem for set S enriched with the corners 
of this box. As a consequence, all vertices fall within this box. 

In the previous discussion, we did not account for numerical problems that 
can arise such as those related to  round-off errors. As the key to the method is 
the proper definition of the cavity, any wrong decision when determining whether 
an element is in this set may lead to  an invalid cavity. In other words, due to  
round-off errors, the above construction may fail, thus resulting in an unsuitable 
triangulation. Hence, a t  the cavity construction step, a correction is applied to  
ensure the star-shapedness of the cavity; see [George, Hermeline-19921. Basically, 
this means that we explicitly check the visibility property (which is equivalent 
to the star-shapedness property) and, in case of a failure, we modify the cavity 
accordingly. 

Remark 7.2 I n  the case where such a correction i s  applied, the resulting trian- 
gulation could be non-Delaunay. 

The correction step is typically due to  the numerical problems necessarily en- 
countered when encoding the triangulation algorithm (and is representative of the 
difficulty of encoding geometric algorithms). This merits the following comments. 

A typical numerical problem. The cavity construction is done by adjacency 
given the base as initialization (note that other methods exist). However, this 
solution offers a guarantee about the connectivity of the set; indeed, it prevents 
the obtaining of a multi-connected set. 

The question is to  decide if a given element is a member of the cavity of the 
current point P. Let K be the visited element, let OK be its circumcenter (i.e., 
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the center of its circumcircle (circumsphere)) and let rK be the corresponding 
circumradius. Theoretically speaking, it is merely necessary to consider the ratio 
a(P, K )  = A , (called the Delaunay measure) and to check if d ( P  OK) 

rK 

a(P ,K)  < 1. 

The relevant check leads to comparing d(P, O K )  and r K .  As these two quantities 
are not precisely valued, this check may be inaccurate, specifically, if the region 
in which P falls is close to the boundary of the disk (the ball) CK of K .  This 
uncertainty may result in dramatic results and the Delaunay kernel, (Relation 7.2), 
may result in a non-valid triangulation. These ambiguous configurations can fall 
in two classes: 

0 the cavity is not empty, meaning that there exists at least one vertex of a 
previously created element inside the cavity. This default is usually due to 
a proximity problem, 

0 the cavity is not a connected set. In general, this denotes a cocyclic (co- 
spherical) configuration. 

D 

Figure 7.3: The two ambiguous con- 
figurations. 

The first case leads to a vertex being missed (the resulting triangulation is still 
valid albeit wrong in this respect). The second case leads to a triangulation having 
overlapping regions. Figure 7.3 depicts these two situations. 

0 The first case of failure, due to imprecise computations, corresponds to the 
case where all the triangles in the figure are picked; point G is then strictly 
included in the cavity. 

0 The second case of failure, also caused by imprecise calculations, corresponds 
to the case where all the triangles of the figure except triangle (ADB) are 
selected, thus resulting in a non-connected cavity. 

To overcome these problems, several solutions have been investigated. They 
consist of 
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0 not introducing any point causing a problem, 

0 (slightly) perturbing all points leading to  a problem, 

0 introducing a threshold value, E ,  in the comparisons, 

0 performing exact computations, 

0 or, finally, suppressing the ambiguity using a different formulation of the 
algorithm. 

The first solution requires that the current point is placed on a stack, such that 
its insertion will be done later when the local context is modified. 

The second approach moves the point upon insertion and modifies the quanti- 
ties involved in the construction, thereby expecting to remove the ambiguity. 

The third solution, which introduces a threshold value E in the comparison, has 
been investigated by numerous authors but does not lead to  satisfactory results. 
An adequate value E for a given case is not suitable for other cases. 

The fourth approach implicitly assumes integer-type coordinates for the ver- 
tices and is not based on the Delaunay measure (meaning that the circumcenters 
and the circumradii are not computed or updated). Instead, it is related to  the 
equivalent formulation (let us consider the two-dimensional case) 

A K ( Z P , Y P )  < 0 

where A K ( x ,  y) is the inCircle predicate of Chapter 2. This inequality includes 
quantities in the range of a length to  the power d + 2 which involve additions 
(subtractions) and multiplications only. Consequently, a restriction is imposed on 
the vertex coordinate’s range. In other words, the minimal distance between two 
points is limited. Indeed, if b is the number of bits of the mantissa of a double 
memory word, the largest value (denoted as 1) that can be expressed in the above 
expression must satisfy the following relation 

1 5 2 h .  

Assuming that the vertex coordinates start from the origin, this relation states 
that these coordinates must range from 0 to 1 5 4096 in two dimensions and from 0 
to 1 5 1024 in three dimensions and, on the other hand, that the distance between 
two points is at least 1 with a typical computer3 for which b = 50. These limits 
give both the maximal possible number of points according to  the d directions as 
well as the minimal distance between two points. We have introduced, de facto, 
the separating power or the resolution of the method. The limit resulting from this 
discussion is obviously too restrictive and, consequently, while a priori elegant, this 
method is not adequate in general. 

A determinant evaluation method can be found in [Avnaim et al. 19941, which 
overcomes this limit at the expense of increased complexity. 

3Double precision words are employed, with a priori 51 significative bits. For safety reason, 
we limit ourselves to 50 bits. It should be noted that this limit depends on the technology; 
actually, 128 bit computers are widely used. 
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Another way to avoid this limit is to  introduce an extended arithmetic and, 
more specifically, to  use infinite precision4 in the computations. See for instance, 
[Guibas et  al. 19891, [Fortune, Van Wyk-19931 (among others) or [Perronnet-l988b] 
and [Peraire, Morgan-19971 for meshing applications. 

The fifth method is the one we would like to recommend. We assume that 
the vertex coordinates are of integer type and we propose a new formulation for 
the Delaunay kernel resulting in a robust and exact algorithm in this context. 
The discussion of this method is the aim of the following paragraph. Briefly, the 
assumptions about the coordinates allow us to  find the base exactly. This base 
enables us to  define an approximated cavity which is furthermore corrected so as 
to ensure the expected properties (emptyness, connecteness and star-shapedness). 
This method will result in a valid triangulation which will not strictly be Delaunay. 

Cavity correction A way to prevent a failure in the construction is to  explicitly 
check what is needed in terms of properties. This motivated the following so-called 
cavity correction algorithm. 

The problem centers on expressing the Delaunay kernel in such a way as to ob- 
tain an efficient constructive algorithm despite the round-off errors that may occur 
in the actual computation scheme. As already mentioned, the given coordinates 
are assumed to  be of integer type ensuring exact surface (or volume) evaluations 
(obviously, to  this end, we compute twice the surface area or six times the volume 
so as to avoid the division needed for an exact value). In this context, a two part 
algorithm is proposed. This algorithm includes the above method serving to  ini- 
tialize the cavity, the latter being wrong in some cases. The process is completed 
by a new algorithm, referred to as the correction algorithm. Let P be the current 
point to be inserted and let Z be the current triangulation; the first stage of the 
method leads to 

using the Delaunay measure to  construct the cavity associated with P,  C p ,  
by adjacency, given the base. 

As this algorithm can result in a non-valid cavity, a correction step is needed as 
the second part of the process. This correction relies in removing some elements 
from C p  to  meet the desired properties again. Thus, the correction algorithm can 
be described as follows 

a if a vertex of Z falls in the cavity, find one of the simplices5 in C p ,  not in 
the base, having this point as vertex and remove this element from Cp, 

if there is a (d - 1) boundary face of C p  not visible by P,  pick and remove 
the simplex having this face from the cavity, 

4This approach requires some comments. Indeed, if we consider the example of a surface of a 
triangle strictly positive when valued in infinite precision, it is not obvious that the same surface 
will be computed in the same way when used in a different software package. 

5We can select as a simplex candidate the first element found that can be removed or select 
one of the possible simplices, enjoying a desired property. 
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a repeat this process as long as the number of elements in the cavity changes. 
One iteration results in starting the whole analysis of the elements remaining 
in the cavity again. This is done either from the base and proceeding by 
adjacency or this can be done by considering the last element not affected 
by the actual process. 

Note that this correction algorithm converges. Indeed, in the worst case, the 
cavity is reduced to the base thus leading to the convergence. Also, using adjacency 
relationships in the process ensures that the cavity is a connected set; as the base 
is necessarily included in the cavity, the latter contains point P. Finally the 
visibility checks (surface or volume computations according to d) guarantee the 
star-shapedness property of the cavity. 

In summary, the proposed algorithm is constructive and the computations 
are integer in nature (and thus are exact) or such that only surface (volume) 
evaluations, or equivalent computations, have been used. Thus, it is possible to 
obtain a computationally efficient and robust algorithm with a limit of application, 
as discussed above, partly extended. Indeed, the limit is now 1 5 251 leading to 
1 5 33554432 in two dimensions and 1 5 65536 in three dimensions. Obviously, 
an order of magnitude has been obtained and the separation power of the method 
is increased. Hence, this method is usually well-suited. The 1 value gives the 
separation power of the method and indicates the maximal number of points in 
each direction (the minimum distance from point to point being 1). 

Actually while assuming integer coordinates in the discussion, the same idea 
of using explicit validation works well with real coordinates. 

7.2 Constrained triangulation 

As pointed out in Chapter 1, a constrained triangulation problem concerns a tri- 
angulation problem of a set of points in the case where some constrained entities 
(edges or faces) are specified that must be present in the resulting triangulation. 

In this section, we discuss three aspects related to a constrained triangulation. 
We show how to maintain such an entity (edge or face) when it exists at some 
step, then we turn to a method suitable for entity enforcement in two and three 
dimensions. 

7.2.1 Maintaining a constrained entity 

A triangulation procedure such as the incremental method (Relation (7.2)) can be 
constrained so as to preserve a specified edge (a face) which is introduced at some 
step of the incremental scheme and must be retained. To this end, the construction 
of the cavity is modified. 

When visiting the elements by adjacency, we do not pass through the specified 
edges (faces) which have been created at some previous step. This means that 
two elements are not regarded as adjacent if they share a specified entity (edge or 
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face) created in the triangulation at a previous step. Hence the cavity construction 
is modified in this way. This results in a triangulation where some edges (faces) 
are specified. Due to  this constraint, this triangulation is no longer a Delaunay 
triangulation (it is referred to  as a constrained Delaunay triangulation for which 
the Delaunay criterion is not required between a pair of elements separated by a 
constrained item). 

Theorem 7.2 Let Z be an arbitrary triangulation and let P be a point enclosed in 
Zl then Relation (7.2) determines Z+l1  a valid triangulation having P as element 
vertex. 

This theorem just means that Relation (7.2) (considered together with a cor- 
rection algorithm in some cases; see the above discussion) still results in a valid 
triangulation even when the initial triangulation is an arbitrary triangulation and 
some constraints are present. 

Proof. This proof is obvious since the cavity involved in the construction is a 
star-shaped region due to the way in which it is constructed (starting from the 
base and completed by adjacency while, a t  the same time, the required visibility 
property is explicitly achieved by a correction stage). Then, the definition of the 

0 

The previous construction is not, in general, a solution to ensure the existence of 
a pre-specified set of edges (edges and faces in three dimensions) in a triangulation 
at  the time the endpoints of these items have been inserted in the triangulation. 
Thus, other methods must be developed which work well in this case. 

Remark 7.3 I n  three dimensions, the above discussion holds for a constrained 
face but is not a solution for a constrained edge. W e  can remove an edge by  
turning around it by means of face adjacencies. 

ball is valid and the resulting triangulation is valid as well. 

7.2.2 Enforcing a constraint 

Constraints in two dimensions 

We consider a series of edges whose endpoints are in set S and we want to make 
sure that these items are edges of the triangulation at  the time all the points in S 
have been inserted. In general, this property does not hold, as can be seen in 
Figure 7.4 where a simple example is depicted. 

The problem we face is then to  enforce6 the missing edges. In two dimensions, 
a rather simple procedure can be used to  get this result, the so-called diagonal 
swapping (see also Chapter 18). Given a pair of adjacent triangles sharing an 
edge, we consider the quadrilateral formed by these two triangles. If this polygon 
is convex then it is possible to  swap its diagonal (the former common edge) so as to  
create the alternate diagonal. In this way, we have removed an edge (while a new 
one is created). A repeated use of this procedure enables us to  delete all the edges 

‘This is an a posteriori approach to the constrained triangulation problem. Note that an a 
priori solution can be also envisaged, as will be discussed hereafter and in Chapter 9. 
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c 
Bi 

Figure 7.4: I n  this simple two-dimensional example, we have displayed the triangles 
which are intersected or close to two missing edges (in particular, some triangles, 
part of the triangulation of the convex hull, are not shown). Actually, edges AlBl 
and A2B2 are missing in the triangulation although their endpoints are element 
vertices. 

that intersect a specified segment (actually, an edge that must be constructed) 
and results in the desired solution. 

Figure 7.5: Diagonal swapping. The quadrilateral formed by  this pair of adjacent 
triangles is  a convex region, so its diagonal can be swapped. 

Applied to each missing entity, this procedure computes the desired triangula- 

Two theoretical issues can be invoked to  justify the above method. 
tion which, however, is obviously not a Delaunay triangulation. 

Theorem 7.3 Given a set of segments, there exists a triangulation incorporating 
these segments as element edges. 

Theorem 7.4 Given an arbitrary triangulation and a set of segments (whose end- 
points are vertices of this triangulation), a triangulation where these entities are 
edges can be computed using only the diagonal swapping operator. 

In fact, given an arbitrary triangulation, it is always possible to  obtain a spec- 
ified triangulation having the same vertices, by means of diagonal swapping only. 

Thus, a non-cyclic process of diagonal swapping is a solution to the above 
problem (note that the diagonal swapping is a reversible process). Nevertheless, 
the previous theorems hold in two dimensions only. 
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Constraints in three dimensions 

The same problem is much more difficult in three dimensions. Actually, the con- 
strained entities could be a series of edges and faces (assumed to be triangular) 
and, at the time all the endpoints of these entities have been inserted, some of 
these edges and faces might not be present in the triangulation. 

The problem is split into two parts. At first we enforce7 the missing edges and, 
once this has been completed, we enforce the missing faces (indeed, there exist 
geometrical configurations where the three edges of a face exist while the face 
itself is not formed, meaning that one or more edges of the current triangulation 
pass through the triangle whose edges are the three above edges). 

Theoretical results can be put forward to prove that an edge can be enforced 
in a triangulation by means of generalized swapping and, if necessary, by creating 
some points, the Steiner points, to overcome the situations where no more swaps 
can be successfully done. This result can be seen as an extension of Theorem (7.4) 
to three dimensions. Regarding the constraint by a face, the situation is not so 
clear. In practice, heuristics must be used. 

a a 

P P 

Figure 7.6: The polyhedron consisting of the two tets M1M2M3a and pM1M2M3 
(right) is  convex and can be re-meshed using the three tets MlapM2, M2apM3 
and IM3a,BIM1. Conversely, this three element configuration can be re-meshed by  
means of two elements. I n  the first transformation, a face has been removed while 
in the second an edge has been removed. 

Generalized swapping procedure. It is appealing to extend the two-dimen- 
sional diagonal swapping by considering the pattern formed by a pair of adjacent 
tetrahedra. This leads to a face swapping procedure whose converse application 
results in removing an edge. In fact, the latter operator is only a simple occurrence 
of a more general operator dealing with a general pattern, the so-called shell 
(Chapter 2). A shell is the set of tetrahedra sharing a given edge. Then, the 

7See the above footnote about a posteriori or a priori  solutions for the problem. 
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three-dimensional version of the swap operator can be seen as remeshing this 
polyhedron by suppressing the common edge (Figures 7.6, 7.7 and Chapter 18). 

P P P 
Initial shell First solution Second solution 

Figure 7.7: The initial pattern is  the shell associated with edge ap. Two alternate 
remeshings of this polyhedra are possible i f  it is convex. 

Steiner points. A rather obvious example (Figure 7.8) shows that it is not 
always possible to  triangulate a region. Nevertheless, adding a single point in the 
region depicted at the bottom of the figure leads to a solution. As a result, we could 
expect to  meet such situations when considering a constraint in a triangulation 
and would like to use a similar method to  obtain a valid solution. The question is 
then how to detect such a pathology and how many points are strictly needed to  
overcome the difficulty and where this (these) point(s) must be located. Actually, 
this leads to  finding the visibility kernel of a given polyhedron. 

Following the previous discussion, we propose a heuristic method to  enforce 
a set of constraints. First, we deal with the problem of edge enforcement, then 
we turn to the face enforcement problem. The key idea is to locally modify the 
current triangulation by means of the generalized swapping operator, creating 
some Steiner points when the previous operator fails. 

Edge enforcement. The elements in the current triangulation that are inter- 
sected by a missing edge are identified (such a set is called a pipe). Then we meet 
two situations. Either only faces of these elements are intersected by the miss- 
ing edge or the latter intersects, at least, one edge of the current triangulation. 
The first case leads to  applying the generalized swapping to every pair of adjacent 
tetrahedra (in the case where the thus formed region is convex) while the second 
situation leads to modifying the shell(s) of interest. Steiner points are created 
when no more swaps can be successfully completed. 

Except for the numerical problems, the above idea makes it is possible to  
regenerate all the missing edges. It is now possible to consider the missing faces 
(if any, since most of them exist at the time their edges are present in the mesh). 
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4 

2 

4 

Figure 7.8: The prism at top can be partitioned by simply using three tetrahedra. 
The prism at the bottom, the so-called Schonhardt polyhedron, cannot be split with 
three tetrahedra. This pr i sm differs f rom the previous one in the way in which i t s  
quadrilateral faces are decomposed in to  triangular faces. To find a valid mesh, a 
point mus t  be created in the visibility kernel of this polyhedron. This point is  then 
joined with all the external faces, thus resulting in a suitable mesh. 

Face enforcement. A similar procedure is used. The set of elements corre- 
sponding to  a missing face are exhibited. In this set, a series of edges exists which 
intersect the missing face. These edges are then swapped, using Steiner points in 
some cases, until a missing face is intersected by only one edge. Then an ultimate 
generalized swap results in the desired solution (assuming that the corresponding 
pattern is convex). 

This heuristic, while not numerically proved as, theoretically speaking, we use 
arguments like “there exists a non-empty visibility kernel”, has proved to work 
well in most concrete situations. 

7.3 Classical Delaunay meshing 

Delaunay triangulation algorithms serve as a basis for designing a meshing method, 
a so-called Delaunay type mesh generation method. 

In practice, the problem we face is now rather different. Up to now, we have 
discussed a triangulation problem. This means a problem of triangulating the 
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convex hull of a given set of points, but, for a typical meshing problem, the input 
is a closed polygonal curve (polyhedral surface) defining a region (or several such 
curves (surfaces) defining a multiply connected region). The problem is then 
to generate a set of vertices in this not necessarily convex domain and to make 
sure that the above (curve or surface) discretization is present in the resulting 
triangulation. This means that we meet a problem of constrained triangulation as 
a series of edges and faces must be present in the mesh. 

Despite these differences, some of the previous material on Delaunay triangu- 
lation, possibly with some extensions, can be applied to  meshing problems when 
the domain is supplied via a boundary discretization. 

The intention that the mesh be suitable for applications takes several forms. 
For classical Delaunay meshing, as discussed in this section, it is necessary that 
the mesh elements should be well-shaped while their sizes should be adequate with 
regard to  the sizing information available in this case (basically, the sizes of the 
boundary items serving as input data). However, applications typically require 
meshes in which the element sizes, and even their shapes, vary across the mesh 
according to a given specification. This point will be discussed in further sections. 

A Delaunay type meshing method is generally one step of a mesh generation 
procedure including three successive steps: 

Step 1: the mesh parameterization (boundary description, specification or con- 
struction of a function defining the element size distribution, etc.), 

Step 2: the boundary discretization, 

Step 3: the creation of the field vertices and elements, in other words, the De- 
launay type method itself. 

This general scheme is close to  that found in other methods such as the advancing- 
front type method (Chapter 6) and is slightly different from that of a method based 
on an quadtree (Chapter 5) where the boundary mesh can be constructed during 
the domain mesh construction. 

In a Delaunay type method (Step 3 of the above scheme) the resulting mesh is 
a mesh of the box enclosing the domain. Field points are created and inserted in 
the current mesh so as to form the elements by means of the Delaunay kernel. 

General scheme 

The previous material can be now used to develop a Delaunay type mesh genera- 
tion method. Here is a scheme for such a method: 

a Preparation step. 

- Data input: point coordinates, boundary entities and internal entities 

- Construction of a bounding box and meshing of this box by means of 

(if any). 

a few elements. 
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0 Construction of the box mesh. 

- Insertion of the given points in the box mesh using the Delaunay kernel. 

0 Construction of the empty mesh (which is boundary conforming). 

- Search for the missing specified entities. 

- Enforcement of these items. 

- Definition of the connected components of the domain. 

0 Internal point creation and point insertion. 

- (1) Internal edges analysis, point creation along these edges. 

- Point insertion via the Delaunay kernel and return to (1) until edge 
saturation. 

0 Domain definition. 

- Removal of the elements exterior to the domain. 

- Classification of the elements with respect to  the connected components. 

0 Optimization. 

Note that the domain definition is only achieved at the end of the process. In this 
way, the convex mesh of the box is present throughout the process which facilitates 
the necessary searching operations. 

In the following sections, we describe the different stages of this general scheme 
and we focus on the main difficulties expected. 

Preliminary requirements. In contrast to  advancing-front methods (Chap- 
ter 6), no specific assumption is made on the nature of the input data related to  
the boundary discretization. In particular, the orientation of the boundary items 
is not required and does not offer any specific interest (whereas it may increase 
the processing speed in quadtree-octree methods). 

7.3.1 Simplified Delaunay type triangulation method 

Without loss of generality, we define a convex “box” which is large enough to  en- 
close the domain. In this way we again encounter a situation where the previously 
described incremental method can be used. 

In fact, introducing a box, enables us to return to a convex hull problem where 
the set S consists of the vertices of the given boundary discretization and four 
(eight) additional points (the corners of the introduced box, a square in two di- 
mensions, a cube in three dimensions). 

Once the box has been triangulated by means of two triangles (five or six 
tetrahedra), we find a situation where all the points in S (apart from the box 
corners) are strictly included in this initial triangulation. Due to  this simple prop- 
erty, which will be maintained throughout the meshing process, the construction 
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Figure 7.9: Inserting point P (P included in the current mesh). I n  this two- 
dimensional example, only the triangles close to point P are displayed. The base 
is  reduced to the triangle (PzPsP8). The cavity is formed by the triangles in solid 
lines. The external faces of this cavity are denoted by  Fl ,Fz,  ..., F7. The ball 
consists of the elements in dotted lines. It is formed by joining P with the Fis. 

method reduces to  the case where the points that must be inserted are always 
inside the current triangulation. 

Thus, the construction method relies on properly defining the cavity associated 
with the point to be inserted, knowing that this point necessarily falls within a 
mesh element. This construction, for a given point P,  is sequentially achieved as 
follows: 

we search in the current mesh for the element within which point P falls. 
As a result we obtain a set of elements, the so-called base associated with P. 
This base can be reduced to one element, two elements when P is located 
on an edge (a face in three dimensions) or more when, in three dimensions, 
P falls on one edge. 

starting with the elements in the base, we visit by adjacency the current 
mesh so as to  determine the elements whose circumballs contain point P. 
This results (possibly after a correction stage) in the desired cavity. 

Then, this cavity is replaced by the corresponding ball and the mesh with P as 
vertex is completed. This simple procedure is applied to  all the points known at 
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this stage (typically, the boundary points). At completion, we have created a mesh 
of the box enclosing the domain and n o t  a mesh of this domain. 

7.3.2 

Boundary integrity 

The mesh resulting from the above method is a mesh of the box enclosing the 
domain. As previously seen, the boundary entities defining the domain, are not 
necessarily present in this box mesh. In other words, we face a constrained meshing 
problem. Typically, two approaches can be envisaged to solve this problem, one 
being an a priori approach and the other an a posteriori approach. In the first 
case, the boundary discretization is such that it naturally appears in the mesh, 
in the second case, some boundary entities are missing in the current mesh which 
need to be enforced. 

Boundary integrity and domain identification 

Delaunay-conforming boundary mesh. Before constructing the box mesh, 
we analyze the boundary discretization to  see whether it is Delaunay or not. At 
this time, this notion simply means that the boundary entities are automatically 
present in the mesh based on their endpoints. If the given discretization is not 
Delaunay, then we modify it (see Chapter 9) so as to  meet this property. Hence, 
boundary integrity is no longer a problem. 

Boundary enforcement. We are given a mesh where some edges (faces) are 
missing. In this approach, we return to the method discussed for the constrained 
triangulation, and, by means of local mesh modifications, we modify the current 
mesh in such a way as to ensure the existence of all boundary entities and to  obtain 
the desired boundary integrity. 

Identifying the elements in the domain 

When the boundary entities of a given domain are present in the mesh, it is possible 
to identify the elements of the mesh which lie within this domain. Bear in mind 
that we have triangulated a “box” enclosing the domain and that we now need to  
discover this domain. 

A rather simple algorithm, based on coloring (Chapter 2), can be used to  
discover the connected component(s) of the domain. In this way the internal 
elements can be determined where, furthermore, it will be possible to create the 
field points. The scheme of this algorithm is as follows: 

1. Assign the value w = -1 to all elements of the box mesh (where the boundary 
entities now exist) and set c = 0, c being seen as a color. 

2. Find an element having as a vertex one of the box corners and set it to  the 
value w = c ,  put this element in a list. 
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3. Visit the three (four) elements adjacent by an edge (a face in three dimen- 
sions) to  the elements in the list: 

if the color of the visited element is not -1, the element has been already 
colored, thus return to 3; 

if the face (edge) common with the visited element and the current 
element in the list is not a boundary entity, assign the value = c to  
this element, put it in the list and return to  3; 

if the common face (edge) is a boundary member, return to  3. 

4. Set c = c + 1, empty the list and if an element with v = -1 exists, put it in 
0 the list and return to  3. 

Variants of this algorithm can be used to  complete the same task. Nevertheless, 
a t  completion of such a procedure the elements are classified according to  the 
different connected components of the domain. 

7.3.3 Field point creation 

We now have a mesh for the domain where the element vertices are typically the 
boundary points, meaning that no (or few8, in three dimensions) internal vertices 
exist in the mesh. Thus, to fulfill the numerical requirements (well-shaped elements 
and adequate sized elements), we have to create some field points in the domain. 

Several methods can be envisaged to  achieve this; among these, we focus here 
on one method using the edges of the current mesh as a spatial support for the 
field points. 

Preliminary requirements. At first, a stepsize h is associated with all the 
boundary vertices (by means of the average of the lengths (surface areas) of the 
edges (faces) sharing a boundary vertex). 

Edge analysis. The key idea is to consider the current mesh edges and to  con- 
struct a set of points on them. The process is then repeated as long as the creation 
of a point on an edge is needed. In other words, as long as the edges are not sat- 
urated. This iterative process starts from the mesh obtained after the domain 
definition (see above), constructs a first series of points, inserts them into the 
current mesh and repeats the processing on the resulting mesh. 

Then, the current mesh edges are examined and their lengths are compared 
with the stepsizes related to  their endpoints. The goal of the method is to decide if 
one or several points must be created along the visited edge. If so, both the number 
of required points, n, and their location must be determined. The objective is 
twofold. We want to introduce suitably spaced points along the edges in order to  
saturate them and to  obtain a smooth point distribution. 

We demonstrate an arithmetic type of point distribution for an edge AB. If 

8The necessary Steiner points. 
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ii) 

iii) 

Figure 7.10: i )  Mesh of the box enclosing a domain for a mesh generation problem 
in two dimensions. The four corners used to define the box enclosing the domain 
can be seen together with some extra points defined between the box and the domain 
for eficiency reasons. i i)  Corresponding empty mesh. This mesh is nothing other 
than a coarse discretization of the domain resulting from the previous coloring 
algorithm. Actually, this mesh displays the edges where a first wave of field points 
will be created. iii) Final mesh after internal point insertion and optimization. 

0 h(0) = hA denotes the stepsize associated with PO = A, one of the endpoints, 

0 h(n + 1) = h s  is that related to P,+1 = B ,  the other endpoint, 

we can define a sequence ai (and thus the corresponding Pis) as: 

a. = h(O)+r 
a, = h ( n + l ) - r  
ai = d(Pi ,  Pi+l) 

(7.4) 

where d(Pi ,  Pi+l) is the (Euclidean) distance between Pi and Pi+l, while r is the 
ratio of the distribution. This requires us to solve the system: 

to find both r and n. The solutions are: 

h(n + 1) - h ( 0 )  
n + 2  

- 1 and r = 
2d 

h ( 0 )  + h(n + 1) 
n =  

As n must be an integer value, the solution is rescaled so as to obtain an exact 
discretization of the edge AB in terms of n and r .  The ais and thus the sequence 
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of points is determined at  the time n and r are established. Then, with each 
thus-defined point is associated a value, h, derived from the h’s of the supporting 
edge. This means that the control spaceg is completed on the fly. 

The process is repeated for all the current mesh edges and the series of points 
created in this way is then filtered, simply using a (structured) grid (cf. Chapter 1). 
This treatment is related to the fact that the vertices are well-positioned along 
one edge but this property does not hold globally. For instance, one may observe 
the case of all the edges emanating from one point. The retained points are 
then inserted using the Delaunay kernel (Relation (7.2)) and the entire process 
is iterated as long as some mesh edges need to  be subdivided, i.e., are still not 
saturated. 

It could be noted that this rather simple method is independent of the spatial 
dimension. 

7.3.4 Optimization 

Once the field points have been inserted, we have constructed a mesh for the 
domain that needs to  be optimized to  some extent. The goal is to  optimize the 
mesh with respect to a quality criterion which is suitable for our purpose (a finite 
element style computation). Indeed, while being Delaunay (in most of the domain, 
in specific far from the boundaries), the mesh quality is not necessarily what is 
needed. This means that the Delaunay criterion (i.e., a bound about the angles) 
is not, strict0 sensu, a quality criterion. 

Up to now, we have considered a classical mesh generation problem. The aim is 
then to  produce well-shaped elements, in other words isotropic elements that are as 
regular as possible (equilateral triangles in two dimensions and regular tetrahedra 
in three dimensions”). In terms of sizes, we have very little information about 
what is expected, so we try to  conform as best we can to the sizes defined at  the 
boundaries and, elsewhere, to have a reasonably smooth variation. 

While various quality measures have been proposed (Chapter 18), a ‘‘natural” 
measure for the quality of a simplex is: 

where cx is a normalization factor such that the quality of a regular element is one, 
hmax is the longest edge of the element, i.e., its diameter and p~ is its inradius. 
This quality adequately measures the shape or aspect ratio of a given element. It 
ranges from 1, for an equilateral triangle (regular tetrahedron), to 00, for a totally 
flat element; to return to  a range of variation from 0 to  1, the inverse of QK could 
be used. Based on the above element quality, the quality of a mesh, 7, is given 
by: 

QM = m a x Q ~ .  (7.7) 
KEI 

gThe control space (see Chapter 1) is the current mesh considered together with the hs of its 
vertices. 

‘OA regular tetrahedron is an element with equilateral triangular faces. 
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The aim is then to  minimize this value. It could be observed that the point 
placement method results, in principle, in a good location for the field points. If so, 
then good quality elements may be expected. While effective in two dimensions, 
this result is not so easily attained in three dimensions, mainly due to  slivers. 

Optimization procedures. The aim is to  optimize the current mesh by means 
of local modifications. In this respect, two categories of optimization techniques 
can be identified (Chapter 18), the topological techniques that preserve the point 
coordinates and modify their connections and the metric techniques that move the 
points while preserving vertex connectivity. 

The local optimization operators associated with these techniques make it pos- 
sible to  move the nodes (for example, using a weighted barycentrage); to  remove 
points; to  remove edges (for example, by merging their endpoints) and to  flip 
edges (in two dimensions) or edges and faces (generalized edge swapping, in three 
dimensions). 

7.3.5 Practical issues 

In this short section, we would like to  give some indications regarding computer 
implementation of the above scheme. 

In terms of basic algorithms. Four steps of the previous scheme require care- 
ful computer implementation. The major effort concerns an efficient implementa- 
tion of the Delaunay kernel, then the boundary enforcement problem as well as 
the optimization process must be considered together with the point creation step. 

Regarding the Delaunay kernel, the operations that are involved are: 

0 a fast searching procedure so as to define the base, 

0 a convenient way of passing from one element to  its neighbors to  complete 
the cavity by adjacency, 

0 an inexpensive evaluation of the circumcenters and the circumradii of the 
mesh elements to evaluate the Delaunay criterion, 

0 a low cost update of a mesh when inserting a point. 

Regarding the point creation step, the creation itself proves to be inexpensive 
while the filter which is needed can be relatively time-consuming. A grid is then 
constructed to minimize the cost of this task (for instance, using a bucket sorting 
algorithm; see Chapter 2). Moreover, a cloud of points is inserted randomly (es- 
pecially when the clusters contain a large number of points) in order to make the 
process more efficient''. 

Regarding the boundary problem, local modification operators must be care- 
fully implemented. Note that this is also of interest for the optimization step as 
the required operators are basically the same. 

"Note that other more subtle strategies can be employed to minimize the overall cost of this 
point insertion process. 
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Remark 7.4 I n  the previous computational issues, we have not really mentioned 
accuracy problems or round-off errors. Indeed, the only thing we need is  to be sure 
that a surface area (volume) is  positive (to ensure the visibility criterion for a cavity 
as already discussed or that an element is valid (at the boundary or optimization 
step) which return to the same type of control. 

In terms of memory resources and data structures. First, it could be 
noted that a simple data structure probably provides a good chance of reaching a 
desirable level of efficiency. Moreover, the memory resources must be minimized 
as much as possible, which is the case with a simple structure. 

Thus the internal data structure used must store (and maintain) the following 
(according to the facilities of the programming language): 

0 the point coordinates, 

0 the element vertices, 

0 the element neighbors (in terms of edge (face) adjacency), 

0 the element circumcenters, 

0 the element circumradii, 

0 some extra resources (for instance, for the grid used for the above filter). 

7.3.6 Application examples 

In this section, we give some application examples in both two dimensions and 
three dimensions. Some statistics are also presented. 

In two dimensions, a mesh quality, i.e., QM of Relation (7.7), close to one can 
be expected regardless of the polygonal discretization of the domain boundary 
(meaning that equilateral triangles can be constructed12 whatever the size of the 
given edges serving at  their basis). In three dimensions, the expected value for 
QM depends on how good a tetrahedron can be constructed for each given surface 
triangle. Hence, the three-dimensional quality is related to the quality of the 
surface mesh serving as data. 

Table 7.1, recorded in 1997, gives some statistics about a selected series of 
examples of different geometries. In this table n p  is the number of vertices, n e  is 
the number of tetrahedra, target is the targeted value for the tetrahedron with 
the worst quality while QM is the value obtained. The row 1 - 2 indicates the 
percentage of elements for which 1 < QK < 2, thus with a nice aspect ratio (i.e., 
close to  a regular tetrahedron) while t is the CPU time (HP 9000/735 at  100 MHz) 
required to  achieve the mesh (including i/o). 

It should be noted that QM is indeed in the range of target and that the 
number of nicely shaped elements is greater, in proportion to the total number, if 
the domain volume is large. 

'20bviously, if the point leading to this triangle falls within the domain. 
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Figure 7.11: $-hand side: a two-dimensional geometry. The  mesh contains 
2,445 vertices and 4,340 triangles. The  worst quality is  1.12. Right-hand side: a 
three-dimensional geometry (Data courtesy of MSC). The resulting mesh  includes 
13,001 tetrahedra and 3,703 vertices. The quality is  5.83 while the CPU cost is  
1.73 seconds (HP900O/C180). 

Figure 7.12: Two cuts through a three-dimensional mesh for a view of the shape 
and gradation of the internal tets. 



DELAUNAY-BASED MESH GENERATION METHODS 261 

Case 1 
Case 2 
Case 3 
Case 4 

nP ne Qth QM 1 - 2  t 
105 286 7.38 9.61 66 0.36 
880 2,658 6.01 7.05 78 1.19 

1,917 7,230 10.24 11.65 76 2.75 
62,304 369,304 38.06 42.06 91 53.30 

Table 7.1: Statistics related to  the four selected examples (classical isotropic 
meshes constructed solely from the data of a discretization of the corresponding 
domain boundaries). 

n P  
Example 1 1,014 
Example 2 36,252 
Example 3 62,495 
Example 4 214,184 

n P  
Example 5 518,759 
Example 6 1,452,192 

ne t ( sec., HP 9000/735) v (ne/mn) Del 

3,601 1.54 140,000 17 
191,279 28.26 406,000 49 
369,304 53.30 415,000 44 

1,243,871 179. 417,000 46 

ne t ( sec., HP PA 8000) v Del 
3,067,937 373.62 492,000 54 
8,700,574 1125. 464,000 49 

To conclude, notice that the theoretical complexity of Delaunay type methods 
is not easy to calculate. We have mentioned that the geometry of the domain influ- 
ences only a moderate amount of the global computational cost of the algorithm. 
However, the boundary enforcement procedure can be costly in some cases. Nev- 
ertheless, the theoretical complexity is mostly in O(nlog(n)),  n being the number 
of mesh elements, [George, Borouchaki-19971, as in the triangulation algorithms. 

Recent computers and recent advances in the way in which algorithms are 
encoded and cache miss are considered allow, with no surprise, for better perfor- 
mances as can be seen in Table 7.3. By comparison, we indicate that a triangula- 
tion algorithm allow for more than 500,000 elements within a second! 

7.4 Other methods 

A particular Delaunay type mesh generation method has been discussed based on 
the scheme given in the previous sections. However, most of the steps included 
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Example 1 
Example 2 
Example 3 

nP n e  t ( sec., Mac G5) w (ne/mn) Del 
5,031 23,566 1.65 910,000 12 

15,237 85,393 2.58 2,000,000 20 
338,129 1,952,673 45.38 2,650,000 32 

in this scheme can be modified, giving rise to various different approaches. In the 
following paragraphs, we give some indications about the main variants that have 
been suggested. 

7.4.1 Point insertion methods 

Using an enclosing box is not strictly required. For instance, it is possible, given 
a set of points, to sort them so as to ensure that a given point, Pi+l, is always 
exterior to the current mesh (based on the i previous points). Applying such a 
trick to  the boundary points results in the mesh of the convex hull of this set of 
points. Then, internal points can be created and inserted returning to  the classical 
point insertion method or an equivalent method. For instance, in two dimensions, 
a point is inserted in its base by splitting it and some diagonal swapping completes 
a Delaunay type mesh. 

7.4.2 Field point creation 

Some popular methods which are different from those based on the edge analysis 
given above, also prove useful for point creation. Among them are: 

0 the creation, under some conditions (size or shape), of the centroid of the 
elements in the current mesh, [Hermeline-19801, 

0 the use of the circumcenters as internal points. In two dimensions, this 
leads to a lower bound on the angles of the triangles, [Holmes, Snyder-19881, 
[Chew-l989b]. Devised in the early 1980s, this method was retained only as 
one of the possible solution and not more (indeed, it does not give a rigor- 
ous control about any prescribed size or anisotropic needs; see below) but, 
surprisingly, reappeared 20 years after in various methods, called Delaunay 
refinement methods, 

0 an advancing-front point placement strategy as discussed in Chapter 6, 

0 the use of the “variogram” [Tacher, Parriaux-19961; such a method considers 
inserting the point maximazing the distance to  the already inserted vertices, 
thus meeting ideas like medial axis, 

0 and many other methods, for instance, using a pre-determined set of points, 
[Weatherill-19851, [Baker-19861, [Mavriplis-19901, etc. 
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We briefly return to  an interesting approach that combines an advancing-front 
point insertion technique with the insertion of the set of points using the Delaunay 
kernel. 

Combined advancing-front-Delaunay approach. In this approach, the in- 
ternal points correspond to  optimal points created from a front, the elements 
being created during the insertion of these points into the current mesh using a 
Delaunay approach. This technique has been suggested in two and three dimen- 
sions (see [Merriam-19911, [Mavriplis-19921, [Muller et al. 19921, [Rebay-19931 and 
[Marcum, Weatherill-19951, [Frey et al. 19981, for example). 

Here, the front represents the interface between two elements, one being clas- 
sified as acceptable and the other not. As with the classical advancing-front ap- 
proach, the initial front is the given boundary discretization. A first mesh of the 
bounding box of the domain is created that contains no (or very few) internal 
points and the boundary integrity is enforced (cf. Sections 7.3.2 and 7.3.3). The 
tetrahedral elements in this mesh are classified into two categories; accepted (that 
of quality compatible with the target quality) and those to be processed. By as- 
sumption, all external tetrahedra are accepted. The active elements, adjacent to  
accepted elements, serve to  define the current front. The front is then composed 
of the set of faces that separate an accepted element from an unaccepted one. The 
algorithm stops when all elements are accepted. 

For each front item, an optimal point is computed so that the element formed 
by this point and the front item would be optimal. If an optimal point is located 
outside the circumscribed disk (resp. ball) associated with the active element it 
should be connected with, this point is rejected because, during its insertion using 
the Delaunay kernel, the corresponding cavity will not contain the active element 
to be deleted. The remaining points are then filtered and inserted into the current 
mesh using the Delaunay kernel. 

The final mesh is then optimized in the same way as in the classical approach. 

7.4.3 Boundary enforcement 

In practice, variations can be developed to carry out the boundary enforcement 
step included in a Delaunay type meshing method. 

a The boundary (and more generally the specified entities) are enforced after 
the field points have been inserted. 

a The specified entity not present at the time their endpoints are inserted are 
split so as to ensure that the resulting partition is automatically formed 
(we encounter here the notion of a Delaunay admissible entity or something 
more or less equivalent (say protecting balls) as already seen and as will be 
discussed in detail in Chapter 9). 

a The missing boundary entities are split by means of intersecting points (an 
entity is missing because another one intersects it) therefore geometrically 
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recovered before removing at the best the intersection points. This construc- 
tive method, described in [George, Borouchaki-20021, also gives an existence 
proof. The sketch of the method is shown in Figure 7.13 where a rather 
simple example in two dimensions is depicted. 

B B B 

Figure 7.13: Top left: the initial pattern (as created after the insertion of the 
four vertices) where edge AB exists while edge ap is  expected. Top middle: point 
P = AB n (up is  inserted in the pattern leading to four triangles. Top right: 
Point P is  duplicated in PI and P2, edge AP is  replaced by  edge API, edge BP is 
replaced by  edge BP2. Bottom left: polygon (uP1pP2 is such that edge (up exists. 
Bottom right: Vertex PI together with vertex P2 are removed leading to the expected 
solution, e.g. edge (up exists in the current mesh. 

7.5 Isotropic governed Delaunay meshing 

Up to now, the mesh generation problem, the so-called classical problem, has been 
to mesh as best we can a domain using a discretization of its boundaries as the 
sole data input. We now turn to  a different meshing problem. 

We consider a domain provided through an adequate boundary discretization 
and we assume that the sizes (and, possibly, the directional features) of the el- 
ements that must be constructed are given. The problem becomes how to con- 
struct a mesh conforming to  the above specifications. In the case where the in- 
formation only specifies the element sizes, we have an isotropic mesh generation 
problem whereas in the case where directional information is specified, we have an 
anisotropic meshing problem. 

In principle the scheme proposed in Section 7.3.1 is still valid while it is needed 
to replace some of its components. At first, it can be proved that the Delaunay 
kernel is an adequate technique, without modification, to insert a point in a mesh. 
Actually, the main difference lies in the way the field points must be created so 
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as to  conform to the given size specification. On the other hand, slight variations 
in the optimization procedures must be also considered. A rather elegant way to  
achieve the desired solution is to introduce the notion of a unit mesh as already 
seen in the previous chapters and to use this when analyzing the edges. Moreover, 
some modifications must be made at  the optimization phase. 

Control space 

The specification of a size distribution function enables us to define a control space. 
Notice that this data, common to most mesh generation algorithms (see, for in- 
stance, Chapters 5 and 6), is not so obvious to construct. A popular approach uses 
a grid or a background mesh whose cells (elements) encode the information about 
the desired element size. In practice, a size distribution function is associated with 
this domain covering-up. This simply means that a space control (Chapter 1) is 
defined in this way. If, from the spatial aspect, the control structure is a back- 
ground mesh without internal points, then the size distribution depends only on 
the sizes of the boundary entities. In the following section, we will see how to use 
this control space. 

Using a background mesh. Provided with a background mesh13, the size 
function is known in a discrete way, say at the vertices of this background mesh. 
Using this discrete map, a continuous size map can be obtained by means of 
interpolation. Let P be an arbitrary point in the domain, the size h(P)  at P can 
be computed using the sizes h(Pi), i = 1, ..d at the vertices Pi of the element 
enclosing P by means of a P1 type interpolation, i.e., 

0 we find the element K within which point P falls, 

0 we compute h(P)  as the Pl-interpolate of the sizes h(Pi) a t  this element 
vertices Pi. 

In the case of an empty background mesh, the size distribution function is 
strongly related to  the boundary discretization. Indeed, the sizes are computed 
based on this data alone. 

Remark 7.5 An alternative solution is to define the background mesh by a uni- 
f o r m  grid or a quadtree-octree type structure. 

Field point creation 

Provided the space control is well defined, it is now possible to turn to the creation 
of the field points. This is done based on the analysis of the edges of the current 
mesh. The aim is to construct good quality elements whose size is in accordance 
with the given specification. This latter requirement is satisfied if the edge lengths 
are close to  one in the corresponding metric (Chapter 1). Bear in mind that a 

13For instance, a classical mesh (the mesh obtained at the previous iteration step in an adaptive 
process; cf. Chapter 21) or the boundary mesh completed by the boundary enforcement phase. 
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mesh whose elements conform to a size specification is nothing other than a unit 
mesh. 

Edge length. Let AB be an edge in the mesh. If, t lying between 0 and 1, h(t)  
stands for a sizing function defined for this edge (h(0) = h(A),  h(1) = h(B) ) ,  then 
the length of edge AB with respect to  h(t)  is: 

where dAB is the usual (Euclidean) distance. Then, by definition, an edge AB 
conforms to  the size specification if 

The key idea of the point placement strategy is to  construct the points so that 
each segment defined by a pair of neighboring points is of length one (or close this 
value). It could be observed that this notion is consistent. Indeed, if h(t)  is a 
constant function, say h(t)  = h,Vt, then L A B  = 1 means that dAB = h which is 
the expected value. 

Field point creation. Now, based on this notion, the field points can be created 
by modifying the classical point creation method accordingly. Note that the edge- 
based method is therefore a rather elegant method to  which the above concept 
applies without major difficulty. 

In practical terms, an iterative procedure is used, which aims at  saturating the 
internal edges of the current mesh. The edges are analyzed and their normalized 
lengths are calculated using an approximate method described below. The goal is 
to construct optimal elements (that are as regular as possible) of unit size. Let 6 
be a fixed threshold (usually 6 < 1, 6 = 0.5 for example). If Z A B  < 6, the edge 
AB is not split. Otherwise, the middle point Q1 is introduced, and the process 
is iterated onto each of the sub-segments AQ1 and Q1B. We then find a series of 
points Qi such that ZQ.Q.+~ < 6 and that: 

i 

The total number of points is then known along each edge. The next step consists 
of finding the location of the points along the edges. To this end, an index i is 
identified such that: 

and the point PI is introduced, corresponding to  the average value between the 
points Qi and Qi+l, weighted by the difference to one of this sum: 

pl = Q~ + W Q ~ Q ~ + : ,  
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di-l,i, li-1 denotes the normalized length of segment Qi-lQi, l-10,i-l where w = ~ 

L l , i  

di-1,i being the Euclidean distance between the points Qi-1, Qi. The process is 
iterated until all edges are saturated. 

Similar to the classical case and for the same reason, the points are filtered and 
inserted into the current mesh using the Delaunay kernel. Moreover, to obtain an 
optimal mesh, a constraint related to the areas (volumes) of the elements is added. 
The latter is not strictly required in two dimensions, a triangle having all of its 
edges of unit lengths is necessarily optimal. However, in three dimensions, the same 
property does not hold, and explicit control of the volumes is thus required14. 

Figure 7.14: An academic example of an isotropic governed mesh (see Chapter 21 
for realistic cases) where the size function is analytic. 

Optimizations. Similarly to  the classical case, it is generally useful to optimize 
the resulting mesh. The goal is to  achieve well-shaped elements, which are as 
regular as possible, and whose sizes are compatible with the given specifications. 
The optimization stage is based on the same procedures as in the classical case, 
with a size-based criterion. For practical reasons, this procedure is performed in 
two steps, the mesh elements are first optimized with respect to  the size criterion 
and then optimized with respect to the shape criterion. 

In this discussion, the size prescription is assumed to be known analytically, 
the real case will be discussed in Chapter 21. 

7.6 Extensions 

A weighted Delaunay triangulation can be seen as a Delaunay triangulation where 
weights are associated with the given set of points. 

14A sliver is an element of almost null volume although its edges could be almost of unit length 
and the aspect ratio of its four faces is nice. 
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In this section, we briefly discuss weighted triangulation before turning to cases 
where the information associated with the elements concerns sizes as well as di- 
rections, where the construction step aims at  creating anisotropic meshes, that is 
meshes in which the elements are stretched (for instance, those found in computa- 
tional fluid dynamic simulations). Therefore, we briefly analyze the construction 
of anisotropic meshes, the construction of surface meshes. We then give some indi- 
cation of how to use the Delaunay approach for creating meshes in an adaptation 
scheme. 

7.6.1 Weighted Delaunay triangulation 

We consider a set of points S where a positive or zero weight w; is associated with 
P ,  for all P in S. Constructing a weighted triangulation of S relies on constructing 
a Delaunay triangulation where the (classical) distance from point to  point is 
replaced by a power taking into account the given weights [Aurenhammer-19871. 

The pair (P,w:) can be seen as a sphere of radius w: centered in P. Given 
another point Q, we define II(P,wp,Q) = d(P,Q)2 - w: where d(P,Q) is the 
usual Euclidean distance. Thank to this definition, we define the so-called power 
diagram15 (as we did for the Voronoi' diagram): 

V, = { P  such that II(Pi, wpi ,  P )  5 II(Pj, w p j ,  P ) ,  V j  # i }  (7.9) 

If, for all pair, Ilw: - w6ll 5 d(P, Q)2 holds, both the diagram and its duality, the 
weighted triangulation, exist. 

The construction of weighted triangulations and mainly the way to insert a 
weighted point relies in applying the Delaunay kernel described in the classical 
case by replacing the distance d by the power II and then most of the classical 
practical issues apply. 

The main interest is that weights modify the cells in the diagram as well as the 
triangulation is the sense that, in the diagram, the separators from point to point 
can be pushed towards one or the other (instead of being located at the midplace) 
and, therefore, the connections in the triangulation are affected accordingly. 

An interesting application of such a construction resulting in hybrid meshes 
made up of arbitrary polyhedra (eg the cells of the power diagram) can be found 
in [Borouchaki et al. 20051 where the goal was reservoir simulations. 

7.6.2 Anisotropic Delaunay meshing 

Similarly, the approach adopted for the classical scheme can be followed but, in 
addition, it is necessary to  modify the method used to  create the field points 
(such as in the previous isotropic governed method), and the Delaunay kernel16 
itself must be extended. These two specific aspects are now briefly presented (see 
[George, Borouchaki-19971 for a detailed discussion). 

15Also referred to as the Laguerre diagram. 
16See the theoretical remark at the end of this chapter. 
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Edge length with respect to a metric. First, we give a more subtle form 
of Relation (7.8). Again let AB be an edge, which can be defined as: AB(t) = 

A + ta, t E [0,1]. Let M ( M ( t ) )  be a two by two matrix defined by: 

(7.10) 

if we consider a two-dimensional problem (and a similar three by three matrix 
in three dimensions) where h(t)  is the specified size expected at point M ( t ) ,  the 
distance between A and B with respect to  the metric M is then: 

1 

~ M ( A B )  = + a M ( A + t a ) a d t ,  (7.11) 

which is nothing more than a more general expression of Relation (7.8). 

Field point creation. Internal point creation for an anisotropic mesh is per- 
formed by replacing the length calculation of the classical scheme. More precisely, 
we use the previous definition of the normalized lengths, by replacing the matrix 
M ( M ( t ) )  with the matrix (in two dimensions): 

(7.12) 

In this expression, R(t) specifies the two directions that are expected at  point 
M ( t )  while hl(t) (respectively hz(t))  indicates the desired sizes at the same point 
following the first (resp. the second) direction previously mentioned. The point 
placement strategy is then identical to that of the previous isotropic case. 

Point insertion scheme. As mentioned earlier, the classical Delaunay kernel 
is no longer suitable for an anisotropic mesh generation problem. Therefore, the 
classical construction (Relation (7.2)), 

Z + , = Z - C p + B p ,  (7.13) 

where C p  is the cavity and B p  is the ball associated with point P,  must be extended 
to the present context. 

The idea is to  define C p  so as to conform to the anisotropy which is desired. To 
this end, we detail the condition which implies that a given element is a member 
of Cp. Indeed, in the classical context, an element K is in the cavity if: 

(7.14) 
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( d  being the usual distance), with OK the center of the circumcircle (circumsphere) 
corresponding to  K and T K  the radius of this circle (sphere). We first replace this 
relation by: 

(7.15) 

where now, 

OK stands for the point equidistant to the vertices of K ,  in terms of l~ the 
length related to the matrix (metric) M ,  and 

TK is ln/( (P I ,  O K ) ,  PI being one of the vertices of K .  

As a result, the cavity is evaluated following the anisotropic context. In practice, 
a computer implementation of the above relationship is not practical since a non- 
linear system is involved. Thus, an approximate solution must be found. A possible 
answer could be to  solve the following system: 

~ M ( P ) ( O K , P I )  = ~ M ( P ) ( O K , P ~ )  (7.16) 
~ M ( P ) ( O K ,  Pi) = ~ M ( P ) ( O K ,  P3) 

' 

In this way, OK is obtained (Pi being the vertices of K ) .  Then we check if 

where M is approached by M ( P ) ,  the metric associated with the point under 
insertion. The following theorem, which holds in two dimensions, shows that the 
previous characterization is constructive. 

Theorem 7.5 The relationship a ~ ( p ) ( P ,  K )  < 1 results in a valid Delaunay ker- 
nel. 

, , 

a 

Figure 7.15: A 
proof of Theorem 

schematic 
7.5. 

the 

The proof of the above theorem consists of checking that the so-defined cavity 
is a star-shaped region with respect to P. The cavity is initialized with the base 
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of P,  the latter being obviously star-shaped with respect to P. Then, this cavity 
is enriched by adjacency. Given a star-shaped cavity including a certain number 
of elements, we simply have to prove that adding one element, using the above 
criterion, preserves the star-shapedness of the resulting cavity. As every point in 
the ellipse a ~ ( p l ( P , K )  = 1 is visible by P and as the edge (denoted by a in 
Figure 7.15, where the triangle being processed is depicted by a continuous line 
while the triangle in dotted lines is still in the cavity. The ellipse circumscribing 
triangle K has been evaluated using the metric of P ) ,  common to the current 
cavity and the element K in question, separates the ellipse into two non-connected 
components. Thus, P is visible by the two other edges of K ,  edges that will be 
part of the new cavity. 

Unfortunately, as the above separation property does not hold in three dimen- 
sions, this result does not extend to this case and a more subtle method must be 
used. Indeed, we consider exactly the same construction but we have to verify 
explicitly that the current cavity is a star-shaped region (this is completed by an 
algorithm that corrects a possibly invalid cavity, thus returning to the classical 
cavity correction algorithm). 

Figure 7.16: An academic example of a n  anisotropic governed mesh  (see Chap- 
ter  21 for  realistic cases) where the metric funct ion i s  analytically defined. 

To conclude, it should be noted that other approximate solutions can be used 
resulting in the desired Delaunay type kernel. These solutions infer point P and 
some other points naturally present in the context. 

Optimizations. Similar to the governed anisotropic case, an optimization stage 
aims at optimizing the size and shape quality of the resulting mesh. This stage is 
based on local topological and geometrical operations governed by the metrics in 
hand. 
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A theoretical remark. As discussed in this section, a Delaunay type method 
has been advocated to  handle anisotropic meshing problems. In this respect, the 
classical Delaunay kernel (as itself or after an approximation) has been used to  
connect the vertices. 

A purely theoretical view of the problem could refute our point of view. In fact, 
due to the metric map supplied as a sizing (directional) information, the basic no- 
tion of a distance between two points is no longer Euclidean. Indeed, the distance 
measure varies from one point to  the other. In terms of the Voronoi' diagram that 
can be associated with a set of points in such a metric context, we do not return 
to the classical diagram. For instance, the perpendicular bisector of two points (in 
R2) is not a straight line but a curve. Thus, the Delaunay triangulation, the dual 
of this diagram, is not composed of afine (straight-sided) triangles (considering 
again a two-dimensional problem). Indeed we face a Riemannian problem where 
the curve of minimum length between two points, the so-called geodesic, is no 
longer a straight segment. 

Actually, a proper definition of the diagram is far from being evident and ex- 
hibiting a dual which will be called a Delaunay triangulation is not certain apart 
from being sure that this triangulation is valid. The classical diagram (Rela- 
tion 7.1): 

v, = { P  such that d(P, Pi) 5 d(P, Pj), V j  # i} 

would be replaced by: 

where 1 ~ ( . ,  .) denotes the Riemannian distance between two points. The definition 
used for the above triangulation construction suggests considering: 

1 

~ M ( A B )  =I J t B M ( A + t B ) B d t ,  

while we were interested by afine triangles. Theoretically speaking, the distance 
between two points is not measured along a straight line segment but along a 
curve, suggesting considering a formula like: 

(7.19) 

with y(0) = A and y(1) = B and y an unknown curve. 
Using such a definition is computationally unrealistic and numerical approxi- 

mations (quadratures) may result in a solution but may cause failure in the the- 
oretical analysis. Thus, the hypothetical diagram and its hypothetical dual are 
far from being well defined and usable. Some works discuss these points such 
as [Leibon, Letscher-20001 and [Labelle, Shewchuk-20031 where a theoretical ap- 
proach is presented showing some a priori surprising properties of the cells as they 
are defined and the way to  obtain some consistency in terms of the dual. 
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Nevertheless, in our context, the only objective is to  construct an affine trian- 
gulation and therefore the purely theoretical discussion above is not an issue. In 
fact, we use the Delaunay background as a basic scheme that enables us to design 
a constructive mesh generation method (which is no longer Delaunay). 

7.6.3 Surface meshing 

The generation of surface meshes is generally considered to be a difficult problem, 
for which two approaches are a priori possible, a direct and an indirect approach. 

Direct approaches consist of performing a classical meshing technique directly 
onto the surface, without using any mapping. The element sizes and shapes are 
controlled by taking into account the local variations of the surface intrinsic prop- 
erties. The boundary curves are first discretized before meshing the domain using 
a classical scheme. According to  this scheme, a Delaunay type approach does not 
seem well-suited to performing this task. However, the indirect approach is widely 
possible. 

Parametric surfaces. The generation of parametric surface meshes can be ob- 
tained via the mesh of the parametric space. This technique has been suggested 
by several authors (see for instance [George, Borouchaki-19971 or Chapter 15 for 
a detailed overview of this approach). The main interest of this approach is to  
reduce the problem to a purely two-dimensional problem. Let R be a domain in 
R2 and let r~ be a sufficiently smooth function, then the surface C defined by the 
application 

rJ : R - R3, (u ,v)  - rJ(u,v) 

can be meshed using a two-dimensional mesh generation method in R ,  then map- 
ping this mesh, via c, onto R3. The sole constraint is to have a method that allows 
anisotropic meshes to  be created. The metric map is indeed based on the intrin- 
sic properties of the surface. The Delaunay method appears to  be particularly 
well-suited to  this kind of problem. 

Ir 
I r k  

Delaunay type mesh generation methods prove to  be efficient, robust and flex- 

In addition, it could be noted that anisotropic Delaunay type meshing methods 

ible enough to handle classical as well as governed mesh creation (Chapter 21). 

will be a key ingredient for parametric surface mesh generation (Chapter 15). 



Chapter 8 

Other Types of 
Mesh Generation Methods 

This chapter briefly discusses some mesh generation methods which do not belong 
to the classical methods covered in the previous chapters. The fact that there is 
such a wide variety of methods is some indication of the richness of the subject 
but also indicates that there is no one method' that is a universal solution for 
all possible situations. Thus, for instance, a semi-automatic method is sometimes 
more powerful, more flexible or easier to  use for some cases compared with a purely 
classical automatic method. Moreover, some domains are defined by means of data 
input that is not directly suitable for an automatic approach. 

* * *  
The first section discusses product methods, which represent an elegant mesh- 

ing method when the geometry of the domain has the required aspect, i.e., a 
cylindrical analogy in terms of topology. Grid or pattern-based methods are then 
discussed which complete a mesh of a given domain starting from a given mesh 
composed of a simple grid or a partition covering the whole domain by means of 
a predefined pattern which is repeated. Therefore, the grid or the given patterns 
in the domain (or in a portion of this domain) can be found. A mesh generation 
method by means of optimization is briefly presented which is capable of han- 
dling problems with large deformation (such as forming processes). Moreover, this 
approach allows for more specific applications. 

Constructing a quad mesh (in two dimensions) is then discussed in Sections 8.4 
and 8.5 where indirect approaches (by means of triangle combination) and direct 
approaches are given respectively. The extension to hex mesh construction in 
three dimensions can be found in Section 8.6. Then, to  conclude (without claiming 
exhaustivity), we mention some mesh generation methods that are well-suited to  
some specific applications. In particular, we focus on methods resulting in radial 
meshes and methods that make use of a recursive domain partitioning. 

'As least, as far as we know. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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8.1 Product method 

The aim of a product method consists of creating elements in d dimensions from 
the data, on the one hand, of elements in p dimensions, 0 < p 5 d, mapped in 
the space of d dimensions, and, on the other hand, of a meshed line serving as a 
generation line. 

Basic principles 

Thus, locally, a point (i.e., an element reduced to a point, a 0-dimensional item) 
defined in the pdimensional space and seen in a d-dimensional space produces 
a series of segments (item of 1-dimension) defined in the d-dimensional space. 
Similarly, a segment (item of 1-dimension) defined in the pdimensional space 
produces quadrilaterals in d dimensional space. A triangle serves as a support for 
creating pentahedra, while a quadrilateral produces hexahedra (Figure 8.1). 

I P 

jjyneration x 

0 

point 

/ 

segment I triangle 
quadrilateral 

Figure 8.1: Correspondences. On the left we show the generation line, then the 
construction by a product method associated with a point, a segment, a triangle 
and a quad. 

It could be observed that the basic mesh appears, in terms of topology, as a 
layer of the resulting mesh, such a layer being defined for each discretization step 
in the generation line. In this way, we obtain a cylindrical topology (which makes 
it clear in which cases the method applies). 

Degeneracies may be encountered for some special positions of the generation 
line with respect to the given mesh serving as data. Such a phenomenum can be 
seen as the result of a merging operation where two vertices collapse due to some 
property of invariance. In this case segments may produce, not only quadrilaterals, 
but also triangles (two vertices collapse then resulting in a three vertex element), 
triangles may produce degenerated pentahedra and quadrilaterals may produce 
degenerated hexahedra. Depending on the geometry, the degenerate elements are 
valid (or not) in the usual finite element context. In this respect, for example, 
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hexahedra may degenerate into pentahedra, which are admissible elements, or 
into non-admissible elements (Figure 8.2) with regard to the expected usage of 
these elements, while pentahedra may lead to  the creation of tetrahedra or non- 
admissible elements (same figure and again related to the future application). 

admissible ? 

\ 00 / L -  / L -  

admissible admissible non 

Figure 8.2: Correspondences and possible degeneracies. O n  the left is a quad 
that degenerates into a suitable triangle. Then two forms of degeneracies for a 
pentahedral element are given, one of which is  admissible while the other is  suitable 
or not depending on  the envisaged application. Finally, two patterns related to hex 
degeneracies are displayed, only one of the patterns being valid. 

Computational issues 

In what follows, we discuss two methods that allow for the computation of the 
vertices in the various layers of the desired mesh. Then, we add some details 
about how to implement a product method. 

Computing the intermediate vertices (“semi-manual” method). The 
vertices of the various layers are defined in a semi-automatic manner through 
a description of these layers. The possible choices, [George-19931, correspond to  
the following data input: 

a a constant stepsize or a number of layers between the initial section (the 
basis) and the final one, 

a a variable stepsize from one section to  the next, 

0 the full definition of a function that associates a vertex position for each 
section with the current vertex position in the initial section, 

a the full definition, for a given section (the source), of the way in which the 
next section (the target) must be constructed, 

a etc. 
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Computing the intermediate vertices (“semi-automatic” method). More 
automatic, this method completes the vertices in the sections lying between two 
reference sections, [Staten et al. 19981, the first serving as a source, the other being 
the target. The first section is the initial section or basis (once the entire domain is 
considered). The target section is associated with an intermediary section or with 
the final section (the last target section). At the same time, we give how many sec- 
tions must be constructed between the source and the target and we describe the 
side of the “cylinder” contained between these two particular sections by means 
of discretized edges meshed with consistency from one to the other. The source 
and the target sections are assumed to  be known in a parametric form, then the 
domain could be subdivided into several portions and an automatic algorithm can 
be applied in each of them in order to  complete the intermediary points based on 
the available data input. The computational scheme is as follows: 

0 a background mesh is constructed for the source section in its parametric 
space based on the points lying on the sides on this section. As assumed, 
this mesh is also a background mesh for the target section and thus will be 
used when the various intermediate sections are dealt with, 

0 the (internal) points in the source section are classified with respect to  the 
background mesh (we find the triangle that contains such a point and we 
obtain its barycentric coordinates) and the same is done for the points in the 
target section. At completion, two sets of three values2 (a i ,  bi ,  ~ i ) ~ ~ ~ ~ ~ ~  and 
(u .  2 ,  b.  2 ,  ~ . ) ~ ~ ~ g ~ ~  2 are available for the point Pi considered in the source (resp. 
target) section, 

0 the distances between these internal points (in R3) are computed with respect 
to  the triangles whose vertices (denoted by Si in what follows) are the images 
of the three vertices of the triangles in the background mesh containing these 
points (now considered in the parametric space). To this end, we use the 
following formula, for point Pi: 

with respect to  the source section for the points in this section and using 
a similar formula for the points in the target section with respect to  this 
section. In this way, we obtain two distances d~””‘““ and d y e t  that measure 
the distortion3 at  point Pi for the two sections bounding the domain being 
processed. 

This information is then used to compute the position of the internal points in 
the sections contained between the source section and the target section. This 
calculus, for the point Pi in a given section, includes a linear interpolation between 

21f the shape (the geometry) of the source and the target sections are identical, these two sets 
are the same. Otherwise, for instance, the triangle containing the source point is not necessarily 
that containing the corresponding target point assumed to be in front. In this case, to retrieve 
the same element, negative barycentric coordinates are allowed. 

31f, for example, the source section is planar, we have dZouTCe = 0. 
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( a .  z ,  b.  z ,  C . ) ~ o u r c e  z and (ai ,  bi ,  ~ i ) ~ ~ ~ g ~ ~ ,  a function of the section (defined through the 
points supplied in the sides of the above mentioned cylinder) and a correction step 
that modifies this value based on dioUrce and d y e t  (after an interpolation). 

Implementation remarks The position of the intermediate points, the case 
where a degeneracy occurs or when the final section becomes identical to  the first 
section (for instance, in the case of a rotation) having been successfully established, 
the computational aspect does not induce any difficulty. In practice, the mesh 
generation problem comes down to numbering the vertices of the different layers or 
sections corresponding to  the discretization of the generation line. This numbering 
step is rather similar to  that already seen in a multibloc method (see Chapter 4). 
Once this numbering has been done, the element vertex enumeration is trivial. 

Limits 

Product methods (also referred to as extrusion methods) can be applied to  do- 
mains which have the desired properties, i.e., one of the following topological types: 

a cylindrical topology: the domain can be described via the data of a two- 
dimensional mesh and a generation line defining layers with which the three- 
dimensional elements are associated, 

a hexahedral topology: the domain can be described via the data of a one- 
dimensional mesh and a generation line to  construct a two-dimensional mesh 
which, in turn, is coupled with a second generation line and produces the 
desired three-dimensional elements. 

Note, as a conclusion about the limits, that the validity (positive surface areas 
or volumes, absence of auto-intersections (inter-penetrations or overlapping ele- 
ments)) of the resulting mesh must be checked explicitly, which may increase the 
computational cost. 

Application examples 

Figures 8.3 and 8.4 display two examples constructed by a product method applied 
respectively to  a meshed line and a two-dimensional mesh serving as data and a 
rotation used as a generation line. In the first example, the generation line (a circle) 
is not connected with the data and classical expected elements are constructed 
(quads), while, in the second example, the generation line is partially common to 
some edges of the data and pentahedra (instead of hexahedra) are produced in 
this region. 

The examples in Figure 8.5 have been completed using a method described by 
[Staten et al. 19981 which is used in ANSYS. A mesh resulting from translation 
and rotation (left-hand side) and a mesh resulting from translation (right-hand 
side) can be seen. The latter example has been completed in three steps whose 
respective meshes, after merging, provide the final mesh. This partition into three 
parts has been made so as to make the product method suitable for each of them. 
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Figure 8.3: Line serving as data (left-hand side) and resulting mesh  (right-hand 
side) obtained by a product method corresponding to  a rotation. 

This partition is defined so as to  permit a compatible mesh merge (see Chapter 17 
on how to merge two meshes). 

Figure 8.4: 2D mesh  serving as 
hand side) obtained by a product 

data (left-hand side) and resulting mesh  (right- 
method corresponding to  a rotation. 

8.2 Grid or pattern-based methods 

To some degree, these methods recall some of the constructions seen in Chapter 5 
and also some ideas that will be seen in Chapter 16. The domain of interest is 
merged into a regular grid G composed of uniform squares (in two dimensions) or 
uniform cubes (in three dimensions). The cell size is a function of the smallest 
distance between two contour points of the domain and also depends on available 
memory resources. A meshing process based on the (easily) so-defined grid can be 
developed. It involves the following phases: 

Step 1: the removal of the cells of G which do not intersect the domain. 
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Figure 8.5: Examples of meshes resulting from the product method incorporated in 
ANSYS. Left-hand side: the various sections result from the basis after a trans- 
lation combined with a rotation. Right-hand side: the domain is split into three 
parts and, for each of them, a translation of the corresponding basis is used. 

Step 2: the processing of the cells of G containing a portion of the boundary of 
the domain; two variations can be advocated: 

- a cell whose intersection with the boundary is not empty is considered as 
a mesh element; in this way, the final mesh will only be a piecewise linear 
approximation of the given domain (the accuracy of this approximation 
depends on the stepsize of the grid cells), 

- or this type of cell is modified in such a way that the boundary is better 
approximated. 

Step 3: the enumeration of the mesh elements: 

- a purely internal cell becomes a mesh element (or can be split into 
simplices) ; 

- a cell intersecting the boundary is considered as above. It defines a 
mesh element or it can be split into one or several triangular or quad 
elements, or tetrahedral or hex elements, such a splitting being based 
on the analysis of the different possible configurations and the use of 
the corresponding splitting pattern (Chapters 17 and 18). 

Simple in principle, this method is unlikely to be suitable when the boundary 
discretization, serving as data, includes widely different items (edges in two dimen- 
sions) in terms of size while this situation generally requires a very fine stepsize and 
then may lead to  an overflow in the number of cells of grid G, and consequently 
in the number of elements of the resulting mesh. As such, except for some spe- 
cific problems, more flexible methods must be used (such as the quadtree-octree 
methods discussed in Chapter 5). Nevertheless, for certain specific applications 
(for example, for forecast computation), a relatively regular mesh is a source of 
simplification at  the computational level. 
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Figure 8.6: The grid made of parallelograms (left), the portion of the ring made of 
radial quadrangles (middle) and the ring made of radial quads (right). 

The above approach can be followed not with a regular grid, but when a pre- 
specified mesh is given which encloses the domain. In this way, using as pre- 
specified mesh a mesh composed of pre-defined patterns results in a final mesh 
where most of the elements conform to this pattern. Thus, most of the domain is 
covered with the pre-specified patterns and the remaining regions (i.e., the regions 
intersected or close to the boundary where the given pattern is not suitable) can 
be dealt with either using a general purpose mesh generation method or a specific 
processing of the patterns that intersect the domain boundary. 

Figures 8.6 and 8.7 demonstrate the principle of this method. In the first figure, 
one can see the domain in question, the part inside a circle having a rectangular 
hole at its centroid. Three enclosing meshes are depicted. On the left-hand side, 
the pattern is a parallelogram, in the middle, we have a part of a ring covered by 
quads and, finally, on the right-hand side, we have a ring covered with radial quads 
which are excentered with respect to  the domain. In the other figures, we illustrate 
a plausible scenario as to  what the construction could be. We see successively the 
patterns with (at least) one portion inside the domain, i), and in ii), the retained 
patterns, i.e., among the previous, we have discarded those partially included in 
the domain and those judged to be too close to  the domain boundaries to  define a 
large enough region in the vicinity of these boundaries. Then, in iii), the not yet 
meshed regions are meshed, this point concerns the regions close to the boundaries. 
Finally, in iv), the resulting mesh is visible and is formed by the patterns that have 
been retained and the mesh of the boundary regions as completed previously. 

Various choices about the pattern are possible. For instance, in two dimensions, 
we may think of the pattern related to the union of six equilateral triangles (a 
regular hexagon) or to  the configuration composed by elements whose vertices are 
located in a radial manner with respect to  a given point. 
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iii) iv) 

Figure 8.7: From i )  to iv), one can see the quads strictly included in the hollow disc, 
those included in this disc that are “consistent” with the boundary, the triangle 
mesh resulting from an automatic mesh generator and the jinal mesh of the disk. 

8.3 Optimization-based method 

Proposed by [Coupez-19911 in the context of forming processes where the geometry 
can change dramatically from one time step to  another, this method can also be 
used as a mesh generation method, a mesh optimization method or even a mesh 
correction method. Before going further in the discussion, we now introduce the 
theoretical background which serves a t  the basis of this method. 

Theoretical background 

For the sake of simplicity, we consider a two-dimensional problem where the ele- 
ments are triangles only. 

Notations and definitions. A triangle K is an oriented triple of (distinct) 
integers. A mesh edge is a pair of (distinct) integers. The boundary of K ,  denoted 
by 6K, is defined by the three edges of K .  Now, let 7 be a set of triangles, we 
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denote by & the set of the edges of the elements in 7, by S the set of the element 
vertices and by 6s the set of vertices in 6 7 ,  the boundary of 7, i.e., both S and 
6s are a set of integers (or indices). With these notations, we first introduce the 
notion of a so-called m e s h  topology. 

Definition 8.1 A given m e s h  7 conforms t o  a m e s h  topology i f  &, the correspond- 
ing set of edges, i s  such that 

Ve E & , l  5 c a r d { K  E 7 such that  e E 6 K }  5 2 .  

In this definition, card{ .}  stands for the number of elements in set {.}. In other 
words, any edge in & is shared by two triangles (manifold case in three dimensions) 
or is a boundary edge. 

Given a mesh topology 7, its boundary 6 7  consists of the edges in & which 
belong to  only one element. 

Remark 8.1 Unlike a m e s h  (as  defined in Chapter 1), a m e s h  topology relies only 
o n  topological properties. In this respect a m e s h  can be defined as a m e s h  topology 
whose corresponding vertex coordinates result in a valid m e s h  ( i n  the usual sense)  
while a m e s h  topology i s  valid only  in t e r m s  of neighboring relationships. 

Following this remark, we can give a rough idea of the present mesh generation 
method. First, a mesh topology is constructed, then it is modified so as to produce 
a (valid) mesh. To this end, a local operator is introduced. 

A simple local operator. Let 7 be a mesh topology and S the corresponding 
vertex set, let P be a point, then joining P with the edges of 6 7  results in a new 
mesh topology as can be easily seen. In what follows, this operator will be referred 
to as O p ( P ,  67). A more precise analysis of this operator leads to examining two 
situations: 

either P E 6s (point P is identified with index P ) ,  

or P @ 6s. 

In the first situation, the operator basically joins the vertices in 6S, apart from 
P and its two immediate neighboring vertices, with P. In the second configuration, 
the operator leads to  connecting all the vertices in 6s with a given point P which 
could be inside or outside the region whose boundary is 67. In Figure 8.8, one 
can see the first situation (cases iii) and iv)) as well as the second situation (cases 
i) and ii)). 

Remark 8.2 If 7 i s  a convex region, t h e n  applying O p ( P , 6 7 )  wi th  P inside 7 
or P i s  a member  of 6 7  results in a (valid) m e s h  following Def ini t ion (1.7). 

However, when 7 is an arbitrary mesh topology and not a valid mesh, applying 
O p ( P ,  6 7 )  does not result, in general, in a (valid) mesh. The question is then to  
find some criteria to govern the application of the operator, e.g., how to repeat 
this single operator with appropriate points P so as to complete a (valid) mesh. 
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Figure 8.8: Various applications of the O p ( P , 6 7 )  operator. The point P is out- 
side 7,  case i), P inside 7,  case ii), P i s  a boundary point, cases iii) and iv). 

Two criteria are introduced: one is based on the element surface area while the 
other concerns the element shape quality. 

Given 7,  the surface area of this set of elements, Sur(7) ,  is the sum of the 
(non-oriented) surface areas of the triangles in 7.  Similarly, the quality of 7,  
Q u a ( 7 ) ,  is the quality of the worst element in this set. The quality measure is 
any of the measures discussed in Chapter 18 where the surface area involved in 
the expression is considered as positive (actually, we take the absolute value of the 
real surface area). 

Some basic observations. A mesh topology 7 is not a valid mesh if, at least, 
one of its elements is negative, thus resulting in an overlapping region. Hence, the 
surface of 7 is larger than (or equal to) the surface of the corresponding domain. 
As a consequence, a mesh is a mesh topology whose surface area is minimum. This 
observation leads to the first idea to govern the operator O p ( P ,  6 7 ) :  minimize the 
surface area of the topology. 

A second observation is as follows. Given a mesh topology 7,  we can apply 
the O p ( P ,  6 7 )  operator for different points P and, in this way, various new mesh 
topologies can be constructed. In this situation, several new topologies may be 
equivalent in terms of surface areas. Thus, we need a criterion to decide whether 
a given result is better than another. This is why a quality-based criterion is 
introduced. Thus, the second key of the method is: retain the transformation that 
minimizes the surface area and, at the same time, optimizes the quality criterion. 
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Now that we have specified the basic ideas of the method, we can turn to  the 
issue of a meshing algorithm based on these simple ideas. 

Synthetic algorithm 

In short, given a domain discretization, we initialize a mesh topology and then we 
modify it by repeated use of the above operator until a valid mesh is completed. 
To this end, the current mesh topology is analyzed and the regions with negative 
or badly shaped elements are identified. These regions are considered one after 
the other. Given a region, we define the corresponding (sub) mesh topology and 
we apply the operator Op to  this (sub) mesh topology. 

A natural (sub) topology is the ball of a given vertex (see Chapter 2), i.e., 
the set of elements that share this point. If P is a given vertex, then its ball is 
denoted by B p .  In fact, any connected set of elements can be considered as a 
(sub) topology. For instance, the two triangles sharing a given edge is a natural 
candidate. 

Given a mesh topology 7 and its boundary 6 7 ,  we define V the set of points 
P such that 

V = ( P  E P , Sur(Op(P, 6 7 ) )  = min Sur(Op(Q, 6 7 ) ) ) ,  
QEP 

in other words, V is the set of points (indices) that, after using Op, minimizes the 
surface area of the resulting mesh topology. In the above expression, P = 6 s  U G 
where G could be an arbitrary point (see below). 

We also introduce Q the set of points P such that 

Q = ( P  E P , Qua(Op(P, 6 7 ) )  = max Qua(Op(Q, 6 7 ) ) ) ,  (8.2) 
QEP 

i.e., Q is the set of points (indices) that, after using Op, optimizes the quality of 
the resulting mesh topology. 

Now, the mesh generation algorithm is as follows: 

0 Initialization: 7 = Op(P, 6s) where P is the point in 6s which is the nearest 
point to the centroid4 of 6s. 

0 (A) opt = .false. 

0 (B) Loop over the points of 7, let P be the current point, then 

- consider the ball B p  as a sub mesh topology, 

- P is the set of vertices in 6Bp,  

- we consider a point G which is the centroid of the points in 6Bp, i.e., 
G = s, where Pi denote a vertex in 7 p  other than P and np is the 
number of such vertices. 

np 

- P = P U { G } ,  

4This is one possible candidate, in fact, any point in bS could be used. 
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- we apply Op(P,6Bp) where P E P and we define the corresponding 

- if P E Q n V ,  return to  (B), 

- otherwise, pick the point P in Q n V  and retain the corresponding mesh 

sets V and Q, 

topology, the current topology is now the following: 

I = {I  - Bp} u Op(P, 6 B p )  

fix opt = .true. and return to  (B). 

0 EndofLoop 

0 if opt = .true., then return to (A), otherwise the current state is stable. 

On completion, a stable mesh topology is obtained. The issue is to make sure 
that this state corresponds to a valid mesh. 

Since the topology is valid (due to the way it is constructed), the (global) mesh 
validity is ensured if the (signed) surface of all elements is strictly positive. In fact, 
if there is a triangle with a negative surface, then an overlapping element exists (a 
zero surface implies that there is a completely flat element while a very “small” 
surface, with regard to the edge lengths, indicates the existence of a bad quality 
element). 

If the stable situation corresponds to  a valid mesh (in the above sense), then 
the resulting mesh is a suitable mesh possibly after an optimization stage. If not, 
we have a stable situation which is invalid. This case deserves some comments. 
The stability is related to  the choice of the sub-topology used in the method. In 
the case of a stable situation which is an invalid mesh, the only thing we can 
try is to modify the sub-topologies in order to  make it possible to  continue the 
process. In this way, the surface series still continues to  decrease since the mesh 
is modified. As an example of other types of sub-topologies, we can consider the 
pairs of adjacent triangles (or some other patterns) instead of the balls used in the 
previous algorithm. 

In theory, such a process converges since we face a decreasing series whose 
targeted bound (the right surface of the domain) is known in advance and because 
the number of combinations (sub-topologies) that can be constructed is a finite 
number. Thus, the convergence holds because, in the worst case, it is sufficient to  
examine all these possibilities (irrespective of the cost of such a method related to  
the underlying combinatorial aspect). 

Computational issues 

Various remarks about the computational aspects of the above algorithm can be 
made. 

First, maintaining a (valid) topology relies on checking that the corresponding 
definition holds and, in addition, that the intersection of the initial topology except 
the examined ball (the sub-topology, in the case where these sets are the balls) with 
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the sub-topology resulting from operator O p  is nothing more than the boundary 
6Bp of the ball B p .  In other words, 

(7 - B p )  n O p ( P ,  6Bp) = 6Bp .  

Figure 8.9 illustrates a case where this result is not satisfied. Triangle ANB will 
be formed twice if the sub-topology O p ( N ,  6Bp) is retained. 

Figure 8.9: Left-hand side: the initial sub-topology, right-hand side: joining point 
N with the other points in the boundary of the ball of P again results in triangle 
ANB which i s  already an  element inside the ball in question. 

Leading on from these observations, it is of interest to define a suitable strategy 
regarding the way in which the operations are carried out and the choice of the 
sub-topologies used. For instance, it is proposed a first stage without any point 
insertion (by a pertinent choice of O p )  and then to start again while point insertions 
may be used in this stage. 

Extension in three dimensions 

The above approach extends to three dimensions. In this case, the elements are 
only tetrahedra, i.e., an oriented quadruple of integers. The set & is the set of 
element faces and Definition (8.1) still holds (where e is a triangular face). 

The operator O p ( P ,  6 7 )  acts on the boundary of the mesh topology 7, meaning 
that point P is connected with the triangles that form this boundary. The two 
above criteria are also used, the first criterion concerns the volumes of the elements 
under consideration while the second remains unchanged. 

The synthetic scheme of the method is as above while the sub-mesh topologies 
that can be dealt with include the balls of the current points, the shell of the 
current edges, i.e., (see Chapter 2) the tets that share an edge or, finally, any 
connected set of tets. 

Application examples 

As indicated at  the beginning, two different applications of this meshing method 
can be envisaged. First, the method can be seen as a mesh construction method 
for a domain starting from a discretization of the boundaries of this domain. 

Then, this method can be used as a mesh optimization method or even as a 
mesh correction procedure that applied to a mesh being modified during a com- 
putational process. Another more “exotic” application can be also envisaged that 
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makes it possible to  develop an algorithm resulting in the boundary enforcement 
(in the context of a Delaunay type method; see Chapter 7). 

ii) 

iii) iv) 

Figure 8.10: i) the domain boundary, ii) the mesh after connecting one point (close 
to the domain centroid) with all the others, iii) the mesh during the optimization 
stage and iv) the resulting mesh. Indeed, the current topology is now a valid mesh. 

We now give some examples of meshes resulting from the present method. 
Figure 8.10 depicts several steps of a two-dimensional example. Figure 8.11 gives 
a tridimensional case. The geometry is a node, a kind of cylinder (or a pipe) that 
closes in on itself. Numerous examples, including some very impressive ones, can 
be found in [Coupez-19911, [Coupez-19961 and [Coupez-19951 concerning forming 
problems. An initial configuration whose geometry is rather simple is modified by 
stamping since a complex shape is obtained. The initial mesh is used as the initial 
topology and, due to  the large deformations that are applied, this mesh becomes 
invalid. The method is then used to maintain a valid mesh at each state of the 
domain deformation. 
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Figure 8.11: The initial mesh topology resulting from the connexion of one bound- 
ary point with all the others (left-hand side) and the resulting mesh (right-hand 
side). Indeed, the current topology is now a true mesh. 

8.4 Quads by means of triangle combination 

Constructing a quad mesh for an arbitrarily shaped domain (in Chapter 4, we 
saw the case where the domain geometry was suitable for a direct construction, 
either using an algebraic method or a PDE-based method or, finally, by means of 
a multiblock approach) is a tedious problem which can be handled in two ways. 
The first approach, a so-called indirect approach is based on using a triangular 
mesh and then creating the quad by triangle combination. The second approach, 
a direct approach, consists of designing a method that directly results in quads. 
In this section, the first approach is considered while the second approach will be 
discussed in the following section. 

Before going further, we give two preliminary remarks. The first remark is a 
fundamental observation which concerns the existence of a solution to  the problem 
in question. The second remark, of purely practical interest, mentions the expected 
cost of either approach. 

Remark 8.3 I n  general, the existence of a mesh composed only of quads is  not 
guaranteed for an arbitrarily shaped domain. Indeed, provided with a polygonal 
discretization of a domain boundary, it is  clear that, at least, an even number 
of edges is  required i f  we want to obtain a solution. If not, a certain number of 
triangles (one for each connected component) may be necessary in order to cover 
the domain entirely. 

Remark 8.4 The approach by means of combination starts from a triangular 
mesh (assumed to be conforming) of the domain and thus is  nothing more than a 
post-processing of an existing mesh. As  a consequence, the design and the valida- 
tion (robustness, reliability) are only related to this processing that is, in principle, 
faster than validating an entire mesh construction method. 

Having made these remarks, we now describe an approach based on combina- 
tion. We assume a favorable case (where the boundary includes an even number 
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of segments) and we consider a domain in the plane (the surface case will be seen 
below). 

Two basic combinations 

The simplest pattern corresponds to two adjacent triangles that form a convex 
polygon. These two triangles make it possible to define one quad. A different 
pattern is formed by one triangle and its three neighbors. The corresponding 
polygon then has six sides. It allows, a priori, for the construction of three quads 
(a point being introduced, for instance, at the centroid of the initial triangle and 
then joined with the sides of the above polygon, thus giving the three quads in 
question). Figure 8.12 demonstrates these two examples of triangle combination. 

Figure 8.12: Left-hand side: the combination of two triangles gives one quad; right- 
hand side, the combination concerns four triangles and results in three quads. 

Selection of a combination 

Given one or several combination patterns, the question is to define the pairs 
(or the sets) of triangles that must be combined to define the quads. The basic 
technique consists of finding in the triangular mesh a path that makes it possible 
to pass from one triangle to the other. This path, obtained by visiting the triangles 
in some way, is stored in a stack. Thus, the triangles are put in a stack and pushed 
once the quads are constructed. 

The construction of the stack (the path) follows some rules. A starting triangle 
is selected (having two boundary edges if such an element is found). This triangle 
is the first in the stack. 

The current triangle is colored and one of its edges is selected. The neighbor 
(through this edge) is put into the stack if it is not already colored and if the quad 
thus formed is valid (actually, this quad is not really constructed). The stacked 
triangle is the child of the initial triangle. When it is no longer possible to continue, 
the triangles are removed from the stack. When carrying out such an operation 
we encounter two situations. 

There is an edge which has not yet been used. The corresponding neighbor 
is put into the stack as the child of the related triangle, otherwise, the quad 
construction begins. 

Let us assume that a certain number of triangles has been put into the stack 
and that some quads exist. Suppose we are at triangle K1 while going from its 
neighbor after having passed through edge el of triangle K1 (el  is then the edge 
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common to the two triangles in question). We try to  pass through the edge e2, 

edge next to  e l  while in the direct sense. This is possible if, on the one hand, edge 
e2 is not a boundary edge and, on the other hand, the triangle neighbor of K1 
through this edge has not already been processed. If the edge cannot be traversed, 
we consider the next (using the same convention), in this way we find one triangle, 
say K2, or this branch of the stack is no longer active (the edge is a boundary edge 
or the neighboring element is already in the stack). In the first case, K2 is put 
into the stack and we report that this element follows K1. In the second case, we 
count the number of children of K1 not already involved in a quad. The children 
of a given triangle are its neighbors that have not already been taken into account. 
Therefore, a given element may have zero, one or two children. 

If Ki is the last triangle in the stack, we use the following algorithm: 

0 if the number of children of Ki is zero, we remove Ki from the stack and we 
return to triangle Ki-1, 

0 if the number of children of Ki is one and if the triangle is still active (i.e., has 
not been used to construct a quad), we construct a quad by combining Ki 
and its child while verifying that this element is convex. Ki is then removed 
from the stack. If the combination of Ki and its child forms a non-convex 
polygon (or a quad with two consecutive aligned sides), the triangle child 
will remain and we try to form a quad using Ki and its father if this pattern 
is adequate, 

0 if the number of children of Ki is two and if the triangle is still active, we 
form three quads from Ki and its three neighbors (its two children and its 
parent), then Ki is removed from the stack. 

This algorithm continues as long as the stack is not empty. Once it is empty, 
the quad mesh is obtained. Nevertheless, some isolated triangles can be present 
in this mesh. Thus, the resulting mesh is a mixed mesh. 

Remark 8.5 The thus-constructed path m a y  not  pass through all the triangles in 
the domain. In such a case, we start again f r o m  one triangle not  already visited 
and one path by the thus-defined component can be obtained. 

A solution resulting in a mesh without any triangles, consists of applying the 
combination strategy on triangles whose size is twice the desired size (in terms of 
edge length) and then splitting the resulting quad into four elements. The triangles 
that can still exist are subdivided into three by introducing centroids and edge 
midpoints (if the edge is a boundary edge, we have to consider the geometry of 
this boundary to locate the midpoint). In this way, the resulting mesh has only 
quads and, due to  the method, is a conforming mesh. 

Optimization 

The resulting meshes, in most cases, are not of good quality everywhere in the 
domain. Adding strict criteria about this quality during the process is possible 
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a priori but impedes the quad creation. In such a case, numerous triangles nec- 
essarily exist since the corresponding combinations are rejected. Therefore, it is 
advisable to leave some degree of freedom in the construction and, since, bad 
quality elements may appear, to apply an optimization stage a posteriori. The 
optimization tools are the local tools capable of carrying out local configurations 
(a set of adjacent elements). Chapter 18 contains a detailed description of general 
purpose optimization tools, so, here, we will just give some brief indications about 
tools acting on quad elements. Among these tools, we can find some operators 
related to certain typical configurations: 

an internal vertex only common to two quads or common to one quad and 
one triangle can be removed. We then successively obtain one quad or one 
triangle whose quality is necessarily better than that of the initial configu- 
ration, 

a vertex shared by three quads is in general related to a bad quality quad. 
The initial pattern can then be replaced by two quads which are better a 
priori, 

a quad with two (internal) opposite vertices common to only three elements 
can be removed (the two points are merged and the quad disappears), 

the edge common to two quads can be removed by using the alternative con- 
nexion with the two other vertices (we find here the edge swapping operator 
described in Chapter 18), 

a set of adjacent quads forming a six side polygon may be replaced using 
only two quads, etc. 

An optimization operator is retained if the resulting quality is better (the initial 
context is analyzed according to a quality criterion or a topological criterion). 
Note that the relaxation, on average, of the degree of the internal vertices (see 
again Chapter 18) is a promising operation for this type of mesh. 

Alternate method 

In this approach, we examine, for all triangles in the initial mesh, the quality of 
the quad formed by combining the triangle in question, K, with its neighbors, Ki. 
Therefore, there are a priori three possibilities. Each possible quad is identified by 
the edge common to K and Ki. With each of these edges is associated a quality 
value which involves the angle in the quad at the two vertex endpoints of the edge 
in question. 

Let [ABCD] be a quad whose vertices are defined in the direct sense. In the 
classical isotropic case, the quality measure of a quad is defined at vertex P by 
means of the formula: 
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where 6 is the angle between three consecutive vertices, PiPPj, in the quad. This 
function varies linearly between 0 (flat quad) and 1 (rectangle). The quad quality 
is then defined as the minimum value of the quality values in its vertices: 

This quality measure can be extended to the anisotropic case. To this end, it 
is just necessary to define the dot product with regard to a given metric. 

Dot product in a given metric. 
the Euclidean space characterized by a metric M z ( X )  is defined as: 

The dot product of two vectors C and v' in 

(c, c ) M z ( x )  =t cMZ(X)v'. 

The norm of a vector w is then given by: 

Il 'fllMz(X) = d m - .  

Angle measurement in a metric. Let A, B and C be three points such that 
Z/\m 2 0, the notation /\ stands for the cross product in the classical Euclidean 
metric. The value of the angle (in radians) between the vectors and with 
respect to the metric M z ( X )  is given by: 

Quad quality in a metric. The quality function defined in the isotropic case 
(Relationship (8.3)) can be extended to an anisotropic metric in the following way: 

2 e ~ z ( x )  if 0 5 6 M z ( x )  < 5 

if 5 e M z ( X )  

and. thus: 

Remark 8.6 The quad quality computation in a Riemannian case (anisotropic 
metric) requires evaluating 16 quality values in the Euclidean case. 

A simplified quality function can be used. If ABCD is a quad, its quality can 
be defined as the value of an angle associated with the edge AC (common to the 
two triangles) as: 

Q M z ( X )  = min ( [ e A ] M z ( A ) ,  [ e A ] M z ( C ) ,  [eCIMz(A),  [eCIMz(C))  . (8.7) 
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General scheme. The edges are sorted based on the decreasing quality value. 
The quads are formed by combining the triangles following this order. Once a 
quad is constructed, the corresponding edge is removed from the list of possible 
edges. A data structure such as a heap is used to  store the triangles that remain 
to be combined. Indeed, a t  each quad creation, the list of the edges to be dealt 
with must be updated. 

With this strategy, the quads that are constructed are, in some senses, the 
best possible. However, the number of isolated triangles is not minimal. Several 
ideas can be advocated so as to minimize this number of triangles or to avoid 
them altogether. On completion, there are still some triangles that have not been 
combined. These elements are then subdivided into three quads after introducing 
the edge midpoints and the centroids. This leads to  propagating the refinement to  
some adjacent elements (cf. Figure 8.13). In such a case, the size of the elements 
in the final quad mesh is half the size of the triangles in the initial mesh (assumed 
to conform to a given size map). To solve this problem, we can use a technique 
based on the twice size (as previously discussed). 

Regarding the way in which the triangles to  be combined are governed by the 
quality of the resulting quads, two particular drawbacks must be avoided: 

a combining a triangle with some edges aligned with one of a neighbor, 

a leaving too many isolated triangles. Indeed, the vertex introduced at  the 
centroid of the element is of degree three and thus rigidifies the mesh, thus 
making the quality optimization more delicate. 

Figure 8.13: %angle combination so as to  f o r m  quads. Left-hand side: an  isolated 
triangle i s  subdivided in to  three quads. Right-hand side: the quad resulting f rom 
the combination of two triangles is  split into four  quads. 

Remark 8.7 In the isotropic case, it is  possible t o  use a different quality measure 
(see Chapter 18): 

(8.8) 

where h,,, is  the largest length of the sides and the two diagonals, di is  the 
distance between any two points in the quad (i.e., sides or diagonals), Smin i s  the 
minimum of the four  (triangle) surfaces that can be associated with the quad and 
(u is  a normalization factor such that the square quality value i s  one. 
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Remark 8.8 A procedure which is  easy to implement, based on  a frontal type 
propagation, can also be used to combine the triangles. Given a triangle, the 
triangles adjacent to an edge are examined and combined in this order (the list of 
triangles to be processed is no longer sorted according to a quality criterion, thus 
simplifying the algorithm). 

Figure 8.14: Example of a quad mesh by triangle combination. Left-hand side, 
initial anisotropic triangular mesh. Right-hand side, resulting quad mesh. Note 
that the size of the quads is  half that of the triangles. 

Dealing with a surface 

Using a triangular surface mesh, it is also possible to  obtain a quad mesh of this 
surface. The method is rather similar to  that previously described. 

In this approach, we assume a discrete parametric surface provided in the form 
u(u,v)  = ( x , y , z ) ,  the parameters u,v  being defined in a rectangle. The metric 
M z  introduced in the general case corresponds here to  the (anisotropic) metric of 
the principal radii of curvature or to the (isotropic) metric of the minimal radii of 
curvature, these metrics being defined in the parametric space. The definition of 
these different metric maps is described in Chapter 13. 

8.5 Quads by means of a direct method 

Unlike the previous schemes, various direct methods can be envisaged to obtain 
a quad mesh (without the temporary help of a triangular mesh). Three of these 
have received some attention: 

a an advancing-front type method, 

a special understanding of the above grid superposition type method, 

a a domain decomposition combined with an algebraic method in each sub- 
domain. 
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Advancing-front type method 

This type of method consists of generating the domain paving by going through the 
domain starting from its boundaries (in this respect, we return to  the advancing 
front type methods as seen in Chapter 6) [Blacker, Stephenson-19911. 

More recently, [Cass et al. 19961 advocated the use of this approach in the case 
of parametric surfaces while using the tangent planes together with the radii of 
curvature. 

Another method in this class makes use of the STC, the spatial twist continuum, 
[Murdoch, Benzley-19951. Given a quad mesh, the STC can be constructed. This 
structure is made of chords which link the quads. It can be seen as the dual of the 
mesh (in some sense, this structure is what the Voronoi’ diagram is for a triangular 
mesh). Conversely, given a STC, say a series of chords inside the domain which 
follow some rules, it is possible to define a quad mesh. 

Remark 8.9 I n  essence, this approach is sensitive to the domain (surface) bound- 
ary discretization. I n  addition, the number of segments in the boundary mesh must 
be even. 

Grid Superposition 

Here, we follow an idea close to that seen in the section devoted to  mesh construc- 
tion by means of a grid (a set of quad or square boxes) or by using predefined 
patterns (quads in this context). Figures 8.6 and 8.7 give one academic example 
of the aspect of the meshes completed by using such an approach. 

Using the medial axis 

In Chapter 9, we will see the precise definition of the medial axis of a domain in 
two dimensions together with a method suitable for such a construction (actually, 
a discrete approximation of this line). Briefly, we assume the data of a discretiza- 
tion of the domain boundaries and an approximation of its medial axis. This 
information can then be used to  subdivide the domain into regions with a simple 
geometry. These regions are constructed in such a way that certain properties 
hold, ensuring it is possible to cover them by means of quads. Depending on the 
case, the mesh is completed by using an algebraic type method or by following a 
midpoint subdivision method. 

Domain partitioning. The domain’s boundaries and its medial axis make it 
possible to  define a domain partition composed of a certain number of regions that 
are bounded by a portion of this line, one of several portions of the boundary and 
one or several “cuts” joining these two categories of sides. 

Mid-point subdivision. This technique makes it possible to cover a polygon 
by means of quadrilateral regions. An internal point is constructed, for instance, 
the centroid G of the initial polygon then the edge midpoints are introduced (for 
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the edge boundary of the polygon). It is then sufficient to join point G with two 
consecutive midpoints to obtain the quad regions that are sought. 

The regions resulting from the domain partition are dealt with in this way and 
a first quad covering-up is thus obtained. 

Quad construction. A repeated use of the above algorithm results in the final 
mesh completion. Another technique uses an algebraic method (as in Chapter 4) in 
each region while ensuring the conformity of the output mesh (we encounter again 
the consistency constraints of the multiblock methods about the way in which the 
subdivision parameters propagate from one region to another). 

Figure 8.15: Partitioning method based on  the medial axis: approximate skeleton of 
the domain and cut lines (left-hand side), quad mesh resulting from this partition 
(right-hand side). 

8.6 Hex meshing 

We consider here only the case of an arbitrarily shaped domain. Indeed, if the 
domain geometry is adequate, we already know some methods capable of con- 
structing a hex mesh (algebraic method, PDE-based method, product method, 
etc.). First, it could be observed that the triangle combination method for quad 
meshing in two dimensions does not extend to three dimensions as it is tedious to  
define a tet combination resulting in a hex that uses all or, at least, the majority 
of the elements in the mesh. 

On the other hand, splitting the elements of a given tetrahedral mesh by means 
of 4 hexes results in poorly shaped elements and bad connectivities (or vertex 
valence; see Chapter 18). 

Thus, a direct construction method must be considered and, in principle, we 
return to the three methods that have been introduced for quad meshing pur- 
poses in two dimensions, the advancing-front method, grid-based method or use 
of midsurface: 

a advancing-front based method. We encounter here the principles of any 
classical advancing-front method (Chapter 6). Nevertheless, the expected 
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Figure 8.16: Mechanical part automaticaly meshed with Hexotic. The mesh is 
made up of 152,719 elements (96.8% hexes and 3.2% pyramids). Data Courtesy 
of Part Solution. 

difficulties are now more critical. Indeed, it is tedious, given a face, to  
find the various points candidate for hex creation. Several techniques have 
been proposed, [Blacker, Meyers-19931, [Murdoch, Benzley-19951 and also 
[Folwell, Mitchell-19981, which, in some cases, introduce some non-hexahedral 
elements (pyramids, prisms, tets), thus leading to  mixed meshes; 

a grid-based method. The chosen grid could be uniform or hierarchical (an 
octree, or even an octree whose cells are subdivided into 27 octants (and not 8 
as in the classical case)). The main difficulty then consists of dealing properly 
with the octants that intersect the boundary or that are close to it. The main 
references in this area are [Schneiders et al. 19961 and [Schneiders-l996a]. 
Note that full hex meshes are tedious to  obtain while hex dominant meshes 
offer more flexibility, [Marechal-20011; see Figure 8.16; 

a method using the midsurface. A midsurface (approximated or having the 
same topology as the exact midsurface) is constructed (see Chapter 9). It 
then serves to  partition the domain in terms of regions whose topology 
is simpler so that a direct method can be envisaged, [Price et al. 19951, 
[Price, Armstrong-19971. 
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8.7 Miscellaneous 

In this section, we mention some methods which can be suitable in certain situa- 
tions and which have not been covered in the previous discussion. 

Radial meshes 

A radial mesh can be a source of benefit for some numerical simulations that can 
account with this specificity. Radial meshes can be developed based on various 
methods. For instance, a product type method is a natural candidate for such a 
result. An alternative method is the pattern based mesh generation method as 
briefly discussed above. Using a classical method (such as an advancing-front or 
a Delaunay-based method) with pre-placed vertices may also be a solution. 

Figure 8.17: Classical radial mesh as completed by a product method (left-hand 
side) and non-classical radial mesh as resulting from a series of vertex and edge 
collapsing (right-hand side). 

In Figure 8.17 (left), we can see the classical result obtained by a product type 
method where the data consists of a discretized segment and a generation line that 
reduces to a rotation. We should note that the mesh elements near the center of 
the domain are very badly shaped due to the rigidity of the method which imposes 
a constant number of subdivisions along each section. Thus, in Figure 8.17 (right), 
we can see the mesh obtained using a variation developed by [Hecht, Saltel-19891 
which consists of balancing the element sizes (note that some triangles remain in 
the resulting mesh). In short, the classical product mesh is modified by means of 
edge and vertex collapsing (see Chapter 18) so as to prevent the construction of 
elements that are too small. In this way, the number of subdivisions may vary 
from one section to another, thereby reducing, to some extent, the rigidity of the 
classical approach. 

Recursive partition 

The key idea is to  make use of the “divide and conquer” paradigm (see Chapter 2) 
to construct the mesh of a domain using its boundary discretization as input data. 
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Given a domain by means of its boundary discretization (a series of polygonal 
segments in two dimensions, or a triangular surface mesh in three dimensions), a 
mesh generation method can be designed based on a repeated partition into two 
sub-domains of the current domain. Once a polygonal (polyhedral) sub-domain 
is composed of only three (or a small number of) segments or of four (or a small 
number of) triangular faces, it is then possible to mesh it by means of one or a 
small number of triangles (tets). 

Let us restrict ourselves to a two-dimensional problem. We consider the polyg- 
onal line serving as boundary discretization. A boundary vertex is selected and 
a line passing through this point is constructed in such a way as to separate the 
domain into two sub-domains. This line is furthermore subdivided by means of 
segments and, thus, two polygonal contours are defined. Thus, the initial mesh- 
ing problem is replaced by two similar sub-problems. When a polygonal contour 
reduces to  three (four or a meshable pattern), the subdivision is no longer pursued. 

From a practical point of view, several issues must be carefully addressed in- 
cluding: 

0 the choice of a candidate vertex, the basis of the separating line, 

0 this line by itself and its appropriate subdivision so as to  reflect the initial 
boundary stepsizes, 

0 the determination of meshable patterns. 

Finding a separating line leads to selecting two points on the boundary such 
that the line whose extremities are these points is fully inside the domain with such 
a boundary. Therefore, we find an intersection problem that is, on the one hand, 
very sensitive to numerical errors (round-off errors) and, on the other hand, one 
which could be time-consuming. Then, provided with such a line, it is generally 
necessary to subdivide it into segments so as to reflect the discretization of the 
initial boundary. A technique, close to that used when splitting the edges when 
creating the internal points in a Delaunay type method (see Chapter 7), is then a 
possible solution. A sizing value is associated with the line endpoints, the length 
of this line is computed and, based on the desired point distribution, the line 
is subdivided into several adequately sized segments. Notice, in passing, that the 
separatrice lines will be present in the final mesh (as they stand or slightly modified 
if a point relocation step is performed with a view to optimization). 

Remark 8.10 The data of a size map (i.e., a control space) serves as input in- 
formation that makes the above subdivision possible in accordance with some size 
specifications. 

A few remarks about this type of approach may be given. The choice of the 
separators strongly affects the resulting solution and a strategy must be defined 
to ensure a nice solution. In this respect, priorities in the selection of the basic 
points of the partition can be introduced (in a way, we return to some ideas close to  
those used in an advancing-front method, using the local aspects (such as angles), 
partition balancing, etc.). 
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In three dimensions, the same principle applies, at least formally speaking. 
However, the numerical problems are relatively much greater, in particular those 
related to  intersection problems (the separatrice surface must remain inside the 
domain). Also, preventing the construction of ill-shaped elements (flat tets) and 
the definition of non-meshable regions (such as the Schonhardt polyhedron) must 
be carefully considered. 

In conclusion, this type of method, which is widely used in some commercial 
software packages, is a solution that enables automatic mesh construction for com- 
plex domains. Nevertheless, various numerical troubles may be expected and, in 
addition, the complexity (in terms of CPU cost) is far from easy to evaluate a 
priori. 

* * *  
Do methods other  t h a n  those covered in the previous chapters and more briefly 

in the present chapter exist? The answer is not so clear. It is likely that solutions 
do exist for some particular configurations and the answer would certainly be yes 
again if we consider some applications related to  a “domain” other than the finite 
element domain (computer graphics, physical analogy, image processing, etc.), 
while observing that some of these methods developed in a specific context (spring 
analogy, molecular dynamics, simulated annealing, genetic algorithms, etc.) can be 
seen as occurrences of some previously known methods (although possibly under a 
different name) or as variations of some “classical” methods. It is then necessary 
to remain attentive and open-minded in such judgments while retaining a (evenly 
positive) critical view about any a priori new or novel method or any method 
presented as a new one. 



Chapter 9 

Delaunay Admissibility, Medial Axis and 
Applications 

Mid-surface or medial surface (medial axis in two dimensions) construction for a 
given domain is a very promising field of research that has multiple applications 
such as domain simplification, spatial dimension reduction and also as a first step 
to designing an algorithm for quad mesh generation. Similarly, the mid-surface 
associated with a three dimensional domain can serve the same purposes. 

Several methods can be advocated to  construct the medial entity of a do- 
main, also referred to  as the domain skeleton or neutral fiber. A brief survey of 
the possible methods can be found in [Turkiyyah et al. 19971. In this respect, 
quadtree-octree based methods, tracing algorithms, adequate PDE solutions as 
well as Voronoi-based methods can be considered. Among these methods, we fo- 
cus here on the last approach. Since this method considers the Voronoi cells of 
a given domain, it can be based on Delaunay triangulation of the domain. This 
opens up the discussion as to  what is termed a Delaunay admissible boundary dis- 
cretization (a polygon in two dimensions, a polyhedral simplicia1 surface in three 
dimensions). 

Based on such a boundary discretization, it is possible to  complete an “empty” 
Delaunay triangulation’ of the domain of interest. From that, algorithms can be 
develope, resulting in the construction of the corresponding medial entity (actually, 
a discrete approximation of the entity). Thus, before considering medial entity 
construction and the various applications that can be derived from it, the first 
sections focus on Delaunay admissible boundary discretization. 

* * *  
The case of Delaunay admissible edges in a two-dimensional space is considered, 

then we turn to  the same edge problem in three dimensions before going on to  the 

‘This triangulation is termed empty in the sense that it does not include any vertex inside 
the domain. The sole element vertices are those serving at the boundary discretization. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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case of (triangular) faces. We then discuss the construction of the desired medial 
entity and, finally, we briefly introduce various applications. 

9.1 Delaunay-admissible set of segments in R2 

Let S be a set of points2 in R2 and let 3 be a set of segments whose endpoints are 
members of S. The question is to  make sure that applying a Delaunay triangu- 
lation algorithm (see Chapter 7) to  S results in a mesh where the segments of 3 
exist as element edges. In other words, given any segment f in 3 whose endpoints 
are A and B,  we wish to  have f a triangle edge at the time the points in S (in 
particular A and B )  have been inserted by the Delaunay triangulation method. 

Remark 9.1 Actually, f will be formed i f  there exists a point P such that a 
Delaunay triangle f P exists. Another naive equivalent condition is  that there is 
no pair of points, P and Q ,  located each on  one “side” o f f  such that edge P Q  
will be formed that intersects f .  

If 3 is such that the previous property holds for all of its members, then 3 is 
said to be Delaunay-admissible (or Delaunay-conforming) and, for the time being, 
we just retain this naive definition for this notion. 

Now, given 3 a set of segments, it is not guaranteed that 3 is Delaunay admis- 
sible. The problem is then to  characterize this property, to  find the condition(s) 
the segments in 3 must have to meet it and, in the case where 3 is not Delaunay 
admissible, to modify 3 in such a way as to obtain a new set of segments which 
conforms to  the desired property3. 

Terminology and not at ions 

Before going further, we introduce some notations (see Figure 9.1 and Table 9.1). 
Given 3, a set of segments, f = AB denotes a segment of this set, S stands 
for the set of the endpoints of the f s and .Cf denotes the line supporting f ,  this 
line defines two subspaces, 7-i; and 7-iy. Given f, BTin is the open ball whose 
diameter is f (this ball corresponds to  the smallest circle that can be constructed 
passing through the endpoints of f). Finally, given a triangle, say a triple ABC 
or a triple like f M  where f is a segment (an edge) and M is a point, B A ~ C  (resp. 
BfM) is the open ball circumscribing the triangle ABC (resp. f M ) .  

2The points are not assumed to be in general position. Indeed, in what follows, a co-circular 
pattern, possibly after a swap, does not lead to difficulty. 

3A precise definition of the notion of a Delaunay admissibility of an set of k-faces can be 
found in the ad-hoc literature and, for instance, in [George, Borouchaki-19971. Such a theoretical 
definition involves the Voronoi cells, dual of the Delaunay triangulation. Actually, using such a 
duality is not strictly required in two dimensions if we want to prove some theoretical issues (see 
below). Nevertheless, this argument will be reviewed later since it leads to a rather elegant proof 
when the dual problem (Voronoi) is easier to solve than the primal problem (Delaunay). 
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f orAB 

projf ( P )  

Lf 

x;, xy 
Bmin , BABC, B f p  

segment in question 

projection of point P o n  f 

line support off  

two half-planes related to  Lf 

small ball o f f ,  circle circumscribing ABC( f P )  

Table 9.1: Notations for the entities involved in the two-dimensional edge problem. 

z; 
, , , , 

Figure 9.1: A segment f = AB, member of 3, the corresponding ball BTtn and 
the two associated half-spaces IFIT and ? I T .  

Classification 

Given a set 3 (and the corresponding set S where, to  make sense, we assume that 
more than three non-aligned points exist), we need to analyze the configurations 
associated with all any f in 3 and, depending on the case, to  see whether or not 3 
is suitable or must be modified. This analysis concerns the various configurations 
that can be encountered. Let us consider an edge f ,  then the following cases can 
be found [Pebay-l998b]: 

Case O  IF^: (or ~ j )  is empty, 

Case 1: BTin is empty, 

Case 2 BTin contains one or several points (other than A and B,  remember 
that we are considering open sets). 

Analysis of the three configurations 

Obviously, a segment f falling within (Case 0) will be formed and then retrieved 
as an element edge. So it is for a segment f corresponding to  (Case 1) as proved 
in what follows. Let A and B be the endpoints of segment f .  Then, a condition to  
have AB an element edge is that there exists a point P in S such that B f p  = 0. 
Since such a point exists, a segment in (Case 1) is Delaunay. 
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Proof. Let P be an arbitrary point in S, for instance, in Fly. Since P $! Bfmin, 
the circumball B f p  is such that B f p  n 7-l: c Bfmin then B f p  n ‘li: = 0. If 
B f p  n 7iy = 0, then B f p  = 0 and AB is Delaunay. Otherwise, a t  least one point, 
say Q, exists in B f p  n 7iy. Replace P by Q and repeat the same process (i.e., 
return to “since”). At completion we have found a point P such that B f p  = 0 
and thus AB is Delaunay admissible. Actually, the solution point is that for which 

A 

angle APB is maximal. 0 

Note that, given f, the condition ‘‘BTtn is empty” is a suficient condition of 
Delaunay admissibility which, in fact, is too demanding. We meet here the notion 
of a protecting ball which is, surprisingly, very popular in some disciplines while 
being, as indicated, too restrictive (e.g. omitting considering (Case 2)) . 

Now, we turn to  (Case 2.). In this case, one or more points are located in 

0 if B f p  is empty, triangle f P is Delaunay and thus will be formed (and f will 

0 otherwise, one or several points exist in B f p  and triangle f P is not Delaunay, 

We then have a condition of Delaunay admissibility for f .  It involves the point 
in set S with maximal angle and the simple examination of the Delaunay criterion 
for the corresponding triangle makes it possible to decide whether or not f is 
Delaunay. 

A Bmin . Let P be the point such that angle PAB is maximal. Then, 

be formed), 

meaning that f is not Delaunay. 

Delaunay-admissibility and VoronoY cells. The Delaunay admissibility of a 
given segment in R2 can be also easily expressed in terms of the properties the 
corresponding Voronoi’ cells must have. 

Thus, following Chapter 7 and more precisely Relationship (7.1), the Voronoi’ 
cell associated with a point A is the region VA such that: 

VA = {A4 such that d(A4,A) 5 d(M,N) ,  V N  E S }  (9.1) 

where d( . ,  .) is the usual distance between two points. Now, consider four points 
in S, the two endpoints of segment f = AB under consideration and two other 
arbitrary (non-aligned with the previous) points, P and Q, that can impede the 
construction of AB. Four Voronoi’ cells can be defined, successively VA, Ve, Vp 
and VQ. It is obvious that these four regions fall within one of the three situations 
depicted in Figure 9.2. 

Now, f = AB is Delaunay-admissible if edge AB exists in the Delaunay tri- 
angulation. In terms of Voronoi’ cells, AB is a Delaunay edge if VA and VB share 
a (Voronoi’) edge or a (Voronoi’) vertex4. Thus, AB will be formed in case i), in 
case ii) and not in case iii), as displayed in Figure 9.2. Thus, we have a condition 
about the Voronoi’ cells that allows us to see whether or not a given segment is 
Delaunay. 

41n such a case, the four points under consideration for the local analysis are co-circular and 
AB can be easily obtained (at least after a swap; see Chapter 18). 
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i) ii) iii) 

Figure 9.2: The three possible patterns that can be encountered when considering 
the Voronoi' cells related to four (non-aligned) points in R2. 

Exercise 9.1 Write the fact that VA and VB share an entity in terms of properties 
about the balls involved in the context. O n  the fly, retrieve the above conditions by 
showing that 

VA n VB n AB # 0 Byin empty,  

A 

where P is such that angle APB is maximal. 

Construction of a Delaunay-admissible set of edges 

Given 3 a set of segments in R2 and the corresponding set S, we want to see 
whether or not this set is Delaunay and, if not, how to modify the unsuitable 
segments so as to  form a Delaunay set of edges. The segments in 3 are examined. 
Only those falling within (Case 2) are considered. Let f be such a segment. 

We first examine the case where only one segment exists in 3 and where only 
one point, P,  falls within Bfmin, for instance, in 7-ly (see Figure 9.3): 

0 if B f p  n 7-l; is empty, triangle f P is Delaunay and thus will be formed (and 
f will be formed), 

0 otherwise one or several points exist in B f p  not in Bfmin and f is not formed5. 
However, a point M exists along f = AB such that B F  and BEin, where 
fl = AM and f2 = MB,  are empty and we return to  (Case I )  for these two 
new segments. Thus, removing f from 3 and replacing it by f1 and fi is a 
suitable solution. 

51t can be easily proved that there is no point Q, other than the points falling within B f p ,  
such that the triangle f Q is Delaunay. 
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Figure 9.3: I n  this pattern, BTzn 
contains only one point, P,  then as- 
suming that P E ‘Fly, the circum- 
ball C f p  may comprise one or sev- 
eral points in the region of 7-l; which 
is  shaded in the figure. 

Proof. To prove this result, we just have to  define the above point M .  One 
solution is to  define M as the projection of point P on f ,  the point denoted by 
Proj f (P)  in Figure 9.4 (left). Then, after replacing f by the above f l  and fi, we 
analyze these two new situations. Obviously, BEin and B F  are empty. This is 
due to  the fact that relationships 

( 9 4  
Bmin fl  c BYin and BEin c BYin 

hold, combined with the fact that the possible points of ‘Fl; that can interact are 
outside Bmin (see Figure 9.3) and thus outside BEin and B F  (see Figure 9.4, left- 
hand sidef. 0 

Remark 9.2 Relationship (9.2) is  the basic key to the problem. 

Remark 9.3 Following Figure 9.4 (right), we could observe that using as point 
M ,  the midpoint of AB, may lead to a solution only after several subdivisions. 

Figure 9.4: Left-hand side: P in BTin no longer belongs to BTEoj f (p )  and 

point of AB. 

Bmin p , o j f ( p ) B .  Right-hand side: P in B P  falls within BTZ where M is  the mid- 

To pursue, we have to  examine the case where we have only one f and several 
points in BTzn. The following scheme completes the desired solution: 
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a pick the point P in BTzn such that APB is maximal, 

if B f p  is empty, f is Delaunay, END, 

otherwise, apply the above construction. Consider the new segments f l  and 
f2  and repeat the process. 

Proof. The radii of the relevant 
minimal balls decrease and then the number of points in these balls decreases. As 

0 

Remark 9.4 Note that the above construction is based on the projection of the 
point with maximal angle while another point impeding the construction could be 
used. This means that the resulting solution is  not necessarily optimal (in specific, 
it is  tedious to decide whether or not a given f has been split too much). 

Actually, Relationship (9.2) gives the key. 

the number of points is finite, the solution is yielded. 

Now, by means of exercises, we consider the case where the set 3 includes more 
than one segment. 

Exercise 9.2 Discuss the validity of the above proof in the case of two segments 
AB and AC sharing point A. Hint: first, observe that i f  angle BAC is obtuse, 
segments AB and AC can be decoupled in some sense. Otherwise, i f  BAC is  acute, 
the two segments are coupled. Add ing  a point in AB may lead to adding a point 
for AC and vice versa. Nevertheless, among the points impeding the construction 
of AB and AC, one can be retained that further decouples the resulting situation. 

Exercise 9.3 I n  the same configuration, f i nd  a counter-example where subdividing 
edge AB using the midpoint results in a solution for edge AB which is  no longer 
valid when considering edge AC. Hint: assume the angle between the two segments 
to be acute and show that adding a midpoint may lead to repeating to infinity the 
same pathology. 

Exercise 9.4 Turn now to a non-manifold boundary. Consider the case of a 
point A where several edges meet and where every angle between two segments is 
acute. Hint: examine the vertices surrounding point A. Find the smallest distance 
between these points and A. Introduce a point on all edges emanating from A at a 
distance less than the above value. 

Remark 9.5 A s  previously mentioned, we have some flexibility when a projection 
is  demanded. I n  the above construction, a specific point has been chosen and then 
projected but other projections may lead to the desired property. Thus a more subtle 
analysis can be made, specifically i f  some criteria must be followed. For instance, 
it could be of interest to ensure that the resulting f l  and f2  are not too different 
in terms of length. 

Exercise 9.5 Look at the case where the open balls are replaced by the closed balls. 
Note that these cases may result in some small changes in the previous discussion. 
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Delaunay-admissible boundary discretization 

The previous material can be used for a slightly different problem. Given a polyg- 
onal discretization of a closed curve boundary of a given domain, we want to  
see whether or not this discretization is Delaunay conforming. If not, we want to  
modify it so as to complete such a Delaunay conforming discretization. 

Figure 9.5: Right-hand side: the context when a point P must be projected, the 
initial edge f and the curve r. The small ball o f f ,  those of f l  and f2  resulting 
from the “theoretical” method. Left-hand side: the small ball that is  not strictly 
included in the initial one when P is  projected on r and not on f .  

Then, the above approach can be retained and, specifically, the construction 
of the projection of a point that impedes the Delaunay process can be used. Nev- 
ertheless, in contrast to the above theoretical framework, such a point must be 
precisely located on r and not on an edge f of r, which leads to a different lo- 
cation when r is a curved boundary. In other words, if f E r, then f1 and f2  as 
defined above are not necessarily close to r and we wish to avoid such a case. 

Now, following Figure 9.5, Relationship (9.2) may be not satisfied. Thus, the 
convergence of the method is an issue. Actually, based on the strict decreasing 
of the radii of the small balls that are involved, the same result as above can be 
obtained. 

9.2 Delaunay-admissible set of segments in R3 

Following [George, Borouchaki-19971, dealing with the non-Delaunay admissible 
segments included in a set of three-dimensional segments leads to  the same result 
as in two dimensions and the same sufficient condition holds. Such a segment can 
be split, if necessary, using the adequate projections, as previously detailed in two 
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dimensions. Similar reasons ensure the convergence. Indeed, the spheres involved 
in the construction are strictly enclosed in the former spheres they replace. 

Let f = AB be a segment in EX3. Segment AB is Delaunay if the Voronoi cells 
VA and VB share a Voronoi’ entity (vertex, edge or facet). Thus, BAB empty is a 
suficient condition for Delaunay admissibility. 

Proof. Since BAB is empty, the midpoint of AB is in VA n VB, thus we have 
0 VA n VB # 0. 

Remark 9.6 The solution may be obtained after a swap (in the case where VAnvB 
reduces to a single point). 

Now, assume that BAB is not empty. Then one or several points exist in BAB. 
One of these points, say PI,  is such that angle AP1B is maximal. Now, continue 
the proof by means of the following exercises. 

Exercise 9.6 Show that for  any point P in BAB such that APB < APlB, we 
have PI E BAPB where BAPB is the ball whose great circle is  the circumcircle of 
triangle APB. 

- -  

Exercise 9.7 Show that i f  face ABP1 is  not created, then AB cannot exist. 

As a consequence, the above point PI is a natural candidate for forming a face 
with AB. Then, “ B A B ~ ~  empty” is a condition for AB to be Delaunay. 

Proof. Since BABP~ is empty, the center of the circle passing through A, B and 
0 

The above result can be obtained by considering the triangulation point of view. 
The segment AB is Delaunay admissible if, obviously, there exists one Delaunay 
tet (a series of Delaunay tets) with AB as an edge (to make sense, set S must 
include more than four points, including A and B ,  and then the number of tets is 
a t  least two). 

Let PI be the above point (that in BAB such that AP1B is maximal). B A B ~ ~  
empty is a condition that ensures the existence of a Delaunay tet with face ABP1 
and thus with edge AB. Such a tet exists. 

PI is in VA n VB n Vp, then VA n VB n Vp, # 0. 

Proof. Let rinit be the radius of the disc ABP1, then, we consider a family of 
balls passing through A, B and the above Pl whose radius varies from Tinit to  
infinity. For a value of this radius, the ball touches a point, let P2 be this point. 

0 

Exercise 9.8 After element PlABP2, f ind  the other elements sharing AB. Show 
that they are Delaunay. Hint: use the same method to find the desired points 
based on  the disc of the face common to the previous element. Then show that 
each resulting tet is  Delaunay. 

Then, tet PlABP2 is Delaunay since, by construction, its ball is empty. 
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Another less demanding condition is now introduced, still based on ball ABP1 
which, now, is not assumed to be empty. Among the points in this ball, we select 
one, say Pz, such that the solid angle between PZ and triangle ABP1 is maximal, 
then if tet PlABP2 is Delaunay, AB will be formed. In this way, we have a 
condition based on two specific points. 

Remark 9.7 Above tet PlABP2 is  the tet of maximal (circum)ball among all the 
tets with a vertex in BABS. 

Now, to  complete the discussion, we have to follow the same scheme as in the 
above section starting from a simple situation and going further to the general 
case (and, specifically, a case where several edges emanate from one point). 

9.3 Delaunay-admissible set of triangular faces 

We now face the same problem for 3, a given set of triangular faces, where one 
face is denoted as f. The main difficulty that is expected is related to the fact 
that Relationship (9.2) does not extend to a face in three dimensions. Given a 
triangle f in R3 along with BTin its minimum ball having as great circle, g c f ,  the 
circle circumscribing f ,  then any subdivision of f results into sub-triangles and 
(see Figure 9.6), in general, we do not have 

(9.3) 
Bmin Bmin 

f l  f ’  

where f 1  denotes one of these sub-triangles. Actually, introducing a subdivision 
point inside the initial face f or along one of its edges leads to  great circles that 
are not included in the initial great circle. Moreover, in the case of a surface mesh, 
splitting a face may lead to  splitting the neighboring faces so as to  preserve the 
conformity of the mesh. 

Figure 9.6: The great circles, gc,,, ,  (thus the corresponding balls) after subdivision 
are not strictly included in the initial circles (the initial ball). Moreover, some 
radii can be significantly greater than the initial one. Left: the face f = ABC is 
subdivided based on  an internal point M .  Right: the subdivision point M is  located 
along one edge off. 

Despite these observations, we want to  find a solution6. First, we establish the 
catalogue of the possible patterns, then we propose a method while discussing the 
convergence issues. 

6As in Section 9.1, a naive approach to the problem is to make sure that a Delaunay tetra- 
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f or ABC 

n, 

7- t ; ,  7-tHJ 

Bmin 
f 

Not at ions 

As for the two-dimensional case, we define some notations (see Figure 9.7 and 
Table 9.2). 3 is now a set of triangular faces, f = ABC denotes such a face 
and S stands for a set of points including the extremities of the f’s. IIj is the 
plane supporting f. It defines two subspaces, 7-t; and XHJ. Given f ,  B Y  is the 
open ball whose great circle, g c j ,  is the circumcircle of f (this ball corresponds 
to the smallest sphere that can be constructed passing through the vertices o f f ) .  
Finally, given a tetrahedron, say a quadruple ABCD or a quadruple like f M  
where f is a face (a triple) and M is a point, BABCD (resp. BjM) is the open ball 
circumscribing the tetrahedron ABCD (resp. f M ) .  

t h e  f a c e  in question 

the  plane supporting f 

t h e  t w o  sub - spaces related t o  IIj 

t h e  small ball of f 

BTg 

Byg 

the  small ball of segment AB 

th,e small ball of segment AB (opposite C )  

S C f  I t he  great circle of f (gcf  = B Y  n IIf) 
I 

I BABCD , Bjp I t h e  circumball of ABCD (resp. f P  ) 

Table 9.2: Notations for the entities involved in the face problem. 

x: 

Figure 9.7: A face f = 

ABC, member of 3, the 
corresponding ball BTzn, the 
great circle (disk) g c f ,  the 
plane IIj and the two associ- 
ated half-spaces 7-t; and ? iy .  

‘F17 

hedron exists with f as a face. Note that the cases where a face f does not exist do not reduce 
to a situation where an edge PQ, where P and Q are two points, one on each of the half-spaces 
separated by a plane supporting f ,  intersects f .  
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Classification 

A pr ior i  classification. Given a set 3 (and the set S), we want to  see whether 
or not 3 exists in Del(S)  the Delaunay triangulation of S (to make sense we 
assume that more than four points compose S). If not, we construct a new set 3’ 
(and the related set S’) such that Del(S’) has the desired property (i.e., the faces 
in 3‘ exist in the triangulation based on 9). 

Thus we need to  analyze the configurations associated with any f in 3. For a 
given triangular face f, the following cases can be encountered: 

(Case 0): N: (or N H J )  is empty, more precisely we are in (Case 0.1) if gcf is 
empty or in (Case 0.2), otherwise, 

(Case 1): BTin is empty 

(Case 2): BTin is not empty, which leads to several situations: (Case 2.1) if gcf 
is empty or (Case 2.2) otherwise. 

Reduced classification. A more precise analysis of the above classification 
leads us to remove (Case 0.2) as well as (Case 2.2). In other words it is always 
possible to ensure that the gcf’s are empty. 

Assume a configuration where gcf is not empty. If P is a point in gcf (thus 
in IIf), it is immediately clear to  see that this point will impede the construction 
whatever the context (with respect to Bfmin, N: or NHJ). Indeed, the circumball 
of any tet with f as a face will include point P and thus such a tet is not Delaunay. 
Actually we face a problem in two dimensions (in plane IIf). Given an arbitrary 
triangulation in a plane (the plane IIf here), it is possible to  achieve a Delaunay 
triangulation by means of edge swapping. As a consequence the cases where a gcf 
is not empty can be removed after edge swapping, thus resulting in a new set 3 
with empty gcf’s. Thus, the classification reduces to: 

a (Case 0): N: (or N H J )  is empty, 

(Case 1): Bfmin is empty, 

(Case 2): Bfmin is not empty, 

while, at the same time, the gcf’s are empty. Based on this classification, we want 
to see if 3 is suitable or must be modified so as to obtain what is needed. 

Analysis of the three configurations 

We examine the three above situations (see [Pebay-l998a] for more details). A 
face in (Case 0) is Delaunay. 
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Proof. Assume that ‘H; is empty, then the points candidate for connection with 
f are in ‘HHJ. Let Q be the point in ‘HHJ such that the solid angle formed with f is 

0 

Since gcf is empty, the sole points that can impede the construction would be 
exactly located on the boundary of gcf (and thus co-circular with A, B and C).  
In this case, f is easy to  obtain, possibly after a swap. 

maximal, then the ball of tet ABCQ is empty. 

Actually, above point Q could be obtained based on what follows: 

pick a point, say P,  in ‘HHJ. Consider the tet ABCP and its ball BABCP: 

- if BABCP is empty, then Q = P,  

- otherwise, a point A4 exists in BABCP, set P = A4 and repeat the same 
process. 

The solution results from the fact that 

Now, a face in (Case 1) is also Delaunay. 

Proof. First, if P is a point in ‘H;, not in Bfmin, for tet ABCP we have BABcpn 
‘H7 c BTin thus BABCP n 7i7 is empty. If P is in ‘H7, we have a similar 
conclusion, BABCP n ‘HT is empty. 

Now, consider a point P in ‘HT, not in BTin, form the tet ABCP. If BABCP n 
‘HT is empty, set Q = P. Otherwise, a point A4 exists in BABCP n 7i;, set 
P = A4 and repeat the process. At completion, we have found a point Q such that 
BABCQ n ‘H; is empty. 

0 

It may be noted that we again encounter the conditions of Delaunay admissi- 
bility of a given face which are similar to those of an edge in R2. Now we have to  
examine the remaining case. Let us recall that in (Case 2), for a given face f, we 
have a situation where: 

Since BABCQ n 7iy c Bfmin, then BABCQ empty holds. 

Byin # 0 ,7iy # 0 ,7i; # 0 and gcf = 0,  (9.5) 

in other words, BTin encloses one or several points, some in ‘H;, some in ‘HHJ. Let 
P be the point in Bfmin also in 7-l; such that BABCP is maximal, BABCP n ‘H; 
is then empty. Thus, a condition for f to  be Delaunay is that BABCP n ‘HHJ = 0. 
Since the same holds when considering the points in ‘HHJ , the condition is the same 
for the point in one or the other half-spaces which maximizes the corresponding 
circumball. 

To summarize, unless the above condition holds (which is actually tedious to  
check), the faces in (Case 2) are not Delaunay. 
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Construction of a Delaunay-admissible set of faces 

Based on the previous classification, some faces are Delaunay admissible, whereas 
others require specific processing. As previously seen, only faces falling within 
(Case 2) must be examined. We have a situation where B Y  encloses at least one 
point, say P,  for instance, in ‘Fly, and the ball circumscribing the quadruple fP 
encloses at least one point, say Q, in ‘Fl; (if the above circumball is empty, face f 
is Delaunay) while the great circle related to f is empty. 

The only case where this particular situation is not the situation encountered 
would be the following: 

a point P is in B Y  as above, for instance, in 7 i Y  and, at the same time, 
one point (or more) exists in the boundary of gcf and a Delaunay tet could 
be formed based on P and this (these) point(s). In this case, a swap may be 
required to  retrieve f .  

For the sake of simplicity, we discard this particular case and we first discuss the 
case where only two such points exist ( P  and Q). Before going further, bear in 
mind that any subdivision by given patterns of an unsuitable face may result in 
replacing this face by several Delaunay admissible faces but a t  the same time, due 
to conformity reasons, may lead to  splitting some neighboring faces (if we consider 
a surface mesh) for which the corresponding small spheres may be as large as we 
want. 

Towards a general scheme. After the above remark, the solution cannot be 
directly completed by “subdividing” the faces. Therefore, the expected result 
can be obtained only by using a multiple step scheme where, at each step, some 
c r i t e r i o n  is enhanced. The scheme we propose is as follows: 

(A) we process the non-Delaunay face edges, 

a doing so, we introduce some new faces as well as some new edges, 

a as long as, among these new edges, there are some non-Delaunay edges, we 
return to (A), 

a then we process the faces (and, now, all face edges are Delaunay-admissible). 

Edge enforcement. The edges of the given faces that are not Delaunay admis- 
sible are dealt with using the previous method. In this way, they are subdivided, 
if judged useful, and an admissible partitioning is completed. 

Nevertheless, when subdividing an edge, for instance, into two sub-edges, a 
new edge is introduced. In fact, the problem does not reduce to  considering stand 
alone edges in R3 but edges that are face edges. Thus, it is necessary to  maintain 
a topological face structure. 

At completion, we have a set of faces all of whose edges exist, and we then turn 
to the face enforcement step. 
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Face enforcement. Following footnote 6 above, we examine more precisely a 
configuration where the given face is missing due to  two points P and Q ,  one in 
‘Fly, the other in ‘Fl; (this point may be also in BTin or not), such that edge PQ 
is Delaunay admissible and impedes the construction of face f. Some occurrences 
of such a pattern are depicted in Figure 9.8. 

Figure 9.8: A face f = ABC, a member of 3, is not Delaunay due to an edge 
PQ. Several tets sharing PQ exist whose vertices, apart from P and Q ,  could be 
those shown in the figure. 

If edges AB, AC and BC exist, we are faced with a situation where PQ 
intersects ABC, then only tets PQAB, PQAC and PQBC exist as can be easily 
proved (left-hand side of the figure). Thus, the corresponding circumballs are 
empty. Then, observe that the only way to  prevent the creation of the three above 
tets is to violate the Delaunay criterion. In other words, a solution is to introduce 
a point in the intersection of these circumballs. 

We first consider the case where P,  in BTtn is such that the sphere passing 
through P and f is larger than that passing through Q and f .  Let A4 be the 
projection of P onto the face f .  A priori, based on the position of P with regard 
to f ,  A4 is either internal to  f or is located on one of the edges of f. Since PQ 
cuts f ,  it is easy to see that M is necessarily inside f and falls within the three 
above balls, therefore this particular point will prevent the creation of edge PQ. 

Using the thus-defined point M ,  the face f is subdivided by means of three 
sub-faces. The new edges are processed so as to  obtain Delaunay-admissible edges 
(via the above method or using some edge swap in the plane o f f )  and we consider 
the set of resulting faces. 

At completion, three results hold. First, point P is no longer inside any balls 
associated with the sub-faces replacing face f .  Next, the radii of the balls related 
to the edges and those related to  the newly created faces decrease. Thus, point 
P has been discarded from the balls of the new faces. Indeed, point A4 acts as a 
“wall” between P and Q which are no longer coupled together (i.e., P is not closer 
to Q than any other point in S). 

This ensures the convergence of the process. 

We now turn to a case where there are several points in BT’”, such that 
several edges intersect the face f. Among these points, we pick the one forming 
the maximal solid angle with f (the sphere passing through f and this point is 
maximal). We project this point onto f and we repeat the same process, then we 
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consider again the BTin (the above point being discarded), we repeat the same 
process as long as a point exists inside one of these new balls. 

Remark 9.8 Notice that the only impeding edges are those which cut the face 
(thus, in Figure 9.8, three cases correspond to this situation while the fourth case 
is  not of interest). 

Remarks about the convergence. We postulate that the global convergence 
holds. For the face edges, this results from the previous discussion. Regarding 
the faces, the same result holds if we can make sure that the process has no loop. 
This proof remains to be properly established, as far as we know (unless some 
particular assumptions are assumed about, for instance, the value of the angles 
between two edges). 

From a practical point of view, we can find in [Pebay-l998a] an algorithm based 
on the previous issues which is completed by some heuristics. The key idea is to  
enforce the edges prior to  considering the resulting faces. Furthermore, to each of 
these faces, the following process is applied: 

a subdivision based on the a choice about the three possible cases (one 
point being added on one of the three edges) such that the retained pattern 
maximizes the minimum angle between the resulting triangles, 

an edge swap (in the case of coplanar faces, this being exactly or approxi- 
matively verified). 

This heuristic strategy has proved to be adequate in numerous significant examples 
(as seen in the previous reference). 

Delaunay-admissible boundary discretization 

We face the same problem as in two dimensions. Given a discretization of a 
closed surface C boundary of a given domain, we want to see whether or not 
this discretization is Delaunay conforming. If not, we want to modify it so as to  
complete such a discretization. 

The above approach can then be employed and, specifically, any point, edge or 
face creation required to  ensure the desired property must be such that this entity 
is precisely located on C and not on a face f of C. 

9.4 Medial axis 

First, we recall the definition of the medial axis of a domain. Given a domain R 
in R2, the medial axis of R is defined as follows: 

Definition 9.1 The medial axis of a domain is the locus of the centers of the 
circles of maximum radius that can be inscribed in the domain. 
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Delaunay triangulation and medial axis construct ion 

Following on from the above, it is possible to find the medial axis or the skeleton 
of a given polygonal domain based on its boundary discretization. From the above 
definition, the medial axis of a domain is the locus of the center of a circle of 
maximal diameter as it rolls inside this domain. 

Given a Delaunay admissible discretization of a domain boundary, it is easy 
to obtain a Delaunay triangulation of this domain whose sole vertices are the 
endpoints of the edges of the above boundary discretization. In terms of the 
Voronoi' diagram corresponding to  the above triangulation, we encounter two types 
of Voronoi' entities: the Voronoi' edges and the Voronoi' vertices. A Voronoi' edge is 
equidistant from two Delaunay vertices while a Voronoi' vertex is equidistant from 
three such vertices7. The Voronoi' edges dual to  a boundary edge are removed and 
the resulting edges form a polygonal line (which can reduce to a point). Under 
appropriate assumptions, this line enjoys some good properties and thus gives a 
rough idea of what the medial axis is. Note that among the Voronoi' edges that 
are removed, we encounter first the non-finite Voronoi' edges' (also referred to  
as unbounded edges) as well as some finite edges related to concave parts of the 
boundary. 

A theoretical issue can be written as the following theorem: 

Theorem 9.1 If h tends to 0 ,  where h is  the length of the longest edge of the dis- 
cretization of the boundary of R, then the union of the finite internal Voronoi' edges 
associated with the triangulation of R based on  its boundary vertices approaches 
the medial axis of R. 

In other words, the medial axis is basically obtained once h tends towards 0, 
by joining the centers of the circumcircles of the triangles in the Delaunay mesh. 

First, we give a sketch of the proof, then we discuss the convergence issue of 
the proposed method (i.e., the finite internal Voronoi' edges). 

Proof. Since h tends to 0, the boundary discretization is Delaunay admissible. 
The triangulation of R based on the boundary vertices is then Delaunay. As a 
consequence, the Voronoi' edges are easy to  obtain based on the dual of the current 
triangulation. Now, among these edges, those which are not related to  a boundary 
Delaunay edge are inside the domain and the circles centered in these edges are 
inside the domain. Moreover, the above circles have maximal radii. Thus, the 
thus-selected Voronoi' edges form the medial axis of R. 

The first three points are obvious. Given an arbitrary boundary discretization, 
it is possible to modify it so as to complete a Delaunay admissible discretization. 
Moreover, such a discretization can be uniform which will further simplify matters. 
Let hmin be the smallest distance between two non-consecutive boundary vertices, 
then h 5 is a suitable value for the definition of the distance between two 
consecutive boundary points. Indeed, a uniform mesh of the boundary can be 

70r  more in the cme of cecircular points. 
81ndeed, such edges intersect a boundary edge. 
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constructed with boundary edges of length h. This mesh satisfies the condition of 
Delaunay requirement. As a consequence, a Delaunay triangulation of the domain 
can be easily constructed whose vertices are the above uniformly spaced boundary 
points. 

The dual of this triangulation can be constructed. The edges of the dual that 
are not related to a Delaunay boundary edge are inside the domain. The latter 
property results from an appropriate choice of h as can be easily seen. 

Figure 9.9: The three types of tri- 
angles that can be encountered in an 
(‘empty” simplicia1 mesh in two di- 
mensions. 

It still remains to  prove that, when h tends to  0 ,  the circles centered on these 
edges are inside the domain and are maximal. From a computational point of 
view, three types of Delaunay triangles exist based on the number of boundary 
entities they have. A Delaunay triangle may have (see Figure 9.9): 

no boundary edge, termed a (Type 0) triangle, 

one boundary edge for a (Type 1) triangle, 

two boundary edgesg and the triangle is termed a (Type 2) triangle. 

Accordingly, the medial axis can be found by considering the way the different 
triangles contribute to it. First, we consider the case of a (Type 0) triangle before 
discussing a pair of two adjacent triangles. 

a (Type 0) triangle. 

Let be the boundary of domain R and let ABC be the triangle in question. 
The circumcircle of this triangle touches the boundary at three vertices. It is 
maximal. If h is small enough, the circle is internal to  R as it satisfies the Delaunay 
criterion. At A,  B or C, it is tangent to r if this boundary is at least of class 
C1. Otherwise, we have a simple contact, the contact point being a corner (r is 

gThe case where the three edges of a triangle are boundary edges is a specific case where the 
domain approximation reduces to this single triangle. Thus a (Type 3) triangle, corresponding 
to this case, is not really interesting. 
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only of class Co at this point). Therefore, the circumcenter (which is inside the 
triangle) belongs to  the medial axis. This point is a special node or a critical node 
of the axis in which three Voronoi' edges meet. Based on the configuration related 
to the three adjacent triangles (see below), such a node is the beginning endpoint 
of three branches of the axis (which can be reduced to  this point in some cases, 
for instance, in the case of co-circular points). 

To know the regularity of the contact between this circle and the boundary, it 
is necessary to analyze the edges of I? in one or other side of this contact vertex. If 
I? is a t  least of class C1, these two edges tend with h towards the (unique) tangent 
and the contact is of class C1. If I? is of class Co, the two edges form an angle 
(other than II) and we have a simple contact, with no tangency property. 

Note, in addition, that whatever h, a (Type 0) triangle does not vanish (its 
surface area does not generally tend to 0 with h).  

Now, to obtain the entire medial axis, apart from the critical nodes, we have 
to examine the contribution of all pairs of adjacent triangles. First, we discuss the 
case where one of the two triangles is of (Type 0), thus leading a priori to  three 
possibilities, then we turn to  the case where one triangle is of (Type 1) resulting 
in two new cases (while a pair (Type 2)-(Type 2)  does not make sense). 

Case of a (Type 0)-(Type 0) pair. 

Figure 9.10: The contribution of a (Type 0)-(Type 0) pair. Left: the four vertices 
are co-circular. Right: the four vertices are not co-circular. 

A combination (Type 0)-(Type 0) is depicted in Figure 9.10. We denote by 01 
the center of the circumcircle of triangle ABC and by 0 2  that of circle of ADB, 
AB being the common edge. If the four vertices are not co-circular, the centers 
01 and 0 2  are distinct. The segment 0 1 0 2  is a part of the medial axis. Indeed, 
the circle centered at 01, as well as that centered at 0 2  obviously conforms to  
the definition and, moreover, all circle centered on 0 1 0 2  and passing through 
the endpoints A and B of the common edge is maximal, inside the domain and 
touches this domain at  two points. The point 01 is, potentially, the origin of three 
branches of the axis (see below) among which is the branch 0 1 0 2 ,  so it is for the 
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point 0 2 .  The case where the four vertices are co-circular implies that 01 = 0 2  

and this critical node is, potentially, the origin of four branches of the medial axis, 
as will be seen shortly. 

Case of a (Type 0)-(Type 1) pair. 

Figure 9.11: The contribution of a (Type 0)-(Type 1) pair. Left: the case of a 
C1 boundary at point C ,  0 2  tends towards 01 with h. Right: the case of a Co 
boundary at point C ,  0 2  tends towards 0; with h and, in general, 0; is  distinct 
from 01. 

Figure 9.11 illustrates a (Type 0)-(Type 1) combination. Let ABC be the 
triangle of (Type 0) and BDC be the triangle of (Type 1) which is adjacent to the 
previous through the edge CB. Edge CD is a boundary Delaunay edge whose size 
is h. As above, we notice 01 and 0 2  the centers of the circles circumscribing the 
two triangles in question. If CD tends with h towards the tangent at C at r, then 
0 2  tends towards 01. Otherwise, 0 2  tends towards a point 0; distinct from 01. 
If h is small enough (non-zero), in the first case, any point belonging to  0 1 0 2  is a 
point of the medial axis and thus 0 1 0 2  is a portion of this axis. In the second case, 
it is the same but the medial axis will have a discontinuity reflecting the corner in 
the boundary at  C (see the remark below). Notice again that the various points 
0 involved in the construction are or are not inside the corresponding triangles. 
The contribution to  the medial axis of a pair of triangles is not necessarily located 
inside these triangles. To conclude, if D is co-circular with A, B and C,  then the 
contribution to  the axis is reduced to  the center-point of the circle of ABC. 

Remark 9.9 The boundary regularity induces the medial axis smoothness. A 
point like 0; results in a local regularity of type Co in the axis. Otherwise, this 
line is locally at least of class C'. 

Case of a (Type 0)-(Type 2) pair. 

A (Type 0)-(Type 2) junction is a priori possible. Nevertheless, if h is small 
enough, this pattern does not exist. Indeed, when h vanishes, a (Type 2) triangle 
reduces to one point. Thus, this case is only feasible from a discrete point of view 
and does not participate to  the theoretical discussion. Note that for numerical 
reasons, this case can arise for a sufficiently small (but non-zero) h. 
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Case of a (Type 1)-(Type 1 )  pair. 

Figure 9.12: T h e  contribution of a (Type 1)-(Type 1) pair. Lef t  and middle: f irs t  
possible situation. Right: second case where a beam i s  encountered. 

In the following (Figure 9.12), a (Type 1)-(Type 1 )  junction is discussed. In- 
deed, two such junctions can be found based on the geometry of the domain 
boundary. Let ABC and BDC be the two triangles sharing the Delaunay edge 
BC which traverses the domain. The first category of (Type 1)-(Type 1 )  junction 
is encountered when AC and BD are the Delaunay boundary edges, while the 
second corresponds to the case where the Delaunay boundary edges are BC and 
CD, meaning that point A is the base of a beam of edges traversing the domain 
from one boundary to the other. 

Let us consider the first case, when h tends to 0;  let us assume that C remains 
unchanged, meaning A tends towards C. Then, the circles passing through C 
tangent to the boundary are centered on the “right” normallo at the boundary at 
vertex C. Among this family of circles, let us pick the one which is tangent to the 
opposite boundary and let 0 be its center. If B‘ is the point where this property 
holds, the retained circle is centered on the “right” normal a t  the boundary at this 
vertex B’. Let us examine” triangle AB’C as well as triangle B’D’C, which are 
Delaunay triangles. The circumcenters of these two triangles, 01 and 0 2 ,  define 
the Voronoi’ edge 0 1 0 2  and 0 is located on this edge. Since h tends to 0 ,  the three 
points 0, 01 and 0 2  tend towards the same point, actually point 0. Now, from a 
discrete point of view, if h is small enough, 0 1 0 2  is the approximate medial axis 
as contributed by the two triangles in question. 

Now we turn to  the second possible situation, namely a beam corresponding to  
one or two concave parts of the boundary. A close look at  Figure 9.12 (right-hand 
side) leads to  proving that the circumcenters of any triangles in the beam tend 
towards 01 (resp. 0 2 )  with h based on the position of the triangle under examina- 
tion. Depending on the boundary regularity, these two points are distinct or not, 
which is also visible about the axis regularity (which may contain a portion of a 
parabola whose links with the adjacent segments give the resulting smoothness). 

Case of a (Type 1)-(Type 2) pair. 

‘OThis notion of “right” normal is due to the fact that point C tends towards point A from 
the “right” side. 

“Depending on the boundary curvature near points C and B‘, the Delaunay triangles that are 
formed are AB‘C and B’D’C or AB‘D‘ and B‘D‘C. Nevertheless, the discussion is the same 
whatever the situation (while using the “left” normals). 
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A (Type 1)-(Type 2) junction is now discussed. As for the (Type 0)-(Type 2) 
case, the (Type 2) triangle vanishes, thus contributing with its terminal node and 
the corresponding Voronoi' edge (which may not exist in the case of co-circularity). 
The medial axis ends at the center of the circle of the triangle of (Type Z), to  
complete it, this point can be linked with the terminal node. 

To summarize, we define the critical nodes (related to  the (Type 0) triangles) 
then the branches between two such nodes. These branches result from the con- 
tribution between a (Type 0) triangle and its neighbor of (Type 1), and then from 
those of the pairs (Type 1)-(Type 1 )  until a contribution of a pair (Type 1)-(Type 0) 
or (Type 1)-(Type 2), in which case the medial axis ends at  a terminal node (except 
in a case of co-circularity where the axis ends before this point). Thus the proof 
of Theorem 9.1 holds. 0 

After this discussion, let us mention a few remarks. 

Remark 9.10 From a practical view point, h is  a small value (and thus does 
not tend towards 0 )  and the above discussion only gives a general idea about the 
expected result. 

Remark 9.11 If we consider a polygonal approximation of a curved boundary, 
the circles circumscribing (Type 2) triangles tend towards the osculating circles of 
the boundary curve. 

Remark 9.12 As previously seen, the topology of the medial axis is defined based 
on the critical and terminal nodes. The branches in the axis are defined between 
two such nodes. 

Remark 9.13 One should define the medial axis as the locus, when h tends to- 
wards 0 ,  of the circumcenters of the Delaunay triangles. This method is good 
a priori but is nevertheless badly suited to the case where the boundary is not 
suficiently smooth. Indeed, two neighboring centers do not necessarily converge 
toward a unique point, thus leading to a discontinuity (a hole) in the axis. Ex- 
amples of such cases have been seen in the above discussion and can be found 
in [Turlciyyah et al. 19971. 

Voronoi' cells of a set of points and medial axis 

The data input of points located on the domain boundaries which are dense 
enough, while not explicitly defining the corresponding boundary edges, make 
it possible to  retrieve the same result. A Delaunay triangulation is built, based on 
the insertion of these points and the corresponding Voronoi' cells are considered so 
as to  find the medial axis of this cloud of points. If this cloud is dense enough, 
this axis is that of the domain that is implicitly defined by this type of input data. 

Computational issues 

In practice, three types of numerical difficulties generally arise. First, the case 
where there are co-circular points leads to an imprecise definition of the axis (which 
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should be reduced to one point) because the Delaunay triangulation is not uniquely 
defined in such a situation. The second issue concerns the choice of the h’s in such 
a way as to ensure a suitable regularity of the line completed by the construction. 
A third problem, which is immediate, is related to numerical errors. For instance, 
one case of such a problem leads to finding (Type 2) triangles and thus branches 
in the axis while such triangles (branches) do not exist in theory. Moreover, the 
two following exercises demonstrate some interesting issues. 

Exercise 9.9 Find the relationship between the h s  on  the boundary discretization 
and the lengths of the portions of lines in the approximate medial axis. 

Exercise 9.10 Find the relationship between the hs on  the boundary discretization 
and the boundary curvature in order to guarantee a good enough smoothness in the 
approximated medial axis. 

Notice that the aim is to  minimize the size of the mesh by choosing variable 
hs, the simplest solution clearly being to  consider a constant and small value for 
these hs. 

Finally, a rough idea of the medial axis is given by the following. 

Remark 9.14 Joining the midpoints of the internal Delaunay edges allows a line 
to be constructed whose topology, when h is appropriately sized, is similar to that 
of the medial axis. Notice that defining the element centroid as a bifurcation point 
((Type 0) triangle) is an easy solution (since this point falls within the triangle) 
but, depending on  the context, could be a rather coarse approximation of the exact 
result. 

Mid-surface 

Constructing the mid-surface of a domain using a Delaunay triangulation based 
only on surface boundary points adequately distributed on this surface is more 
tedious. Before giving a few remarks about this approach, we recall the formal 
definition of what a mid-surface is (similar to Definition 9.1). 

Definition 9.2 The medial surface of a domain is the locus of the centers of the 
spheres of maximal radius that can be inscribed in the domain. 

Find the mid-surface of an empty Delaunay triangulation (with no internal 
point) of the domain appeals an immediate comment. If the domain boundary 
mesh is not Delaunay-admissible, there is no guarantee (Chapter 7) that such an 
empty triangulation exists (due to the Steiner points). Moreover, when h tends 
towards 0 ,  a situation assumed in theory, this phenomenum is not relevant. Thus, 
we can discard this difficulty, for the moment. 

We therefore assume the existence of the desired triangulation. Then, the 
equivalent of Theorem 9.1 (which we prefer not to  attempt to  formulate and prove 
here) is simply assumed. Note, without going into detail, that the proof is neces- 
sarily harder than in two dimensions. Specifically, if we want to use a classification 
of the tets, we clearly find many more types than above. 
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Exercise 9.11 Classify the tets according to how many of their edges or faces 
belong to the domain boundary (while their four vertices are assumed to be on  this 
boundary). 

This being done, it is shown that there are tets having only boundary edges 
(and no boundary faces) and the precise examination of their neighboring elements 
is necessary in order to find a possible contribution to the mid-surface. Let us 
recall that in two dimensions, the contributions to  the medial axis corresponded 
to the dual of the triangulation, say some Voronoi edges. In three dimensions, the 
situation is much more complex. regarding the dual, we find some Voronoi’ faces 
and some Voronoi edges whose presence indicates the way in which the underlying 
tet touches the boundary. 

A few papers discuss, in greater or lesser detail, these aspects and, among 
these, the reader is referred to [Yu et al. 19911 and [Armstrong et al. 19931. 

Medial axis (mid-surface) transform 

This is a process commonly called the ”Medial Axis Transform” (MAT for short), 
see for instance, [Price et al. 19951, [Armstrong et al. 19951 or [Sheehy et al. 19961. 
This transformation, used in a meshing context, has also long been used for graphic 
purposes [Blum-19671. 

The key idea is that the data of the medial axis, together with some additional 
information (radii, branches, etc.), make it possible to  retrieve the boundary of 
the domain in question. 

9.6 Applications 

Numerous applications take advantage of the medial axis (resp. mid-surface) of 
a domain in R2 (resp. R3). A first application consists of partitioning a domain 
into several sub-domains. Furthermore, this approach allows quad (hex) mesh 
generation methods to  be applied in these sub-regions. On the other hand, the 
analysis of the entities in the medial axis (mid-surface) provides some indications 
about the domain geometry which, in turn, allows for some different operations 
such as dimensional reduction (a domain in R3 is seen as a surface, a domain in 
R2 is seen as a line), or a simplification of geometry details where a detail is found 
to be based on too “small” an entity in the axis. 

Domain partitioning 

In two dimensions, using medial axis identification, it is possible to split the domain 
into geometrically simple regions. This subdivision is based on the types of the 
triangles which indicate whether a branch exists or not. The existence of a branch 
(a triangle of (Type 0)) reflects the fact that several paths on the domain are 
possible starting from this branch. The types also indicate the local concavity or 
convexity of the domain boundary. 
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Following these observations, it is possible to define some cut lines that separate 
the domain. A (Type 2) triangle corresponds to a convex region. A (Type 1) 
triangle traverses the domain from one boundary to  another and the examination 
of the elements neighbor of this triangle indicates the geometric nature of the 
domain boundary. 

A first method. The vertex of a (Type 2) triangle common to its two boundary 
edges is a terminal node of the approximated axis and a line emanating from this 
point defines a cut. This line is followed, passing through some triangles with 
(Type 1) and (Type 0) until a (Type 2) triangle is found (by vicinity). In this way, 
we define a graph which allows for the definition of a partition of the domain by 
means of polygonal regions (assuming the data of a polygonal boundary). 

Provided the domain has no hole and assuming the boundary edges between 
two vertices in a (Type 2) triangle are considered as one side, assuming also that 
the edges included between such a vertex and a node in a (Type 0) triangle and 
also those between two nodes with (Type 0) as one side, then the number of sides 
in the thus-defined polygon is the number of the triangles of (Type 0) traversed in 
the path plus two. In this way, the resulting polygons have three, four, five or six 
sides”. 

Figure 9.13: Domain partitioning based on its medial axis, in two dimensions. De- 
launay triangulation and medial axis approximation (left-hand side) and partition 
resulting from method 2 (right-hand side). 

Another method. The above method can be replaced by a method which relies 
more explicitly on (Type 0) triangles. We construct the three lines joining the node 
in the triangle and its three vertices. Then, while traversing the axis, we join this 
node to that of the next (Type 0) triangle. This results in a partition of the domain 
into a set of quads and/or triangles only (Figure 9.13). 

Either approach provides a partition of the given domain. Notice that numer- 
ous variations can be used in order to optimize such a partition, in particular, by 

12This result can be found in the literature. Is it possible to find more sides? Presumably not. 
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explicitly taking into account the concave points (or, a t  least, some of them based 
on the angles) so as to convexify the resulting regions as well as possible. 

Whatever the method, the resulting partition can be used with a view to quad 
construction. 

The same partitioning principle can be used in three dimensions. We use 
the faces in the mid-surface and their type (i.e., the type of the underlying tets) 
to find the cutting surfaces in the domain. However, it is clear that the actual 
implementation is much more complex and, have yet to be thoroughly mastered 
(the examples that can be seen in the literature are, for the most part, rather 
academic). 

The process begins by analyzing the corners, the edges and the faces in the 
mid-surface. Based on this classification, we consider the way in which a sphere 
of maximal radius centered in one entity of the mid-surface touches the domain 
boundary. In accordance with the situations that arise, we find whether it is 
possible or not to  complete a particular (polyhedral) region. The goal is then 
obtained once the domain has been entirely subdivided by means of such regions. 

In conclusion and with no further discussion about this problem, we think that 
some good research issues are likely to  be found and various new programming 
developments may be expected in this area. 

Quad mesh construction 

First, it is possible to  use a partition in polygons (each having a small number 
of sides) and to deduce from it a (coarse) quad partition. If the polygon is not a 
quad itself, the midpoint subdivision method completes what is expected. 

The latter technique consists of inserting one point in the region (for instance, 
its centroid) and one point in each of its sides (for instance, the midpoint for a 
free side, i.e., a side related to a portion of the medial axis and one point, close in 
some sense, for a boundary side). It is easy to  see that only quads are obtained 
in this way. The number of quads is the number of sides (a triangle results in 
three quads, etc.). This subdivision is made globally and results in a first coarse 
conforming covering-up of the domain (Figure 9.14, middle). 

The resulting covering-up serves as a basis for the construction of the final 
mesh. To complete this mesh, there are two approaches. The first consists of 
repeating the midpoint subdivision process. The second method uses a classical 
algebraic mesh generation method (Chapter 4). 

Whichever approach is used, the global conformity of the mesh must be main- 
tained. This leads to imposing consistency about the number of subdivision of a 
given coarse element by taking into account its neighboring elements and, there- 
fore, this imposes some constraints that propagate from element to  element. 

Finally, given the subdivision parameters, there is no special reason for having 
the points of the given boundary follow this point distribution. Thus, new points 
are constructed in the boundary and it is these points that define the new geom- 
etry of the resulting mesh and thus that of the final discretization of the domain 
(Figure 9.14, right-hand side). 
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Figure 9.14: Examples of quad meshes based on  the medial axis, in two dimen- 
sions: Delaunay triangulation of the domain (left-hand side), domain partitioning 
using the approximated medial axis (middle) and domain mesh resulting from an 
algebraic method (right-hand side). 

Hex mesh construction 

As can be imagined, this topic is in principle the extension to three dimensions 
of what we did in two dimensions. In practice, the expected difficulty is much 
greater. Notice that two mesh generation methods can be used to mesh a region 
resulting from the partition: 

0 as in two dimensions, a midpoint subdivision method (possibly repeated) or 
an algebraic type method (Chapter 4) or a similar method, [Price et al. 19951, 
[Price, Armstrong-19971, 

0 solely in three dimensions, an approach by extrusion (the product method 
as seen in Chapter 8) which consists in using a mesh of the considered region 
of the mid-surface and to extrude it in a third direction (towards the domain 
boundary), 

while ensuring compatibility a t  the region interface level. 

Other applications 

Among the other applications using the medial axis or the mid-surface of a domain, 
we can envisage dimensional reduction [Donaghy et al. 19961 or domain simplifi- 
cation [Armstrong et al. 19951. 

Dimensional reduction. In essence, this operation consists of replacing a com- 
putation in two dimensions by one in one dimension (in three dimensions by a 
computation based on a surface). Observe that the shell case is a case where the 
domain is a three-dimensional domain but where the computation is made based 
on a surface (after some assumptions and using some data values that allow for 
the three-dimensional aspect of the problem in question). 
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Dimensional reduction is mostly used in two situations: 

0 the problem, in its intrinsic dimension, can be approximated by a prob- 
lem posed in a space with a lesser dimension (assuming some more or less 
restrictive hypotheses), 

0 the solution of the reduced problem provides an indication, albeit relatively 
coarse, about the solution of the exact problem and thus already makes it 
possible to know some important parameters for a reduced CPU cost. 

Here again, the medial axis (in two dimensions) serves a t  a basis for the dimen- 
sional reduction procedure. However, the medial axis, by itself, is not usually the 
ideal solution. Indeed, the adequate solution can be formed by a combination of 
regions (entities) in zero dimension (some points), in one dimension (some edges) 
and, in some places, in two dimensions, all of them being adequately linked to as 
to permit the further usage of the reduced model. Notice also that a simplification 
process (see below) enables us, in some cases, to obtain a more complete reduction. 

Geometry simplification. Simplifying the geometry of a domain is an oper- 
ation that has proved useful in various contexts (and it will be discussed again 
later, in particular, in the surface mesh case; see Chapter 15). For the moment, 
we use the properties of the medial entity in order to  simplify the geometry. The 
key idea is to  remove some details that are judged useless (in other words, too 
small in some sense) in the geometry while preserving the general shape and the 
topological structure of the geometric model. 

Remark 9.15 Detail removal mus t  be made in accordance with the targeted appli- 
cation. Indeed, during the solving of the problem, a small detail m a y  be the source 
of a singularity in the solution and thus removing it m a y  alter the computed so- 
lution. Thus  it i s  recommended to  remove details whose influence remains local. 
For graphical purposes, the size of a detail i s  the only factor  t o  be considered. 

The medial axis and the corresponding radii (in two dimensions) indicate the 
size of a given detail as compared with its neighborhood. 

Visiting the medial axis, we detect the possible holes and the possible loops, 
we then evaluate the size of these holes (by observing the path visited in the axis 
by comparison with the average radius of a maximal circle traversing the same 
path). In this way, it is possible to decide whether a hole can be suppressed or not 
(edge collapsing, see Chapter 18, is then a suitable solution). 

The edges are then examined. With each edge is associated a value defined as 
the ratio between the edge length and the average radius of the maximal circle 
that touch it. Again, this value allows for the decision. In this way it is possible 
to simplify the geometry by suppressing the fillets, the small notches, the small 
protrusions or the small stepsizes. 

In three dimensions, suppressing a face is much more a delicate operation and 
(see Chapter 19), such an operation will be made using a series of edge collapsing 
while maintaining topological coherence and smooth enough regularity for the 
thus-simplified surface. 



Chapter 10 

Quadratic Forms and Metrics 

As the perspicacious reader will have already noticed in the presentation of the 
main governed mesh generation methods (Chapters 5 to 7) and as will also be seen 
in the chapters devoted to  curve and surface meshing (Chapters 14 and 15), as 
well as in the sections dealing with h, p and hpmethods (Chapters 21 and 22), 
lengths, distances and other metric-like relations play an important role and are 
key features in numerous mesh generation and evaluation algorithms. 

From a mathematical point of view, the definition of the length of a given vector 
(resp. a segment) or, similarly, of the distance between two points is based on an 
adequate definition of the dot product. Algebraic results indicate that this product 
is related to a quadratic form (associated with a bilinear form). Depending on the 
objectives, various definitions of these notions can be exhibited, therefore leading 
to various definitions of a metric. 

* * *  
This chapter begins with some elementary reviews of quadratic forms (which 

can be found in textbooks), then the notion of length and metric are introduced 
and explained. The definition of the unit length is introduced and discussed in 
detail as a simple way to measure the length of a given item (segment, vector, etc.) 
with respect to a given metric. Examples of metrics are given to  emphasize the 
different types of control that can be applied based on the previous notions. 

Different metric-related operators are then suggested. They allow us to apply 
the various metric manipulations usually involved in a mesh generation or mesh 
modification context. To this end, we briefly discuss the simultaneous reduction, 
the interpolation and the intersection of two given quadratic forms. We then focus 
on the metric smoothing problem when these metrics present discontinuities or 
variations that are too great. 

Finally, we briefly discuss a way of constructing metrics suitable for surface 
meshing and numerical simulations based on finite element methods with a control 
of the error (of interpolation, for instance). 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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10.1 Bilinear and quadratic forms 

The goal of this first section is to recall some classical definitions and mathematical 
results of linear algebra, related to linear, bilinear and quadratic forms. These 
results will notably serve to compute the edge lengths of the given meshes. 

Linear and bilinear forms 

Let E be a vector space on a field K .  We recall that a basis of E is a part 
a = ( a l ,  u2, ..., a,) of E such that each vector u = ( ~ 1 ,  ..., u,) of E can be written 
in a unique fashion as: 

u = C a i u i .  

All bases of E have the same number of elements, the so-called dimensions of E. 
Now, let consider a vector space E on a commutative field K of characteristics 
different from 2. 

n 

i=l 

Definition 10.1 A linear application f ,  defined on  E with value in K ,  is  called 
a linear form. 

Each linear form has the two following properties: 

= f ( u ) +  f (u)  V U , V E E  { "'"f:; = W U )  VuEE,b"XEK ' 

The set L(E,  K )  of the all linear applications from E to K is an additive group by 
defining, if f and g E L(E,  K ) ,  the sum f + g and the opposite - f as: 

(f + g ) ( u )  = f (u )  + g ( u )  vu E E 

( - f ) (u)=-f (u)  VUE E .  

Definition 10.2 We call bilinear form on  E x F any bilinear application f from 
E x F to K satisfying the two following conditions, Vuj E E,  Vuj E F :  

1. 

2. 

f ( X l U l +  A21127 .) = X l f  (111, u) + X 2 f  (112, u), VXj E K ,  

f (u, P l V l  + P 2 U 2 )  = P l f  (u, v1) + P 2 f  (u, u2), VPj  E K .  

In other words, a bilinear form on E x F is an application f from E x F to K 
which is linear on K in each of its parameters u and u when the other is fixed. 
The set of bilinear forms on E x F is a sub-space of K ,  denoted as &(E,  F ) .  

An example of such a bilinear form extensively used in our context is the dot 
product, defined as the bilinear form f on (Rd,Rd) to R: 

d 

f ( % v )  = ( u , u )  = C u k u k :  
k=l 

with U k  (resp. U k )  stands for the kth component of vector u (resp. u). 
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Definitions. Two vectors u E E and v E F are said to be orthogonal and we 
write u I v if and only if f ( u , v )  = 0. When E = F ,  a bilinear form f is said to  
be, V(u,v )  E E2: 

0 symmetric if and only if: f (u ,  v) = f (v, u) ,  

0 antisymmetric if and only if: f (u ,  v) = - f (v, u) ,  

0 alternate if and only if f (u, u )  = 0,  

0 definite symmetric if and only if f (u, u )  = 0 u = 0. 

Let f be a symmetric bilinear form on E. A family (u i ) iE~  (where I is a set of 
indices) of vectors of E is said to be, V ( i , j )  E 12: 

orthogonal, if and only if (i  # j )  * f (ui, u j )  = 0 ,  

0 orthonormal, if and only if f ( ~ i ,  uj)  = 6ij (where 6ij = 0 ,6 i i  = 1 ) . 

Matrix form of a bilinear form 

Let a = ( a l ,  ..., a,) and b = ( b l ,  ..., bp)  be two bases of E and F ,  then, we can 
write, for i E [ l ,n] ,  j E [ l , p ] :  

(10.1) 

Definition 10.3 W e  call (representative) matrix of the bilinear f o r m  f of &(E,  F )  
in the basis a and b, the matrix M = [mij] determined by mij = f ( a i ,  b j )  . 

If U and V are two column-matrices of the components of the vectors u E E and 
v E F in the basis a and b, Relation (10.1) can be expressed as a product of 
matrices, V(u,v) E E x F :  

f (u, v) = f (aU,  b V )  =t U f  ( a ,  b )V = tU M V .  (10.2) 

M is non-degenerate if and only if M = [mij] is invertible. 

Definition 10.4 A basis of E i s  orthogonal (resp. orthonormal) i f  and only i f  M 
i s  diagonal (resp. equal to  the unit matrix of order n). 

Quadratic forms 

Definition 10.5 A quadratic form q on  a space vector E is a n  application f rom 
E to  i ts  field K such that for each (u E K and (u ,  v) E E2: 

1. q(Xu)  = x2 q ( u ) ,  

2. the application F f rom E X  E to  K ,  (u ,  v) - F ( u ,  V) = q(u+v)  -q (u )  - q ( v )  
is  bilinea7-l. 

'Moreover, the application F is symmetric. 
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If q1 and q2 are two quadratic forms on E and if a1 and a 2  E K, the application 
u - alql(u) + a242(u) is also a quadratic form. Therefore, the set Q(E) of all 
quadratic forms on E has a structure of vector space. 

Let f be an arbitrary bilinear form on E .  The function q(u) = f ( u , u )  is a 
quadratic form on E .  The sole data of q makes it possible to retrieve the symmetric 
part o f f :  

4 f ( U  + w) - q.f(u) - q. f (w)  = f(u,w) + f(w, .). 

If K = EX, the form F can be replaced by the symmetric bilinear form f = $ F .  
Thus, we have the following relation: 

with f(u, u) = q(u). Therefore, the data of a quadratic form q is equivalent to the 
data of a symmetric bilinear form f = $ (q(u + w) - q(u) - q(w)); the data of the 
form f determines the form q by the relation q(u) = f(u, u). 

The three following relations are commonly used in practice: 

The restriction of q to  the sub-space &(E) of the symmetric bilinear forms on 
E induces an isomorphism of &(E) on Q(E). The inverse image of a quadratic 
form q by this isomorphism is then called the polar form of q. In other words, the 
symmetric bilinear form defined by Relation (10.3) is the so-called polar form of 
q. Hence, we have the two following identities (which can be easily deduced from 
the previous relations): 

Let q be a quadratic form of polar form f .  We also have the two following 
inequalities, for each (u ,v)  E E2:  

0 Cauchy-Schwartz’s inequality: 
if q is positive, then:f2(u, w) 5 q(u) q ( w ) ,  the equality is obtained if u and w 
are colinear and only when the form is positive definite. 

0 Minkowski’s inequality: 
if q is positive, then: 
3a E E%+ such that x = av and only if the form is positive definite. 

5 m+ m, with equality if v = 0 or 
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Distances and norms 

Let us now consider the field of real numbers, R. We call distance any application 
d : R x R - R+ such that V(x, y) E R2: 

On the other hand, we call nomn on R any application N from R to R+ such that 
V(2,y) E R2: 

N ( z ) = O  * 2 = 0  

N(z+y)  I N ( z )  +N(y)  
N(X2) = X N ( 2 ) .  

Each vector of norm 1 is a so-called unit vector. 
For instance, the three following applications are norms on R: 

n 

i=l 
1. NI(z) = C Ixilr 

2. N2(2) = /? 1 4 2 ,  
i= 1 

3. N,(2) = sup IZil, 

and we write Ni(z)  = 11x11. We will then show which relation exists between a 
symmetric positive bilinear form and a norm or a distance. 

Norm associated with a quadratic form. Let us consider a positive sym- 
metric bilinear non-degenerate form, f on R and let q be the associated quadratic 
form. We are now trying to  establish that the application m is a norm on R. 
We have already noticed that (Minkowski’s inequality): 

Moreover, by definition the following relation holds: 

we can then deduce that: 

m= 1x1 m 
As the form f is non-degenerate, we have a third relation: 

q ( 2 )  = o * z = o ,  

and therefore we can deduce that the application x - m is a norm on R. 
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Dot product. 
be written in an orthonormal basis: 

Any non-degenerate symmetric positive bilinear form f on R can 

Among all the possible forms, we pick one particular form f the so-called dot 
product on R which is written as: 

f b , Y )  = (Z,Y).  

Thus introduced, the norm x 4 

obviously means that the associated quadratic form q is the square of the norm: 
is called the Euclidean norm. This 

Distance between two points. 
distance between two points (P, Q) E R2 as follows: 

Using the Euclidean norm, we can define the 

d ( P ,  Q )  = IIP - Q I I  . (10.4) 

By extension, we also say that 11x11 is the length of vector x. 
We have thus the two following classical results in R: 

Cauchy-Schwartz’s inequality: 112 + yll 5 llxll + 11yl1 and 

Matrix form of a quadratic form 

A quadratic form q on E is so-called positive (resp. strictly positive) and denoted 
q 2 0 (resp. q > 0), if q ( u )  2 0 (resp. q ( u )  > 0) for each u (resp. u # 0) of E.  

Hence, whatever the basis a = (a l ,  ..., an) of E ,  the determinant of the matrix 
M = [ f ( a i ,  a j ) ]  of q in this basis is positive or zero (resp. strictly positive) if q 2 0 
(resp. q > 0). 

A symmetric matrix M = [ f i j ]  on (the ordered field) K is called positive if for 
any column-vector U # 0: 

i,j i i<j 

is positive. In other words, M is the matrix of a positive quadratic form q on K .  

Notice also that the eigenvalues of a symmetric operator are real numbers. 
Any symmetric operator is diagonalizable in an orthogonal basis. This means that 
there is always an orthogonal basis of eigenvectors for any symmetric operator. We 
will see an important application of this property concerning the diagonalization 
of two quadratic forms. 

Having recalled these classical results of linear algebra, it is now possible to  
introduce the notions of length and metric which are commonly involved in mesh 
generation and mesh modification algorithms. 
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10.2 Distances and lengths 

We have seen in Section 10.1 that the data of a symmetric bilinear form f (u, w) = 

i (q(u + w) - q(u) - q(w)) is equivalent to the data of a quadratic form q on R. 
From the notion of metric space, which allows us to  define the distance between 
two points, we will show how to compute the length of a segment. 

Classical length 

The notion of length in a metric space is related to the notion of metric and, thus, 
to a suitable definition of the dot product in the given vector space. 

Notion of metric. Assume that a t  any point P of Rd a metric tensor is given, 
as a ( d  x d )  symmetric definite positive matrix M ( P ) ,  (i.e., non-degenerate). For 
example, in two dimensions, we consider: 

(10.5) 

such that a > 0, c > 0 and ac - b2 > 0, for a ,  b, c E R (notice that these values 
depend on P,  i.e., a = a(P),  etc.). If the field of tensors thus defined is known, it 
induces a Riemannian structure over Rd. 

Remark 10.1 In the case where M ( P )  does not depend on P,  the matrix thus 
defined has real coeficients and we again find the classical Euclidean case (where 
the metric is independent of the position). 

Dot product. 
for a given metric M ( P )  can be defined as: 

The dot product of two vectors in the classical Euclidean space 

( u , V ) M ( P )  = u M ( P ) w ,  (10.6) 

and therefore, considering the Euclidean norm introduced in the previous section, 
the norm of a vector u is given by the relation: 

Notion of length (general case). Having recalled the notions of metric and 
dot product, we will now introduce the notion of the length of a vector. In the 
Euclidean space R2 or R3, supplied with the Euclidean norm, we have seen that: 

f ( u , v )  = ( u , 4  i.e.7 4(u) = ( % U )  = 1 l ~ l l 2  , 
which allows us to  see that M = I d  (as compared with the above definition of the 
dot product). This will allow us to  compute the length of any vector u, which is 
indeed the distance between the two endpoints of this vector, using the norm: 

llull = &zG(Fji. (10.8) 
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To summarize, given a quadratic form q, computing a length consists of using 
the dot product associated to q. Hence, the dot product can be formally written 
as: (., .)q or also as (., . )M where M is the matrix (symmetric positive definite) 
associated with the quadratic form q. 

Notion of length (particular case). The length notion can be also retrieved 
in differential geometry, as will be seen in the following chapter. Let us consider 
the space supplied with a Riemannian structure induced by a metric M,. We 
consider the curve y that is the shortest path between two given points A and B. 
Such a curve is a so-called geodesic. Assume a parameterization y(t) of the arc y 
of class Ck (k 2 1) is known, such that y(0) = A and $1) = B. Then, the length 
L(y) of the arc is defined as: 

We then call the distance between two points, the lower bound of the length 
of the curves connecting these points. Computing L(y) requires knowing y(t), 
which turns out to  be difficult in practice. That is why we consider the case where 
the metrics are independent of the position (which reduces the problem to the 
classical Euclidean case, cf. Remark ( l O . l ) ) ,  for which the geodesics are straight 
(line) segments. 

So, the restriction of a paremetrized arc y(t), t E [u,b] to  a vector a with 
the parameterization y(t) = A + ta, t E [0,1] and y(0) = A,  $1) = B allows us 
to write the length L(y) of the segment as: 

where M, represents the metric specification along y. Hence, noticing that y’(t) = 

a, we have: 

L ( ~ )  = d p d t .  

0 

Writing M ,  = M (i.e., the metric is independent of the position), we obtain the 
relation: 

L(y) = dmxz 
And, in the particular case where M ,  = I d ,  we finally have: 

1 

which is obviously the expected result. 
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Unit length 

The key is now to define a way to compute the lengths in the case where various 
metrics (i.e., different from the above classical Euclidean case) are specified. Thus, 
we want to change the definition of q (or that of M )  resulting in a different 
expression for ( . , ) q  (or (., . ) M ) .  

Notice firstly that two situations will be of particular interest. They are related 
to the way q (or M )  is defined. The first case corresponds to  the Euclidean case 
where q is defined in a global fashion. On the other hand, cases where q depends 
on the spatial position (say q = qt or, similarly, M = M ( t ) )  lead to  a Riemannian 
context. 

Unit length. Let us consider a given basis ak,  k = 1, d of unit vectors in Rd 
and d positive real values X k .  We want to define a metric M where the norm, 
denoted by l l . l l ~ ,  is such that satisfying the relation ~~u~~~ = 1 means that vector 
u conforms to the pairs ( X k ,  uk)’s. 

To make these notions more precise, we first give some simple examples, then 
we introduce the general notion of unit length. 

In the first example, we want to define segments (vectors) of constant length 
h, irrespective of the direction. This problem is isotropic by nature. Indeed, the 
geometric locus of all points P distant from h from a given point 0 is a circle (a 
sphere), centered at  0 of radius h. 

In practice, we want to define metric M such that: 

II0Plln.l = 1  ll0Pll = h .  

Notice (cleverly) that the diagonal matrix A having all its coefficients X I ,  equal to  
leads to a matrix: 

which is a solution of the previous equation. Indeed, using Relation (10.8), with 
u = 0P and ll0Pll = h, we obtain: 

In fact, according to  Relation (10.2), we can observe that the metric defined 
in this way corresponds to a circle (a sphere). Let consider the bilinear form 

Then, for example in R2, we have the relation: 

which, in the case where f(u, u)  = 1 defines a circle of radius h. 
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Let us now consider an anisotropic example. More precisely, if ek (k = 1, d )  
denotes a vector of the canonical basis of Rd,  we want to  define segments (vectors) 
of length h k  in the direction e k .  

Let A be the d x d diagonal matrix in which all diagonal coefficients Xk are set 
1 

to -. Then, we define a transformation 7 such that 
h k  

7 ( e k )  = ek ,for k = 1, .., d .  

We introduce the matrix M = T A R 7  and we define 

IIUlln/l = J"uMu. 
Hence, given a point 0, the points P such that ll$lln/l = 1 are within an ellipse 
(an ellipsoid) centered at  0, aligned with the eks, whose radii are the hks. Similarly 
to the isotropic case, we find, for instance, in two dimensions: 

u; up 
f (u ,u )  = - + - , 

hz hg 

which is actually the expected classical result. 

Finally, the last example corresponds to  the general anisotropic case. In this 
case, segments (vectors) of length h k  are desired in the direction a k .  Following the 
same scheme as in the previous example, the transformation 7 is now such that: 

7 ( a k )  = e k  , k  = 1, ..,d and similarly, 7 - ' ( e k )  =arc , k  = 1, . . ,d .  

Then, the relation ll$lln/l = 1 defines an ellipse (an ellipsoid) centered at  0, 
aligned with the a k  and such that the radii are the given hk's. 

A simple way of proving this is to  associate a point P' with each point P using 
the relation OP = 7-1 OP'. Then, l l $ l l ~  = 1 leads to  writing the relations: 

which can be reduced to the relation: 

which is indeed the relation showing that point P' belongs to an ellipse (in two 
dimensions) centered at  0, aligned with the ek and whose radii are the h k .  Then, 
using the relation relating points P and PI, it is easy to  see that P belongs (in 
two dimensions) to  the ellipse with the same center and the same radii, but now 
aligned with the ak .  

Remark 10.2 It could be noticed that the above general form can be reduced to  the 
first two cases, provided a suitable choice of A and of 7 .  So, in the first example, 
7 is  the identity matrix I d  and A2 = 3. In the second example, we again have 
7 = I d  while A is  the diagonal matrix whose coeficients are hi ' .  



QI:ADRATIC FORMS AND METRICS 341 

t t t 

e - e 
A 

a 

e - -  

Figure 10.1: The geometric interpretation of the various metrics. An isotropic 
metric leads t o  a circle (left-hand side), a n  anisotropic metric leads to  a n  ellipse 
(aligned with the canonical basis, middle, or aligned with any  arbitrary orthogonal 
vectors, right-hand side). 

A global definition. In this case, the metric (i.e., q or M )  is globally defined, 
thus meaning that the notion of unit length is the same at any point location. 
Computing a length is then easy since the matrix involved in such a calculation is 
a constant one. 

A local definition. In this case, the metric varies from point to point and the 
notion of unit length is different according to the spatial position. Actually, if we 
consider the matrix M ,  this matrix is a function of the current position and thus 
can be expressed as M ( t ) ,  where t is a parameter value. Unlike the previous case, 
the calculation of a length is more tedious. In practice, the matrix involved in the 
formula is no longer constant, thus leading us to consider approximate solutions 
for the length calculation. 

Applications 

Let us consider a given specification. This can be expressed in terms of sizes or in 
terms of directional features and related sizes. Then, the previous material enables 
us to characterize this specification as a unit length defined in a suitable space. 

Actually, two categories of metric specifications can be exhibited, each of which 
includes two classes of definitions. Independently of this classification, the metrics 
are either isotropic or anisotropic by nature. 

We have already mentioned that the case where the metric is constant over the 
space is equivalent to the classical Euclidean situation. When the metric varies 
from point to point (i.e., is not constant from one point to another), the context of 
the study is then Riemannian (actually, the field of tensors induces a Riemannian 
structure over Rd). The length calculation then requires a special effort. 
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10.3 Metric-based operations 

In this section, we will discuss various metric-based manipulation methods. Indeed, 
in many applications, several metrics can be defined at any point location (of 
the computational domain). We will then consider different ways of going back 
to the specification of a unique metric. Actually, the metric-based operations 
are considered from the point of view of operations dealing with the associated 
quadratic forms. 

Simultaneous reduction of two metrics 

Given two metrics M1 and M2 (or similarly two quadratic forms q1 and q 2 ) ,  

the problem here is to express these two metrics in a basis where the associated 
matrices are both diagonal. In general, no such basis e exists that is orthogonal for 
both q1 and q2.  Such a basis is one of eigenvectors for the operator fcl f 2  ( f l  and 
f2 being the linear applications associated with q1 and q z ) ,  hence a basis allowing 
us to diagonalize this operator. 

To this end, we can discuss either from the quadratic forms or from the matrices 
related to  the given metrics. For the sake of convenience, we will follow the second 
approach. 

Let us denote by M1 and M2 the two d x d matrices related to  the two given 
quadratic forms. The simultaneous reduction of two positive quadratic forms is 
possible as soon as one of them is defined, which means that the associated matrix 
is invertible. Assume then that M1 is positive definite’. 

To obtain a basis where both M1 and M2 are diagonal, we introduce the 
matrix N defined as: 

N = MT1 M 2 .  

The matrix N being M 1-symmetric, it can thus be diagonalized. Let el and e2 be 
the two eigenvectors of N .  These vectors define a basis of Rd and we can write: 

te2 M1 el = te2 M2 el = 0 ,  

thus meaning that el and e2 are Mi-orthogonal (i = 1,2) .  To establish this 
property, we consider A1 and A2 the two eigenvectors associated with the two 
previously defined eigenvectors. Then, we have the relations: 

Nel = Ale1 as well as Ne2 = A2ez i.e., 

MT1M2 el = Ale1 and MT1M2 e2 = A2e2.  

By applying M1 to the left, the previous relations become: 

M2 el = AlMl el and M2 e2 = AzM1 e2. (10.11) 

From the first relation we deduce: 

te2M2 el = A1 te2M1 e l ,  

2Trivially, we will not consider the case where the two matrices are linked by a relation like 
Mi = aM2. 
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and from the second one: 

whose transpose is: 
te2M2 el = X Z  t e2M1 e l ,  

then, by identification, we obtain: 

X I  t e z M l  el = XZ t e z M l  e l ,  

which finally implies that: 

t e 2 M l  el = t e2Mz  el = 0 .  

Moreover, Relation (10.11) leads to: 

t e l M 2 e l  = X l t e l M l e l  and te2M2e2 = X 2 e z M l e 2 ,  

which can also be written as follows: 

by using the two corresponding quadratic forms. 

Expression of a vector in the eigenbasis. In the basis defined by [ei, e z ] ,  any 
vector v can be written as v = x l e l  + xzez.  The two quadratic forms q1(v) and 
q2(v) are represented by two diagonal matrices. This result is left as an exercise: 

Exercise 10.1 Define ai,j the coeficients such that: 

Prove that ai,j = 0 for i # j and show that ai,i = t e i M l  ei. Similarly, reconsider 
the same exercise with the matrix M2. 

Expression of the matrices in the eigenbasis. Let MT and MZ be the 
matrices obtained by replacing M I  and M2 by the corresponding forms in the 
eigenbasis. 

Exercise 10.2 Express the transformation defined by the matrix R = ( e l , eZ ) ,  
f i nd  the expression of MT = t R M I R  and verify that a diagonal matrix results 
from this operation. Similarly, consider the coeficients of the matrix MZ. 

Remark 10.3 Notice that MT is Id, the identity matrix, i f  we normalize el and 
ez with respect to M 1 .  I n  this case we have, for the corresponding quadratic forms: 
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Metric interpolation 

For the sake of clarity, we only consider here the two dimensional case. Let PI 
and PZ be two points in R2 and let M I  and M2 be two metrics associated with 
these points. The problem here is to  find a metric M ( t )  defined on the segment 
[PI ,  P2] = [PI + t (P2 - PI)]  for each t in [0,1]. Moreover, the desired metric must 
be such that: 

M ( 0 )  = M I  and M ( l )  = M 2 ,  

and must vary monotonously between these two values. 

lation. To this end, various techniques can be considered. 
Achieving such a metric is actually equivalent to performing a metric interpo- 

An intuitive method. To give the idea of this kind of method, we consider the 
isotropic situation. The desired solution can then be obtained trivially. Indeed, 
if the metrics are simply & and &, then the expected sizes are respectively 
h(0) = 1/fi for M1 (at point PI)  and h(1) = l / @  for M2 (at point P2). Hence, 
assuming that an arithmetic (linear) size distribution is specified, the interpolation 
function is defined as follows: 

1 
I 

(h(0) + t(h(1) - h(0)))2 Id ’ M ( t )  = O < t < l ,  (10.12) 

with M(0)  = M I  and M ( l )  = M a .  

metric distribution (see below). 
Notice that other types of distributions can be considered, for instance, a geo- 

In the anisotropic case, several approaches can be considered. By analogy with 

the isotropic case where the metric is usually written as M = - I d ,  we observe 

that the variation related to  the h’s is “equivalent” to  the variation related to  the 
M-’I2’s. Hence, we obtain the following interpolation scheme: 

1 
h2 

M ( t )  = ((1 - (10.13) 

Computing MP1I2 requires evaluating the eigenvalues of M ,  which is tedious. 
To avoid this problem, we can consider the interpolation as: 

M ( t )  = ((1 - t ) M l l  + tMT1)- l ,  0 5 t 5 1,  (10.14) 

and notice that this relation emphasizes the smallest sizes (i.e., the weakest values 
of h). 

The interpolation scheme based on a metric exponent is properly defined. Ac- 
tually: 

if M is a metric, then tM“ is also a metric, when t > 0 and (u are two 
arbitrary real values; 

a if M I  and M2 are two metrics, M I  + M2 is also a metric. 
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Proving these results requires only making sure that, in each case, the resulting 
matrices are symmetric and positive definite. 

Notice, however, that this kind of intuitive interpolation presents some weak- 
nesses. In particular, the variations in terms of h cannot be explicitly controlled. 
Thus, in the following, we consider the simultaneous reduction of two metrics. Con- 
versely (see below) the intuitive method gives a solution when the interpolation is 
performed on a triangle and not only along a line. 

A method based on the simultaneous reduction. 
is obtained after a two-step algorithm: 

The interpolation metric 

Step 1: using the above simultaneous reduction, we write both M1 and M2 in 
a diagonal form. 

Step 2: according to  the interpolation between PI and P2, we complete the 
desired interpolation between the metrics. 

Thus, let el and e2 be the two eigenvectors of N = MT1M2, the eigenvalues of 
the metric M1 are the Xi’s such that ( X i  = te&tlei)i,l,2 and that of the metric 
M2, the pi’s such that (pi = teiM2ei)i=1,2. Any vector X = xlel  + x2e2 in EX2, 
written in the basis [e l ,  ez] ,  is such that: 

t X M I X  = X I S :  + Xzx; and t X M 2 X  = p1x: + p2x; .  

1 1 
Now, we define (h1,i = -)i=1,2 and (h2,i = -)i=1,2. Then, the value h1,i a 6 
(resp. h2,i) is the unit length in the metric M1 (resp. M2) along the axis ei and 
the interpolation metric between M1 and M2 is defined using the formula: 

where P is the matrix formed by the column-vector ( e l ,  e2),  and ( H l ( t ) ,  H2(t))  are 
two monotonous continuous functions such that Hi(0)  = h1,i and Hi(1) = h2,i for 
i = 1,2. To complete the definition of this interpolation, we have still to  express 
the terms Hi( t ) .  

Depending on the expected result, various choices can be made. In practice, 
we can consider the following interpolation functions: 

a linear function: Hi@) = hl,i + t (h2,i - hl,i), 

t 

a geometric function: Hi(t) = h1,i (2) ’ 

a sinusoi’dal function: Hi( t )  = (hl,i + hz,i + (hl,i - hz,i)  cos(r t ) ) .  
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el el 

Figure 10.2: Metric interpolation: continuous variation of the metric between M I  
and M2 . Left-hand side, linear interpolation; right-hand side, geometric interpo- 
lation. 

Notice that this interpolation is only controlled along the directions of the axes 
el and e2. As an example, we present Figure 10.2 which illustrates the two initial 
metrics (represented with small dots) and the interpolated metrics in the case of 
a linear function (left-hand side) and of a geometric function (right-hand side). 

Note also that the previous discussion, in two dimensions, extends to  three 
dimensions. 

Remark 10.4 The metric interpolation method by  means of simultaneous reduc- 
tion is  unlikely to be suitable when looking for the solution inside a triangle. Indeed, 
it is well suited to “edge”-type interpolation, i.e., the metrics at the edge endpoints 
are given and the metric at any point of this edge is sought. For a triangle inter- 
polation, more intuitive methods give reasonable solutions. 

Metric intersection 

Now we face a different kind of problem. Given a point P,  we assume that several 
metrics M i  are supplied at  this point. The problem here is to find a unique metric 
M that somehow reflects, in a sense that we will specify, the nature of the initial 
metrics. 

For the sake of simplicity, we consider only the two-dimensional case, while 
noting, however, that the relations that will be established also apply in three 
dimensions (replacing a circle by a sphere, an ellipse by an ellipsoid). 

First, we discuss the case where two metrics are supplied, and we consider the 
unit circles (in fact, ellipses) associated with the two original metrics. The desired 
solution is then a metric associated with the intersection of these two ellipses. As 
in general, the result is not an ellipse, we can consider one of the ellipses that 
fits in this intersection area. In this way, we define a so-called intersection metric. 
According to the choice of the ellipse contained in this intersection region, different 
solutions can be obtained. One solution consists of considering the largest ellipse, 
while another attempts to  preserve some features (for instance, directional) of one 
of the two initial ellipses. This leads to two solutions which are discussed below. 



QI:ADRATIC FORMS A N D  METRICS 347 

Metric intersection using the simultaneous reduction scheme. The si- 
multaneous reduction of the two quadratic forms corresponding to two metrics 
leads to defining the intersection metric related to  the two initial metrics as ex- 
plained in the previous section. Let M1 and M2 be two metrics, the two corre- 
sponding unit circles can be expressed in the base associated with the simultaneous 
reduction of the matrices M I  and M2: 

t X M I X  = X1x2 + X2y2 = 1 and tXM2X = pix2 + p2y2 = 1 (10.15) 

the intersection metric ( M i  n M2) is then defined as: 

(10.16) 

where P is the matrix mapping the canonical basis to  that associated with the 
simultaneous reduction of the two metrics. Figure 10.3 (left-hand side) depicts 
the metric intersection of two given metrics based on the simultaneous reduction. 

Figure 10.3: Intersection of two metrics M i  n M2 based o n  the simultaneous 
reduction of the metrics (left-hand side) and preserving the directions of the metric 
M 1 (right-hand side). 

When several metrics (Mi) l<il ,  are specified at  a given point, the resulting 
intersection metric can be defined using the following formula: 

( M i  n ...  n M 4 )  = (( . . . ((Mi n M z ) n M 3 ) n  ...) n M , ) .  (10.17) 

Exercise 10.3 Prove that (MI  n M2) defines a metr ic  (hint: check that the rel- 
evant properties hold). 

Exercise 10.4 I s  the intersection scheme a n  associative or commutative scheme ? 

Metric intersection preserving specific directions. 
method consists of finding the maximal ellipse included in the intersection region 

The previously described 
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of the initial ellipses. Hence, this requirement does not preserve, in any way, the 
directions of one or the other of the given metrics. As this latter property can be 
of great interest3, we are suggesting a different method, this leads to  construct a 
metric having its directions identical to  those of one of the initial metrics. Then, 
a maximal ellipse with particular directions will be found. In the case depicted in 
Figure 10.3 (right-hand side), the directions specified in metric M I  are preferred. 
The intersection metric ( M I  n M2) is defined by 

(10.18) P I  P2 ( M l n M 2 ) = w M 1  with u = m a x ( -  - , l )  
A1 ’ A2 

if we want to  preserve the shape of the metric M1 (pi and X i  also denoting the 
eigenvalues of the matrices). 

Metric smoothing 

Given a metric and irrespective of its nature (i.e., related to  a geometry or resulting 
from the physics of the problem considered), there is no guarantee that a mesh 
strictly based on this metric will conform to the whole set of requirements. Several 
undesirable features can be encountered. It seems indeed obvious that in two 
dimensions, it is not possible to obtain a mesh composed of equilateral triangles if 
the given metric presents great size variations. 

Variation and shock of a metric. 
arbitrary point P can be written, as seen before, as: 

In the isotropic case, the metric a t  an 

1 
M ( P )  = ~ 

h(P)21d ’ 

where I d  is the unit matrix of dimension d and h(P) is the desired size at P. 
Hence, for an edge AB where we want to  have h(A) at  A, h(B)  at  B ,  the length 
of the segment is: 

where h(t)  represents a continuous interpolation function defined on [0,1] such 
that h(0) = h(A) and h(1) = h(B).  This is equivalent to  parameterizing the edge 
AB by ( 1  - t )  A + t B  and to denoting in a similar fashion h(t)  and h(P),  the 
value of h at  the current point P parameterized by t .  

Remark 10.5 The function h being chosen, the previous expression allows us 
to  go from discrete data (in A and B only) to continuous data (along the whole 
segment AB). 

As mentioned, h(A) and h(B)  can be more or less “compatible” with the Eu- 
clidean length of AB. To be able to  evaluate this notion numerically, we introduce 
the following definitions. 

3For instance, when triangulating some surfaces. 
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Definition 10.6 The h-variation, denoted vh, related to an edge AB is defined 
as: 

The h-shock, denoted X h ,  related to AB is defined as: 

In other words, the h-variation vh along AB, when B tends towards A, repre- 
sents an approximation of the gradient of the function h. The h-shock measures 
the distortion of h along AB. 

For a mesh, these values are defined at each vertex. 

Definition 10.7 Let A be a given mesh vertex and let Pi be the endpoints of the 
edges incident to A, not equal to A. We set: 

This discrete definition enables us to characterize a mesh, according to a given 
metric field. The h-variation and h-shock values are then defined as the extrema 
of the values related to these quantities at the mesh vertices. 

In the anisotropic case, we define the same notions based on the direction of 
the given edge. This is equivalent to finding the intersection of the metric in A 
(resp. in B )  with the edge AB and then using the same scheme with h(A) (resp. 
h(B) defined by h(A) = IIAA;II (resp. h(B)  = IIBB1II) where A1 (resp. B1) is the 
intersection point of AB with the circle related to the (anisotropic) metric M ( A )  
(resp. the circle of M ( B ) ) .  

Notice, however, that in the anisotropic case, the resulting Riemannian struc- 
tured is not able to constrain a size variation in each direction. 

+ 

Metric smoothing using a correction scheme. Given a mesh and a field 
of metrics defined, in a discrete fashion, at each mesh vertex, the smoothing pro- 
cedure aims at constructing a (new) field satisfying a given regularity specified a 
priori, whenever the initial field is not compliant. This is especially the case when 
the size variation is too great or discontinuous. 

The new metric is used to reconstruct a new mesh of the domain4, that is better 
adapted to the given specifications. In particular, the quality of the resulting mesh 
is improved, the created elements being more regular (equilateral triangles, for 
instance). 

Let us consider the isotropic case. The problem consists here of bounding the 
h-variation V h  of an edge AB by a given threshold E ,  V h  < E ,  by changing the 

4The given mesh is seen here as a background mesh and forms, along with the smoothed 
metric, a control space (Chapter 1). 
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size specifications h(A) and/or h(B).  The new specifications are then determined 
using the following formulas: 

h(A) = min(h(A), h(B)  + ~11B11) 
and h(B)  = min(h(B), h(A) + EIIBII). 

Notice that only one of the size specifications is affected (the largest one). 
The procedure is quite similar in the anisotropic case. To this end, it is simply 

necessary to  extend the operator min, related to the sizes, to  an operator related to  
metrics. This operator is, as expected, the metric intersection operator previously 
described. Notice that in this case, the correction applied to an edge does not 
account for the metric interpolation along the edge. Moreover, this operation may 
affect the shape of the corresponding ellipses (ellipsoids). 

cases can be found in [Borouchaki et al. 19981. 
This procedure, based on the notion of h-shock, in the isotropic and anisotropic 

Examples of metric smoothing. Figure 10.4 illustrates the effects of the met- 
ric smoothing and correction procedures on a surface mesh. Figure 10.5 represents 
a prediction of an unstationary transonic flow around a wing profile. The flow pa- 
rameters are Re = lo7, M a c h  = 0.775 and the angle of incidence a = 4". 

Figure 10.4: Example of metric correction related to a surface mesh. Left, geo- 
metric mesh without correction (data courtesy of the MacNeal-Schwendler Corp.). 
Right, geometric mesh after a metric correction by a given value E = 1.5. 

In these examples, the influence of the metric correction procedure is clearly 
visible. This procedure is even more important in the numerical computations, as 
the difficulties usually encountered are related to the possible lack of information 
during the interpolation of the solutions (in an adaptation scheme) and to  the 
capture of the critical regions. 

10.4 Metric construction 

In the previous sections, we have largely discussed metrics and related operations, 
on the assumption that these latter were supplied. Now, we give some details on 
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Figure 10.5: Example of a metric correction on an adapted mesh in a computational 
fluid simulation. Left, the mesh is adapted without correction. Right, the mesh has 
been adapted with a metric correction by  a given value E = 2. 

how to define such metrics, especially for surface meshes and regarding a compu- 
tational scheme based on the finite element method. 

10.4.1 Parametric surface meshing 

Let C be a surface, let cr be its parameterization and let R be its parametric space. 
We want to obtain a surface mesh conforming to  some given specifications (in 
particular, related to the element sizes as well as to  the intrinsic properties of C, 
(i.e., to  conform to the geometry), from a mesh of R. In other words, the goal is 
to control the mesh of C by controlling the mesh of R. Chapter 15 will deal with 
this approach more thoroughly. 

Assume now that a metric is given on the surface. Let M3 be the current 
associated matrix, of dimensions 3 x 3. The problem is to  find the relationship 
between a length on C and the corresponding length in R. Thus defined, the 
problem can be reduced to that of finding the matrix M2, a 2 x 2 matrix, related 
to M3. To this end, we use the metric induction. 

Metric induction. Given a point X E R,  the matrix M 2 ( X )  is the metric 
induced by M3(P) ,  P E C on the tangent plane to  the surface at P. By denoting 
II(P) the transition matrix from the canonical basis of R3 to  the local basis at the 
current point P,  the desired metric M 2 ( X )  is defined by the matrix: 

where the symbol 112 means that we consider the first two columns and the first 
two lines of the matrix tIIM311. Given a matrix M3 we then find by induction a 
matrix Mz that enables the lengths on the surface to  be controlled via a control 
of the edge lengths in R. 

Choice of the surface metrics. The control of the gap between an edge and 
the surface is obtained using the metric M3, which has yet to  be explained. Hence, 
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to govern the mesh of C according to M3, consists of governing the mesh of R 
with respect to  an induced metric M2.  As will be seen in Chapter 15, a judicious 
choice of M3 makes it possible to  bound the gap between any edge and the surface 
by a given threshold value E .  A matrix of the form: 

where V(P)  corresponds to  the principal directions at  P, a and are suitable 
coefficients and X E R, enables us to  have an anisotropic control of the gap between 
the geometric, which accounts for the two principal radii of curvature p1 and p2 
and for the two principal directions. 

We can also consider the case p = min(p1, p2) which leads to a so-called metric 
of the minima radius of curvature for which the matrix M3(P) can be expressed as: 

where the variable h(P)  = ap(P)  is related to the position and a is a suitable 
coefficient, related to the geometric approximation (i.e., to the gap between the 
edges of the discretization and the surface). 

10.4.2 Finite element simulation with error control 

The previously defined fields of metrics are related to  the intrinsic properties of 
the surface, hence to its geometry. We will now focus on metric fields met during 
the numerical calculations based on finite element methods, in particular in the 
case of mesh adaptation (Chapters 21 and 22). 

Construction of a computational metric. The goal is to construct a metric 
that allows an homogenous distribution of the error related to the interpolation 
of the solutions. The error estimation5 is analyzed by studying the behavior of 
IIu - IIhull, IIhu being the solution of the discrete model and 1 1  1 1  being a suitable 
norm. 

Let us assume that a solution IIhu has already been computed on a former 
mesh. If the interpolation scheme is linear and piecewise continuous (Pl-type), 
then the interpolation error can be related to  the variations of the variables of the 
problem and, in particular, to  their successive derivatives (gradient, Hessian, etc.). 

To show this result, we first focus on a one-dimensional problem with only one 
unknown u. 

5As well as the convergence of the numerical approximation. 
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Interpolation error for a one-dimensional P1 problem. Let us consider the 
segment [&(a), I I h ( b ) ] ,  which is the function IIh that is the linear approximation 
of the function u between a and b (between u(a)  and u(b), in fact). 

In order to evaluate the interpolation error between u and IIhu, we will perform 
a local analysis. In other words, we assume that the computed solution is quite 
close to the real solution. This evaluation is based on various Taylor’s formulae. 
One such formula, when applied to  a regular enough function f(x) from I = [a, b] 
to R, can be written as: 

(10.21) 

with x = a + h. This formula and, in general, formulas of the same type are 
actually not well suited for our purpose since h is not necessarily small. Thus, we 
prefer a formula like: 

(10.22) 
h2 
2 

f ( a )  = f(x) = (a - x) f’(x) + - f y x  + t(” - x)) , 

where t ,  in [0,1], is a function of both x and a. For our purposes, we fix the function 
f to  be the function that, for x E I associates (u - IIhu)(x) = u(x) - IIhu(x), thus 
assuming that IIhu(a) = .(a) and IIhu(b) = u(b). From the previous discussion, 
regarding u and n h U ,  we have: 

( a  - x ) ~  
u(a)-IIhu(a) = u(x)-rIhu(x)+(a-x) (d(x)-IIhuyx))+- d l ( Z + t l  (a-x))  , 

2 

where now tl is a function of a and x. As .(a) - IIhu(a) = 0 and as we look for 
an extremum, x, where u’(x) - IIhu’(x) = 0, then we have: 

O = ( u -  

Then, we write the same, based on b. For the above x, we have: 

( b  - x ) ~  
0 = (u - rI,u)(z) + 2 uII(x + t 2 ( b  - x)). 

Adding these two relations gives: 

(a  - uyx + tl(U - x)) + ~ ( b  - 0 = 2 (u - rI,u)(x) + 2 u y r  + t z ( b  - x ) )  . 
2 

If M is a majorant of u“ in I ,  then: 
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(1 0.23) 

The goal is then to  see what is the value of I.(.) - IIhu(z)I, which means 

finding the value of W M  and then to compare this value with a given value E 

representing the maximum allowed gap between the function u and the linear 
approximation IIhu. 

i- 
Figure 10.6: Piecewise linear interpolation in one dimension. Left-hand side: the 
segment I = [a, b ] ,  .(a) and u ( b ) ,  the function IIhu, the segment [u(a) ,  u ( b ) ]  and 
the presumed function u. Right-hand side: the segment ab  and its neighbors. 

From a geometric point of view, if z is a point of [a,  b ] ,  point (z, IIhu(z)) 
describes the segment [u(a) ,  u ( b ) ]  while point (z, u(z))  describes the (unknown) 
"curve" u. As u is assumed to  be sufficiently regular along [a,  b ] ,  we will then 
replace the curve by a parabola. Thus, a method allowing us to  reach the expected 
result consists of 

0 constructing a parabola going through the point IIhu(a) = u(a)  and through 
the point I I h u ( b )  = u ( b )  and 

0 evaluating utt on I ,  based on the parabola. 

This enables us to find the desired value. If the latter is of the desired order, the 
meshing step is correct according to  point a. If for the given E ,  we find a larger 
or smaller value, we can then compute the h that would give the right value and 
then deduce the metric to  be enforced: 

2 8 E  

h2 M 
M , I "  with h = -.  

In practice, when segment I = [a,  b] is analyzed, it is also of interest to look 
at  the neighboring segments so as to  guess M .  Indeed, in practice, the problem is 
to find this maximum. The use of a parabola to  simulate the function u can then 
lead to  a solution from which the expected size h can be deduced. 

Extension to a two-dimensional solution. We also consider a P1 interpola- 
tion in two dimensions. The desired function u is approached by a solution nhU 

computed at the triangles vertices of the mesh. Then, we look at the gap (or any 
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other norm) between u et n h U  in each triangle. There are a priori two ways of 
controlling this error: 

0 either via a control by the edges and we come back to the previous discussion 
with, however, a second derivative (the Hessian) reduced to  these edges, 

0 or via a control by the gap (or more precisely the L,  norm) between the 
triangle corresponding to the three known values and the (presumed) surface 
going through these three points. We then face a similar problem to that of 
the surface meshing. 

The first solution is obviously quite rough. By analogy with a surface meshing 
problem, it consists of controlling the gap between a mesh triangle and the surface 
based on the sole evaluation of the relative gaps between the triangle edges and 
the surface. However, this solution gives an initial idea of the control. 

The other approach is clearly smarter. It corresponds to  what has been sug- 
gested in one dimension and, in its principle, can be seen as the direct extension 
of this approach. 

A B 

Figure 10.7: Piecewise linear interpolation in two dimensions. Left-hand side: 
the triangle K = [A, B ,  C] ,  u(A) ,  u (B)  and u(C),  the function &u, the triangle 
[u(A),  u (B) ,  u(C)] and the function presumed u. Right-hand side: the triangle 
ABC and its neighbors. 

Let us consider a function f from K to  EX, where K is an interval of EX2, actually 
the triangle of vertices A, B and C. For such a function, denoted f(X),  we look 
at  how Relation (10.22) writes. We vary X over the triangle K .  Under the same 
assumptions as previously, the local analysis based on a development around X, 
as seen from A, leads to: 

with xA the displacement around A in the triangle K .  In this expression, V 
represents the gradient and 7-lf is the Hessian of f .  
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As in one dimension, we now consider as f the function u - nhU and we are 
trying to  write the previous relation with respect to u and nhu. Thus, we have: 

1 (u-&u)(A) = (u-r Ihu) (X)+(XA,  V ( U - I I ~ U ) ( X ) ) + ~ ( X A ,  H, (X+t lXA)  XA) , 
(10.25) 

as ?if = ?I,. Now, let us turn to  the term in V. To this end, let us assume that 
X where the extremum occurs falls6 inside K .  Then, 

V ( u  - rIhU)(X) = 0 ,  

and, the above relation reduces to: 

1 
0 = (u - rI,u)(X) + p 4 ,  H,(X + t l x A )  xA) . (1 0.26) 

Now, we write similar expressions for the same X as now expressed from B and C. 

1 
2 

1 
2 

Adding these three relations leads to: 

0 = (u  - rIhU)(X) + -(a, H,(X + t 2 a )  a), 

0 = (U - &u) (x)  + - (xc , H,  ( x  + t 3 z )  xc) . 

Let M now be such that: 

Then: 

Each point X of K can be written using a linear combination of A, B and C: 

61f not, X necessarily belongs to an edge of K ,  and the onedimensional result holds. 
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+ 2 & ~ X b I ( a ,  a)l + 2 X , X c I ( B A ,  2)I + 2 X b X c I ( a ,  = ) I .  
If L is the length of the largest edge in K ,  then: 

I I A X 1 1 2 + 1 1 ~ 1 1 2 + 1 1 ~ l 1 2  5 2 ((A: + + A:) + + + XbXc ) L 2 .  

1 It is easy to  see that the extremum is obtained for A, = Xb = A, = 3 ,  and 
therefore, we have: 

(10.27) 
2 
9 

I (u -nhu) (X) I  5 - L 2 M .  

The majorant that we give below is certainly not optimal and, specifically, it 

To this end, we assume that X ,  the point where the maximum holds, is closer 

is isotropic. To improve this majoration, we go back to Formula (10.26). 

to A than to  the two other vertices of K .  Then, we write: 

(1 0.28) 
1 

0 = (U - I Ihu ) (X)  + Z(B, Hu(X’)  A X ) ,  

where X‘ lies on A X .  Let us introduce A‘ the point intersection of A X  with BC 
the side opposite vertex A. Then, due to  the assumption about X ,  we have X I $ 
where X is such that: 

A X = X A A ’ .  
The above relation becomes: 

thus. 

(1 0.29) 

holds. As a consequence, we have obtained an anisotropic estimate. Note that the 
same reasoning can be made for B and C and a combination of the corresponding 
results is used to  find the metric information needed for error control and mesh 
adaptation. 

From a geometric point of view, if X is a point of K ,  point ( X , I I h u ( X ) )  
covers the triangle [u (A) ,  u (B) ,  u(C)] while point ( X ,  u ( X ) )  covers the (unknown) 
“surface” u. As u is supposed sufficiently regular over K ,  we will replace this 
surface by a paraboloid. Hence, a method providing the desired result consists of: 

0 constructing a paraboloid going through the points IIhu(A) = u(A), IIhu(B) = 

u(B)  and IIhu(C) = u(C) and 

0 this surface being known, evaluating 7-l on K and finding the desired majo- 
rants. 
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Therefore we vary X to  see the majoration values needed to define a suitable 
7-l* in K using the various 7-l we have computed7. We deduce the values of A1 

and of A2 that correspond to  the principal directions of this matrix. The required 
metric consists of making sure that, given E ,  each point X is such that: 

(AX,I 'FI*lAX) = & .  

We then find a metric of the form: 

which, in the coordinate system defined by R, corresponds to the ellipse: 

-x 1x11 2 + E y  1x21 2 = l .  
& 

If X covers or is internal to  this ellipse, the interpolation error is smaller than or 
equal to  E in any direction. 

Extension to a three-dimensional solution. The same reasoning applies and 
the conclusions, in terms of the control, remain unchanged. The constant of error is 
then 8,  see [F'rey, Alauzet-20051. However, the calculations are considerably more 
technical and the geometric interpretation relies on a surface of R4 associated with 
the four vertices of a tetrahedron. 

Remark 10.6 Notice, to conclude this discussion, that the control of the interpo- 
lation error suggested here is  purely geometric. I t  does not involve the physics of 
the problem via its operator. Other operators analyze this point of view. Moreover, 
other norms may be chosen for the error. 

Hessian computation. Finally, we briefly mention one of the potential numer- 
ical problems. One of the difficulties is actually to compute the Hessians involved 
in the estimate. Such a calculation can be carried out by inventing a surface as- 
sumed to represent the desired solution or by more directly numerical methods 
(Green's formula, for example). More precisely, this approach using generalized 
finite differences is based on Green's formula: 

with the usual notations (vi being the normal in the i-direction, [Ciarlet-19911). 
Setting u = aiu, we obtain: 

7Note that this step is not obvious. 
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that will allow us to  find the diagonal coefficients of the Hessian of u and, similarly, 
setting u = d p ,  we find: 

which leads to  the non-diagonal coefficients of the Hessian. 
For an internal point, the boundary term is zero and the integral is calculated 

on the set of elements sharing the vertex (the ball of this vertex) where the Hessian 
is sought. Given some simplifying assumptions (Hessian constant per ball), we find, 
for example, for the coefficient ii: 

where K is the element of index k in the ball a t  hand. Hence, 

with: 

a ak the derivative in i of the interpolation of the function u (a plane here, 
in P', the plane going through the points u(A), u(B)  and u(C) where A,  B 
and C are the vertices of the considered triangle), 

a a; the derivative in i of the surface defined over the triangle considered of 
zero height except at the vertex concerned where the height is equal to  1, 

a s k  the area of the triangle of index k ,  

v k  the volume of the tetrahedron having the triangle of index k for base 
and corresponding to  the hat function Vk for which the value is 1 at  the 
considered vertex and 0 at  the other vertices. 

Similarly, we evaluate the terms in i j .  If the point at which the Hessian is sought 
is a boundary point, we compute the boundary contribution in the same fashion 
or, simply, we use an average of the Hessians at the neighboring internal vertices 
of the current point. 

Problem with multiple unknowns. Metric intersection. When the phys- 
ical problem has many unknowns that are all used to  control the adaptation, each 
of them is used to  construct a metric. We therefore face a context in which several 
fields of metrics are given. The previous section enables us to retrieve the case of 
a sole metric map, using the metric intersection scheme. 

On the other hand, for surface meshes, the geometric metric (of the radii of 
curvature, for instance) can be intersected with one (or several) computational 
metrics. Thus, the geometric approximation of the surface can be preserved. 
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Mesh adaptation. Mesh adaptation (using a h-method; see Chapter 21) can 
be based on the same principles as discussed previously, i.e., by controlling the 
interpolation error. Once a solution has been computed, it is analyzed using an 
error estimate. The previous method provides a way of carrying out this analysis 
by noticing that the local analysis performed here is meaningless unless a more 
global analysis justifies its full validity. 



Chapter 11 

Differential Geometry 

Mesh generation of curves and surfaces' is an operation known to be tedious to 
carry out, in a robust fashion, in the context of numerical simulations based on a 
finite element method as well as in other types of applications. The accuracy of the 
results in finite element numerical simulations is partly related to the quality of the 
geometric approximation (i.e., the mesh). Therefore, the mesh of the boundary 
of a two- or three-dimensional arbitrary domain must have certain properties that 
are directly related to the geometry it represents. 

The construction of a mesh of a curve (resp. surface) requires, in particular, 
knowledge of the local intrinsic characteristics of the curve (resp surface) such as 
the curvature, the normal(s), the tangent (the tangent plane), etc. at any point 
of this geometric support. These geometric characteristics have a significance 
that will be made precise in this chapter. This analysis is based in practice on 
a limited expansion of the function, y or u, which gives a local approximation of 
the corresponding curve or surface. The local behavior and the main features of 
the function can be deduced from this approximation. Thus, in a mesh generation 
context, the analysis of curves and surfaces can be deduced from y or u as well as 
from their successive derivatives. 

Differential geometry was introduced in the early 18th century and then estab- 
lished in the 19th century as a way of defining a general theoretical framework for 
the local study of curves and surfaces. The fundamental contribution of Gauss2 
consisted of using a parametric representation of the surfaces and of showing the 
intrinsic nature of the total curvature. The breakthrough came with Riemann3 
who gave a global mathematical definition of curves and surfaces, introducing the 
notion of n-dimensional manifold. 

Ir 
I r k  

'Or, more generally, any mesh of the boundary of a domain. 

3Sur  Zes hypothbses qui servent de fondement 6 la ge'omttrie (1854). 
Disquisitiones circa superficies curvas (1827). 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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The purpose of this chapter is to review the elementary notions of differential 
geometry necessary to understand the chapters related to the modeling as well as 
the mesh generation of curves and surfaces (Chapters 12 to 15). If some of these no- 
tions may appear obvious to the initiated reader4, we believe it advisable to recall 
these results so as to introduce the terminology and the notations that will be used 
subsequently. This chapter should not be considered as a substitute for the vari- 
ous references in this domain ([do Carmo-19761, [Lelong-Ferrand, Arnaudies-19771, 
[Berger-19781, [Farin-19971, among others). 

We limit ourselves here to the study of curves and surfaces embedded in the 
Euclidean space in two or three dimensions. The definitions require the use of the 
implicit function theorem. Therefore, we introduce the notion of a parameterized 
arc, and we conduct a local study. We also define surfaces and we introduce the 
two fundamental forms and the total curvature which plays an important role in 
the local or global behavior of the surfaces. Finally, the last section is devoted to 
practical aspects of the calculations related to curves and surfaces. 

11.1 Metric properties of curves and arcs 

This section briefly recalls the different features used for the study of curves. In 
particular, we outline the notions of curvilinear abscissis, of arc length and we 
introduce the tangent and normal vectors as well as the Frhet  frame. These 
definitions will allow us to compute quantities like the local curvature, the radius 
of curvature, the osculating circle as well as the local torsion and the relevant 
radius of torsion. Table 11.1, given at the end of the section devoted to curves, 
contains the values of the main geometric features encountered. 

We denote by Ed a Euclidean afine space of dimension d and by Ed the cor- 
responding vector space (in practice, E = R). We then study the properties of 
curves and geometric arcs of Ed in this Euclidean context. 

Let us recall that the structure E3 of Euclidean space of R3 is defined by the 
choice of the usual dot product (Chapter lo) ,  for which the canonical basis 

[el = (1,0,0) ,e2 = (0,1,0) ,e3 = ( O , O ,  l)] is orthonormal. 

The norm of a vector X of components (x, y, z )  in the space R3 is simply: 

Arc length 

We recall that a curve of a normed vector space E corresponds to a continuous 
application y : I - E ,  defined on an interval I ,  which associates to the parameter 
t E I the value y(t). A curve is of class Ck if the application y is of class C k .  If 
in addition, the interval I is compact, the curve r is said to be compact. 

4Who might prefer to skip part of this chapter. 
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We will define the notion of length in an arbitrary normed vector space E. 
To this end, we introduce an approximation of the curve (the arc) y by a set of 
inscribed polygonal lines. 

Figure 11.1: Approximation of a curve r described by a function y using a n  in-  
scribed polygonal line. 

General notion of a rectifiable arc. With any subdivision sub = ( t o ,  t l ,  ..., t,) 
of [a ,  b] (with a = t o  and b = t,, ti+l 2 t i)  into p segments, we associate the 
polygonal line (Mo ,  M I ,  ..., M,) having Mi = y ( t i )  as vertices. This subdivision is 
said to be inscribed into I?. 

Definition 11.1 The length of this line i s  the number: 

0-1 0-1 

i = O  i = O  

An arc r of a normed vector space is said to be rectifiable if the upper bound 
L ( r )  of the lengths LSub,r of the polygonal lines inscribed in r is finite. In this 
case, L ( r )  is a positive real number called the length of I?. Obviously we have: 

L ( r )  2 Ilr(b) - r(a)II . 

Remark 11.1 The length of a rectifiable arc depends on  the norm chosen. 

Remark 11.2 The fact that a curve is  continuous does not necessarily imply that 
i t s  length i s  bounded. A counter-example i s  that of fractal curves. 

Theorem 11.1 In a complete normed vector space El any compact arc r (of 
endpoints A = y(a) and B = y ( b ) )  of class Ck (k 2 1) is  rectifiable. If in 
addition, y : [a, b] - E is a parameterization of I?, the length of is: 

(11.1) 
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Proof. 
then posing: 

The proof, left as an exercise, consists of showing that is rectifiable, 

a / 

it is sufficient to prove that, for each E > 0, there exists a subdivision sub such 
that A s u b  5 E. 0 

In the affine Euclidean space E d ,  with the usual norm, we then find, using 
Relation (11.1): 

b 

L ( r )  = ] 4 y i 2 ( t )  + ... + yi2( t )dt  that is, for d = 3 ,] J d z 2  + dy2 + d z 2 .  
a Y 

For example in R2, the length L of the circle of center 0 and of radius p 
represented by z = pcost , y = p sint , t E [ 0 , 2 ~ ] ,  is (obviously) equal to: 

L = pdsin2 t + cos2 tdt  = p dt = 2 ~ p .  7 0 7 0 

Curvilinear abscissa, normal parameters and characteristics 

Definition 11.2 Let r be an arc of class C1. W e  call normal parameterization 
o f r  any parameterization y : I - Ed such that, V t  E I ,  we have: Ily’(t)II = 1. 

If the arc r is simple and oriented in the sense of the ascending t ,  the number: 

t 

s ( t )  = 1 Ilr’(WQ 
t o  

is called curvilinear abscissa of the point A4 = y ( t ) ,  measured from the point A40, 
that is y ( t o ) ,  the origin. In other words, the length of the portion of curve joining 
two points of this curve can be expressed as a sum of arc lengths. Hence, we are 
able to  write: 

Ily’(t)II = s ’ ( t ) ,  thus ds = Ily’(t)II d t .  

If the parameterization is normal, we have Ilr’(t)II = 1 and thus, ds = dt. In 
other words, for such parameterizations, s and t are identical. 

Tangent vector. 
parameterization 7 : I - E d ,  s - ~ ( s ) .  

Definition 11.3 The function 7’ : I - E d ,  s H Y’(s) defines the unit tangent 
vector to r at any s. 

Let r be a regular oriented arc of class 0’ defined by a normal 
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This tangent vector indicates the direction of the tangent to the curve. 

Remark 11.3 If M = ~ ( s )  i s  not a simple point of I?, the vector ?(s) admits a 
value to  the left and a value to the right that are different. 

If we consider a regular parameterization, such that, Ily’(t)II # 0, for each t ,  
the unit tangent vector ?(t) to r at t is defined by: 

dT( t )  - - d%t) dt  - Y ( t )  ?(t) = - -- - - 
ds  dt d s  Ilr’(t)II 

and, if the parameterization is normal, we simply have 7‘ = y’(s) . 

Principal normal. Curvature. The hyperplane denoted as Itn going through 
M and orthogonal to ?(s) is called normal to r in M .  This plane (Figure 11.4) 
contains the various normals to the curve. By extension, any line going through 
M and orthogonal to ?(s) is a normal to r in M .  

As in the case of a normal parameterization, IIy’(s)II = 1, a derivation shows 
that: (y’(s), y”(s)) = 0 and thus, these two vectors are orthogonal to each other. 
Differently written, we have the relationship: 

Therefore, there exists a (scalar) function, C : s c1 C ( s ) ,  such that: 

d?( s )  
ds  
- = CJ(S), 

where J ( s )  is the vector supported by - d7‘(s), which is a unit vector. This vector 

is called unit oriented normal vector to r and function C ( s )  is the curvature of 
in s. 

d s  

The curvature function of r in s can be also expressed by the relation: 

Remark 11.4 In the case of planar curves, as with the oriented plane, we can 
define an  algebraic curvature. To this end, we define, f rom ?(s), the vector &(s) 

by  rotation of value 1r/2 and ~ = CJl(s), which implies that C is signed. 
d?( s) 

ds  

We note that the curvature is zero5 if and only if the point M = y(s) is an 
inflection point. If the arc r has no inflection point, the vector J ( s )  is defined at 

5Except for the trivial case of lines in the plane! 
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any s. Moreover, the radius of curvature of r in M is the number p(s) = &. 
The point 0 defined by %8 = p(s) G(s) is the center of curvature of r in M .  

If r is a simple regular arc having the point 0 as the center of curvature in 
M ,  the circle of center 0 passing through M and contained in plane II defined by 
the basis [T, v’] is the osculating circle of the curve in M (Figure 11.2, right-hand 
side). The latter plane is the osculating plane to r in M .  

Figure 11.2: Left-hand side, unit normal vector to the arc r in M .  Right-hand 
side, the intersection of planes II and II, is  a line supporting the normal v’ and 
containing the point 0, the center of curvature to in M .  

Arbitrary parameterization. Let y be a parameterization of at least class D2 
defining an oriented arc I?, which is regular and without any inflection point. We 
go back to a normal parameterization 7 using the change of parameter t - s ( t ) ,  
such that ds/dt  = lly’(t)ll. As y ( t )  = ? ( s ( t ) ) ,  we have: 

ds 
dt y’(t)  = ?’(s)- ; y”(t)  = 

from which we have the formula (depending on 7‘ and on 17): 

which can also be expressed as follows: 

(11.2) 

Of all the normals, some have privileged directions. The intersection between 
II and II, is a line oriented along the vector G(t) (Figure 11.2, right-hand side). 
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This normal is of particular interest in the study of the curves; it contains in 
fact, as already mentioned, the center of curvature of the curve (see for instance, 
[Lelong-Ferrand, Arnaudies-19771). 

Practical calculation of the curvature. In practice, it is not always possible 
to express the curvature of the formula C(s)  = IlT”(s)ll (i.e., the expression of the 
normal parameterization can be too complex to be practical). The calculation will 
thus be based on the relation: 

We then consider an arbitrary parameterization of r. If M denotes the point 
y(s) = y(t), with s = s ( t ) .  We start from the relation: 

which finally leads to  the well-known formula: 

d?( t ) - y’ (t ) A y” ( t )  
~ - 

ds llr’(t)1I3 ’ 
(11.3) 

where A represents the cross product (to obtain this result, we use the relation 
(u  A b )  A c = (c ,  u )  b - (c ,  b )  u) .  Thus, we have, 

(11.4) 

Notice that in the case of a normal parameterization, this general expression gives 
the known result, that is: 

C(S) = IlY”(S)II. (11.5) 
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Particular case. Let us assume that we are using Cartesian coordinates to 
calculate this. Let (z( t ) ,  y ( t ) )  be the coordinates of y ( t )  in an orthonormal frame. 
We can write: 

ds 
dt 
- = Jz’2(t) + y y t )  and y’(t)  A r”(t) = z’(t)y”(t)  - 

thus we deduce the algebraic curvature of I? at the point M = y ( t ) :  

(t ) y” ( t )  - y’ (t )z” (t ) 

Jz12 ( t )  + y’2 ( t )  
C =  

F’renet’s frame and formula 

The two orthogonal vectors ?(s) and G(s) define the osculating plane. From these 
vectors, we define the unit binormal vector g(s) as: 

+ 
b(s)  = ?(s) A Y’(s), 

and the triple [?(s) ,J(s) ,g(s)]  forms a basis that defines &&net’s frame at the 
point M of abscissa s: 

+ 

F f r e n e t  = [MY 7 ‘ 7  G, b] . 
Notice that if the orientation of I? changes, 7‘ and G are then both changed to 

their opposite. 

b‘ 

Figure 11.3: Projections of a curve on the three planes of Fr&net’s frame. Left-hand 
side: regular point, middle: inflection point, right-hand side: cusp point. 

By derivating the relation (?(s), J ( s ) )  = 0, we obtain: 

so, when introducing the curvature, the relation: 

(7 ‘ (s) ,ds) dG( s )  = -c .  

The two formulae: 
d? dv’ 
ds  ds  
- =Cv’ and - = -C?, 

are the &&net formulae for the arc I?. 

(11.6) 
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Local behavior of a planar curve 

Let r be a simple regular arc of a sufficient class, defined by an arbitrary param- 
eterization y or a normal parameterization ^/. We wish to study the behavior of 
the curve r in the vicinity of a point MO = y(t0) = ̂ / (so) .  We go back to the case 
to = SO = 0 using a translation. According to the form of the parameterization, we 
will study the local behavior of the curve in the local basis of the vectors [y’, y”] 
in t = 0 or in the Fr6net frame [?, G] in s = 0. So, we consider a small increase (a 
neighborhood) At or As in t or in s sufficiently small. 

Applying a Taylor series at the first order to y, we have: 

r (At)  = ~ ( 0 )  + Aty’(0) + O(At2) 

and for ^/, we have similarly: 

^/(As) = ̂ /(O) + As^/’(O) + O(As2),  

with y’(0) = 7‘(0). This local study corresponds to an approximation of the curve 
using a line supported by the tangent at the point Mo. To show the gap between 
this approximation and the curve, we use a Taylor series at order 2: 

At2 
y(At) = ~ ( 0 )  + Aty’(0) + ~ y ” ( 0 )  + O(At3) 

and for ^/, we have similarly: 

As2 
^/(As) = ̂ /(O) + As^/’(O) + ?^/”(O) + O(As3), 

with y’(0) = ?(O) and y”(0) = Y’(O)/p(O) = C(O)G(O) where p(0) is the radius 
of curvature (C(0) the curvature) at point Mo. In these expressions, the second 
order term measures the desired gap. This local study corresponds to an ap- 
proximation of the curve by a parabola which, in the former case, is defined in 
a non-orthonormal frame, and in the latter case, is defined in the orthonormal 
F rhe t  frame. The gap between this parabola and the curve can be obtained by 
pursuing the expansion at a higher order. A Taylor series at order 3 applied to y 
gives, on the one hand: 

and, on the other hand: 

^/(As) = ̂ /(O) + As^/’(O) + -^/”(O) As2 + ~ ^ / ” ’ ( o )  As3 + O(As4). 
2 

As the local study is more intuitive in the FrBnet’s frame and thus in the case of 
a normal parameterization, we will examine this case more carefully. Let us recall 
that ^/’(O) = ?(O) and that ^/”(O) = G(O)/p(O) = C(0) G(0) and let us express ^/”’(O) 
in the Fr6net’s frame: 
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The previous limited expansion can then be expressed as follows: 

(?((I) + p’(O)G(O)) + 0(As4) .  G(0) - - 
6 P2(0 )  

As3 As2 
?(AS) = T(0) + As?(O) + - 

2 P(0 )  

(?(O) + p’(O)G(O)) measures the gap to the parabola. The term - 
As3 

6 P2(0)  
The coordinates .(As), y(As) of the point M of abscissa As are such that: 

Then, 

0 if, in s = 0, the curvature is zero C(0) = 0 (i.e., the radius of curvature p(0) 
is infinite), we have the case of an inflection point (Figure 11.3, middle). 
The arc crosses its tangent at point Mo. Notice that a line segment has no 
inflection point. 

0 if C(0) # 0, arc r is on the same side of its tangent as that of its center of 
curvature in Mo. We can specify the position of r by considering a circle F a  
of radius lal, tangent to in MO defined by the normal parameterization: 

1 
X ( s )  = asin (:) , Y(s) = a  (1 -cos (f)) .And, for a = - q0) = d o )  7 

the circle F a  is the osculating circle to r. Using a limited expansion of the 
sine and cosine, we find: 

‘ 0  
( ) +0(As4) .  .(As)-X(As) = 0(As4) and y(As)-Y(As) = - ” 

6 P2(0 )  

So, if p’(0) # 0, the sign of y(As) - Y(As) changes with that of As and the 
arc crosses its osculating circle in Mo. 

Geometric interpretation of the osculating circle. Let us consider the cir- 
cle F a  defined by the former parameterization, where a is an arbitrary scalar value. 
This circle passes through the point M = ( ~ ( s ) ,  y(s)) if and only if a = X(s), where 

So, we can deduce: 

2 ( t )  1 
= P ( 0 ) .  lim X ( t )  = lim ~ - ~ 

5-0 t-0 2y(t) C(0) 
- 

Then, for each M E r, close to Mo, there exists a unique circle r M  tangent to r 
in MO passing through M .  The osculating circle to in MO is the limit of r M  

when M tends toward MO along I?. 
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Arcs in R3. fienet’s frame and Serret-fienet’s formulae 

Let us assume that the arc has no inflection point (i.e., C ( s )  # 0,Vs E I ) .  
Frinet’s frame [M,  ?(s), J ( s ) ,  6(s)] is, as already seen, the direct orthonormal frame 
of R3 defined by the vectors ?(s), v’(s)and the vector 6(s) = ?(s) A G(s) that is the 
binormal vector to  r. The tangent plane passing through M ,  of main vectors G(s) 
and g(s), is called the normal plane to  r in M and the plane passing through M ,  
of main vectors ?(s) and 6(s) is called the rectifying plane to r in M (Figure 11.4). 

\ 
normal plane 

G 

M -  
27 

osculating plane 
X 

Figure 11.4: Geometrical entities related to the parameter s at a point M of r 

Serret-F’rchet’s formulae. Torsion. 
are such that: 

By assumption, the functions 1, v’ and g 

ll?(s)ll = llv’(s)ll = Ilm = 1 I 

(&), ?(s)) = 0 ,  (?(s), v’(s)) = 0 ,  (&), v’(s)) = 0 .  

In order to  establish Serret-Frhet’s formulae, we will express the derivatives of 
these three vectors of Frhet’s  basis in this same basis. For ?(s), we know that: 

!.a = C ( S )  G(S) 
ds  

For v’, we write (and we look for ao, a1 and az): 

dv’( s )  
- ds  = ao?(s) + U l v ’ ( S )  +a&) ,  

Obviously a1 = 0. To find a0 we look at  the dot product by ?(s): 

(11.7) 

ao= (ds ,?(s ) )  dv’(s) = - (ds,u(s) )  d?( s) = -c ,  
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to find a2, we consider the product by @s): 

which is called the torsion6, T ( s ) .  So, we have: 

- = - C(s)7‘(s) + T(s) g(s). 
dv’(s) 

ds 

For g(s), we write again: 

(11.8) 

~ = a o l ( s )  + U l v ’ ( S )  + azG(s). 
dg( s )  

ds 

Here, a0 = a2 = 0 and a1 = ( q , v ’ ( s ) )  = - ( F , g ( s ) ) ,  that is -T, and 

thus: 

- = -T(s)~’(s). (11.9) dg(s) 
ds 

By combining Relations (11.7), (11.8) and (11.9), we obtain Fre‘net’s (or Serret- 
Fre‘net’s) formulae: 

- = -Tv’. 
dv’ + d6 d7’ 

ds ds ds 
- =-CT+Tb, - = cv’, (1 1.10) 

the number p(s) = l/C(s) being called the radius of curvature of r at the point 
M = y(s). If, in addition, T(s) # 0, the number RT(s) = 1/T(s) is called the 
radius of torsion of r at the point M .  With these two notations, Serret-FrBnet’s 
formulae can be written as: 

(11.11) 

These relations indicate the fact that the matrix M of the vectors d7‘/ds, dv’lds, 
dg/ds in the basis [7‘(s), v’(s), g(s)] is: 

This matricial relation is useful when looking at the behavior of the curve in space 
when the parameter changes. 

6 0 r  second curvature. 
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Computing curvature and torsion 

If is defined by a normal parameterization, FrBnet’s formulae allow us to evaluate 
the curvature and torsion of r by means of  the derivatives r’, 7‘‘ and 7“‘. We have 
already seen, in fact, the case of the curvature. For a normal parameterization, 
it is Relation (11.5): C(s)  = IIy”(s)II. For an arbitrary parameterization, it is 
Relation (11.4): 

The torsion is then obtained using the previous formulae. The easiest way of  
computing the torsion is to start from Relation (11.8): 

dG( s )  

d s  
- = -C(s)?(s) + T(s)G(s) 

and to  apply the dot product with G(s). Hence, we find (omitting the sign): 

dG(S) - dG( s )  
T ( s )  = ( ds, b(s) ) = ( T,?(s) A G(s) 

We have ?(s) = ~ ’ ( s ) ,  G(s) = &% = &“/ ’ (s)  and it is then sufficient to  

express to find the desired result. 

and as ~ dC(s) = 2. (y”’(s), y”(s)) = 0,  
d s  

dv’(s) then, ds simply reads &y”’(s) and the torsion is (omitting the sign): 

We find again the relation (without the sign): 

det ly’(s), y”(s), y”’(s)I = -C2(s) T ( s )  . 

Remark 11.5 These formulae are not always obvious t o  compute. If the function 
d s l d t  = Ilr’(t)II admits a simple expression, it may  be interesting to  compute the 
components of the vectors 1, G and b’ at the point M ,  which is equivalent t o  applying 
Fr6net’s formulae without specifying the normal parameter. 

So, we can express the torsion as a function o f t .  We have: 

T ( t )  = det - 1(t) G(t)l I dT 
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In this determinant, we now have: 

dv’(t) - v”(t) , we obtain: - - - dv’(t) 
and for - 

ds ds Ilr’(t)II . 
It remains to express v”(t). We have: 

and the calculation gives: 

so, we find: 

which gives the expression of the torsion: 

(1 1.14) 

Use of the tangent indicatrix. 
by the parameterization: 

The indicatrix of the tangents y1 is defined 

The unit tangent vector to y1 is ?I = v’ and the curvature C of y is: 

Summary table. 
nitions introduced in this section, along with their notations. 

Table 11.1 summarizes the various vector functions and defi- 

Local metric study of arcs in R3 

Let us denote by (.(As),  AS), z(As)) the coordinates of ?(As) in FrBnet’s frame 
of r (assumed to be regular in the vicinity of Mo) at point Mo. The study of the 
curve’s behavior in the vicinity of 0, so for small As, leads to looking at a Taylor 
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function 

curvilinear abscissa 

tangent vector 

curvature 

normal vector 

torsion 

not at. 

S 

7‘ 

v’ 

T 

depending on t 

1 d7’(t) -- 
C(t )  d t  

depending on s 

det IT’( s ) ,  T”( s ) ,  ,”’( s )  I 
C2(S)  

Table 11.1: Notations and characteristic values related to a curve. 

series at an adequate order in the vicinity of 0. By noticing that order 3 is required 
to have an analysis that is not restricted to the plane defined by the tangent and 
the normal, we write the expansion at this order: 

As2 As3 
?(As) = ~ ( 0 )  + As~’(0)  + -T”(O) + T T ” ’ ( 0 )  + U(As4),  

with ~ ( 0 )  = Mo, ~ ’ ( 0 )  = 7‘(0), ~ ” ( 0 )  = C(O)G(O). Posing M the point ?(As) and 
returning to the Frknet formula for J O ) ,  we have: 

2 

M = Mo + A~7‘(0) + $C(O)G(O) 

+ $ (-Cz((o)7‘(0) + C’(O)G(O) + C(O)T(O)G(O)) + U(As4),  

and, in terms of the fibnet’s frame, this reads 

 AS) = A s - 7 + U ( A s 4 )  C2 (0)As3 

 AS) = C (0) As2 T + ~ T + U ( A S ~ )  C’ (0) As3 (1 1.15) 
C (O)T( 0) As {  AS) = +U(As4)  

These relations give the behavior of the projections y1, 7 2  and 7 3  of y on the 
osculating, rectifying and normal planes to I? in Mo. To do so, it is sufficient to 
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choose the corresponding plane and the two associated components. For example, 
to study the behavior of 7 2 ,  we check whether T(0) < 0 or whether T(0)  > 0 (cf. 
Figure 11.5). 

T(0)  < 0 T(0) > 0 

Figure 11.5: Behavior of the curve 7 2  (projection of r on  the rectifying plane) 
according t o  the sign of the torsion T(0).  

Osculating spheres. Let 
flection point and of class Ck with k > 3. Let MO be a point of r. Then: 

be a simple arc, which is regular, without any in- 

Definition 11.4 There exists a n  infinity of osculating spheres t o  
are all the spheres passing through the osculating circle? to  r in Mo. 

in Mo, which 

Remark 11.6 The radii of the osculating spheres are greater than or equal t o  the 
radius of curvature. 

Parameterization of arcs 

In this short section, we are interested in various parameterizations of simple arcs 
and curves, especially the arcs defined by a Cartesian parameterization and the 
implicit curves of R2. 

Arcs defined by a Cartesian parameterization. 
of finite dimension d. 

We consider an affine space 

Definition 11.5 A Cartesian parameterization i s  such that, in a n  adequate frame, 
the parameter i s  equal to  one of the coordinates. 

For example, in the affine plane R2, the parabola defined by 

z - (z, k z 2 ) ,  ( k  = C t e ,  z E R) , is a simple arc. 

7This is equivalent to saying that such a sphere contains the circle of curvature of y at this 
point. 
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In a broader sense, in Rd, we consider a parameterization f of the form: 

2 1  = t ,  2 2  = fi(t) 7 ... 7 xd = fd(t) (t E I )  7 

the functions fi (2 5 i 5 d )  being of class Ck on I .  An arc of class Ck with 
Ic 2 1 admitting such a parameterization is simple and regular. Let us consider 
the parameterization f of the form ( t ,  f ( t ) )  in the affine plane R2. By applying 
Formula (ll.l), we obtain a simplified expression of the length d s  of an arc: 

d s  = Ilf’(t)lldt = d m .  
Similarly, the tangent vector 7‘ is obtained by the formula: 

f “(t)  
(1 + f’2(t))3/2 . and the (signed) curvature is given by C = 

Implicit curves in R2. Let f : R - R be a function of class Ck ( I c  2 1) 
defined on an open set R of the afine plane R2 and let rf be the set of points 
M E fd such that f ( M )  = 0. 

Definition 11.6 The  pair (f, I’f) i s  the so-called implicit curve f = 0. 

Using the implicit function theorem, we can show that the line tangent at MO 
to I70 (arc of class Ck whose local support is the curve rf) is defined by an equation 
such as: 

(. - xo)f;(xo, Yo) + (Y - Yo)f;(xo, Yo) = 0 7 

where f ( x , y )  denotes the value o f f  at point M(x,y),  i.e., we write in the same 
way both f ( M )  and f(x, y). Refer to Chapter 16 for more details about implicit 
curves and functions as well as computing their intrinsic properties. 

We will now move on to the study of the metric properties of surfaces. 

11.2 Metric properties of a surface 

This section recalls some basic notions useful for the study of surfaces. The aim is 
once again to give a brief overview of the classical results of differential geometry 
that can suit our purposes. In this section, we denote by & an oriented Euclidean 
affine space of dimension 3 and by E the associated Euclidean vector space. We 
recall (by analogy with the curves of E )  that a parametric surface of class Ck of 
& is an application of class Ck of a domain of R2 into &. 

Let C be a regular surface defined by the parameterization u: 

3 u : R - R , (u,w) - u(u,w), 

8Also called a parametric sheet. 
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where R denotes a domain of R2 and u is a function of class Ck (k 2 2 ) .  By 
analogy with the study of the local behavior of a curve using a limited expansion, 
we first indicate what such a development is (at order 2 )  in the case of a surface. 

Let M = u(u, v) be the point of parameters (u, v). We consider the limited 
expansion at order 2 of a at  the parameters (u, v) for a small increase (Au, Av): 

1 1 
LJ 2 2 

a(u + Au, v + Av) = U ( U ,  V) + ~ L A u  + aLAv + - U [ ~ A U ~  + U[~AUAV + -uEvAv2 - \ 
Y 

d 

order 2 order 1 
(1 1.16) 

where uh(u,v) represents -(u,v), ah(u,v) denotes -(u,v), ucu(u,v) denotes 

-(u,v), afv(u,v) is - (u,v) and atv(u,v) is -(u,v). According to  the 

depth of the limited expansion (at order 1 or 2 ) ,  we obtain two approximations of 
the surface allowing to  obtain its intrinsic features. These approximations involve 
the successive derivatives of u and the fundamental forms of surface C. 

au aa 
au av 

au2 auav av2 

First fundamental quadratic form 

At point M = M ( u ,  v), the tangent vector plane TM is directed by the vectors: 

aM aiw 
~ = uL(u,v) 1 av ~ = ffL(u,v) 1 au 

which are respectively noted by 1 and 1. Any vector f of TM can be written as: 
+ v = A71 + p?2. 

So, we have : 11fIl2 = 1 1 X 6  + pU11l2 = X21171112 + 2Xp((71,?2) + p211?2112. Posing, 

E = 1171112, F = (?I,?.) and G = 11?2112, 

this expression can be written: 11fIl2 = EX2 + 2 F X p  + Gp2 . Thus, we have intro- 
duced the first fundamental form of the surface, its precise definition being: 

Definition 11.7 Let TM be the tangent vector plane to a surface C at a point M .  
The restriction to TM of the quadratic form f - 11f112, (f E E ) ,  is  called the 
first fundamental quadratic form of C at M .  

This form is usually denoted by @?. 

Expression of @I. The usual expression of @ y  in the basis [71,?2] is then: 

@y(f) = EX2 + 2 F X p  + Gp2 , (1 1.17) 

which can also be written as a “differential” form: 

@ y ( d M )  = Edu2  + 2 F d u d ~  + G d v 2 ,  (1 1.18) 
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( i) and M1(A4)= where dA4 = -du+-dv. Posing A = 

we can write this fundamental form using a matrix expression: 

aiw aiw 
au av 

Remark 11.7 The first fundamental form defines the metric of the tangent plane 
to C which will be used to govern the calculation of lengths (as will be seen later). 

We then introduce the function H = d m  which allowsg us to write: 

Case of a Cartesian parameterization. We now assume that C is defined 
by the following Cartesian equation z = f(z, y), where f is a function of class Ck 
on a planar domain. If M ( z ,  y) denotes the point of coordinates (z, y, f(z, y)),  we 
will have the following expressions of E, F and G: 

aiw 
a n d G =  lla,ll = 1 + f h 2 ( z , y ) .  

Area of a surface. The quantities E, F and G are used to  define a surface 
element A a  of a surface, corresponding to a small variation Au and Av around 
point M ( u ,  v): 

then: 
A a  = J((?lAu A ?2Au),(?lAu A ?2Au)) . 

Hence, using the previously described relations, we reach the expression: 

A a  = .\/EG - F 2 A u  Av = H A u  Av . 

The area of a small piece of surface in the vicinity of point A 4  is then (Figure 11.6): 

a = 11  HA^ ~v . 

We now analyze how to compute the length of an arc traced on a surface. We 
will see that such a calculation involves the previous fundamental form. 

gThis function H is notably used to compute the area of C. 
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U 

Figure 11.6: Element of surface defined using (u,  v) and (u + Au, v + Av) where 
Au (resp. Av) represents a small increase in u (resp. v). 

Length of an arc traced on C. Let us assume that I? is the image by the 
parameterization u of the planar arc defined by the parameterization: t - 
(u( t ) ,v ( t ) ) .  So, r is defined by the parameterization u: t - u(u(t) ,v( t ) )  and 
thus we have: 

I I aM aM 
u = u (t)- + v’(t)- , au av 

allowing us to write: 

lla1(t)112 = EU12(t) + 2Fu1(t)v1(t) + Gd( t )  . 

Indeed, if [a,  b] is an interval, the length of r is: 

and finally (posing du = ul(t)  and dv = v’(t)): 

ds2 = Edu2 + 2Fdudv + Gdv20r also ds = dEdu2 + 2Fdudv + Gdv2 

Remark 11.8 We can also express the length of an arc traced on C with respect 
to  t:  

s(t)  = dEdu2 + 2Fdudv + Gdv2. 

Normal. Local frame. Darboux’s frame 

We will then focus on the notion of normal and oriented normal. Let C be a simple 
surface of class Ck (k 2 1) of & defined by the parameterization u : (u ,v)  - 
M ( u ,  v) = u(u, v). 

+ 
Normal. We pose: 

N(u,v)  =?lA?2, 



DIFFERENTIAL GEOMETRY 381 

with 1 and 1 the vectors of the basis of the tangent plane previously introduced. 
With the notations introduced before, we can write: 

I I i ( u ,  w)II = H ( u ,  w) with H = d m .  
The vector i ( u ,  w) thus defined is called the normal vector to C at  M associated 
with the given parameterization c. The afine line passing through M and directed 
by vector i (orthogonal to  the tangent plane) is called the normal to  C at  M .  

Oriented normal. The unit vector 

does not depend on the orientation of C with respect to the given parameterization. 
This vector is the unit normal vector at M to C. 

Local frame. 
means of the parametric equation: M +  A71 + pT2. The normal 
TM coincides with the normal to C at M .  So, the unit normal 

At point M = c(u,  w), the tangent plane TM can be defined by 
AT2 to the plane 

and the vectors 6 and 71: form a local system of coordinates: 

the so-called local frame at M (Figure 11.7, left-hand side). 

Remark 11.9 Notice also that the axes 1 and ?2 usually form only an af ine 
system. This frame is  the analog of the Frinet frame for the curves. 

Figure 11.7: Left-hand side: the local frame at point M = c(u,  w) of C. Right-hand 
side: the Darboux frame (moving frame) associated with point M = c(u,  v )  of C 
and with the tangent 7'. 
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Darboux's frame. The Darboux frame [A4,1,$,n'] associated with the pair 
(A4,1) is defined by 1, a unit tangent vector at A4 to C, by Ti ,  the unit normal 
vector and by the vector $= n' A 1 (Figure 11.7, right-hand side). 

We now consider a regular and oriented arc r traced on C. The moving frame 

is the Darboux frame of r (associated with a normal parameterization s - y(s)). 
Moreover, the vector $(s) is called the geodesic normal vector to r at the point 

Given a curve r traced on C, the tangent ? t o  r at A4 is one of the vectors of 
TM and a moving frame can be associated with this particular tangent vector. 

The study of the various curves passing through a point A4 allows us to capture 
the behavior of the surface in the vicinity of M .  For instance, the intersection of 
C with any of the planes containing the unit normal n' defines one of the curves 
we are interested in. Such a plane II, is a normal section to the surface at M .  

A4 = y(s). 

Normal curvature, curvature and geodesic torsion 

The normal curvature of r is defined by the function: 

K, : s - K,(S)  = ( n', - 2)=-(1,:) 
The geodesic curvature of r is defined by the function: 

Kg : s - K g ( S )  = ( $, - :)=-(?,g) 
Finally, the geodesic torsion of r is defined by the function: 

Tg : s - Tg(s)  = ( $, - E)=-(n',g). 
Using all these definitions, the Darboux formulae are the following: 

dn' 
d s  ds  ds  

= - K ~ ? - T ~ ~ ,  - = -IS,? + Tgg d 1  ds' 
= K g $ + K n n ' ,  - - 

Second fundamental form 

At point A4 = M ( u ,  v), any vector 1 of the tangent plane TM can be written as 
1= A 1 1  +p12. Let n' be the unit normal vector to TM at A4 defined above. Using 
the same notations as in the previous section, we have: 

Developing the first formula, we obtain a relationship of the following form: 

d u  dv (2)2 d s d s  
K n = L  - +2A4--+N (1 1.19) 
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where: 

Formula (11.19) indicates that the normal curvature of I? at M depends only on 
the direction of the unit tangent vector: 

d M d u  d M d v  ?=--++- 
d u  d s  dv d s '  

Thus we introduce the second fundamental form of the surface. 

Definition 11.8 Let  TIM be the tangent vector plane to  the surface C at M ,  the 
second fundamental quadratic form of C at M is  the quadratic form:  

a$-(?) = LA2 + 2 M A p  + N p 2 ,  

the values L ,  M ,  N being given by the formulae of Relation (11.19). 

Expression of @2. @ y  can also be written as a differential form: 

@ y ( d M )  = L d u 2  + 2 M d u d ~  + N d v 2 ,  

with d M  = g d u  + g d v .  Posing 

we can write @ y  as a matrix form (as we did for a?): 

Remark 11.10 The  second fundamental  f o r m  measures the deviation between the 
tangent plane and the surface at M .  

Case of a Cartesian parameterization. Let us assume that the surface C is 
parameterized by the Cartesian equation z = U ( X ,  y), where u is of class C2 at  least. 
Let M ( x ,  y )  be the point of coordinates (2,  y, c ( x ,  y ) ) ,  the second fundamental form 
is: 

@ z ( d M )  = - ( rdx2  + 2sdxdy  + t d y 2 ) ,  
1 

H 

with 
dM dM 

d M = - d x + - d y a n d H = d w ,  
dX dY 

I1 I1 posing: p = c;, q = ah, r = cx2, s = cxy and t = c:2. 
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Computing curvatures and geodesic torsion 

The normal curvature K, at point A4 of C is related to a tangent vector of the 
form V = A11 + p12 by the relation: 

+ 

Whenever 9 varies, this function admits two extrema, the principal curvatures 
to which are associated the two principal radii of curvature and the two principal 
directions. 

Remark 11.11 W e  consider the curve traced on  the surface and defined by  the 
segment joining (u ,  v) to (u + A, v + p ) .  W e  have seen previously that this curve 
could be approached by a parabola with a limited expansion truncated at order 2. 
Using Pythagorus’s theorem, we can then write: 

and, neglecting the terms at order 2 before those at order 1, we have: 

All this information can be used to  control the quality of the geometric poly- 
hedral approximation of the surface (Chapter 15). 

Curvatures. Let ~1 be the minimal curvature and let ~2 be the maximal cur- 
vature. We define the Gauss curvaturelo, the mean curvature and the absolute 
curvature respectively as: 

Geodesic torsion. 
traced on C. The geodesic torsion of r is given by the formula: 

Let r be an arc defined by a normal parameterization and 

which can also be written as: 

1 
Tg = (Z 

E )  
dU 

’ ”> au 

‘OAlso called the total curvature. 
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Meusnier's circle and theorem 

We assume that the normal curvature f i n  is not zero and we denote by R, = 
M + Rnn' the center of normal curvature. If r is a simple and regular arc traced 
on C and tangent to C at M ,  the center of curvature R of r at M is defined by: 

where a denotes the angle between the normal Y' to and the normal n' to C at 
M .  The point R is the projection of R, onto the principal normal to y at M .  

The relation fin(?) = Ccosa has an interesting application. If r is the inter- 
section of C by a normal section, we find that the circle of diameter f in (?) ,  the 
Meusnier circle, is the geometric locus of points M ,  endpoints of the segments 
P M ,  such that IIPM11 = C, the curvature of a curve whose normal Y' makes an 
angle a with the unit normal n' to C. In other words, fin(?) and a make it possible 
to obtain the curvature of various curves under this angle. 

Local behavior of a surface 

In the local study of curves (Section ll.l), we have seen that the curvature gives an 
indication of the deviation of the curve with respect to the tangent in the vicinity 
of a point M .  Similarly, we will analyze the behavior of a surface with respect to 
its tangent planes. 

Let C be a simple and regular surface of class at least C2, defined by a param- 
eterization cr. We wish study the behavior of the surface C in the neighborhood 
of a point M = cr(u, v). 

We consider a small increase AM = (Au, Av) in u and v in the neighborhood 
of M ,  assumed to be sufficiently small. Applying a Taylor series at order 1 to cr, 
we have: 

aiv  aiv  
au av a(u + Au, v + Av) = U(U, V) + AU - + AV - + O( llAMl12) . 

This local study corresponds to an approximation of the surface by a plane (the 
tangent plane), noted TM,  directed by the vectors ?I and ?2 at point M .  

To estimate the gap between the surface and the approximation, we pursue the 
development at order 2 (for a surface smooth enough): 

In this expression, the term of order 2 enables us to measure the desired gap. The 
local analysis corresponds to an approximation of the surface by a paraboloid (a 
quadric) P.  Notice that in this development, we can exhibit the terms L, M and 
N previously introduced by observing the projection on 5, we have: 

+ Av2 - d 2 M ,  n') = Au2L +2AuAvM + A v 2 N ,  
a2M + 2 AU AV - 

d2M 
(Au2 p au av av2 
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that makes use of the second fundamental form @2 of the surface at M .  The 
nature of the form @2 corresponds to a local geometric property of C at the point 
M .  

In the Taylor series at order 2, the second order term allows us to determine 
whether the tangent plane TM intersects the surface in the neighborhood of M .  

Dupin's indicatrix. 
the tangent plane TM at M can be written as: 

Using the polar coordinates, T = fi and 8,  a point P of 

x = JiTcose and y = f i s i n e ,  

where (3 denotes the angle between one of the principal directions (the other being 
orthogonal) and the line M P .  We can then use the Euler relation [do Carmo-19761: 

nn = n1 cos2 e + n2 sin2 8 ,  

relating the minimal and maximal curvatures to the normal curvature and, then, 
we can write: 

2 2  y2 
n122+n2y2 = - + - = f l .  (1 1.20) 

P1 P2 

which corresponds to the equation of a conic section, called the Dupin indicatrix. 
Notice, by the way, that a change in the orientation of the normal does not change 
the sign of p, thus the symbol f in the relation. 

Let us now consider a plane T,, parallel to the tangent plane TM at M and 
located at a distance E of TM. Considering the Taylor series at order 2 of u, the 
trace of the quadric in this plane is such that: 

The idea is here to consider that the Dupin indicatrix represents the intersection 
of the surface (locally approached by the paraboloid) and the plane T, (within a 
scale factor 5, such that E = &). 

We study the behavior of the curve defined by Equation (11.20) in the plane 
T,, according to the curvatures nl and n2, by noticing that the conic is a curve 
not depending on the parameterization of C. This curve is (Figure 11.8): 

0 an ellipse, when n1 n2 > 0, 

0 two parallel lines (at a distance of 2p1 or 2p2), when nl = 0 or n2 = 0, 

0 a pair of hyperbolas, when n1 n2 < 0. 

From a geometric point of view, when the distance E between T, and TM tends 
towards 0, the curve is reduced down to a contact point only. When decreasing the 
distance, the curve is scaled up continuously, we observe that this curve approaches 
an ellipsis (in the case of an elliptical point) whose center is the contact point. 
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Figure 11.8: Dupin's indicatrix: elliptical point, 6 1  6 2  > 0 (left-hand side), 
parabolic point, 61 = 0 or 6 2  = 0 (middle) and hyperbolic point, 6 1  6 2  < 0 (right- 
hand side). 

11.3 Computational issues about surfaces 

Here, we will focus on problems which arise when dealing with surfaces. 

Curvature computation 

Let C be a simple regular and oriented surface of class Ck ( I c  2 2) defined by 
a parameterization (u ,v )  - M ( u , v ) .  Consider a curve r traced in a normal 
section II, at  a point M to  the surface. 

The curvature of r at  a point M characterizes the geometry of the curve in 
the neighborhood of this point. The normal curvature characterizes the surface in 
the same neighborhood. The expression of the curvature of r shows the tangent 
vector 7' and the unit normal v' as follows: 

whereas the normal curvature of the surface at  M is characterized by: 

In fact, f in (?)  measures the curvatures of the surface with respect to its unit 
normal n' at  M in the direction 7'. Thus, we have: ~ ~ ( 7 ' )  = Ccoscu where a is the 
angle between v' and n'. 

Remark 11.12 If n' = v' (when these two vectors are colinear), the curve is 
called a geodesic. I n  other words, at point M ,  the unit normal n' to C is the 
geodesic normal of y. 
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' / '  / I  

Figure 11.9: A normal section IIn 
and the curve I7 representing the in- 
tersection of the surface with this 
plane. 

As we assumed a parameterization c of C, the relations 

$4 = u(u(t), 4 t ) )  or Y(S) = 4 u ( s ) ,  4.)) 7 

are established, the characteristics of C (i.e., its normal curvatures) can be obtained 
with respect to c and to its derivatives. 

AS (n',?) = 0, 

d?( s) 
K =  ( 7 , s )  isalso K = -  

Denoting n' = v, we have Hn' = ?I A ?2 and using again (8, ?) = 0, 

is finally reduced to: 

( ? , F ) = H ( ? , Z ) ,  

hence 

Now, depending on u and v, as 

we thus have: 
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Finally, the expression of the curvature K~ is given by the following formula: 

s ( ( ? i $ + ? 2 f i ) , ( ( ~ ~ + ~ ~  aT1 du aT1 dv) AT2 ) + ( ?in ( a i , d U  -- +-- 
H ds au ds av ds 

then, for instance, L ,  the coefficient depending on (du/ds)2 is: 

previously defined. Similarly, we can demonstrate that: 

M = ( G , C J $ ~ )  and N = ( 5 , ~ : ~ )  

Exercise 11.1 Establish the previous results for M 
in dulds dvlds and (dv/ds)2, respectively). 

Using these values, the normal curvature is given 

du dv 2 

K = L ( $ )  + 2 M z d Y + ~  

and N (hint: f ind  the terms 

ds2 

i.e., 

(1 1.21) 
Ldu2 + 2 Mdudv + Ndv2 - @p(?) 
Edu2 + 2 Fdudv + Gdv2 @ y ( T )  

- &(?) = K = 

according to a given direction 7’ such that 7’ = du71 + dv?~. Thus, we find the 
relation between the two fundamental forms (evaluated in ?) introduced previously. 

Normal curvature analysis 

Let X and p be two parameters and consider 7’ = X?1 + p?2. Using the previously 
established result, we can write: 

LA2 + 2 MXp + N p 2  
EX2 + 2 FXp + Gp2 Kn(?) = K n ( X , P )  = 

the aim is to determine how this function varies. To this end, we study its variation 
with respect to  the two parameters. We start by searching the extrema of this 
function, which are given by the relations: 

These two relations lead to  a unique equation: 

( F L  - EM)X2 + (GL - EN)Xp + (GM - F N ) p 2  = 0 .  (1 1.22) 
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det 
p 2  -Ap A2 
E F G = O .  
L M N  

(1 1.23) 

If the three coefficients of the relations are zero, then the two fundamental forms 
are proportional, irrespective of the values of 7' (i.e., for all (A, p) )  and the curvature 
is constant along the normal sections. In this case, the constant curvature is then: 

L A 4 N  
E F G '  

- - 
+ 

Kn(7) = nn = - = - - 

In the other cases, this equation admits two distinct solutions (i.e., two pairs 
(A1, p1) and (A2, p2 ) ) .  With each of these pairs is associated a vector, respectively: 

+ 

f 1  = A171 + p 1 7 2  and 

f 1  and f 2  are orthogonal, i.e., (f1, c 2 )  = 0. They define the two principal direc- 

V2 = A 2 7 1  + ~ 2 7 2 .  

form with n' an orthonormal basis called the local principal basis at point A4 and 
denoted as: 

B M  = [M,  I&, I&, n'] . 
With each principal direction is associated a principal curvature, which is the 

solution of: 

detl 1 = O .  (1 1.24) 

To summarize, the surface C at point M is characterized by its local principal 
basis B M ,  its two principal curvatures nl = nn(A1, p1) and nz = n,(A2, pz) and 
thus by its two principal radii of curvature p1 = l/n1 and p 2  = l / n 2  whose 
variations allow us to determine locally the geometry of the surface. 

Remark 11.13 By comparing this result with the expression of the geodesic tor- 
sion defined previously, we again find the fact that the two principal directions are 
the directions for  which the geodesic torsion is  zero. 

Remark 11.14 All the functions introduced in this section will serve to define the 
requisites needed to control the meshing process of surfaces (Chapter 15). 

Relationship between curvatures and fundament a1 forms 

We suggest here a different way of establishing the results given above. To this 
end, let us consider the two metrics associated with the two fundamental forms. 
According to the previous sections, we already know that: 
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is attached to the first fundamental form and that: 

corresponds to the second fundamental form. 
Let us consider the matrix N = MT1M2. This matrix is diagonalizable (as it 

is a MI-symmetric matrix). Let $1 and @z be the two unit eigenvectors of N.  
Then, for each vector c of TM,  expressed according to @I and @2, we have: 

@I(?) = a2 + P2 and @ 2 ( f )  = 61a2 + /s2P2 

leading to: - @ 2 ( 9 )  - K l Q 2 + K 2 / 3 2  

@I(Q) Q 2 + P 2  . 
K n ( V )  = ~ - 

- 
The extrema of tcn(V) are obtained for Q = 0 or /3 = 0. Hence, ~1 and ~2 are 
naturally extrema (in the previous expression). The corresponding directions (i.e., 
the c's) are @I (for ,8 = 0) and @2 (for Q = 0). 

Remark 11.15 In fact ,  finding the principal directions i s  only a geometric i n -  
terpretation of the problem of the simultaneous reduction of two quadratic f o r m s  
(Chapter  10). 

Local behavior of a surface 

The analysis of the local principal basis when M varies on C allows us to capture 
the local behavior of the surface. Indeed, the extremal values of K ,  the curvature 
related to a point, characterize the type of the surface at point M .  We can also 
write: 

K2 - ( K l  + K2)K + K1K2 = 0 ,  

or 
2 - 2 KMeanK + KGauss = 0 .  (1 1.25) 

Thus we have: 

1 N E  - 2MF + LG LN - iw2 
E G - F 2 '  KMean = - and KGauss = 2 E G - F 2  

When (cf. Figure 11.10): 

KGauss > 0, the point M is said to be elliptic, 

KGa.zLss < 0, the point M is said to be hyperbolic, 

KGauss = 0, the point M is said to be parabolic. 

Obviously, when K G ~ ~ ~ ~  and K M ~ ~ ~  both tend towards 0, the surface is planar 
at M .  
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Figure 11.10: Position of a surface with respect to a tangent plane. Elliptic point 
(left-hand side), parabolic point (middle) and hyperbolic point (right-hand side). 

Remark 11.16 For a point A4 of a simple and regular surface to be elliptic, it is 
necessary and suficient that the second fundamental f o rm is  defined (positive or 
negative). For a point M to be hyperbolic, it is  necessary and suficient that the 
second fundamental f o rm @p is  non-degenerated and non-defined. Finally, for  a 
point A4 to be parabolic, it is necessary and suficient that @p is  degenerated. 

11.4 Non-linear problems 

The definitions of curves and surfaces usually leave out some problems. For in- 
stance, the intersection procedures between two curves, two pieces of surfaces 
(patches such as those defined in Chapter 13) theoretically lead to solving a non- 
linear equation. In the general case, these problems can also be solved explicitly 
and therefore require the development of numerical approximation methods. Some 
of these methods are presented in this section. 

Non-linear issues 

Let rl and r 2  be two parametric curves associated with the functions y l ( t )  and 
yz( t ) .  The intersection of these curves is defined by the set of pairs of values: 

(t1,tz) such that n(t1) = y d t 2 )  

leading to a non-linear equation. Similarly let us consider C1 and C2 two bi- 
parametric patches, associated with the functions ul(u1, w 1 )  and u2(u2, w2). The 
intersection between C1 and C2 is defined by the set of pairs of vectors: 

( U I , V ~ , U Z , V Z )  such that ul(ulrwl) = ~ Z ( U Z , W Z )  

also leading to a non-linear equation. Finally, let us consider the intersection 
between a patch and a curve; we then have the following (non-linear) equation to 
solve: 

Moreover, the projection and the search for the closest point on such a curve from 
a given point according to a specific direction leads to a non-linear equation of the 
following type: 

(ul,Wl,t) such that ~I(uI,v~) = n ( t 1 ) .  

= 0 .  dllM, y(t)II 
dt 

t such that 11A4y(t)ll is minimum, or also 
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In such cases, the problems can be solved with the algorithms described in the 
following sections. However, we should also mention here the algebraic methods. 
This type of method is usually based on an implicit definition of F’ (F’ being a vec- 
tor with d components representing the problem to be solved), F’ = 0. More details 
about such methods can be found in the literature, for example in [Sederberg-19871. 
We will not spend more time here on these issues as they are seldom used in this 
context. 

Newton-Raphson type algorithms 

Let us consider @(XI, x2, ... xn) = 6 as the problem to be solved, for which F’ is a 
vector with m components. We are searching for the best vector (i.e., the optimal 
vector, in a certain sense) 2 = (XI, 2 2 ,  ... xn) such that the equation is guaranteed. 
The basic idea of a Newton-Raphson-type method is to identify the zeros of the 
vector function F’, using the following algorithm: 

Algorithm 11.1 Newton-Raphson algorithm 

Initialize 2 randomly, 
WHILE llF(Z)ll 2 E 

in first approximation, consider the asymptotic development 

of 3: 

where j E [ l ,m] 
solve the linear system Fj(?+ dZ) = 0 with dZ as unknown 
set Z to the value Z +  dZ 
compute F(Z) 

END WHILE. 
RETURN Z 

Remark 11.17 This algorithm yields a unique value for 2. This solution greatly 
depends on the value used to initialize 2. If more than one solution exists, only 
one is returned by the algorithm. Hence, the solution found may not be the global 
minimum of the function. 

Figure 11.11 illustrates the behavior of the algorithm for a function of one 
parameter. Solution 2 3  is the unique solution returned by the algorithm, whereas 
three solutions can be shown. 

Remark 11.18 I n  some cases, the system to be solved as under-determined, i e . ,  
m 5 n. I n  such cases, new equations need to be added, depending on the context, 
to find the best direction for the vector F’. 

Divide and conquer algorithm 

Newton-Raphson-type algorithms do not allow a complete analysis in the interval 
in which the solution is assumed to be. The divide and conquer strategy attempts 
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Figure 11.11: Resolution of an equation using a Newton-Raphson method. 

to identify the different sub-domains where a solution might exist. The main idea is 
to bound the values of F' in an interval. If the interval contains 0, the latter is then 
subdivided into m (usually m = 2) sub-domains. This process is then repeated 
on each sub-domain. Each branch of the binary tree structure associated with 
this method is analyzed and recursively subdivided until a given minimal size is 
reached. 

Remark 11.19 Such an algorithm does not strictly speaking solve the initial prob- 
lem. I n  fact, it identifies the various sub-domains where a solution may be found. 
From a practical point of view, a Newton-Raphson algorithm is then employed to 
find the solution in each interval. 

Remark 11.20 (Method based on a grid) This type of method starts by  defin- 
ing a gr id  a priori over the computational domain. Then, a linear interpolation of 
F' is constructed. The non-linear problem is solved using the linear interpolation 
of F'. Seen from this point of view, this method is another way of subdividing 
the domain in such a way so as to localize the various possible solutions. From a 
practical point of view, the gr id  used is a regular gr id  in the space of?. 



Chapter 12 

Curve Modeling 

A curve can be defined using various categories of methods. Indeed, there are 
parametric, implicit or explicit curves. Using classical notations, a parametric 
curve is given by a function y and a parameter t .  Then, given t in some interval, 
the curve is defined by y ( t )  where y ( t )  E Rd, d = 2 or 3. Implicit curves in R2 
are given via a relation like f(x,y) = 0 where x and y denote the coordinates. 
Explicit curves in R2 are defined by the pair (x, y = f(x)). In R3, non-parametric 
curves are defined as the intersection of two surfaces. 

In principle, function f or y depends on modeling parameters (pi)iE[l,npl. These 
parameters can be defined in the following ways: 

through a direct definition of the design variables: with this approach, the 
user of a CAD system directly defines the values of the parameters pi using 
a graphic interface. This way of processing is actually the simplest but it 
requires reasonably precise knowledge about the underlying models and their 
intrinsic variables, 

through the specification of the curve characteristics: the curve is defined by 
means of high level characteristics but the model, as completed by the CAD 
system, does not necessarily store this information. For instance, a circle 
can be defined while a NURBS type curve is generated inside the system. 
This type of curve specification includes the curve generation method based 
on a set of constraints, 

through an interpolation method: a set of points Pi and, for some of these 
methods, a set of derivatives at these points are supplied which form the 
parameters (the pi’s). Then, an interpolation procedure constructs a curve 
that passes through all of these points, 

through a smoothing technique: a set of points Pi (and, as above some 
derivatives for some methods) is supplied. A smoothing algorithm then 
completes a curve that passes through the given points (or only some of 
them) while ensuring that a given criterion is minimized, 

a through a combination of several of the above approaches. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 



396 MESH GENERATION 

In this chapter we discuss the methods that are the most widely used in prac- 
tice (in CAD systems), namely a parametric definition. Implicit curves will be 
discussed in Chapter 16 while explicit curves are mostly of academic interest or 
are used only in some particular cases. 

In the first section, we introduce the main ideas of the interpolation or smooth- 
ing based methods for parametric curve modeling. In the following sections, we 
describe the models that make use of a control polygon which form the basis of 
most curve definition systems. 

Curves are defined from a set of points and various types of functions. First, a 
global definition can be constructed, which means that a single function is used to  
define the curve from point PO to point P,, irrespective of the range of n. Second, 
the curve from PO to  P, is defined using several segments whose junctions verify 
some regularity. In the first case, the curve passes through PO and P, and passes 
through the Pis, (i = 1, n - l), and we encounter an interpolation method or does 
not pass through these points and we encounter an extrapolation or a smoothing 
based method. 

Among interpolation methods we first find methods such as Lagrange inter- 
polates using the control points as input data and Hermite interpolates where 
derivatives (tangents a t  the control points) are also involved. We can find other 
types of definitions such as the well-known BBzier method based on Bernstein poly- 
nomials of degree n and the rational Bkzier method using rational polynomials also 
of degree n. 

While good in terms of regularity, such global definitions may lead to  some 
problems of a different nature (complexity, unnecessary computational effort, os- 
cillations, etc.). As a consequence, when n is large, methods with a low degree 
(such as 3 or 4) have been introduced. Then, whatever the value of n, a series 
of segments is defined where a low degree method is developed. We then obtain 
a good local regularity and the issue is to  make sure that the junctions between 
two consecutive segments is smooth enough to obtain sufficient global regularity. 
In this class of methods we can first use low degree Bkzier (or similar) definitions 
or Spline-based methods leading to B-spline or more generally to  NURBS-based 
methods. 

The first sections aim at  briefly introducing the methods that have been men- 
tioned above. We do not claim to be exhaustive and for a complete view of curve 
definitions we refer the reader to the ad-hoc literature; i.e., [Mortenson-19851, 
[Bartels et al. 19871, [Bartels et al. 19881, [Lkon-19911 or [Farin-19971 among many 
others. At the end of the chapter, some numerical problems regarding curve ma- 
nipulation are discussed based on some comprehensive examples. 

Notations. In what follows, t is the parameter and y(t) is the parametric 
expression of the curve we are interested in (the curve is usually noted by r). If 
need be, we do not distinguish between y(t) (which for a given value o f t  is a point) 
and r (the whole curve). 
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12.1 Interpolation and smoothing techniques 

As we are concerned with parametric curves, the function y defining such a curve 
has the form: 

y ( t )  = y(Pl ,pz , . . . ,pnp , t )  7 

where the pi’s are the parameters defining the shape of model y (i.e., that of 
curve r) and t is a real value parameter. 

In the following we consider n+ 1 control points PO, PI ,  ..., P, in Rd. The prob- 
lem is to define a curve using a function and these points, then various questions 
must be addressed including how to define these points and what type of functions 
must be constructed so as to obtain a suitable and easy to  manipulate curve. 

The purpose of any interpolation or smoothing method is to  find the values 
of the parameters pi involved in the definition, such that the resulting curve r is 
representative, in some way, of the given set of points PO, PI ,  ..., P,. At first, we 
are not interested in what the functions y used to define the curve are. Then, 
for a specific interpolation or smoothing method (using a parameterization of the 
whole set of points), there exists a unique parameter that can be associated with 
any point in this set. The given points define a polyline and an interpolation or 
smoothing technique must complete a curve close to  this line. 

Parameterization of a set of points 

The issue is to  associate the parameters ti with the points in the set Pi. At least, 
we must achieve a certain correspondence’ between y ( t i )  and Pi. Once the points 
have been sorted, the first assumption is that the ti’s are ordered in an increasing 
order: ti 5 ti+l. 

This being satisfied, any set of ti’s is valid a priori. Nevertheless, for simplicity 
and simple automatization, the most frequent choices correspond to: 

a a uniform parameterization: the parameters are uniformly spaced in the 
given interval, 

a parameterization related to distances between the points: the parameters 
are then spaced in accordance with the length of the segments [Pi, Pi+l]. 

Uniform parameterization. 
the ti are defined following the rule: 

If the interval of parameters is [tmin, tmax], then 

i 
n ti = tmin + - x ( t m a x  - tmin) 

Remark 12.1 Notice that the curvilinear abscissa along the approached polyline 
does not follow, in general, the distribution of the ti’s. For instance, the parameter 

, the middle of the interval [tmin,tmax] i s  not, in general, the value 

parameter of the midpoint of this polyline. 

tmin + tmax  

2 

‘Such a parameterization is not strictly required. The purpose is to find the np parameters. 
The tis are only additional parameters. If, in addition, there are more equations than unknowns, 
then the parameterization allows us to reduce the number of parameters by k i n g  some ti. 
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Parameterization conforming to the length ratios. The parameters ti’s 
can be defined in such a way as the ratio between two successive parameter values is 
exactly the ratio between the lengths of the two corresponding consecutive points: 

where tmin and tmaX are the bounds of the interval. In this case, the series of the 
ti’s can be obtained using the following algorithm. 

Algorithm 12.1 Parameterization following the length ratios. 

t o  = tmin 
n-1 

L =  c l l 4 + 1  - $ 1 1  
j = O  

FOR z = 1 t o  n 

END FOR i. 

Remark 12.2 Taking these length ratios allows for  a better match between the 
variation in curvilinear abscissa and that of the parameters but, however, does not 

d s  
dt  

lead to  the proportional ratio between these two values, therefore - # cte . 

Interpolation based methods 

The interpolant properties of any curve definition method are related to the fact 
that the distance between the curve and any point Pi is zero. The best way to  
ensure this property is to impose that: 

Since the values of the ti’s must be chosen so as to  be suitable for all the previously 
mentioned methods, we have (n + 1) x d equations with n p  unknowns. Then we 
encounter three cases: 

0 n p  5 (n  + 1) x d and the interpolation problem is over-determined Sys- 
tem (12.1) cannot be solved, 

0 n p  = (n  + 1) x d and the interpolation problem is well-posed: System (12.1) 
can be solved. However, since y is non-linear with respect to the parameters 
pi’s, the system to be solved is a non-linear system, 

0 n p  2 (n + 1) x d and the interpolation problem is under-determined Sys- 
tem (12.1) must be completed with additional conditions, for instance, about 
tangencies, curvature values, etc. 
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Exercise 12.1 Interpolate a circle f rom the following series of data points (when 
this makes sense): 

Hint: in the case of two points, f i x  one parameter tl or t 2  so as t o  define a specific 
circle (there is  a n  infinity of circles passing through two points). With 3 points, 
the t i s  result f rom a non-linear system (which mus t  be solved using a n  adequate 
technique; cf. Chapter 11). With 4 points, there i s  n o  longer an  interpolation 
solution in most  cases. 

Smoothing based met hods 

Interpolation techniques are not suitable when the corresponding system is over- 
determined. In this case, smoothing techniques allow for the definition of a curve 
which is close, in some sense, to  the set of points. This notion of a proximity is 
evaluated with respect to a criterion C: 

C(PI ,PZ,  . . . , pnp ,P~ ,P l , . . . ,Pn ) .  

The aim is then to minimize this criterion C for the set of pis. To this end, we 
construct the svstem: 

In this system, there is still the same number of parameters and equations. 
Thus, this system can be solved. However, it could be non-linear, meaning that 
appropriate methods must be used. The reader may refer to  Section 11.4 where 
some methods suitable for this purpose are discussed. 

Remark 12.3 (Linear regression by means of a least square method) In 
numerous cases, the square of the distances is  used in the definition of C: 

n 

c ( P ~ ,  ~ 2 ,  ~ n p r  PO, P I ,  ...,pn) = C llpi - Y ( P ~ ,  ~ 2 ,  ~ n p r  ti)l12 . 
i = O  

If the curve corresponding t o  this series of points is  a line, y i s  linear with i ts  
parameters. Thus, C i s  a polynomial of degree 2 and the resulting system is a 
linear system. Indeed, we turn to  the system of the classical linear regression. 

Remark 12.4 W h e n  the p is  have been fully defined, C ( p l , p z ,  ..., pnp, Po, PI ,  ..., Pn) 
i s  used to  judge the quality of the curve in i t s  approximation of the set of points. 

Exercise 12.2 Generate a circle approximating the series of points in Exercise 12.1 
when a least square criterion i s  prescribed. 
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Combined methods 

When the number of constraints, interpolation points, tangency conditions, cur- 
vatures, etc., is less than the number of parameters, a smoothing method can be 
combined with an interpolation technique. Then, the minimization of criterion C 
must be made under this interpolation constraint. 

12.2 Lagrange and Hermite interpolation 

Lagrange's interpolation scheme 

After this general survey, we turn to  the first class of interpolation methods, called 
the Lagrange type method. In this case, the control points are associated with a 
series of parameter values ti, (i = 0 ,  n ) ,  where ti corresponds to  Pi. The modeling 
parameters, the pis ,  are the Pis and the parameter t consists of the set of tis. Then 
the interpolation function: 

defines a curve, called the Lagrange interpolate of degree n. This curve is governed 
by the n+l given points and passes through these points: in fact, since $i(tj) = 6ij  

where 6ij  is the Kronecker delta, we have y(ti) = Pi. 

Remark 12.5 The $is form a basis of all polynomials of degree n. Moreover, 
they sum to 1. 

Remark 12.6 y( t )  can be written by means of the monomial basis. Following this 
form, we have 

n n 

$i(t) = c ai ti or y ( t )  = c Ai t i ,  
i=O i=O 

where the Ais are indeed combinations of the given Pis. 

This interpolation function is C" which is, a t  the same time, good but prob- 
ably unnecessary. On the other hand, when n is large this curve definition may 
produce oscillations and lead to an expensive computational effort. Thus, this 
type of polynomial function is mostly of theoretical interest or used in practice as 
a component of another curve definition. 

Recursive form for a Lagrange interpolation 

The above Lagrange interpolate can be written in a recursive manner. We intro- 
duce a polynomial of degree 1, which corresponds to  the case n = 1 of the above 
general definition. This polynomial, defined in the interval [ti, ti+l], is given by 

t - ti 
ti+1 - ti 

Pi + Pi+l; i = 0,  ..., n - 1. ti+l - t 
ti+1 - ti 

Ai( t )  = 
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Using this relation2, we construct a recursion. To this end, we assume that we 
have found a polynomial, say A;-'(t), that interpolates to the n first Pis (i.e., 
i = 0, ..., n - 1) along with a polynomial AY-'(t) that interpolates to the n last 
Pis (i.e., i = 1, ..., n). With this material, we define the following sequence: 

t ,  - t t - to 
tn - to 

A;-l(t) + ~ AY-'(t) . AXt)  = 

We then have Al;(ti) = Pi. 

Proof. First, for t = to, we have Al;(to) = A;-l(to) which leads to  having 
Al;(to) = AA(t0). Then, following the definition of the Ais with i = 0 and t = to, 
we have 

Similarly, for t = t,, we have Al;(t,) = A?-'(t,), thus Al;(t,) = AA-l(tn), i.e., 

tn - tn-1 
tn - tn-1 

P, = P, . 

For the other tis, we just have to follow the way in which the recursion was defined. 
0 Indeed, we have A;-'(ti) = AY-'(ti) = Pi, then Al;(ti) = Pi. 

The above recursion can be generalized in: 

t - ti 
ti+r - ti 

AT(t) = ti+r - AL-l(t) + ALTi(t); i = 0, ..., n - T T = 1, ..., n 
ti+r - ti 

the so-called Aitken algorithm. 

by means of the above Aitken algorithm, namely 
As a conclusion, the Lagrange interpolate can be written as initially stated or 

Matrix form for a Lagrange interpolation 

In practice, given an adequate set of tis, the Lagrange interpolate can be expressed, 
for each component, in a simple matrix form: 

with: 
[7 ( t ) ]  = [t" tn-l ... t 11 

[PI = "Po P1 .... P,] 

where [MI is a (n  + 1) x (n + 1) matrix. 

2Where the notation A is short for Aitkens, as will be justified subsequently. 
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Lagrange forms of degree 1 and 2 

In the case where parameter t is chosen as: ti - ti-1 = i, i.e., the sequence ti is 
uniform, matrix [MI is written as follows3: 

[ M I = ( ;  1 1  0 )  

for n = 1 (assuming [to,tl] = [0,1]) .  A similar expression, whatever n is, can 
be obtained (obviously unlikely to  be suitable when n is large). For instance, for 
n = 2 ,  to = 0 ,  t2 = 1 and tl = 0.5, we find: 

Proof. Using the general formula for n = 2 ,  we have: 

( t  - to)(t - t l )  
Pl + p2 7 (t2 - to)(t2 - t l )  

( t  - to)(t - t2) 
(tl - tO)(tl - t2) 

Po + ( t  - t l ) ( t  - t2) 
y ( t )  = (to - tl)(tO - t2) 

since we set to = 0, tl = 0.5 and t2 = 1,  we have: 

y( t )  = (2t2 - 3t + 1) Po + (-4t2 + 4t) P1 + (2t2 - t )  p2 , 

thus, [MI is the above expression. 0 

Proof. 
cessively: 

Using the Aitken formula (under the same assumptions), we have suc- 

which is the same expression as above, thus leading to  the same matrix. 0 

Without restriction on the tis, we have: 

[MI = 

I 1 1 1 

(to - tl)(tO - t2) (tl - tO)(tl - t2) (t2 - to)(t2 - t l )  
-t1 - t2 -to - t2 -to - tl 

(to - t l )  to - t2) (tl - to) tl - t2) (t2 - to) t2 - t l )  
tl i 2 to i 2 to i 1 

3 0 ~ r  interest in this simple cme will be made precise hereafter. 
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Hermite interpolation scheme 

Another class of interpolation methods uses Hermite type interpolants. In addition 
to the above n + 1 pair of control points and parameter values, we assume that 
the n + 1 derivatives &,PI, ..., Pn are provided. Then, the function: 

n n 

(12.3) 
i=O i=O 

where 

&(t) = (1 - 2 $i(ti)(t - t i ) }  $i(t)' and cpi(t) = (t - ti)$i(t)' 

defines a curve which is governed by the n + 1 given points and their tangents. 
This curve, called the Hermite interpolate, is such that: 

y ( t i )  = pi and y ' ( t i )  = Pi 

as can be shown, moreover it is C". Nevertheless, we return to the previous 
remarks both in terms of how to define the parameter values and in terms of 
complexity and oscillations (if n is large). 

The cubic Hermite form 

We reduce to the case where n = 1 and we assume that PO and PI along with PO 
and are supplied. Then, since, after a variable change, t o  = 0 and tl = 1 are 
assumed, we have: 

$ o ( t )  = ( 1  - t )  and $b(t) = -1 
$l(t)  = t  and $i(t) = 1 

and 
and 

&(t) = ( 1  + 2 t ) ( l  - t)' 
cpo(t) = t ( l  - t)' 

&(t)  = (1 - 2( t  - 1)) t2 
cpl(t) = (t - l) t2 

thus: 

which can be expressed in a matrix form as: 

where now: 
[I@)] = [t3 t2 t 11 

[PI =t [Po Pl Po Pl] 
2 - 2 1  1 

[ M I = ( ;  I ; i) 
which is known as the cubic Hermite interpolation or the cubic Coons basis. 
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Remark 12.7 Actually, the cubic Hermite fo rm concerns a third degree polyno- 
mial considered with a set of 4 data values (2 points and 2 derivatives). Thus, this 
simple example will be of interest when composite curves are seen (see below). 

Remark 12.8 Higher order Hermite type interpolations can be constructed i f  
higher order derivatives are supplied as input data. 

12.3 Explicit construction of a composite curve 

In this section, we give a method suitable for constructing a composite curve using 
one of the previous approaches. Indeed, after the remark about the cost and the 
possible existence of oscillations when the number of points n is large, we want 
to define the curve r by a series of sub-curves with a low degree such that their 
junctions are under control. Moreover, this construction uses as input data a 
discrete approximation of the curve under investigation. 

This approximation is indeed a polyline composed of a series of segments 
[Pi, Pi+l]. The construction is completed segment by segment using the available 
information (tangents, corners, etc.). Depending on the amount of information 
provided as input data, a polynomial based definition of degree 1, 2 or 3 can be 
easily obtained in any member of the polyline. In what follows, we consider one 
segment, say [Pi, Pi+l], and we denote this segment by [A, B].  

Giving 4 input data, A, B and the tangents at A and at  B, 1-1 and I-;, we can 
obtain a function like: 

(12.5) 

where ai E EXd ( i  = 0,3) and t is a parameter ranging from 0 to 1. For the 
moment, we know nothing more about the meaning of t .  

First, we consider the case where no tangent is provided. Using the only two 
data we have, we look for a function y of the above type with a2 = a3 = 0,  i.e., a 
function of degree one. The constraints we want to conform to are $0) = A along 
with y(1) = B. Then, we must solve the system: 

y ( t )  = a0 + a l t  + a2t2 + a3t3,  

uo = A 
a1 = B - A ,  

(12.6) 

meaning that y ( t )  = A + t (B  - A), thus the Lagrange form of degree 1; see 
Section 12.2. 

Remark 12.9 Since the derivative is  y’(t)  = A%, we encounter two cases. First, 
i f  IIA%I I = 1, t is nothing more than s, the curvilinear abscissa (see Chapter 11), 
while, i f  I IA%I I # 1, t is  an arbitray parameter. I n  the previous case, a curvilinear 
abscissa can be defined by s = t IIA%II. 

When either of the tangents is not provided, we look for a function of degree 
two, i.e., we fix a3 = 0. Then, if 1-1 is known, we have: 

a0 = A 
a1 = I-1 

a2 = ( B - A ) - r I ,  
(12.7) 



CURVE MODELING 405 

7% 

3 

B B B B B B B B B  
. 7% . 7% B+1 B+1 . B+1 

2 2 1  3 3 3 2 2 

Table 12.1: Degree of the approximation (bottom line) according to the data type 
(in columns). 

while if only 7% is known, we obtain: 

a0 = A 
a1 = 2(B-A)-r j$  
a2 = - (B-A)+r;j  

(12.8) 

Then, we assume that we know the tangents a t  A and at  B, TI and rj$, this 
information then allows us to define a curve of degree 3. The four given information 
elements lead to the system: 

(12.9) 

whose solution is: 
a0 = A 
a1 = 

a2 = 3 ( B - A )  - 2 7 1  -7% 
71 (12.10) 

a3 = - ~ ( B - A ) + T ~ + T % .  

Then, y ( t )  is nothing other than the cubic Hermite form given in Section 12.2. 

Remark 12.10 I t  is advisable to make sure that 117‘11 is something like IlABll. 
Indeed 117‘11 acts through two aspects. First we naturally encounter a directional 
aspect and then the module of the tangent controls the locality of this directional 
control. 

Other categories of situations are encountered when A and/or B are not cor- 
ner(s) but when we know a point “before” A, denoted as A-1, and/or a point 
“after” B, denoted as B+1, then we can define a function of degree three or two by 
returning to the previous cases. The tangents a t  AB in A and/or B are evaluated 
by using the points A-1 and/or B+1. For instance, T; = A - A-1 or a similar 
expression. The final type that can be observed is when the data combine the 
different possibilities. 

Remark 12.11 Apart from the first case where t could be s or s could be easily 
defined resulting in a normal parameterization of AB, such a parameterization is 
not obtained in the other situations. 

Table 12.1 shows, according to  the data categories, the degree that can be 
expected for the approximation of AB. 
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A few remarks. In general, the function y ( t )  constructed from two points and 
the two related tangents may offer different aspects depending on the type of 
this information. Some aspects may obviously be undesirable for the type of 
applications envisaged. 

Thus, the presence of a loop in one segment, i.e., when there are two different 
values tl and t 2  for which y ( t l )  = y ( t 2 )  necessarily corresponds to ill-suited data. 
In fact, a nice property to  guarantee what we need, is to  have a function g of 
parameter t such that 

0 g ( t )  is a strictly increasing function, 

where g ( t )  = d ( A , p r o j A B ( y ( t ) )  in segment AB. In this expression, d denotes the 
usual distance while p o j ~ ~ ( P )  is the projection of point P onto AB (cf. Fig- 
ure 12.1). 

Figure 12.1: y ( t )  and g ( t )  for a curve in two dimensions (left-hand side) and for 
a curve in three dimensions (right-hand side). 

The assumed property implies in particular that the curve has no loop (between 
A and B) .  From a practical point of view, we can also assume that the distance 
between AB and the curve is bounded by a reasonably small threshold value. In 
other words, the segment AB is close to the curve, meaning that the segments 
provided as input already correspond to a reasonable approximation of the geome- 
try of the real curve. 

12.4 Control polygon based methods 

We now turn to  a class of methods not based on an interpolation technique. Here, 
we are interested in methods that make use of a control polygon whose vertices 
act through some contributions defined via various functions. 
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Control polygon and curve definition 

The set of control points enables us to define a control polygon. As a general 
statement, it is possible to  define a curve in terms of the following equation: 

n 

(12.11) 
i=O 

Once the basis functions cpi(t)s have been chosen, the curve is uniquely defined by 
the points Pis in the control polygon. At a glance, any basis of functions makes 
this curve definition possible. However, some properties are usually required so 
as to  ensure that the curve “looks like” its control polygon. These assumptions 
are indeed assumed to  facilitate curve manipulation when used in a CAD system, 
particularly, if the user has only limited knowledge of the underlying geometric 
models. 

General properties 

The following presents some of the properties commonly assumed in most of the 
models based on a control polygon. 

Cauchy identity. 
we have: 

This relationship is related to a normalization purpose. Then, 

n 

C(Pi(t) = 1 v t .  

5 pi(t)Pi 
i=O 

5 (Pi(t) 

i=O 

This implies that Equation (12.11) is equivalent to: 

y ( t )  = 

i=O 

(12.12) 

This expression of the curve clearly shows the barycentric form of the latter. The 
current point y ( t )  is the centroid of the set of points Pi associated with the weights 

(Pi (4. 
Remark 12.12 (Curve translation) W e  look at the construction of a n e w  poly- 
gon  resulting f r o m  the translation of the control polygon Pi by a vector v. T h e  
coordinates of the  points  of this  n e w  control polygon are denoted by Pi + v.  T h e  
n e w  curve yl associated with this  n e w  polygon can be wri t ten as: 

n n 

= I  

If the Cauchy ident i ty  were n o t  assumed, t h e n  the f o r m  of the curve would be a 
func t ion  of the position of the control polygon. Conversely, this ident i ty  implies 
that  the curve i s  only related t o  the shape of i t s  control polygon. 
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Remark 12.13 (Linear transformation of a curve) W e  now turn to a method 
that makes it possible to construct a new curve resulting from a linear transfor- 
mation of the curve y ( t ) .  Then, this new curve, y’(t) ,  conforms to the general 
expression: 

a00 a01 a02 

Thus, we have: 

where the second equality is true only if the Cauchy condition is assumed. Thus, 
any linear transformation of a curve (for instance, a rotation, a scaling, etc.) is 
easy to  perform directly in the control polygon. 

Positive functions. 
assumed to  be larger than or equal to zero: 

Inside the definition interval of y, the functions p i ( t )  are 

Provided with the Cauchy identity, the current point y ( t )  is the centroid of the 
set of the Pis associated with positive weights, the p i ( t ) s .  Hence, all any convex 
region bounding the set of points Pi encloses the curve. 

Extremity conditions. 
the functions p i  satisfy the following: 

If [tmin, t,,,] stands for the definition interval of y, 

Corollary 12.1 The Cauchy condition and the previous relationships with posi- 
tive functions imply that: 

Hence, a t  t = tmin, the sole point with an action on the curve is point PO. More- 
over, we have the relationships y(tmin) = PO and y ( tmaz )  = P,. As a consequence, 
the curve endpoints are the endpoints of the corresponding control polygon. 
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Derivatives at curve endpoints. 
assumed. At tmin, we impose: 

In addition, the following conditions can be 

i> 1 

and at parameter tmax: 

i<m-I 

Hence, for t = tmin, we obtain the following equation: 

Thus, the tangent at tmin is directed by the first segment in the control polygon. 
Similarly, the tangent a t  t,,, has the same direction as the last segment in this 
polygon. 

Figure 12.2: Basis  properties related t o  the definition of a control polygon. T h e  
shape of the curve i s  close t o  this  governing polyline (broken line). 

Figure 12.2 depicts the various properties of the curves governed by a control 
polygon. At first, y ( t )  passes through Po and P, while the other points are only 
control points. Moreover, the tangents a t  the curve endpoints follow the first and 
the last segments in the polygon. In addition, the curve lies inside any convex 
region including its control polygon. 

In this figure, the polygon in dashed line is the smallest of the convex polygons 
containing the control polygon. CAD systems usually use the enclosing box shown 
in the figure by the rectangle to bound the region enclosing the curve. Apart from 
the characteristics at the curve endpoints, the only thing we can say a priori about 
the shape of the curve is that it “looks like” its control polygon. 

12.5 Bezier curves 

A popular method based on a control polygon makes use of B b i e r  curves. 
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Form of a B6zier curve 

Provided with the n+ 1 control points, we define a BBzier curve using the following 
algebraic relation 

n 

y ( t )  = C c y ( 1  - ty-zpi. (12.13) 
i = O  

with Cg = 

curve relies on Bernstein polynomials . Indeed, these polynomials are defined by 
for 0 5 i 5 n and Cg = 0 otherwise4. In other words, a BBzier 

BZ,,(t) = c i t y 1  - t)n-2 

where t ranges from 0 to 1 and i E [0, n] while Bi,,(t) = 0 elsewhere. Thus: 

i = O  

Exercise 12.3 Show that the above properties hold. 

Remark 12.14 The parameter value t ranges from 0 to 1. It  is possible to use a 
different set of parameter values where t varies from a given t o  to a given t ,  > t o .  
To return to an interval between 0 to 1, we simply have to introduce a variable 
change such as t = s. The way in which the t i s  vary allow for some flexibility 
in the curve definition. 

- 

This curve definition is C". Nevertheless, for a large n, the above remarks 
remain true. In addition, while more flexible than the previous approaches, some 
classical curves, such as conics are poorly represented by this Bkzier form. To deal 
with such a problem, two solutions can be envisaged. On the one hand, a different 
global curve definition can be used (see for instance, the rational BBzier) or, on 
the other hand, a low degree BBzier can be employed leading to using a composite 
definition for the curve (see below). 

About Bernstein polynomials 

First, it can be proved that Bernstein polynomials form a basis of all polynomials 
of degree n. In this respect, Bernstein polynomials can be written as: 

n 

On the other hand, BBzier curves offer some facility for various computations. 
Indeed, since these curves are defined by means of Bernstein polynomials, various 

4Note that coefficient Ch has various notations. For instance, the notation "Ci as well as 

( 7 ) can be found. 
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recursions about these polynomials allow us to elegantly manipulate these curves. 
First, the C i s  conform to the following recursion: 

In other words, the Cgs can be obtained by the Pascal triangle rule as illustrated 
in Table 12.2. The Bernstein polynomials can then be obtained by recursion. 
Actually, we have: 

Bi,"(t) = tBi-l,"-l(t) + (1 - t )  Bz,"-I(t). (12.14) 

and the above recursion holds. 0 

I i = o  I i = l  I i = 2  I i = 3  I i = 4  I i = 5  I ........ I 

Table 12.2: The Pascal triangle rule. 

Obviously we have: 
Bi,"(t) = B"-i,"(1 - t ) .  

Moreover, 
Bo,n(t) = (1 - t )  Bo,n-l(t) thus &,n(t)  = (1 - t)" , 

B,,,(t) = tBn-l,"-l(t) and B,,,(t) = t n .  

A recursion about the derivatives can be easily found. It is as follows: 

Various recursions related to high order derivatives, integrals and many other 
relationships can be exhibited. To conclude this discussion about Bernstein poly- 
nomials, it should be noted that all of the above recursions are also useful in the 
case of rational BBzier, composite BBzier, etc., curve representations. 
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De Casteljau form for a Bezier curve 

Defining @(t) = Pi for i = 0, ..., n, the recursion5: 

D,T(t) = (1 - t )  o,T-’(t) + t D,T;;(t) 

for T = 1, n and i = 0, n--T (and D,T(t) = 0 otherwise) is the so-called De Casteljau 
algorithm. Using this recursion, the curve defined by: 

y(t) = D,n(t) 7 

is a practical way to construct a B6zier curve which does not directly involve the 
use of Bernstein polynomials. 

Bkzier curve of degree 3 

Any B6zier curve can be written in the matrix form already introduced. For 
example, for n = 3, the general expression or the De Casteljau algorithm results 
in the matrix [MI given by: 

-1 3 -3 1 
-6 3 0 

with 
[7 ( t ) ]  = [t3 t2 t 11 

[PI [Po Pi P2 P3] 

5The notation D stands for De Casteljau. 
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Proof. Using De Casteljau algorithm, we have successively: 

D t ( t )  = ( 1  - t )  @(t) + toy@), 

D ; ( t ) = ( l - t ) P o  + t 4 ,  

D:(t)  = ( 1  - t )  D?(t)  + t D Z ( t ) ,  

D (  ; t )  = (1 - t )  PI t P2 , 
&(t) = ( 1  - t )  D&) + t D : ( t ) ,  

D; ( t )=(1 - t )2Po  + 2 t ( l - t ) P 1  + t 2 P 2 ,  

D?(t)  = ( 1  - t )  D:(t)  + t D l ( t ) ,  

D ? ( t ) = ( 1 - q 2 P 1  + 2 t ( l - t ) P 2  + t 2 P 3 ,  

then: 
D i ( t )  = (1 - t ) 3  Po + 3 t (1 - t ) 2  pi + 3 t 2  (1 - t )  p2 + t3 p3 , 

and we still retrieve the above matrix. 

Degree elevation of a B6zier curve 

Degree elevation of a BBzier curve is a very useful process for various purposes 
(including the problem of finding some degree of continuity when composite curves 
(surfaces) are considered). 

Given a BBzier curve of degree n corresponding to  n + 1 control points Pi, 
degree elevation leads to  defining the same curve as a curve of degree n + 1 based 
on n + 2 control points, the Qi. The issue is to  find these control points. 

Let y(t) = CyE0 Bi,,(t) Pi be the given curve, which we want to  be written as 
y(t) = Cyzt Bi,,+l(t) Qi. The solution is as follows: 

QO = PO and Qn+l = P, with 

iPi-1 + ( n + l - i ) P i  . , z = 1 ,  ..., n .  
n t l  Qi = 

Proof. 
defined by Bi,,(t) = -ti(l - t)n-i, we have: 

Since Bi,n(t) = (1 - t)Bi,,(t) + tBi,,(t) holds where the Bi,,(t)s are 

then, 

and, after rearranging the terms, we obtain: 

thus leading to the definition of the &is. 
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12.6 From composite curves to B-splines 

The main idea is to  use locally one of the above curve definitions where a low 
degree is assumed. In this way, a curve is defined by a series of sub-curves. The 
issue is then to insure the desired smoothness between the different parts of the 
entire curve. This technique actually leads to constructing a composite curve. 

Composite B6zier curves 

Composite BBzier curves correspond to  BBzier curves. We define a knot sequence 
of tjs and a series of segments where BBzier polynomials of degree m are employed. 
Here, segment j, for j 2 1, is denoted by segj. It is simply the interval: 

segj = [tj ,  tj+11 . 

With this background a composite B6zier curve is: 

(12.15) 

where (to return to the case where t ranges from 0 to  1 for each segment) the 
B:,,(t)s are written by means of Bernstein polynomials as follows: 

B:,,(t) = 0 otherwise 

and 
p . . = p  . 

Z,J m ( ~ - 1 ) + i  

meaning that a segment runs from 

and, finally nm depends both on n and m. In fact, it is necessary to  have n = 

(m + 1) x nm. 
The curve only passes through the Pm(j-l)s,  the other points really being 

control points. 
The definition of the tjs can be made in several ways thus leading to some 

extent of flexibility. First, t o  is naturally associated with PO, then tl must be 
associated with Pm and so on. In fact tj  is related to Pm ( j - l ) .  On the other hand, 
the values of the tjs can be arbitrarily defined. 

First, as already indicated, the entire curve is defined by a series of segments, 
in other words by means of local B6zier definitions and locally, the regularity in 
C". Second, the global regularity is insured by an adequate definition of the 
junction from segment to segment. In this respect a G1 or even a C1 continuity 
can be obtained, say for m = 3, by acting on the control points previous and next 
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to a segment endpoint. Actually, the three above points must be colinear (thus 
leading to a G1 smoothness) and, in addition, must be in a certain ratio (to reach 
a C1 property). Similarly a G2 or a C2 continuity, for m = 4, can be completed 
by acting on the two previous and the two next control points of a given segment 
endpoint. These requests allow for the desired regularity when the entire curve is 
considered but, on the other hand, imply some constraints that can impede the 
curve definition. A greater flexibility is then obtained by introducing the curve 
representation discussed in the next section. 

Remark 12.15 The above composite curve definition involves locally a single 
curve function. Thus,  global continuity is  obtained at some price. To  overcome 
this problem local functions acting as basis functions may  themselves be composite 
(see below). 

B-spline curves 

B-spline curves correspond to De Boor spline curves. Before going further in B- 
splines, we introduce the notion of a spline. 

Given a sequence of m+2 knots t o  5 tl 5 ... 5 tm+l, a general basis polynomial 
spline f of degree m is a function that satisfies the following properties: 

0 f is a polynomial of degree m on all intervals [ti, ti+l], this restriction being 
denoted by f i ,  

0 f is such that f i ( t i+l)  = f i+l(t i+l),  

0 f is C"-l at the junction points (i.e., at the t i s )  when these knots are not 
multiple. At a node of multiplicity r ,  the continuity is C"-'. 

Remark 12.16 Note that the above composite BOier  curve definition i s  included 
in this category of definitions while, in this case, the corresponding f i s  reduce 
t o  a single (non-composite) function and the third condition i s  not automatically 
insured. 

Given a knot sequence of m+2 t j s  like ti, ti+l, ..., ti+"+l, the basis spline Ni," 
related to these knots is constructed6 using a recursion, in terms of index k .  For 
k = 0, it leads to: 

Ni,o(t)  = 1 if t i -1  5 t < ti and I Ni,o(t)  = 0 else , 

and, for k = 1 ,2 ,  ..., m, we have: 

meaning that the composite function Ni ,k( t )  is non-zero only if t E [ t i - l , t i + k ] .  

61n the following, we discuss only one of the various possible ways to define a B-spline. 



416 MESH GENERATION 

The basis polynomials have a local and minimal support. Moreover, they are 
linearly independent. Indeed, they form a basis. 

In the above recursion, if, for instance, t i - l+k -ti-l = 0 ,  meaning that multiple 
knots are used, then the term in Ni,k-1 ( t )  does not contribute since Ni,k-1 ( t )  = 0. 

Remark 12.17 Provided with an adequate choice of the t i s ,  the above relation 
reduces to Relation (12.24) meaning that, in this particular case, the Ni,k(t)s are 
nothing other than Bernstein polynomials. Indeed, we have to set ti = 0 for 
i = 0,1, ..., k and tk+l  = ... = = 1. 

With this background (leaving aside the previous remark), given n + 1 control 
points (n 2 m), a composite curve of n - m + 1 polynomial curves of degree m is 
defined as 

i+ 1 c (12.16) 
j=i+l-m 

Remark 12.18 Since the initial condition of the definition by recursion is  satis- 
fied for Nj,,(t) = 0 when j $ [i + 1 - m, i + 11, we also have: 

m 

(12.17) 
j=O 

where we can retrieve the general equation of a model based on  a control polygon. 

Exercise 12.4 Study the properties of Section 12.4 in the case of the basis func- 
tions N.jm(t). 

This curve, the so-called B-spline, uses n + 1 basis splines and thus needs a 
sequence of n + m + 2 knots, namely t o ,  t l ,  ..., tn+m+l. The first curved segment 
that fully uses the first m + l  control points, is the combination No,m Po+Nl,m PI + 
... + Nm,m P,, which is defined in [tm-l, tm]. Similarly, segment number k is the 
combination Nk,m Pk + N ~ + I , ~  Pk+1 + ... + Nk+m,m Pk+m, which is defined in 
[tk+m-l ,  t k+m].  Then the last segment is defined in [tn-l, t,] corresponding to  the 
combination Nn-m,m Pn-m + Nn-m+l,m P,-,+1 + ... + Nn,m P,. 

Following on from what has just been said, the curve does not pass through 
the control points if the knots are all distinct. Using multiple knots enables us to  
pass through some control points. Boundary conditions can be also achieved by 
using multiple or phantom (fictitious) control points. 

In the following three examples, we assume that the t i s  are all distinct. 

Degree 1 B-spline 

In this case m = 1 is assumed, then using the general recursion with k = m = 1, 

(12.18) 
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This B-spline consists of two components. In other words, it lives in two intervals. 
This composite function enables us to define the curve y ( t )  as: 

i+ 1 

y ( t )  = c Nj,l(t)  pj . (12.19) 

The first interval that is well defined corresponds to j = 0 and then to i = 0. Hence, 
in [to, t l] ,  both No,l(t) and Nl,l(t)  have a contribution. Since only Nl,o(t) # 0, 
we simply have (for i = 0): 

j=i 

tl - t  
tl - t o  

NO,l(t) = ~ , 
while (for i = 1): 

t - t o  
tl - t o  

Nl, l( t)  = ~ 

Then, following Relation (12.19), in [to,tl], we have: 

Using a uniform distribution of t i s  (for instance, ti = i ) ,  a simple variable change 
allows us to find a definition in [0,1].  Indeed, we return to  the classical linear 
interpolation function y ( t )  = (1 - t )  PO + t PI. 

Similarly, to  define the curve in [tl , tz],  we need to know both Nl, l ( t )  and 
Nz,l(t) which act through their components related to Nz,o(t). Thus, we consider 
the general recursion and we fix i = 1 to obtain the contribution of Nl,l(t):  

and we fix i = 2 to  find the contribution of Nz,l(t): 

t - tl 
t 2  - tl 

N2,l(t) = - , 

hence, in [tl, t z ] ,  we have: 

This definition (with the above assumptions) leads to having y ( t )  = (1- t )  Pl+t P2. 

Remark 12.19 In practice, f o r  a uni form node distribution, the B-spline can be 
defined everywhere using only the factors  ( 1  - t )  and t .  T o  this end, a variable 
change i s  done t o  reduce the interval of interest t o  [0,1] .  

Remark 12.20 T h e  B-spline i s  symmetr ic  (see the case where t i s  replaced by 

As expected, this curve is C"-l = Co. Indeed, in the first interval we have 
$1)  = PI as well as in the second interval where $0) = PI. Note also that the 
definition is reversible. The curve defined using PO, PI ,  P2 and the curve defined 
by Pz, PI ,  PO are identical. More generally, the sequences PO, PI ,  Pz, ..., P, and 
P,, Pn-l, Pn-2, ..., PO lead to  the same curve. 

1 - t). 
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Degree 2 B-spline 

Using the recursion about the Ni,k in the case where k = m = 2,  we have: 

(1 2.20) 

This B-spline, comprising three components, lives in three sub-intervals. The curve 
defined by: 

i t 1  

j=i- 1 

is well defined since the interval that corresponds to i = 1. Hence, in [tl , tz].  
In this interval, three B-splines have a contribution, namely No,z(t), N1,2(t) and 
N2,2(t). Merging Relationship (12.18) into Relationship (12.20), we find: 

and, in terms of Nj,o(t), for j = i, i + 1,  i + 2 ,  

The desired contributions are obtained, in interval [ t l , t 2 ] ,  by looking at the 
coefficients of Nz,o(t) which are successively related to i = 2 ,  i = 1 and i = 0. 
Then. we have: 

t - t l  t - t l  
t 3  - tl t 2  - tl N2,2(t) = --, 

t - t o  t 2 - t  t 3 - t  t - t l  
t 2  - t o  t 2  - tl t 3  - tl t 2  - tl 

N1,2(t) = -- + --, 

t 2  - t  t 2  - t  
t 2  - t o  t 2  - tl No,2(t) = --. 

Relation (12.21), in [t l , tz] ,  is 

t 2  - t  t 2  - t  t - t o  t 2 - t  t 3 - t  t - t l  t - t l  t - t l  
d t )  = an Po+(-- t 2  - t o  t 2  - tl + --) t 3  - tl t 2  - tl P1+-- t 3  - tl t 2  - tl p2 7 

This relation, when uniformly spaced t i s  are used (i.e., ti = i or ti = i), leads 
to: 

( 2  - t ) 2  t t - 1  (t - 1 ) 2  
Po + ( ( 2  - t ) -  + (3 - t)-) Pl + ~ p2 7 2 2 2 T ( t )  = 2 
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N0.3 

No. 1 Nl.1 Nl.1 Nz.1 

/\ /\ /\ /\ 
Figure 12.3: Relationships between the Ni,k from the root No,3 used to compute 
N0.3. 

and, in [0,1] ,  it is simply: 

(1 - t ) 2  1 + 2t - 2t2 t2 
Pl + p2, 

2 y ( t )  = 2 Po + 
and we return to the two previous remarks. The curve is CmP1 = C1. Indeed, 
$1)  = and y’(1) = -PI + Pz in the first interval where this curve is defined 
( [ t l , t z ] ) .  These values are identical to  y(0) and to y’(0) respectively in the next 
interval ( [ t z ,  t s ] ) .  

Degree 3 B-spline 

In this case, the curve r is defined by: 

i+ 1 

y ( t )  = c Nj,3(t) pj . (1 2.22) 
j=i-2 

Thus, the first interval where y ( t )  is well defined is [ t z ,  t 3 ] .  To simplify the expres- 
sion of y ( t ) ,  we first consider the relationships between the Ni,ks which are used 
in the present definition, i.e., the Ni,kS of interest when expanding the relation 

The diagram relating these coefficients when evaluating the contribution of 
N0,3(t) is depicted in Figure 12.3. Since only N3,0(t) is non-zero, we just have to  
visit the branches (Figure 12.3) from the root to terminal node N3,0(t). We obtain 
successivelv: 

t 3  - t 
t 3  - t o  

t 3 - t  t 3 - t  

t 3  - t o  t 3  - tl 

N0,3(t) = - N1,2(t) I 

N0,3(t) = -- N2,l(t) 7 
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Figure 12.4: Relationships between the Ni,k from the root N1,3 used to  compute 
this value. 

t 3  - t  t 3  - t  t 3  - t  t 3  - t  
N3,0(t) i.e., -- 

t 3  - t o  t 3  - t 2  
N0,3(t) = -m 

For uniformly spaced t i s ,  this relation reduces to 

(3 - t ) 3  
N0,3(t) ~ 

6 ’  

and, in the interval [0,1], we obtain 

1 
N0,3(t) = s (1 - t ) 3 .  

To obtain the contribution of N1,3(t), we define the diagram with root N1,3(t) 
(Figure 12.4) and we examine the different branches leading to terminal node 
N3,O (t) .  

Thus, considering this tree, we obtain (after certain effort): 

t - t o  t 3 - t  t 3 - t  
t 3  - t o  t 3  - tl t 3  - t 2  

N1,3(t) = --- 

For a uniform spacing in ti ,  we obtain: 

t (3  - t )2  4 - t (t - 1)(3 - t )  (4 - t)( t  - 2) 
N1,3(t) = +-( 3 2 + 2  

resulting, if t E [O, 11, in: 

1 
6 

N1,3(t) = - (4 - 6t2 + 3 t 3 ) .  

Similarly, we can obtain: 

1 1 
6 6 

N2,3(t) = - (1  + 3t + 3t2 - 3t3) and N3,3(t) = - t 3 .  
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These expressions assume that t lives in [0,1] for any sub-interval. To complete this 
range of variation, a change variable must be used. For instance, let us consider 
the interval [ to ,  t l ,  ..., t 4 ]  where the curve is defined by the above relationships. 
Then, for interval [ t o ,  t l ] ,  we shift by t o  and we scale by the factor (tl - to)-'  to 
obtain the parameter t used in N0,3(t). For interval [ t l , t 2 ] ,  we shift by tl and we 
scale by the ratio ( t 2  - t l)- l  to return to Nl,s(t), and so on. Then y(t) is defined 
accordingly. Note that y(t) is C2. 

Exercise 12.5 Check, for  the three above B-splines, the CmP1 continuity. 

Specific controls 

As previously suggested, some specific controls can be used. Basically, this relies 
on a proper definition of the nodes. 

Multiple control points. Multiple vertices can be used to achieve the end 
termination of the curve definition (i.e., y passes through PO and P,). They can 
also serve to control the shape of the curve at some neighborhood of a control 
point. 

As an example, the uniform B-spline of degree 3 defined by the control points 
Pi for a = 0, n does not pass through PO nor P,. To complete this feature, we can 
define the sequence 

as vertices where PO and P, both have a triple multiplicity. 

Exercise 12.6 Check that this definition of the control points insures that the 
curve passes through PO and P,. Discuss the tangent at these endpoints. 

Phantom vertices. Phantom control points can be also defined in such a way 
as to obtain the previous property. In this way, fictitious vertices are defined before 
PO and after P,. It is also possible to control a tangent in this way. 

Multiple knots. Multiple knots (obviously, in a non-uniform curve definition, 
see below for an example of such a definition) can also serve to control the corre- 
sponding curve. These multiple knots act in such a way as to modify the expression 
of the functions involved in the curve definition. 

Each time a node ti is repeated, the continuity level decreases by one at pa- 
rameter ti. 

A Bkzier curve by means of a B-spline 

In numerous applications, it is of interest to take a B6zier curve and to consider it 
as a B-spline curve. As the B-spline model is more general than the BBzier model, 
this operation is rather easy. Indeed, the control polygon associated with a BBzier 
curve is exactly the same if this curve is seen as a B-spline. The only point to be 
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ensured is that the nodes in the B-spline are properly defined. To this end, we 
could use the following node sequence: 

(0, 0,  ..., 0,  1,  1, ..., 1 )  -- 
R. times R. times 

Remark 12.21 The Bt5zier curve is a polynomial of degree n in [0,1]. Then, 
this continuity is infinite after n - 1 derivations, we obtain a zero value at any 
parameter t .  If the above sequence of nodes is  selected, consisting of two multiple 
nodes repeated n times, the continuity at t = 0 and at t = 1 is -1. I n  fact, the 
B-spline curve defined in this way stops at these parameter values and there is no 
continuity around t = 0 and t = 1. 

Exercise 12.7 Show that in this case the B-spline is  a composite curve composed 
of one portion that is  precisely the corresponding B b i e r  curve. Check that the 
recursion about a B-spline curve is, in this case, equivalent to the recursion about 
a Bt5zier curve (based on  the De Casteljau algorithm). 

Relationships between the parameters of a B-spline 

Throughout this section, some useful basis relationships are recalled which can 
be used when considering B-spline curves. The following expressions provide a 
form for these relationships that make a B-Spline definition coherent. In these 
expressions, 

0 n k  stands for the number of nodes in the node sequence, 

0 C ( t )  is the continuity range of the curve at  parameter t. A negative value 
indicates that the continuity is not known at t ,  

0 M ( t )  denotes the multiplicity of a parameter t in the node sequence. If the 
value of t is not in the node sequence, then M ( t )  = 0. If the B-spline is 
uniform M(t i )  = 1, for all ti in the node sequence, 

0 n p  stands for the number of points defining the control polygon and 

0 m is the degree of the B-spline. 

Thus, we have: 

order = m + 1 

n k  = m + 1 + n p  

C ( t )  = order - M ( t )  - 1 

n p 2 m + 1  
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12.7 Rational curves 

To begin, we state what an homogenous projection is. 

Definition 12.1 T h e  homogenous projection i s  a n  application Th from Rd+' t o  
Rd defined by: 

if h = 0 the point  i s  reported a t  inf ini ty  
an the direction {XI , 2 2  , ... X d }  { otherwise { y  , , ... y }  

(21 2 2  ... x d  h} 

The main interest of such a projection is to  allow the definition of a division 
by means of a projection. Hence, a rational curve in Rd is the image through 
such a projection of a polynomial curve in Rd+'. The coordinate w is called the 
homogenous coordinate of the point under consideration. 

Definition based on a control polygon 

A rational curve r is defined by an equation like: 

where N and Q are some polynomials that can be described in terms of curves 
based on a control polygon. Thus, we have: 

m 

i=O 
N ( t )  = C wicpi(t)Pi and 

m , 
Q(t) = C w i V i ( t )  

i=O 

which can also be written as: 

This equation enables us to write r as: 

As a consequence, a rational curve is the homogenous projection of a curve in 
Wd+l that is based on a control polygon in Rd. 

Rational Bezier curve 

Following the above remark regarding conics, a rational BBzier definition can be 
defined. This representation involves the previous input (TI + 1 control points 
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that form a control polygon and the corresponding parameter values) along with 
a sequence of weights wi. It is written as 

(1 2.23) 

Remark 12.22 The question is  how to define the t i s  as well as the wis. For the 
t is ,  we return to the previous remarks. Regarding the weights, they are mostly used 
to give some preferences to some control points. A weight can be seen as a shape 
parameter. Actually, increasing the value of wi leads to pulling the curve towards 
the corresponding Pi. 

Remark 12.23 If the weights are equal (for example, equal to one), we find again 

the classical definition of a non-rational Bt5zier curve (as C Bi,,(t) = 1). 

Exercise 12.8 Prove that the Bi,,(t)s sum to 1 (hint: return to the recursion 
about the Bi,,(t)s). 

As for Bkzier curves, recursion formulas can be found for rational Bkzier curves. 
Nevertheless, these recursions are a little complex (at least, in terms of notations). 
For instance, a rational Bkzier curve may be evaluated by applying the De Castel- 
jau form to both numerator and denominator of the above general expression. 

n 

i=O 

While suitable for handling conics, rational Bkzier curves have the same draw- 
backs as standard BBzier curves. In particular, a large value of n leads to the same 
remarks as above. For this reason, other functions have been developed, based 
on local definitions that enjoy the nice properties of the above global definitions 
while avoiding their disadvantages. A first approach involves using a standard (or 
rational) Bkzier definition locally leading to a so-called composite method. 

Rational B-spline curve (NURBS) 

Similarly, a rational B-spline can be constructed using locally rational spline 
curves. This definition involves a sequence of weights wi and is written as 

(1 2.24) 

j = O  

Note that NURBS stands for non-uniform rational B-splines where the non- 
uniformity concerns the tis. Such a distribution, unlike a uniform distribution, 
allows for a greater flexibility and may also be used for other kinds of curve rep- 
resentation. 

In the following, we give an example of a quadratic NURBS. To this end, we 
return to a quadratic B-spline before defining the NURBS. 
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Non-uniform quadratic B-spline with multiple nodes. We return to the 
case of a quadratic B-spline whose explicit form has been established previously in 
the case of distinct knots (see Section 12.6). We now review the general formula 
for the N+ involved in this B-spline. 

In the case of multiple nodes, this general relation reduces, for example, if 
ti = t i - 1 ,  we have Ni,o(t) = 0 and 

tz+z - t ti+2 - t  
ti+2 - tz ti+2 - ti+1 

+ Ni+2,o(t). 

and so on. For instance, if ti+2 = ti+l = ti, we have simply: 

We define a sequence of knots ti for i = 0, ..., 9 as follows: 

ti = [ O , O ,  0,1,1,2,2,3,3,3] . 

As a consequence we have successively Nl,o(t) = Nz,o(t) = N4,0(t) = NG,o(t) = 

Ns,o(t) = Ng,o(t) = 0. It is easy to  obtain the Ni,zs. In our example, we have, for 
i = 0, No,z(t) = 0. For i = 1, we find: 

For i = 2 and the following value of i, we have: 

N3,2(t) = t2 N3,0(t) + ( 2  - t )2  N ~ , o ( t )  
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N7,2(t) = (t - 2)2 N7,0(t) . 
Written in terms of the interval [0,1], we obtain: 

Nl,Z(t) = (1 - t )2  N3,0(t) . 

N2,2(t) = 2 t ( l  - t )  N3,0(t) 

N3,2(t) = t2 N3,0(t) + (1 - t l2  N5,0(t) . 
N4,2(t) = 2 t ( l  - t)N5,0(t) 

N5,2(t) = t2 N5,0(t) + (1 - t)’ N7,0(t) . 
N6,2(t) = 2 t ( l  - t )  N7,0(t) 

N7,2(t) = t2 N7,0(t) . 
The first part of the curve definition involves the sequence [ 0, 0, 0 ,1] ,  the sec- 

ond uses [0 ,0 ,1 ,1] ,  then we have successively [0 ,1 ,1 ,2] ,  [ 1 , 1 , 2 , 2 ] ,  [1 ,2 ,2 ,3] ,  
[2 ,2 ,3 ,3]  and finally [2 ,3 ,3 ,3] .  

An example of quadratic NURBS. Using the above B-spline, we give an 
example of a quadratic NURBS. In addition to the above sequence of knots, we 
consider a sequence of weights wi for i = 1, ..., 7 defined as: 

1 1 1  
2 2 2  

wi = [ 1, -, 1, -, 1, -, 11. 

Then, given the Pi,s, we consider the first segment where the NURBS is defined, 
say the portion corresponding to [ 0, 0, 0 ,1] .  Following Relation (12.24), we obtain 

which is: 
(1 - t ) 2  Pl + t (1 - t )  P2 + t2 P3 

1 - t + t 2  y(t) = 

(1 2.25) 

As Pis, we take the following control polygon, PI = t ( O , O ) ,  P2 = “ 1 , O )  and 
P3 = t ( $ ,  4). Then, y(t) passes through PI and P3, and y(t) is nothing other 

than a segment of the circle centered at  point t ( O ,  $) whose radius is r = $. 
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Exercise 12.9 Check that y ( t )  is the above portion of the previous circle. 

Indeed, we have defined a 120” sector of the full circle. To obtain the entire 
circle, we use the following control points P3, P4, P5 and P5, P6, P7 = PI as shown 
in Figure 12.5. 

Figure 12.5: The control polygon 
used to define a circle by a quadratic 
NURBS. 

Pl 
p6 

12.8 Curve definitions and numerical issues 

Depending on the way the curve r is defined, the quantities we are interested 
in (length, tangent, normal, curvature, etc.) are more or less easy to compute. 
Moreover, only approximate values are obtained which are more or less accurate. 
This aspect is familiar to anyone who has made use of a curve (a surface) in a 
computer program and is clearly shown in the following with the help of some 
simple examples. In practice, can be defined in terms of a parameter t ,  thus 
using a function y ( t )  or can be known as a function of the curvilinear abscissa s 
by a relation like y(s). It could be observed that, for a given r, these two functions, 
while denoted similarly, have different expressions. 

An exact parameterization of a curve 

We consider a very simple example. Let r be the quarter of a circle defined in 
terms of a parameter t ranging from 0 to  $. Obviously the function7: 

y ( t )  = ‘ ( r  cos(t)  r s i n ( t ) )  , 

is an exact parameterization of the circle of radius r whose center is the origin. 
Then using the previous material (Chapter ll), we will compute the length of r 
and, for instance, its radius of curvature. We have: 

y’(t)  = ‘(-r s i n ( t )  T cos(t)) , 

then Ily’(t)ll = r and, following Formula (11.1): s = J r d Q  = r$ .  To compute the 

m - 
2 

n 
curvature, we need to evaluate y”(t) .  

y”(t)  = ‘(-r cos(t)  - r s in@))  , 
7The notation t ( a  b)  stands for the vector whose components are a and b. 
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then y’(t) A y”(t) = t(O 0 r2) whose norm is r and the curvature is C(t )  = i, 
meaning that the radius of curvature is nothing other than r,  as expected. In 
conclusion, the a priori expected values, for both s and C,  are obtained without 
any difficulty. 

A given parameterization of a curve 

We consider the same curve r as above. We define now an approximate rep- 
resentation of this curve using one of the methods discussed in this chapter (a 
composite curve). To this end, we assume that A = t(r 0 ) ,  B = t(O r) along 
withs TA = t(O r f i )  and TB = ‘ ( -rf i  0) are supplied and correspond to a 
parameter t E [0,1], i.e., A (resp. B )  and TA (resp. TB) correspond to t = 0 (resp. 
t = 1). Then, following Relationship (12.5), we can define a curve representation 
$4 by: 

y(t) = A + TA t + (3(B - A) - 27A - T B )  t2 + (-2(B - A) + TA + T B )  t 3 ,  

then: 

which are such that y(0) = A, y(1) = B ,  y’(0) = TA and y’(1) = TB. To obtain s 

between 0 and 1, the length of r, we have to compute s ( t )  = Jt Ily’(Q)ll dQ which 
is: 

This expression involves the square root of a polynomial of degree four, which is 
therefore tedious to compute exactly. Thus, a quadrature may be used. Using a 
low degree formula, like the trapezoidal rule, leads to the following approximation 

which is very imprecise (in particular, this length is equal to the length of segment 
AB) as might have been expected. By introducing the mid-value (say 
the quadrature, we obtain: 

1 t = 2 )  in 

7 

i.e., about 1.517r which is again quite a bad evaluation. Introducing the quarters, 
we have now, for the length, a value close to 1.533r which again is not suitable. 
Using more nodes in the quadrature or using a more precise formula probably 
results in a better evaluation of the curve length but, on the other hand, leads to 
a large computational effort. 

8~ is short for F. 
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2 control points 
3 control points 
4 control points 

2 nodes 3 nodes 5 nodes 

[0, $1 1.414 1.517 1.533 
[0, $1 1.5307 1.5598 1.5663 
10, $1 1.5529 1.5661 1.5692 

5 control points 
9 control points 

Table 12.3: Evaluation of the length of r as a function of its parameterization. 
The targeted value is $ M 1.5707. 

. ”, 
[0, E] 1.5607 1.5682 1.57004 
10, $1 1.5683 1.5701 1.57063 

t = O  
t = .25 
t = .5 

I I 

1 curve 2 curves 3 curves 4 curves 8 curves 

.63 .86 .93 .96 .9904 
1.04 1.01 1.008 1.004 1.0012 
1.31 1.07 1.03 1.019 1.0048 

Table 12.4: Evaluation of the radius of curvature of r as a function of its param- 
eterization. This radius must be constant and the targeted value is 1. 

Indeed, the definition of the above control points and tangents leads to a curve 
which is not close enough to the real curveg and thus, the above rough approxi- 
mation results in quite bad evaluations for the quantities we are interested in (the 
length in this case). 

One curve parameterization with more precise definitions 

We consider the same curve r and the same method of parameterization. But we 
now define this curve using its midpoint. We fix r = 1. In fact, we define half of 
the curve (i.e., from 0 to 2 in terms of angle). Then, we obtain for the length of the 
initial curve the values 1.5307, 1.5598 and 1.56633 based on the number of nodes 
in the quadrature. Splitting the initial curve into three composite curves (the 
first from 0 to z )  we now have 1.5529, 1.5661 and 1.5692. Using four composite 
portions (the first from 0 to g), we have 1.5607, 1.5682 and 1.57004. The final 
example concerns eight composite curves (the first from 0 to &). 

All these values are given in Table 12.3 in terms of the number of composite 
curves used (i.e., how many control points and tangents have been used) and, for 
a given composite curve, in terms of the number of nodes used in the quadrature. 

Similarly, using Relationship (11.4), we can evaluate the curvature of r as 
obtained when a particular number of composite curves are used to discretize the 
curve. To this end, we need to compute r”(t) .  For our example, this is simply 

y”(t) = 2 (3(B - A) - 2 7 ~  - TB) + 6 (-2(B - A) + TA + TB) t . 
Table 12.4 presents the radius of curvature as a function of t  for the different above 
parameterizations. 

gAnyway, we are trying to  approach a circle by a polynomial of degree three! 
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To sum up, both the lengths and the curvatures are obtained with a greater or 
lesser degree of accuracy. Approximate tangents and normals can also be obtained 
in the same way. 

Using a polyline 

The same exercise in the case where a polyline is given as the discrete definition of 
a curve r is now discussed. Let Pi, Pi+l be a segment of the polyline, i = 0, n - 1, 
y(t) is defined as a curve passing through the Pis. The length of y(t) is nothing 
other than the sum of the length of the n + 1 segments constituting the polyline. 
As a function of n, we return to Table 12.3 (first row) to have an approximate 
value of the length of r. The other characteristics of r can be obtained using the 

If r is a curve in R2, a simple construction enables us to find approximate 
curvature, tangent and normal at some t. 

Note that t can be chosen so that t = 0 for Pi and t = 1 for Pi+l, meaning 
that t is local to the segment under consideration. Another possible t definition 
globally considers the different segments and is based on their lengths, then we 
can obtain (after scaling) t = 0 for PO and t = 1 for P,. 

Pi, Pi+ls. 

Figure 12.6: Curvature, tangent  and 
normal  that  can be obtained f r o m  a 
simple polyline ( i n  two dimensions). 

We consider three consecutive vertices, Pi-1, Pi and Pi+l. We construct the 
perpendicular bisector of Pi-1, Pi and that of Pi, Pi+l. Provided the two segments 
are not aligned, they intersect in a point denoted as Oi, we define ri = llOiPill 

and Gi = P,bi, then we introduce 6 as the unit vector perpendicular to Gi. 

Indeed, using this simple construction results in approximate values for the center 
of curvature of at point Pi, say Oi, the radius of curvature at this point ( T i ) ,  

the unit normal and tangent at Pi (Gi and 6) .  Note that these quantities are not 
well defined at PO and P, for an open polyline. 

Thus, y(t) can be described in terms of these discrete quantities. In other 
words, local knowledge of the presumed curve can be accessed. For instance, we 
can use the osculating circle at point Pi and say that: 

I IPiOi I I 

2 -  y(t) = Pi + (t - t i )< + 2(t - t i )  vi 
2 
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in some vicinity of Pi, i.e., for t close to  ti the parameter value associated with Pi. 
To obtain a continuous definition of the curve, it is necessary to  choose a math- 

ematical representation. For instance, we can return to  the above parameteriza- 
tion. In this case, a given characteristic can be evaluated not only at the segment 
endpoints but anywhere else as well (for any arbitrary value of parameter t ) .  

For a curve in EX3, we can also evaluate these characteristics. Indeed, the above 
geometric construction in two dimensions can be written in a more general form 
that extends to three dimensions. 

First, we consider again two consecutive segments”, Pi-1, Pi and Pi, Pi+l. We 
define the approximate normal a t  Pi as 

(1 2.26) 

Then we can obtain an approximation of ri the radius of curvature at Pi. 
Actually, we can define: 

(1 2.27) 

where j = i - 1 or i + 1. Note that a formula like: 

also provides an approximation of p i .  

Proof. Let M be the midpoint of PiPi-1, we construct 0 the point where Gi and 
the perpendicular bisector of PiPi-1 intersect (thus a line passing through M ) .  Let 
Q be the angle formed between P i h  and Gi, we have ( P 3 , G i )  = llPxll cosa 

and COSQ = from which Relationship (12.27) yields. 0 

Remark 12.24 Relationships (12.26) and (12.27) extend to curves in three di- 
mensions. They can also be extended in the case of a curve traced on  a surface. I n  
this case, a mean normal can be computed along with the minimum of the various 
radii of curvature that can be defined by  considering the various Pj neighboring Pi. 

12.9 Towards a “pragmatic” curve definition? 

Due to  the number and the variety of possible curve definitions and bearing in 
mind some numerical troubles that can happen, we now attempt to  define a context 
which is well-suited to the meshing application at  hand. Basically, we are interested 

lowe can consider the plan where Pi-1 and Pi+l pass through. 
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in curves from this viewpoint. Indeed, we want to mesh a curve (as will be seen 
in Chapter 14), that is in general the boundary of a domain (in the plane or in 
space). The aim is then to take this curve discretization as input data for the 
construction of a mesh of the domain of which this curve is a boundary. 

It is then clear that a meshing process developed for this purpose must be 
as general and as stand-alone as possible while being reasonably simple. Thus, 
it seems unrealistic to  guess that a meshing algorithm will know in detail all 
the curve representations that may be encountered (if so, we will face a “huge 
monster”, tedious to  design, hard to update, and so on.). For this reason, we want 
to simplify the context to  that which is strictly necessary for the implementation 
of a curve meshing algorithm (the same is true for a surface meshing algorithm). 

Curve definitions and meshing topics 

As previously seen, we encounter two types of representations for a curve. One ap- 
proach makes use of a parametric definition while the other makes use of a discrete 
definition (i.e., a mesh). In the first case, the curves result from a CAD system 
and actually exist only if it is possible to query this system in order to collect 
the useful geometric characteristics (by default to  have the precise representation 
of the underlying model). In the second case, the discrete data is directly usable 
(given some assumptions) so as to collect the desired characteristics (or, at least, 
to find their approximate values). 

Whether one or the other of these approaches is adopted, we can see that 
a meshing problem requires (for simplicity, let us just look at a curve meshing 
problem): 

a access to the CAD modeler used when defining the curve, in the first case, 
and 

a an internal choice of a “CAD” enabling us to find the useful information 
from a discrete set of values, say a polyline, in the second case. 

Key ideas 

The approach we would like to follow is to  mesh a curve without explicitly using 
its CAD definition in order to be independent (thus obtaining some extent of 
generality and computational efficiency). 

Thus, we adopt a rather different point of view from a classical approach. Our 
goal is to  be independent of a particular curve definition (and thus of the CAD 
system the user is familiar with) when a meshing task is demanded. To this end, 
the key idea is as follows: 

the curve is defined by a sequence of control points and possibly by some 
other information, 

a the curve passes through these points (in this sense, an interpolation type is 
retained), 
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a afterwards, a mathematical support is defined, using the points (and the 
extra information, if any) by means of a unique composite curve definition 
of low degree, 

a then this mathematical definition becomes the curve definition and is used 
to  define what is necessary for our purpose. 

Following these principles, the user’s responsibility (and thus that of the CAD 
system) is limited to providing a sequence of points which makes the construction 
of a sufficiently precise definition of the geometry possible. 

From this point of view, a reasonable synthetic scheme for curve definition 
could be composed of two different steps: 

Step 1: (user’s responsibility) use the CAD system available to  construct a 
polyline while giving the corners” if any. 

Step 2: (pre-meshing process responsibility) use the previous polyline to con- 

In this way, the process of meshing a curve (see Chapter 14) is based solely 
on the above geometric definition (and the original CAD definition is no longer 
considered). 

struct a fixed geometric definition or use this polyline directly. 

Construction of a well-suited discrete definition 

In practice, this issue is the key to obtaining a curve definition that is sufficiently 
accurate. The problem reduces to finding an appropriate polyline to  represent the 
geometry. 

Figure 12.7: Controlling the gap between a polyline and a curve. 

A rather obvious method can be used to  control the accuracy of a “polylin- 
ization” of a curve. Using his favorite CAD system, the user defines one member 
of the desired polyline. Let Pi, Pi+l be this segment. Let ti and ti+l be the two 
parameter values corresponding to  Pi and Pi+l. It is easy to  obtain point M 
corresponding to  t = y. Then, d the distance between M and Pi, Pi+l is 
computed. Let 6 be a threshold value; if d < 6 llPi, Pi+llI, then the current seg- 
ment is judged correct. Otherwise, point M is used to define the two segments 
Pi, M and M ,  Pi+l which are in turn analyzed in the same way to  decide whether 
or not additional subdivisions are required. 

“If the corners are not explicitly supplied, it is nevertheless possible to guess them. To this 
end, an analysis of the angles between two consecutive segments is made. Note that a threshold 
value must be used which may lead to certain ambiguities in some cases. 
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Note that, in general, the maximum gap is not necessarily obtained at  the 
midpoint as defined above (see Figure 12.7). Thus, to  prevent a bad capture of 
the curve, sample points can be tested to decide whether the current segment is 
sufficiently fine. 

* * *  
As we have just seen, there are various curve definitions each of which offers 

both advantages and weaknesses. It is therefore no easy matter to decide which 
definition is the most appropriate in general and, anyway, such a discussion is 
beyond the scope of this book. However, if one idea is to be retained after this 
discussion, we think it is clear that the adopted meshing techniques for curves 
(surfaces, in a similar way) must be, whenever possible, developed without regard 
to the model used during the design of the curve12 (the surface). 

On the other hand, the few examples of actual computation regarding curves 
defined by one or other of the models seen above have brought to  light some 
perverse numerical effects which will require further consideration. 

121n specific, we would like to start from a minimal interface under the responsibility of the 
CAD system. 



Chapter 13 

Surface Modeling 

The aim of this chapter is to review some methods for surface definition. A surface 
can be defined using various categories of methods, and, in particular, we encounter 
parametric, implicit or explicit surfaces. A parametric surface, given u and u two 
parameters living in some interval, is the data of a function cr whose values cr(u, u) 
describe the surface. Implicit surfaces are given by a relation like f(z, y, z )  = 0 
while explicit surfaces take the form z = f(z, y). 

In the first sections of this chapter we discuss the methods extensively used in 
practice (for instance, in CAD systems), i.e., parametric surfaces. Most methods 
developed for surface definition are derived from methods used for curve definition. 
Thus, the material discussed in Chapter 12 will be reviewed here and extended to 
the case of surfaces. 

* * *  
First, we introduce the basic notions related to surface definitions (as we did 

for curves in Chapter 12) to give a rough idea of the various methods that can be 
used to define (construct) a surface. It is not our intention to be exhaustive, and 
we refer the reader to the ad-hoc literature. In this respect, references listed in 
Chapter 12 for curve topics remain relevant. 

Surface definitions can be classified into several categories depending on what 
the surface looks like or what the geometry of the surface must be. Particular 
surfaces are briefly discussed including surfaces of revolution, ruled surfaces and 
sweep surfaces. We then turn to surfaces that can be defined by means of a tensor 
product and we discuss surfaces related to an interpolation scheme based on a set 
of points (for instance, Coons patches). Next, we look at tensor product based 
patches based on a control polyhedron. We briefly examine rational patches before 
turning to patches that are not included in the above categories. Specifically, we 
mention the case of patches with an arbitrary topology or those whose control 
differs from the classical form. To conclude, as we did for the curves, we consider 
the case of composite surfaces which are widely used in CAD systems. The initial 
surface is split into different portions and each of these is defined using one of 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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the surface representation methods. In addition, some specific properties about 
regularity can be required at the junction of two such portions. 

Notations. Parameters used for surface definitions are commonly denoted by 
u and v (together with w in the case of a triangular patch) unlike those used 
for curve definitions which was denoted by t in Chapter 12. Nevertheless, in this 
chapter a curve parameter will be denoted by u (or v) as well since such a curve is 
now seen as a component of a surface with such parameters. Recall that curves, r, 
are noted as y(.) while surfaces, C, will be denoted by u(., .). While, for instance, 
u(u, w) is a point on surface C, for a given pair (u ,  w), in some cases, we make no 
distinction between u(u, v) (where (u ,  v) varies) and the surface C. 

13.1 Specific surfaces 

Numerous surfaces commonly used in industry have a specific geometric nature. 
This results from the fact that they must be manufactured. Owing to this, the 
surfaces must respect certain constraints regarding their manufacture, e.g. have a 
degree of detail that is compatible with the precision of the tool used. 

Surfaces of revolution 

Some particular surfaces can be defined by means of the revolution of a two- 
dimensional entity (point', line, planar curve, closed or open polygon) around an 
axis in space. The position of the line (curve) with respect to  the axis leads to  
various surfaces such as cylinders, truncated cones, solid discs, hyperboloids of one 
sheet, cones with a cylindrical hole, spheres, ellipsoids, torus, etc. 

The entity to  be rotated is a function of one parameter and the rotation is 
determined by another parameter (namely the rotation angle), so a surface of 
revolution is a biparametric function since a point on this surface is specified by 
two parameters. 

Figure 13.1 (left-hand side) demonstrates an example of a surface of revolution. 
We can see the curve y(u), the rotation axis and, for a given value w of the angle, 
the point u(u, w) in the surface. 

Trimmed surfaces 

Given a point P(u)  function of a parameter u and a vector q(u)  such that q(u)  # 
0, Vu, then the relationship: 

u(u, v) = P(u)  + w a(,), (13.1) 

defines a ruled surface. 

and yz(u) ,  a surface can be defined as 
Given two curves and rz and the corresponding parameterizations, n ( u )  

'In this cme a curve results from the revolution. 
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Figure 13.1: Examples of particular surfaces. Left-hand side, a surface of revolu- 
tion, middle, a ruled surface; right-hand side, an extruded surface. 

This surface is also a ruled surface. In fact, it conforms to the general definition 
of a ruled surface with P(u)  = n ( u )  and q ( u )  = y2(u) - y1(u). 

In Figure 13.1 (middle) is an example of a ruled surface. We can see, for 
instance, the two curves y1(u) and yz(u)  together with the net linking them, i.e., 
for a given w ,  the point ~ ( u ,  w) of the thus-defined surface. 

Extruded or sweeping surfaces 

Given a path and a two-dimensional entity, a surface is obtained by traversing this 
entity along the given path (a line, a curve). In this way, the defined surface is a 
sweeping surface or an extruded surface. Note that an entity like a line results in a 
ruled surface, as defined in the previous section. A simple example of an extruded 
surface is given in Figure 13.1 (right-hand side). 

13.2 Interpolation-based surfaces 

We turn now to arbitrary surfaces which nevertheless are suitable for a tensor 
product or an interpolation based definition. The easiest way to define a surface 
is to extend the material used for curve definition (Chapter 12). This leads to 
quadrilateral patches that can be considered as the tensor product of two curve 
definitions. Based on the way the curves are defined, we obtain various surface 
definitions. To give a basic feeling of a tensor product based method, we take a 
rather simple case, namely a bilinear interpolation. 

Tensor product based patches (introduction) 

We consider a parametric space in R2 whose parameters u and w live in [0,1]. 
Given four points in R3, Pi,j for i = 0 , l  and j = 0 , l  where Pi,j corresponds to 
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u = i and w = j ,  we can define four lines: 

1 

for w = 1, y(u) = (1 - u) ~ 0 , ~  + u ~ 1 , 1  = C ~ i ( u )  
i=O 

1 

for u = 0, y(w) = (1 - w)  PO,^ + w  PO,^ = C ~ j l ( w )  ~ o , j  ) 

j = O  

1 

for u = 1, y(v) = (1 - v) P ~ , ~  + w P ~ , ~  = C ~ j l ( v )  P ~ , ~  , 

with Bi(u)  = 1 - u, B:(u) = u and similar expressions for B;(w) and where 
the in B: refers to  the degree of the function. Combining these curves, we can 
construct a surface u(u) w) defined by: 

j = O  

(13.2) 

which is the tensor product based on the above curve definitions. In matrix form, 
such a curve r can be written, for each component, as: 

y(t) = [Ul[MI[Pl or y(t) = [B(u)IPl 7 

where [U] = [l - u, u] is the basis functions of the representation, 

is the coefficient matrix of the function in the above basis (for one of the above 
curves), [PI = t [ P ~ , ~ ,  P ~ , o ]  is the row of the control points (for the first curve) 
and, finally, [B(u)] = [U][M].  

Similarly, the surface of Equation (13.2) can be seen in matrix form as: 

u(u, w) = [U] [MI [PI t [ M ]  ' [V]  or again u(u, w) = [B(u)] [PI '[[a(v)] , (13.3) 

where. now. we have: 

and [B(u)] is the above matrix form of the (curve) function. As a consequence, 
any tensor product surface definition can be expressed in a similar matrix form 
based on the curve matrix form. 
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Remark 13.1 I n  general, the matrix form of a tensor product surface is: 

where the two [ B ] s  may be different. Such a case is  encountered, for  instance, 
when the network of control points includes n + 1 points in one direction (the u- 
direction) and m + 1 points in the other, n and m also referring to the degree of 
the representation. 

Depending on what the BP's are, this kind of method results in various surface 
definitions. Indeed, both the value of n and the nature of the coefficients in the 
BP's lead to different definitions. We return, as for the curve case, to interpolation 
methods where the surface passes through the given (control) points (Lagrange 
type methods) or passes through the given points while, a t  the same time, matching 
some derivatives at these points (Hermite methods) or again to  extrapolation 
methods such as B&zier, B-spline and many others. 

Interpolation-based patches 

The "simplest" tensor product that can be used corresponds to  the definition of 
an interpolation method at  the curve level. We then encounter the two methods 
previously seen, the Lagrange or the Hermite interpolation. 

Lagrange interpolat ion 

In this case, given an (n + 1) x (m + 1) array2 of data points, Pi,j, the problem is 
one of finding the coefficients of the matrices [B] such that the surface: 

4% = [B"(U)l [PI "B"(41 

passes through the Pi,j's. In other words, if u = ui and v = vj are the parameters 
of point Pi,j, we want to have: 

Pi,j = [B" (u i ) ] [P]  ' [B" (v j ) ]  for all i and j .  

Using as [a] the Lagrange interpolate of Chapter 12 gives the solution. For ex- 
ample, for n = m = 2, given 9 control points, the above equation with [a"(.)] = 

[ U ] [ M ]  in which: 

[U] = [u2, u, 11 and 

2 -4 2 
[ M I =  ( 1 3  ; ; I )  7 

and similar expressions for [Bm(v ) ]  defines a Lagrange tensor product resulting in 
a surface passing through the 9 data points. 

2Where n and m are not necessarily equal. 
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Hermite interpolation. As for the curve case, a Hermite interpolation involves 
derivatives of the control points along with these points. The tensor product used 
to define the surface leads to the same discussion as above. In particular, an 
equation like Equations (12.3) or (12.4) characterizes the surface using a coefficient 
matrix based on the basic curves of the tensor product. For instance, the popular 
bicubic Hermite patches is one example of such a method: 

where [PI the matrix of the control points contains both the control points and 
their derivatives. It is written as: 

1 ,  1 p1,o Pu,l,O PUJJ P1,l 

p0,o pu,o,o Pu,O,l P0,l 
pu,o,o puu,o,o PUU,O,l PU,O,l 

= PU,l,O PUU,l,O PUU,l,l pu,1,1 

where, for instance, 

In this control matrix, the data relative to one control point are grouped into a 
2 x 2 sub-matrix. Now, the coefficient matrix [B3(u)] ([B3(u)] following the same 
matrix form) is: 

Remark 13.2 The above coeficient matrix is  the cubic Hermite matrix of Chap- 
ter 12 in the case where the control point row is  defined as [PO, PO, P I ,  PI]  instead 
o f t  [PO, P I ,  PO, PI]  as we did above. The present notation is motivated by  the no- 
tations of the [PI matrix for the surface case so as to retrieve the tensor product 
of the curve definition for the surface case. Also, the interpretation of the control 
points and derivatives as arranged in [PI is  then much more intuitive. 

Transfinite interpolation (Coons patches) 

The so-called Coons patches are based on transfinite interpolation. Introduced in 
Chapter 4 as a mesh generation method able to carry out some particular geome- 
tries, the transfinite interpolation is now seen as a method for surface definition 
(construction). Referring to Chapter 4, we recall the formula of Equation (4.5): 

F(5771) = (1 - 71) 41(5) + 5 42(17) + 71 4 3 ( 0  + (1 - 5) 44(17) 

- ((1 - 5)(1 - 17) a1 + 5(1 - 17) a2 + 571 a3 + (1 - 5) 7 1 4  . 
Now, to conform to the current notations, this formula is written as: 

fT(u,u) = (1 - u) 4(% 0) + u $(I, u) + 4(u, 1) + (1 - u)  4(0,  u) 
- ((1 - u)(1 - u) P0,o + u(1 - u) P1,o + uu P1,l + (1 - u) VP0,l). 
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which can be expressed as: 

(13.5) 

The first part of this expression corresponds to  a ruled surface in terms of u, the 
second denotes a ruled surface in terms of w, while the third part is the correction 
term resulting in the desired properties (see below). 

Thus, we have a surface definition which is rather different from the previous 
ones. The patches that can be dealt with are defined via their boundaries and 
these boundaries can be seen as a series of four logical sides3. Actually, the input 
data consists of the boundary of the patch, i.e., 4. In other words, from a discrete 
point of view, the control points are located on the four curves defining the patch 
boundaries. Functions 1 - u and u are the so-called blended funct ions.  

It is easy to  check, as in Chapter 4, that the corner identities are satisfied and 
that the surface interpolates to the four boundary curves. For instance, we have 
a(u,O) = $(u,O),a(u,l) = $(u , l )  and a(0,w) = $(O,w) together with a(1,w) = 

Changing the blending functions leads to generalizing the Coons patch. If fl(u) 
4 ( L v ) .  

and f2(u) along with g1(v) and gZ(w) are two pairs of blending functions, then: 

(13.6) 

is the form of a generalized Coons patch. Note that the blending functions must 
enjoy certain properties to result in a consistent definition. In practice, the f i s  
as well as the gis sum to one and continuity must be ensured at  the corners, 
fl(0) = gl(0) = 0 together with fl(1) = g1(1) = 1. 

An example of blending functions resulting in a powerful surface definition 
consists of cubic Hermite polynomials. In this case, the surface is defined by: 

a(u,w) = [ H , 3 ( 4 ,  H , 3 ( 4 ,  Hm, H,3(41 

(13.7) 

3Following the transfinite interpolation for a triangle of Chapter 4, it is possible to develop 
triangular patches as well. 
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where the Hf are the cubic Hermite polynomials of Section 12.2 and ‘H3 is the 
corresponding line. 

In fact, depending on the input data, using the previous patch definition re- 
quires a certain technique. When only the curves q5 are supplied, quantities involv- 
ing the necessary derivatives must be approached. When the q5 are given along 
with the directional derivatives, the uv-derivatives must be evaluated. Various 
solutions may then be used, leading to various controls of the thus-defined surface. 

13.3 Tensor product and control polyhedron 

In this section, we discuss the patches that are widely used in CAD software pack- 
ages. These make it possible to define surfaces with an arbitrary shape (geometry). 

Control polyhedron 

Let Pi,j be a quadrilateral lattice of points. By analogy with the case of curves 
based on a control polygon, we can introduce, for a given surface C, the following 

(13.8) 

The choice of the basis functions @i,j is left to the user. However, some character- 
istics are usually imposed in order to relate the surface to its control polyhedron 
(the Pi,js). 

Tensor product. The first assumption is that the surface can be written as a 
tensor product. In order to ensure this property, the contribution of u and that of 
v must be separated in the definition of @i,j(u,v). So, we have: 

@i,j (u, .) = h(.) $j (.) ’ 

The main interest of such a definition for @i,j is that Equation (13.8) becomes: 

s, (v)=r1 (v) 

Thus, a current point on the surface is defined by the tensor product of two curves 
based on a definition by a control polygon. The points &(v) can be obtained as 
current points of the curve n ( v )  related to the control polygon (Pi,j(~))j~[O,~] 
and, these points being calculated, any point ~ ( u ,  w) is calculated as the current 
point of a new curve related to the control polygon (S~(W))~,[~,~I. 
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Characteristics of $i(u) and $j ( (v)  inherited from the curve definition. 
To be consistent with the definition of curves, the surfaces based on a control 
polyhedron generally use the same basis functions for $i(u) and for &(v) as the 
curves. Hence, if we use Bernstein polynomials, we define B6zier patches and if we 
take Splines functions, we get B-Splines type patches. By adding an homogenous 
coordinate to each control point of the polyhedron, we find rational patches, i.e., 
rational B6zier or B-Splines patches, commonly called NURBS when the associated 
sequence of nodes is non-uniform. Therefore, it should be borne in mind that the 
features of patches inherit the characteristics of the underlying curves. 

m n  
Cauchy identity. Let us look at the value of S = C C @i,j(u,  v). We have: 

i=O j = O  

m n  m n m 

i=O j = O  i=O -- 
E l  =1 

Hence, the Cauchy identity is also true in this type of surface definition. Thus, we 
have: 

i=o j=o 

The point of parameters (u, v) is the barycenter of the system of (n + 1) x (m + 1) 
points Pi,j associated with the weights @i,j(u, v). 

Remark 13.3 A s  for  the curves, the Cauchy identity ensures that any linear 
transformation of the characteristic lattice produces the same transformation onto 
the surface. 

Positive functions. As the functions &(u) and $j(v) are positive functions, 
the functions @ i , j  (u, v) are positive in the domain of definition of the (u ,  21)s. 

If we assume the Cauchy identity to be verified, the current point ~ ( u ,  v) is 
the barycenter of the points Pi,j weighted with positive values. Thus, any convex 
volume enclosing the set of points Pi,j encloses the whole patch. 

Remark 13.4 An application of this feature consists of taking as the bounding 
box of the patch the box defined via the minima and the maxima of the coordinates 
of the points of the control polyhedron. 

Relations at the endpoints. Let [urnin, urn,,] x [vmin, v,,,] be the interval of 
variation of u x v. If we assume that $i and $j verify the relation of Section 12.4 
related to the curves, it is easy to show that: 

@o,O(Uminr U r n i n )  = 1 ; @n,O(umaz, U r n i n )  = 1,  

@ n , m ( U m a z ,  vmaz) = 1 ; @ o , m ( U m i n ,  urn,,) = 1. 
Hence, the four corners of the polyhedron define the four points of the patch. 
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Boundary curves. 
curve governed by the parameter u is thus: 

Let us place w = wmin in Equation (13.9); the equation of a 

m m 

i=O i=O 

Hence, the boundaries of the control polyhedron define the control polygons of the 
curves bounding the patch. 

Tangent planes at the corners. As the boundary curves are defined by the 
boundary of the control polyhedron, we can obtain two particular tangents at any 
corner by taking the tangents to the endpoints of the boundary curves. These 
tangents are supported by the segments of the control polyhedron sharing the 
given corner. 

Figure 13.2: O n e  patch, i t s  control polyhedron and the tangent  planes at the cor- 
ners. 

Figure 13.2 shows a control polyhedron. The corners of this polyhedron are 
particular points of this patch. The tangent planes at these corners are defined by 
the segments incident to these points. Within the parametric space, we can only 
affirm that the surface “is similar to” its control polyhedron and that the patch is 
enclosed in any box enclosing this control polyhedron. 

Bkzier quads 

BBzier quad patches are constructed using Bernstein polynomials as $i and $ j .  

As a consequence, we have: 
n m  

(13.10) 

with Bi,n(u) (resp. Bj,m(w)) the classical Bernstein polynomial, i.e., for example, 

Bi,n(u) = CXui(1 - uy-2.  
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Notice that m can be different to  n. The degree of the patch is not necessarily the 
same in the two directions u and u. 

On the other hand, the data of a lattice of control points Pi,j whose structure 
is a quadrilateral grid ( (n  + 1) x (m + 1) control points) makes it possible to define 
a surface via Equation (13.10). 

Properties already seen in Chapter 12 about B6zier curves (and Bernstein poly- 
nomials) apply here in BBzier quadrilateral patches. 

As for the curves, various recursions allow us to compute different quantities of 
interest, for instance, for point evaluations, for derivative computations, for degree 
elevations, and many others. In this way, it will be possible to find the conditions 
that ensure some degree of continuity when composite surfaces are discussed (see 
below). 

Also the De Casteljau algorithm extends to  the surface case when4 n = m. 
The curve algorithm: 

D;(t) = (1 - t )  o,T-’(t) + tD,T;;(t), 

is replaced by: 

for T = 1, ..., n and i,j in [0, n - 7-1. This algorithm is initialized by Dy;: = Pi,j 

which is, for consistency, noted by Dy;;”(u,u) while, obviously u and u do not 
appear in the D at  the initialization step. The surface is then equivalently written 
as: 

u(u, u) = D,”:,”(u, u) . 

As previously indicated, a B6zier patch can be formulated in terms of a matrix 
form. Indeed, we return to  Relation (13.3), i.e., 

where 
2 [U] = [un,un-l 7 ... 7 11 , 1 1 7  11 

[MI = [Mi,j] with M .  w . - - ( - l )n- i - jCkCj n--2 . 

and similar expressions for both [V] and [N]. 
Then, for n = 3 we return to  the matrix of Chapter 12, i.e., 

41f R. # m, the De Casteljau algorithm is more subtle. 
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Degree elevation. As for a BBzier curve (see Chapter 12), degree elevation of 
a BBzier patch is useful for various purposes. In practice, curve degree elevation 
can be used while the degree is elevated in the u-direction and, this task being 
completed, it is elevated in the v-direction. Then, following the technique for a 
B6zier curve, we first fix j and m and we seek to obtain a ( n + l ,  m) patch (starting 
from a (n, m) patch). The surface: 

n m  

is seen as: 
m / n  \ 

j=o \i=O 

and, with 
2 Pi-1,j + (n + 1 - 2)  Pi,j 

Q* . = w n + l  
7 

we obtain: 
m n+l 

j = O  i=O 

applying the same in terms of m, we obtain the desired result, i.e., 

n+l m+l 

~ ( 1 1 ,  v) = C C Bi,n+l(u)Bj,m+l(v) Qi,j 7 

i=O j = O  

B-spline patches 

These patches take a form similar to Relation (13.10) in which the polynomials 
are replaced by the B-spline functions (Chapter 12). The surface is then defined 
bv: 

(13.11) 

Note that rational B-splines patches also exist. 

13.4 Triangular patches and Bezier triangles 

As mentioned in the introduction, there also exist triangular patches, and we now 
turn our attention to these. 
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Tri-parametric forms 

Triangular patches are most commonly defined using an expression with three 
parameters, u, u and w: ~ ( u ,  u, w ) .  The values (u, u, w )  are the barycentric coor- 
dinates. Hence, we have the relation: 

u + u + w = l  ( U , U , W ) € R 3 + .  

Thus, the whole triangle is described by the point P corresponding to the barycen- 
tric coordinates: 

P = u Po + u PI + w P2. 

From this point of view, the function u can be seen as a deforming function which, 
applied to a predefined planar triangle (PO, PI ,  Pz),  gives a curved triangle. 

Bkzier triangles 

BBzier patches play an important role in surface definition. Two types of BBzier 
patches are commonly used. As may be imagined, the first type, BBzier triangles, 
were introduced before the second, namely BBzier quadrilateral patches. For the 
sake of simplicity, we discussed the quad case before the triangle case since a Bkzier 
quad is a tensor product, thus allowing a “simple” discussion. Now, we consider 
Bkzier triangles. 

Given a set of control points that form, in terms of topology, a triangular 
network, we can define a triangular surface using the relationship: 

c(% 21, w )  = Bcj , k  (u, 21, w )  E , j , k  I (13.12) 
i+j+k=n 

n! 
where Bcj,k(u, u, w )  = -uiuiwk and u, u, w are the barycentric coordinates. 

To make the meaning of the above indices clear, we give the following synthetic 
scheme (where n = 3 )  which corresponds to the arrangement of the control points: 

Z!j!k! 

(0 ,3 ,0)  

(0,271) ( L 2 , O )  

(0 ,1 ,2)  (1 ,1 ,1)  (2,170) 

( O , O ,  3 )  (1,072) (2 ,0 ,1)  (3 ,0 ,0)  

Also, following the same index arrangement, the Bernstein polynomials, for 
n = 3 are as follows: 

u3 

3 v 2 w  3 u u 2  

w3 3 u w 2  3 u 2 w  u3 

3 u w 2  G u v w  3 u 2 v  
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The Bernstein polynomials of a BBzier triangle are related by the recursion: 

Br-. w , k  ( u , v , W )  = uBa'--:j,k(u,v,W) +vB:$l,k(u,v,W) +wB:iL-l(u,v,w) 7 

and a De Casteljau algorithm can be found, based on this recursion. First, we 
define: 

DO. - p. . 
a,3,k - v , k  7 

then, for r E [l, n] with i + j + k = n - r ,  the recursion is: 

The surface passes through the three corners, its boundary consisting of the 
three BBzier curves corresponding to  u = 0, v = 0 and w = 0. Another interesting 
property is the following. The tangent planes at the corners are based on the 
three triangles with such a point as vertex. For example, the tangent plane at 
corner Pn,0,o is the plane of the triangle Pn,0,o, Pn-1,1,o, Pn-1,0,l. This is due 
to the fact that two derivatives are automatically known at  the corners. For 
instance, a t  corner P,,o,o, these two derivatives are the vectors Pn,o,oPn-l,l,~ and 

In terms of derivatives, it is easy to  find the derivatives of the above Bernstein 
pn,o,o pn- 1 ,o, ;. 

polynomials. We have, 

and similar expressions for the other partials. Now, for a B6zier triangle, the 
derivatives we are interested in are not the partials but some directional derivatives. 
Thus, given two points A and B (with barycentric coordinates UA,WA,WA and 
U B , V B ,  W B ) ,  we consider vector AB = a whose components U A B  = U B  - U A ,  

etc. (which sum to zero). This vector enables us to write the directional derivative 
of the surface at a given point. We have: 

or, by means of the Bernstein polynomials: 

n B:i;(% 21, W )  ( U A B  pz+l, j ,k  + v A B  pi , j+l ,k  + W A B  Pi , j , k+l )  . 
i+j+k=n-1 

(13.13) 
We can then express the tangent plane anywhere (and not only at the corners) 

in a triangle in terms of the above definition (a derivative) as well as by means 
of the De Casteljau algorithm. To this end, Equation (13.13) is split into three 
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parts: 

then, we have: 

and, as a conclusion, the tangent plane is the plane passing through the points 

With this material, it will be possible to find the conditions relating to the 
control points in order to obtain some continuity from patch to patch in the case 
of a composite surface. 

g n - 1  g n - 1  
l,o,o, o,l,o and D&: resulting from the De Casteljau algorithm. 

Degree elevation. As BBzier triangles are not tensor product patches, degree 
elevation of such a patch does not take the same form as for a quad patch. Thus, 
we explicitly discuss how to elevate the degree of a BBzier triangle. We want to 
write the surface: 

in the following form: 

and the problem is to find the Q i , j , k s .  The solution is then: 

1 
Q . .  t , j , k  - - n+l (i p i - l , j , k  + j p i , j - l , k  + k p i , j , k - l )  

Proof. 
definition of such a polynomial, we have: 

Let us consider the Bernstein polynomial By'j,k(~, v, w) .  Using the 
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Similarly (omitting the parameters), 

Conversely, we have: 

or, after summation, 

since u + u + w = 1. Now the initial patch definition is replaced by: 

which, in turn, leads to: 

1 n+l 
c(u, 21, w) = n+l B i , j , k  ( z p i - l , j , k  + j P i , j - l , k  + k P i , j , k - l )  

i + j + k = n + l  

thus completing the proof. 0 

13.5 Other types of patches 

Here we examine other types of patches, rational patches, rational B6zier patches 
and patches based on an arbitrary polyhedron. 

Rational patches 

The same approach as that used to define rational curves (Section 12.7) can be 
adopted in the case of surfaces. Thus, the construction of rational models comes 
down to adding an homogenous coordinate to each point of the control polyhedron. 
We can thus easily obtain rational B6zier quadrilaterals or triangles, NURBS-type 
patches, etc. We will briefly describe the case of rational BBzier patches in order 
to illustrate such patches. 

0 Rational quad B6zier patches 

For a quad patch, we have: 
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0 Rational Bezier triangles 

For a triangular patch, we find: 

Remark 13.5 N o t e  that  rational patches are n o t  tensor  product based patches. 

Patches based on an arbitrary polyhedron 

Various types of patches exist which have not been discussed so far. We will limit 
ourselves here to giving a few examples of such patches. 

Patches can be defined which are arbitrary polygons. The patches we have 
discussed so far are quadrilateral (or at least with four sides) or triangular (Bkzier 
triangles). Some geometries are not well determined if we restrict ourselves to these 
patterns. Thus patches with arbitrary topology can be introduced and methods 
for handling these cases must be defined. 

A popular patch is the so-called Clough-Tocher patch whose name is familiar 
to finite element people. Indeed, the Clough-Tocher finite element is a triangle 
with 12 degrees of freedom (Chapter 20). The node value and the two derivatives 
at the triangle vertices and a normal derivative at the edge midpoints. This finite 
element is C1 and its construction is based on the three sub-triangles that are 
defined using its centroid. In terms of a surface definition, this triangle is seen as 
a patch with 12 degrees that allows for a C1 continuity. 

Another patch of interest is the Gregory patch . This patch is a triangle and 
the data consists of the vertices and the normals at these vertices. Also, a patch, 
proposed by Walton, [Walton, Meek-19961, is constructed with similar data. In a 
later section, we will return to patches which allow for a G1 continuity. 

We also frequently find patches having a particular shape. In fact, if we take 
the case of a four-sided patch, it is not always possible to construct a given surface 
using only this type of patch. Indeed, the number of patches incident to one point 
is in principle 4. If for any reason, this configuration is not possible, we have to aim 
at a different number of incident patches. Hence, three- or five-sided patches have 
been introduced. To reduce the number of sides of a patch, we can degenerate 
it (i.e., force two vertices to be coincident). On the other hand, increasing the 
number of sides is more tedious (notice however that the Coons patch makes it 
possible to envisage this case quite easily). 

Finally, notice that restraining the usable domain of a patch makes it possible, 
while preserving a limited number of patches, to introduce arbitrary boundaries 
(other than the “natural” borders of the patch) and holes (which could also be 
obtained by subdividing the initial patch); Figure 13.3. 
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Figure 13.3: Examples of restricted patches. Left-hand side: the boundary of in- 
terest is  not the patch boundary. Right-hand side: a hole on  the surface. 

13.6 Composite surfaces 

As for composite curves, composite surfaces is a definition method that allows for 
a great flexibility in the case of arbitrary surfaces. Figure 13.4 depicts an example 
of a surface whose definition requires a certain number of patches5. Actually, the 
given surface is split into a series of patches which conform to one of the above 
patch nature. 

Figure 13.4: Example of a com- 
plex surface using a set of composite 
patches (view data courtesy by  Das- 
sault Systbmes, modeler CATIA). 

Given two (quad) BBzier patches, which are members of a composite surface, 
the aim is to define the control points in such a way as to insure some degree of 
continuity from one patch to the other, thus resulting in a global continuity when 
the entire surface is considered. 

The key is then to have a continuity at the patch interfaces, i.e., at the curve 
level. This continuity concerns the adequate derivatives of the curves. First, we 
need to have the values of the derivatives of a given BBzier patch. By introducing 

51n fact, this model certainly also includes some restricted patches and not only some natural 
boundaries (Chapter 15). 
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the notation: 

A,Pi,j = Pi+l,j - Pi,j and AuPi,j = Pi,j+l - Pi,j , 

then, the formula: 

ArsPi,j = AL(AZPi,j) = AZ(ALPi,j), 

allows for the calculation of the derivatives of the surface u(u, v). We have: 

n-r m-s 

C C Bi,n-r(u) Bj,m-s(v) ArsPi,j 
n! m! 

u(u,v)  = ~ 

a r a s  

auraus (n - r ) !  (m - s ) !  . 
2=0 j = o  

Now, let us consider two such patches, u1(ulrv1) and u2(u2,212), with the same 
degrees6 n and m and whose interface consists of 

ul(Lv1) and u2(0,vz),  

the curves corresponding to  u1 = 1 and 112 = 0 respectively. 
A Co continuity from u1 and uz leads to  having: 

m m 

C Bj,m(vl) Pn , j  = C Bj,m(vz) Q o , ~  Vv1 = 212 E [O, 11 
j = O  j = O  

where the Pi,j are the control points of u1 while the control points of u2 are the 
Qi,js. Then, in terms of control points, this continuity is achieved if 

A C1 continuity is achieved if the first derivatives match at  the interface. Using the 
above formula about the derivatives with respectively T = 1, s = 0 and T = 0, s = 1, 
we have successively: 

and 

6Actually, the same degree is only necessary at the interface (i.e., for m). 
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Then, we need to have: &al(l, w1) = za2(0,  a w 2 )  together with *a1(1, w1) = av 
&;a2(0,~2)  for w i  = w2 E [0,1]. Since a Co continuity holds, the w-derivatives 
match while a condition insuring that the u-derivatives match is Pn,j - Pn-l,j = 

Qi,j - Qo,j  or, since Qo, j  = Pn,j ,  

Pn-1,j + Q1,j = 2 Pn , j  . 

In other words, Pn,j ,  Pn-l,j and Q1,j are aligned7 and, moreover Pn,j must be the 
midpoint of segment Pn-l,j, Q1,j. 

Similarly a high order continuity can be obtained since additional conditions 
about the control points are enforced. For instance, a C2 continuity also leads to  
having: 

Q2, j  - Pn-2,j = 2 (Q1,j - Pn-1,j) . 

Remark 13.6 When the parameters are not in [0,1], a variable change must be 
made to return to the above discussion. 

Since a C-type continuity is very demanding, thus impeding flexibility when 
defining the control points, the use of a G-type continuity must be discussed. For 
instance, the G1 continuity at an interface between two patches means that the 
two tangent planes are continuous along the interface curve. 

The tangent plane for surface a1(u1,w1), along the curve u1 = 1 (we pursue 
the above example), is a combination such as: 

that for a2(u2, w 2 ) ,  along the curve 112 = 0, is: 

where the a s  and the Ps  are some non-zero coefficients (indeed, some functions of 
the us). The relation which is needed is then: 

thus, due to the Co continuity, this relation reduces to: 

where a = al, P = 

The “simplest” choice is to consider constant values for these functions and 
to take P = 0, meaning that P1 = P 2 .  Then, the condition for a G1 continuity 

- P2 and y = -a2. 

reduces to: a a 
( I . z a l ( l , v l )  + y-a2(O,w2) au = o  

7Thus, only a G’ continuity is achieved. 
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and, in terms of the control points, 

thus, since v1 = v2, we return to the above condition about the alignment of Pnj, 

Now, we consider P # 0 and more precisely a function such as P = (1 -v)P+v. 
Pn-1,j and Q1,j. 

Then, we must have: 

In terms of control points, this leads to having: 

m 

j = O  

or, equivalently, 

Now, let (u = y, we have: 

and, finally, a sufficient condition is to have the quad Q I , ~ ,  Pn , j+ l ,  Pn-l,j,  Pn,j-1 

planar. 

As a conclusion to this discussion, we have exhibited two different conditions 
for G1 continuity. Note that other conditions may also be found. Obviously, based 
on the degree n and m and due to the necessity of considering the continuity for 
several patches at the same time the construction of G1 surface is not trivial. 
Also, when the degree of the interface is not the same, this work becomes more 
complicated (involving, for instance, the degree elevation technique). 

Composite B6zier triangles 

Let us consider two BBzier triangles of the same degree n, say ( ~ 1  (UI, v1, w1) and 
C J ~ ( U ~ , V ~ , W ~ ) ,  which share a common interface, for instance, for w1 = 0 and 
w2 = 0. The Co continuity holds since ( J ~ ( u I ,  v1,O) = a2(u2, w2,O) .  If P i , j , k  (resp. 
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Q i , j , k )  stand for the control points of C J ~  (resp. C J ~ ) ,  the above condition leads to 
having: 

C B&,k ( ~ 1 ,  v1,O) Pi,j,o = C B&,k ( ~ 2 ,  v2,O) Qi,j,o 7 

i+j+k=n i+j+k=n 

when u1 = 112 and u1 = 212. Then, as expected, a Co condition is: 

Pi,j,o = Qi, j ,o  for i + j = n . 

To discuss high order continuity, we have to return to the directional derivatives 
of the surface. Let us recall the corresponding formula, for w = 0 and patch C J ~ :  

n C 
i+j+k=n-1 

B:;: (u, 2 1 7 0 )  (uAB Pi+l,j,o + vAB pi,j+l,o + wAB Pi,j,l) 

where AB is the direction of derivation. 

Remark 13.7 It i s  clear to  see that the directional derivatives along the interface 
match  automatically. Indeed, since WAB = 0 ,  the Co continuity insures this result. 

Now, for an arbitrary direction AB, if we have: 

n C 
i+j+k=n-1 

B:;: (u, 2 1 7 0 )  (uAB pi+l,j,o + vAB pi,j+l,o + wAB Pi,j,l) 

for the AB-derivative of C J ~ ,  then, we have: 

- n  C 
i+j+k=n-1 

B:iL(u, v,O) (UAB Qi+l,j,o + ~ A B  Qi,j+l,o + WAB Qi,j,l) 

for the AB-derivative of c72. Thus, the C1 continuity holds since a relationship 
such as: 

a Pi+l,j,o + P Pi,j+l,o + y Pi,j,1 + y Qi,j,l = 0 holds. 

In other words the two triangles Pi+l,j,o Pi,j+l,o Pi,j,1 and Pi+l,j,o Pi,j+l,o Qi,j,l are 
coplanar and points Pi,j,l and Qi,j,l are related one with the other (symmetry). 

Note that conditions insuring a G1 take the same aspect, we have now: 

QI Pi+l,j,o + P Pi,j+l,o + y P., 2 3 1  ., + 6Qi,j,l = O ,  

where 6 = ky. 
Also, as a conclusion, we return to the final observations about Bkzier quads. 

In particular, a degree 3 patch is too rigid and patches of at least degree 4 must 
be used. 

Other composite surfaces 

Patches other than the two above can be considered to develop composite surfaces. 
For instance, the Gregory and the Walton patches, as briefly introduced, can 
serve as support for such a construction (see the next section for a more complete 
discussion). 
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13.7 Explicit construction of a composite surface 

In this section, we consider a quite different approach (as in Section 12.3). The 
main idea is to use as data a discrete approximation of a given surface. This 
approximation is indeed a surface mesh composed of triangles. Triangle vertices 
and normals at these vertices are assumed. Then, the construction is completed 
triangle by triangle using the available information (singularities, normals at the 
triangle vertices) is such a way as to obtain a G1 surface. 

The construction is made in two main steps. The first step concerns the con- 
struction of a B6zier curve of degree 3 based on the edges of the surface mesh 
by taking into account the corresponding normals. The second step, using these 
curve definitions, concerns the construction of the patch. 

Constructing the curves boundary of a patch 

An edge is characterized by its two endpoints and the two corresponding (surface) 
normals, thus, 12 degrees of freedom. Hence, a B6zier curve of degree 3 is sought 
(which has the same number of degrees). Let y(t) be the curve associated with a 
given edge. We assume that: 

3 

i=O 

where the control points are PO the first endpoint of the edge, P3 its second end- 
point and: 

and P2 = P3 - V2 , 
where VO and VZ must be properly defined (after which V1 will be V1 = PZ - PI) .  

PI = PO + VO 

2 

y’(t) = 3 CBi,2V, and 
i=O 

Due to the choice of a third degree B6zier curve, we have: 

1 

y”(t) = 6 CBi,l(V,+l - V , ) .  
i=O 

Then, 

y’(t) = 3((l-t)214)+2t(l-t)fi+t21 ) thus y’(0) = 3l4) and y’(1) = 3 

~ ” ( t )  = 6 ((1 - t)(Vi - Vo) + t(Vz - V1) thus 

y”(0) = 6 (V1 - VO) and 

Now, following Section 11.1, the curve’s normal, ~ ( t ) ,  at t ,  is parallel to: 

y”(1) = 6 (V2 - V1). 

(y’(t), y’(a”’(t) - (y’(t), y”wY’(t) . 

~ ’ ( 0 )  // ( f o ,  f o ) ( f 1  - f o )  - (90, ( f 1  - f o ) ) f o  i.e., 

Then, for t = 0, we have: 

V’(0) // (co, f o ) f i  - (co, f 1 ) f o  = ( f o  A el) A co 

r 
1 .  
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and, for t = 1, a similar result holds: 

We impose the same properties not for the curve normals, ~ ( 0 )  and ~ ( l ) ,  but 
for the surface normals no and n1. Indeed, we assume that ~ ( 0 )  (resp. ~ ( 1 ) )  
matches no (resp. nl). In other words, 

thus, using the first relation, no, VO and VO A V1 form a basis. Since we assume 
that both no and n l  are non-zero, VO and V1 are linearly independent then, no, VO 
and V1 form a basis. As a consequence, three coefficients exist such that: 

n l  = a1 no + P1 vo + 71 K , 

and, similarly, 

These can be written in terms of P3P0 and VO and V2 only since VI = POP3-Vo-V2. 

no = a 0  721 + Po Vl + 70 v2. 

n l  = a1 n0 + P1 VO + 71 (POP3 - VO - v2) 

120 = aOnl + P O  (POP3 - vo - h) +^/Oh 
and, a simple calculation shows that: 

vo = a1D + P1no + y ln l ,  

v2 = a2D + P2no + 72n1, 

where D stands for Pop3 and the above (new) coefficients must be determined. 
We assume that ~ " ( 0 )  is parallel to no, then 

v1 - vo = D - v2 - 2vo 
= (1 - a 2  - 2a1) + (-P2 - 2P1) no + (-72 - 271) n l  // no 

i.e., 
1 - a 2  - 2 a l  = 0 

Now, we assume that ~ " ( 1 )  is parallel to n l ,  and we have: 

and 7 2  + 271 = 0 .  

v2 - Vl = 2v2 + vo - D 
n1 - - (-1 + a1+ 2a2) D + (2P2 + P1) no + (272 + 71) ,721 // 

i.e., 

As a first result, we have a1 = a 2  = i. Now, we express that: 

1 - a1 - 2a2 = 0 and P I +  2P2 = 0 .  

+ + (vo, do) = (K, dl) = 0 ,  
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then, 
1 -  

0 = -(D,n'o) 3 

0 = -(D, 3 

+p1 + 7 l ( G O , G l )  

d l )  + P2(GO,Gl) + 7 2  
1 -  

and, replacing in terms of p2 and 7 2  in terms of 71, these two relations lead to: 

1 
0 = ~ ( 8 ,  GO) - 2p2 + yl(G0,Gl) and 

which enable us to find: 

1 2 ( 8 , 5 1 )  + (81 ,  G o ) ( 8 ,  Go) 
4 - (Gl ,G0)2  

71 = - 3 

Thus, all the coefficients are determined and VO and V2 are known. 

D where d = and p and u are respectively 

a = 6  2(d7Gl )  + ( G l , 5 0 ) ( d n ' O )  
4 - (GI,  n'o)2 

As a conclusion, the four control points of the B6zier curve corresponding to  a 
given edge, say AB, are determined as: 

Po = A 
P3 = B 

6 i -  2pGo + aGl (1 3.15) 

Pz = P3 - - 
18 
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Construction of a patch 

Given a triangle (S1, S 2 ,  S 3 )  and the three normals n ' 1 , n ' ~  and n'3, the above con- 
struction results in three Bkzier curves of degree 3, one for the edge [&, ,921, one 
for [Sz, ,931 and the last for [ S 3 ,  S l ] .  To create a G1 patch, we need to  use at  least 
degree 4 functions. Thus, we first elevate the degree of the three above curves. 
Following Chapter 12, the corresponding control points are, for a given curve, 

Li = i P i - 1  + (4 - 2) Pi 
4 7 

for a = 0,4. Indeed, we have LO = PO, L 4  = P 3  while the other Lis conform to the 
above formula. By using this formula for the three edges, we obtain the 12 control 
points that define the patch boundaries. 

Hence, we have the 12 patch boundary control points ready. The issue is now 
how to define the three internal control points in such a way as to ensure G1 
continuity. Formally speaking, the complete control point table associated with a 
patch of degree 4 is as follows: 

P0,4 ,0  

P1 ,3 ,0  P0 ,3 ,1  

P2 ,2 ,0  P 1 , 2 , l  P0 ,2 ,2  

P3 ,1 ,0  P 2 , l , l  P l , l , 2  P0 ,1 ,3  

P4,0,0 P3 ,0 ,1  P2 ,0 ,2  P1 ,0 ,3  P0,0,4 

In this control points table, three points are missing. Indeed, in terms of the 
triangle vertices and edges, we have (with evident notations including these triangle 
vertices and the Lk,$  where L k , i  stands for the ith control points of edge k) 

In other words, we have: 

(13.16) P4,0,0 = s 1  P0,4,0 = s 3  P0,0,4 = s 2  

PO,i,4-i = Ll,i Pi,4-i,0 = L 2 , i  P4-i,O,i = L 3 , i .  

And we still need to  define the control points inside the patch, i.e., the points 
P1,1 ,2 ,  P ~ , z , J  and P ~ , J J  in order to complete the definition of ~ ( r ,  s, t )  which is 
given by: 

c(r ,  s, t )  = c 
i+ j+l=4 

(13.17) 
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This construction is rather technical and it is completed in several steps. First, 
we consider the BBzier curves associated with the tangent vectors of the three 
edges’ as already introduced: 

2 

$.(t) = 3 z & , z V k , i  for k = 0 , 1 , 2 ,  
i=O 

with v k , i  = L k , i + l  - L k , i .  NOW, based on the v k , i s ,  we define: 

as well as: 

Using these coefficients, we construct the quadratic B6zier h k ( t )  by: 

2 

i=O 

This curve allows us to define the tangent along edge k. It can then be shown 
that the yL(t)s and the h k ( t ) s  allow us to define a suitable continuity between the 
patches. We construct the values &,i for k = 1 , 2 , 3  and i = 0,1,2,3.  

PO,i+l,3-i + PO,i,4-i 

2 Dl,i = Pl , i , 3 - i  - 

P3-i,O,i+l + p4-i ,0 , i  

2 D 3 , i  = P3- i , l , i  - 

Using these D k , i s  and the ~ L ( t ) ’ s ,  we obtain the &,is, for k = 1,2,3.  

Using the D k , i S  and the h k ( t ) s ,  we obtain the p k , i S ,  for k = 1 , 2 , 3 .  

pk,O = ( f i k , O ,  A k , O )  

p k , l  = ( f i k , 3 ,  A k , 2 )  . 
81ndex k ,  from 1 to 3, refers to edge number k .  Remember that edge k is opposite vertex k ,  

then, in what follows, as we need to write the normals n k  corresponding to edge k ,  we will meet, 
for instance, n4 which must be identified with n1, etc. 
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From the the p k , i S ,  the Lk,iS, the &,is and the &,is, we deduce the 
Gk,is, for k = 1 , 2 , 3  and i = 1 , 2 .  

In other words, 6 virtual control points have been defined where each pair, for k ,  
corresponds to  one edge. These points are then combined and, in this way, the 
desired control points may be obtained. This gives successively: 

(13.18) 

The patch is then well defined via Expression (13.17) and Relationships (13.16) 
and (13.18). As a conclusion, the resulting surface is G1 as proved in [Piper-19871. 

Remark 13.8 Note that the three internal control points are combinations of 6 
points and depend on  the barycentric coordinates. I n  fact, we encounter a Gregory 
patch. 

Remark 13.9 The case where singularities (such as corners or ridges) exist leads 
to a more subtle construction where these singularities are fixed. 

As for the curves, numerous definitions of surfaces exist, these being of various 
degrees of difficulty. The context of the application and the desired geometric 
properties usually make it possible to decide which representation is suitable for 
the foreseen at  hand. 

The surface meshing techniques must, as with the curves, as far as possible 
remain independent of the representation chosen to  construct these surfaces. 

Moreover, the same phenomenon of perverse numerical effects as for the curves 
occurs with surfaces. These must be taken into account later. 



Chapter 14 

Curve Meshing 

Curve meshing is one of the main steps in the meshing process of planar, surface 
or volume domains. In fact, most of the automatic mesh generation methods in R2 
or R3 build the desired covering up from the data of the boundary meshes delim- 
iting the domain considered. In two dimensions and for surfaces, the boundary is 
naturally formed by a set of curves. In three dimensions, the boundary is formed 
by a set of surfaces whose boundaries again involve a set of curves. 

As we have already seen, in terms of quality, the mesh of a domain is strictly 
dependent on the mesh of its boundary (Chapters 5 to  7). 

From a topological point of view, a curve is a priori a one-dimensional entity. 
However, when it is a component of a higher-dimensional entity (a planar region, a 
surface or a boundary of a solid), it must be treated in a multi-dimensional space. 
Hence, any control a t  the level of the mesh of a domain of R2 or R3, induces 
a similar control at the level of the curves of this domain. For instance, a size 
and/or directional specification concerning the mesh elements is translated into a 
specification onto the curves of the domain. Here, we again encounter a governed 
meshing problem, which is either isotropic or anisotropic. To a control based on 
considerations related to  the envisaged application (a finite element computation) 
is added a control of a purely geometric nature. The desired mesh must be a good 
approximation, in a sense that we will specify, of the geometry. 

The curve meshing problem concerns two aspects that must be combined judi- 
ciously: a geometrical aspect and an aspect related to the envisaged application. 
To distinguish clearly between these two cases, we will define the notion of geomet- 
ric mesh and indicate how to construct such a mesh. Then, we will show how to 
generate a computational mesh, which is a mesh that respects the curve geometry 
while also satisfying specific requirements related to  the application. 

* * *  
This chapter introduces several methods to construct the mesh of a given curve. 

By mesh, we mean here a piecewise linear approximation of the curve, that is a 
discretization of the curve with straight segments (i.e., a Pl-type mesh). The case 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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of meshes with other kinds of elements (for instance, P2- type  meshes with parabola 
arcs) will be covered in Chapter 22. 

For reasons that will appear obvious later (at least we hope so), we first look at 
how to mesh a (straight) segment. In this particular case, any mesh is geometric 
(i.e., the geometry is perfectly approached at  any point). In other words, there is 
no geometric-type problem. We will then discuss the case of a parametric curve 
and that of a curve defined by a discretization. Following this discussion, we will 
show how to construct a discrete representation of a curve. This being done, a 
given curve can be replaced by a set of straight segments and the initial meshing 
technique can then be used, allowing for some slight modifications, to  construct 
the desired mesh. Finally, to conclude this chapter, we will briefly deal with the 
case of curves in R3, which are “dangling” or supported by a known surface. 

Before going more deeply into the subject, let us mention, perhaps surprisingly, 
that the (too) rare references on this topic are not prolix, especially concerning 
the application related to  finite elements or numerical computations’. 

14.1 Meshing a segment 

In this section, we start with the, a priori trivial, problem of meshing a straight 
segment. We then look at the problem of meshing a curve and we show that 
several similarities exist between these two problems. 

Classical segment meshing 

Meshing (discretizing) a segment consists of subdividing it into a series of sub- 
segments of suitable lengths. In practice, these lengths depend on the objectives 
aimed at  and the data (metric specifications) available. 

Minimal mesh specifications. In this case, the information provided is rel- 
atively simple. The user indicates explicitly what he would like to obtain, for 
instance: 

0 a given number of subdivisions (assumed to  be of equal size), 

0 a given length (i.e., a size or a step) for each mesh element, 

0 an element-size variation along the segment, etc. 

According to  the given requirements, the aim is to  find, depending on the cases, 
the size and/or the number of sub-segments to  construct. 

Endpoint size specifications. Here, we assume known, on each segment, in- 
formation related to  the sizes hl and h2 desired at its endpoints. The problem 
then comes down to using these data in order to deduce a reasonable series of sub- 
segments (their size and number) so that the first (resp. the last) sub-segment 

‘At least t o  our knowledge. 
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reflects as far as possible the requirement that it has a size close to hl (resp. 
h2). Moreover, the intermediate sub-segments must have sizes varying smoothly 
(monotonically) between the sizes at the endpoints. This variation can be linear, 
geometric or different depending on the ratio between the two given sizes and the 
objective sought. If hl and h2 are close, the type of variation has little influence 
on the discretization. However, if these two values are very different and if the 
(classical) length of the segment allows, noticeably different results (in terms of 
the number of sub-segments and their distribution) can be obtained depending 
on the particular size variation function chosen (one emphasizing the small sizes, 
another having the opposite effect). 

General specification map. A more general case is that of a given field of 
metrics. Such a field can be continuous (analytical case) or discrete (known at 
certain specific points only). Moreover, the field can be isotropic (it corresponds to  
sizes) or anisotropic (it specifies sizes in privileged directions). Formally speaking, 
let us recall that an isotropic field of metrics corresponds to a field of matrices of 
the form: 

1 
x M = - I d ,  

I d  being the identity matrix and A = h2, where h is the desired size. In two 
dimensions and in the anisotropic case, the matrices are of the type: 

which can also be written as: 

where R represents the directions to  follow and hl (resp. h2) the sizes in these 
directions. If the values h, h l ,  h2 and the directions of R do not depend on the 
spatial position, the field is said to be uniform. If, on the other hand, these values 
depend on the position, they induce a variable field. 

Isotropic governed meshing 

We deliberately leave to  one side the two first types of specifications (trivial) 
in order to  focus exclusively on the general problem in the isotropic case (the 
anisotropic case being discussed in the next section). 

Let AB be the given segment. As will be seen later, meshing AB consists 
essentially of computing the length of the segment and, based on this length and 
according to  the given specifications, subdividing AB into a series of sub-segments 
of suitable lengths. 
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Length of a segment AB (general expression). Let M ( t )  be the value2 
of the metric (matrix) a t  point A 4  of parameter t E [0,1] of the parameterized 
segment AB. Let us recall that the length of AB with respect to the metric M is 
obtained using the formula (Chapter 10): 

~ M ( A B )  = d-dt. (14.1) 

0 

The exact calculation of this value is usually impossible or a t  best very tedious. 
Therefore, we consider specific situations in order to  use approximate formulae. 

Calculation of the length of a segment AB (case 1). Suppose the values 
M ( 0 )  at A and M(l) at B are known. We are looking for a monotonous function 
M ( t )  for each t E [0,1] smoothly varying between these two values. Depending 
on the particular form of M ( t ) ,  this problem is equivalent to  that of finding a 
function h(t)  equal to  hA (resp. h s )  at  t = 0 (resp. t = 1) and smoothly varying 
between these two values. Indeed, if h(t)  is known, Integral (14.1) becomes: 

1 ,  

and the calculation gives: 

(14.2) 

1 1 
1 

IM(AB) = -1 &dt = l(AB) 1 h ( t ) d t ,  (14.3) 

0 0 

where l(AB) denotes the classical Euclidean length of AB. The calculation of 
this quantity is thus based on the choice of a function h(t) .  The simplest solution 
consists of choosing a linear interpolation function, by fixing: 

h(t)  = hA + t (hB - hA) . 

Another linear solution (in l / h ,  this time) corresponds to the choice: 

1 
- 

1 
h(t)-hn+t(k-k). 

Finally, another example of function h consists of choosing: 

The choice of a particular interpolation function obviously influences the nature 
of the resulting distribution. 

21n the following, we will make the confusion between M ( t )  and M ( M ( t ) ) ,  as we make the 
confusion between h(t) and h ~ ,  M being the point of parameter t .  
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Let us consider for instance, the last choice for h and let us compute the length 
of the segment AB. According to Formula (14.3), we have to compute the integral: 

Thus, by multiplying by the usual length of AB, we find the length of this segment 
for the given field of metric: 

Remark 14.1 Notice that i f  hA = hB, the previous formula is undetermined. I n  
fact, an this case, we have h( t )  = hA and, thus, we find directly that ~ M ( A B )  = 

l (AB) .  Notice also that i f  hB is close to hA, for instance, hB = hA(1 + &) (for 

E small), we obtain the desired length using a limited expansion of the general 
hA 

2 - &  
2 h ~  

expression. W e  thus have ~ M ( A B )  = ~ l(AB) and for E = 0 we retrieve the 

previous value. Nevertheless, in this case, a geometric function h(t)  is not strictly 
required (it varies only a little). Therefore, a linear function is suficient (we can 
easily verify that the choice in l / h  gives again, at order 2, the same value for 
~ M ( A B ) ) .  

The reader can find in [Laug et al. 19961 the values corresponding to  other 
choices of h and, in particular, the first two choices mentioned above. 

Calculation of the length of a segment AB (case 2). Only the values M(0)  
and M(1) (i.e., hA and hB) are known (at A and at  B )  but, without justifying 
any longer the particular choice of the interpolation function, we use only these 
values and we consider a quadrature formula. For example, we write: 

If h does not vary too much between hA and hg,  we thus obtain an approximated 
value relatively close to  the exact value. Otherwise, the computed value is only an 
approximation of the result, and may be quite rough. To get a better answer, we 
shall consider a function h(t)  and apply the same quadrature formula, subdividing 
the segment into several pieces. The additional information required is then the 
value of h at  each new node of the integration. 
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Calculation of the length of a segment AB (case 3). Here, we know a 
series of matrices M ( t i )  at  different points along the segment. These points Mi 
correspond to  the parameters ti. We then retrieve the previous discussion by 
posing: 

lM(AB) = c l M ( M i M i + l ) .  
i 

There are now two possible solutions. Either we use the method presented in 
case 1 above and we apply it on each segment MiMi+l, or we use the method 
described in case 2. 

Creation of the sub-segments. This stage of generating a mesh of AB is 
very simple. We compute the length of AB using one of the previously described 
possibilities. Let 1 = IM(AB) be this length. We pick the closest integer value n 

to 1 and we subdivide the segment into n sub-segments of length - (hence close 

to 1). Notice that this unit value, depending on the nature of the metric, leads to  
variable (Euclidean) lengths in each sub-segment (which is the desired goal). 

1 
n 

Anisotropic meshing 

We follow here the same idea as in the isotropic case. At first, we compute the 
length of the segment in the field of metric, then, depending on the value found, we 
split the segment into sub-segments of unit length. The computation of the desired 
length is performed, as previously, using three different solutions, depending on 
the input data and the fixed choices. 

Calculation of the length of a segment AB (case 1). Only the metrics at 
the endpoints are given. In practice, we have two (non-diagonal) matrices and the 
calculation of the desired length consists of constructing an interpolated metric 
between the two known values. To this end, we use the method described in 
Chapter 10 that allows us to obtain, depending on the choices made, a metric at 
each point of the segment. A metric being known everywhere, the length can be 
obtained using an approximated calculation, for instance, a dichotomy. 

Calculation of the length of a segment AB (case 2). This case leads to  
computing the desired length approximately by numerical integration of the gen- 
eral formula. 

Calculation of the length of a segment AB (case 3). We have a series of 
matrices a t  different points along the segment. We retrieve the principle described 
in the isotropic case, applied here following one of the methods seen above. 

Creation of sub-segments. 

Remark 14.2 Notice the whole discussion corresponds exactly to what was per- 
formed in the internal point creation method proposed in Chapter 7. 

As in the isotropic case. 
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~i 

hi 

Examples of straight segment meshes 

Qi Q2 Q3 Q4 Q5 

0.0 3.0 4.0 8.0 10.0 
1.5 0.5 2.0 0.1 0.7 

First, we consider here two examples of isotropic nature. In the first example, 
the metric is represented in Figure 14.1 where the points Qi supporting the siz- 
ing information are shown. Table 14.1 indicates the isotropic specifications at 
points Qi. 

4 

Figure 14.1: Discrete (isotropic) size specification. 

Figure 14.2 shows the resulting mesh, for a choice corresponding to  a linear 
propagation (function h(t)) ,  for a segment when a discrete size specification is 
provided. The mesh has 17 elements. Figure 14.2 shows (bottom) the endpoints 
Ri of the elements. Above, the points Qi defining the metric can be seen. At the 
top, the function h(t)  is represented and, by means of rectangles, its approximation 
on each element. 

Figure 14.3 shows the resulting mesh when a geometric propagation is chosen 
(function h(t)) ,  for the segment when the same discrete size specification is pro- 
vided (Figure 14.1 and Table 14.1). The mesh now has 26 elements. Notice that 
the smallest sizes are privileged by this type of distribution function. 

We now consider two anisotropic examples. The metric specification is also dis- 
crete. It corresponds to  the data (Table 14.2) of directions and sizes a t  points Qi 
illustrated in Figure 14.4. Two types of propagation function are represented. Fig- 
ure 14.5 shows the result obtained by fixing a linear function whereas Figure 14.6 
corresponds to  the case of a geometric function. The figures show the mesh of the 
segment (bottom) and the evolution of the metrics (i.e., the interpolation between 
the metrics known at points Q i )  along the segment AB (top). 
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Figure 14.2: Mesh resulting from a linear interpolation. 

i t {Ri) 

Figure 14.3: Mesh resulting f rom a geometric interpolation. 

Figure 14.4: Discrete specifications of directions and sizes. 

hl,i 0.70 1.10 0.30 1.50 1.00 
hz,i 0.25 0.15 0.30 0.40 

Table 14.2: Discrete anisotropic specifications at points Qi. 
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Figure 14.5: Mesh resulting f rom a linear interpolation. 

Figure 14.6: Mesh resulting from a geometric interpolation. 

14.2 Meshing a parametric curve 

We are now interested in the case of curves. The principle remains the same. 
First, we compute the length of the curve for the given field of metrics, then we 
subdivide this curve into segments, in order to obtain the corresponding unit arc 
length (i.e., close to  1). 

However, unlike the case of a segment, here we must follow the geometry of 
the curve so as to make sure that the resulting mesh is close to  it, in some sense. 
Therefore, if the given metric is not geometric by nature, it has to be corrected 
to take this requirement into account. To see this more clearly, we look first a t  a 
naive example. 

A naive though probably wrong method. As an exercise, we analyze on 
a simple case of a sinusoid, two examples of meshes having uniform sized edges. 
Although similar in refinement, it is obvious (in Figure 14.7) that the left-hand 
side mesh is much better than the right-hand side mesh. The choice of a smaller 
stepsize would obviously lead to  two almost identical meshes. This simple example 
emphasizes the influence of the point location, given a stepsize. The stepsize 
influence is very easy to see. 

This leads to  analyzing how to mesh a curve with respect to its geometry, first 
without an explicit field, then given such a field. 

Geometric mesh 

We wish to mesh a curve in such a way that its geometry is respected. The metric 
to follow is thus strictly related to  the geometry (the case where a different metric 
is specified will be discussed later). The aim of this section is to  show how to 
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Figure 14.7: Uniform meshes. Left-hand side: the mesh (dashed lines) “match” the 
geometry (full lines). Rright-hand side: the mesh has (roughly) the same stepsize 
but is “shifted”. 

control the meshing process, that is to  define the control metric so as to use it to  
mesh the given curve effectively. 

Desired properties and related problems. The immediate question is how to 
qualify and quantify the parameters to  ensure that the mesh follows the geometry. 
If h is the length of an element (a segment) and if 6 measures the smallest distance 
between this segment and the curve, then, for a given E ,  we want to have: 

6 < E h .  

This inequality defines a relative control (Figure 14.8) that can be interpretated 
in a simple way: the curve length (the arc of curve) and that of the corresponding 
chord (the chord sub-tending this arc) are close. If s is the length of the curve 
corresponding to the chord of length h, this condition can also be expressed as: 

I 
ii) iii) 

Figure 14.8: Gap between an arc of the curve r and the corresponding chord, the 
chord AB of length h (i.e., the segment of the mesh supposed to approach this 
curve). 

The problem is then to find the location of the points along the curve in such 
a way as to satisfy this property. This problem induces two sub-problems that are 
obviously related to each other: 



CURVE MESHING 473 

a where to  locate the points and 

how, given a point, to  find the next one. 

To illustrate these two questions, let consider the case of a circle. It is obvious that 
finding a first point MO on the circle is easy, as any point will be suitable! Hence, 
Mo being chosen, the second question consists of finding a point M I ,  and step 
by step the series of points M i ,  i = 2 , 3 ,  ... such that the length of the segments 
MiMi+l corresponds to  the given accuracy. For other types of curves and, espe- 
cially curves having discontinuities, it is obvious that the points of discontinuity 
must necessarily be mesh points. Hence, these points being fixed, the second ques- 
tion consists in finding the next points that form closely spaced segments along 
the curve, with respect to the given accuracy. This being fixed, we assume that 
the particular points imposed have been identified and we discuss only the case 
of sufficiently regular curves (without discontinuities) that, in fact, correspond to  
the different pieces defined between the imposed points. 

Back to the local approximation of a curve. As seen in Chapter 11, a 
limited expansion allows us to study the local behavior of a curve. If r is a 
supposedly sufficiently regular curve described by function y and if s denotes the 
curvilinear abscissa, we can write in the neighborhood of SO: 

with As = s - SO being sufficiently small to ensure the validity of this development 
(i.e., the terms corresponding to the ... are negligible). As y’(s) = ?(s) (the 

tangent), y”(s) = - (the ratio between the normal and the radius of curvature) 

and as y”’(s) = , the above expression can also be written as 

follows: 

J(s) 

P ( S )  
-p ’ (s )J (s )  - ?(s) 

P(s)2 

where 7‘ = ?(so) and J = :(SO). Notice that the point P defined by: 

i.e., the point of the parabola passing through $SO), having a tangent 7‘ a t  this 
point and located at  the distance As from y(so), is very close to the osculating 
circle to  the curve. Let us consider the point 0 defined by: 

then: 
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thus, we have: 

and, therefore: 

thus finally: 

(14.5) 

To conclude, when As is sufficiently small, the point P above is very close to the 
circle of center 0 and of radius p(s0) (i.e., the osculating circle to the curve at 
Mo).  This well-known observation has an important practical consequence. If 
the point P corresponding to the first three terms of Equation (14.4) is close to 
the curve, then the point corresponding to the osculating circle (very close to this 
curve) is very close to this point P. Hence, we can base the analysis on the point 
of the osculating circle and thus set the desired construction on the corresponding 
construction on the osculating circle. 

.r‘ 

circle 

Figure 14.9: Three types of behavior in a given neighborhood of SO (at Mo). W e  
show the curves rl, rz and passing through Mo, having the same tangent 1, the 
same normal 17 and the same osculating circle at Mo. It  is obvious that the curve 
rl has a behavior such that the analysis at SO gives a good indication of what can 
be further expected, which is not the case for the two other examples. 

The validity of the reasoning is guaranteed as long as the fourth term (and the 
following ones) of Equation (14.4) is (are) negligible as compared to the previous 
ones. This leads to a restriction on the stepsize As possible (Figure 14.9) depend- 
ing on the behavior of the curve in a neighborhood of s~ of size this stepsize As. 
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The term we are interested in is the value: 

(14.6) 

which, in particular, involves the variation of p (i.e., value p’). This term will be 
negligible if: 

as3 

6 P(so)2 
~ l ~ ’ ( ~ ~ )  v’+ 7‘11 K 

This condition is equivalent to  assuming that: 

choosing a sufficiently small E .  We thus have: 

This leads to  solving an equation (in As) of the form: 

a52 
4 p ( s d 2  

a s 4  (1 +  SO)^) = 62 E~ (1 + -) P ( S O ) ~  , 

that, posing V = As2, can be written: 

(1 + p ’ ( ~ ~ ) ~ )  v2 - 9 E~ p ( ~ ~ ) ~  v - 36 E~ p ( ~ ~ ) ~  = 0.  

This yields: 

9~~ + 3 ~ 4 9 ~ ~  + 16 (1 +  SO)^) 
V =  p(s0)’ and thus As = 6. 

2 (1 + @(sol2) 

Hence, we have As = ap(s0)  and the previous relation leads to  choosing as coef- 
ficient a a value such that: 

(14.7) 9~~ + 3 E J ~ E ~  + 16 (1 + - 6 
2 (1 + P’(so>2> - 4 J m  

a 5  

Such a choice ensures that the point (of the parabola): 

is close to  the curve at the order two, within the following term of Relation (14.4), 

that is a -(p’(so) v’ + ?) which gives a gap of: 3 d s 0 )  

6 
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according to  the As an example, Table 14.3 gives some values of a and of ~ 

given E and to  different values  SO). Notice by the way that (and the results in 
the table confirm it): 

s 
P ( S 0 )  

6 M E Q P ( S 0 ) .  

J2 I .186 I .186 I .00187 
J 3  I .173 I .173 I .00171 

.00108 

Table 14.3: Several values of a (and the approached value a*) determining the 
stepsize with respect to  the gap for E = .01 and different values of p’(s0). 

From the previous discussion we deduce that the curve r can be analyzed in 
a neighborhood of y(s0) of size ap(so ) ,  by looking at the parabola corresponding 
to the first three terms of the limited expansion of y. 

Let us consider a chord of length As = a p(s0) coming from the point y(s0) and 
look at  the gap between this chord and the curve. From the previous discussion, 
we can estimate this gap as the gap between the chord and the parabola. The 
maximum corresponds to the distance between the midpoint of the parabola (the 
point P of abscissa %p(so) )  and the point M which is the point of the chord 
corresponding to  the orthogonal projection of P. In the frame [y(so),?,q, the 

above parabola is written y = - and the coordinates of the point P are thus: 
X 2  

2 P(S0)  

The normalized equation of the line passing through y(s0) and y (ap (s0 ) )  in this 
frame is written: 

or also, with respect to  a: 
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The distance from this line to the point P,  i.e., the distance IIPhilll, if thus of the 
order of 

Or, depending on E :  

(14.9) 

Before going further, let calculate the quantity Ih- As1 where h is the length of 
the chord sub-tending the arc As. We have, using the second order approximation 
of the curve: 

hence: 

or also: 
3 E  

Ih - AS M As.  
4 d K 7 m  

(14.10) 

This value, measuring the relative gap between the lengths of the arc and that 
of the curve, will be involved later in the definition of the desired mesh that we 
propose. 

By merging the majorations of Relations (14.8) and (14.9), we find that the 
gap between the chord and the curve is majorated by: 

The validity of these above demonstrations is ensured if the terms neglected 
in Relation (14.4) are in fact negligible. To this end, we are looking for an upper 
bound and we return to  the limited expansion: 

As2 As3 
T(S) =  SO) + ASY’(SO) + -T”(so) + g y ’ ” ( ~ 0 )  + ... . 

2 

However, we know that a value s j  exists between SO and s such that: 
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for each component3 ( j  = 1 , d )  of y. If m is an upper bound of IIy”’II on the 
interval [SO, s] and if we note r (s )  the set of terms $y’”(so) + ... , then: 

hence, setting an accuracy E’ is equivalent to  fixing: 

As3 
- m = d A s  

6 

With the particular form of As, we find: 

(14.11) 

and, thus, E must be less than or equal to  this value. 

Exercise 14.1 Consider as a curve the quarter of circle defined by: 

1 
find that m = - and apply Relation (14.11). W e  then find E = E’.  

P2 

From a practical point of view, determining M is not strictly trivial. Therefore, 

We will then exploit the results obtained to design a meshing method. First, 

the meshing technique must, somehow, overcome this drawback (see below). 

we introduce the notion of a geometric mesh. 

Geometric mesh of a curve. 

Definition 14.1 A geometric mesh of type P’, within a given E ,  of a curve I? is  a 
piecewise linear discretization of this curve fo r  which the relative gap t o  the curve 
at any point i s  of the order of E .  More precisely, i f  As i s  the length of an  arc of 
the curve and i f  h i s  the length of the corresponding curve, we have (at the limit) 
when As tends towards 0: 

h = AS 

or also: 

or, f o r  a given E:  

3Correct for a scalar function, this result is not verified for a vector function. It is true only 
component by component and s j  depends on the index j of the component. 
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This last relation can be also expressed as: 

Ih -As l  < & A S .  

Remark 14.3 Notice that other methods can be used to evaluate the gap between 
the curve and its mesh. Indeed, we can use the value of the surface enclosed 
between this arc and the corresponding curve rather than computing the difference 
of length, as above. 

Obviously, a sufficiently (infinitely) fine mesh is necessarily a geometric mesh. 
However, the mesh we are looking for here must be both geometric and minimal 
(that is, having as small a number of elements as possible). For instance, if we sub- 
divide a line segment into 100 segments, we obtain a geometric mesh, whereas the 
mesh formed by the segment itself is already geometric and (obviously) minimal. 

Remark 14.4 Definition (14.1) is one of the possible definitions. I n  fact, the 
notion of a geometric conformity underlying to the notion of a geometric mesh 
is  obviously determined by  the application envisaged. I n  particular, defining the 
conformity to the geometry by  imposing that the discretization be enclosed within 
a band of a given (small) length corresponds to a different definition, as coherent 
as the previous one, that leads naturally to a rather different meshing technique. 

If we retain the previous definition, the analysis technique of the local behavior 
of the curve described previously can serve to  construct a geometric mesh. We 
then replace the parabola approaching the curve by a segment. 

The local analysis indicates that, at any point of r, the desired length is Q p(s) 
where s denotes the curvilinear abscissa a t  this point, Q satisfies Condition (14.7) 
and p(s) is the radius of curvature of the curve at s. 

In terms of metrics, the Euclidean length a p ( s ) ,  can be interpretated as the 
unit length of the metric field defined by the stepsize A, field that can be 
written in a matrix form as: 

with X(s) = a2 ~ ( s ) ~ .  

constructing a unit mesh for this field of metrics. 
Hence, in terms of metric and unit length, the meshing method consists of 

Exercise 14.2 Look at the angular gap between the curve (its tangent) and the 
mesh resulting from the previous method. What is the conclusion? 

Constructing a geometric mesh of a parametric curve consists of applying this 
principle in its range of validity. Hence, a meshing method consists of: 

0 identifying the extrema (for the radii of curvature) of the curve as well as 
the singular points, 

0 setting these points as mesh vertices, 
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a subdividing the curve into pieces, each piece being limited by two such points, 

meshing each piece by applying the previous principle. 

The meshing of a piece of curve then consists of computing its length for the 
field of metrics of the radii of curvature, weighted by the coefficients Q that have 
been introduced. We then retrieve exactly the same meshing method as for a 
straight segment. We search the length 1, we round it to  the nearest integer n and 

1 
we split it into segments of length -. Notice that the lengths computations are 

n 
performed on the curve (curvilinear abscissa) and that the stepsize of the mesh is 
the length 1 of the curve. In other words, we identify the length of the curve and 
that of the chord corresponding to the stepsize. 

Remark 14.5 This meshing process i s  rather tedious to  implement and can only 
be applied to  configurations similar t o  that represented on  the left-hand side of 
Figure 14.8. The other two situations shown o n  this figure mus t  be treated in a 
different manner.  Actually, the problem i s  more one of simplifying the geometry 
than a problem of conformity (the conformity is  true within a strip of given width). 
In other words, a geometric mesh, according to  the previous definition, cannot 
be reduced t o  a single segment in these two cases. The  corollary is  that such a 
geometric mesh  m a y  be relatively large (in terms of the number of elements) in 
such cases. 

Remark 14.6 O n  the contrary, a geometric mesh  of a set of straight segments is  
this set itself and contains very few elements. 

Hints regarding implementation. The implementation of the method can 
be envisaged in various, more or less complex, forms. The main difficulty lies in 
calculating the length of the (portion of the) curve with respect to  the metric field 
constructed. In fact, during the processing of a portion of curve, we can use a very 
fine (uniform) sampling to evaluate the desired length. 

However, this simple method can turn out to  be expensive because capturing 
the geometry requires a priori a very small sampling step (although it may not be 
strictly required). Hence, other methods to calculate this length can be adopted. 
We suggest in this regard, the following method: 

we split the chord underlying the curve (we denote d the length of this chord) 
into n segments with n being relatively small (n  depends on the presumed 
degree of the curve considered). We associate the curve parameter with a 
parameterization of this chord, 

on each interval, we randomly pick a point, 

for each such points, we evaluate the gap to the curve, 

the maximum of these gaps is the gap 6 between the curve and the chord, 

a if 6 5 Ed,  END, 
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a else, we retain the point of the curve corresponding to  the point of the chord 
where the gap is maximal and we split the curve into two at  this point. 
We replace the curve by the two corresponding chords whose lengths are 
respectively denoted d l  and dz and we iterate the process on each segment 
of the subdivision. 

Remark 14.7 The previous test i s  equivalent to  analyzing whether: 

As a result of this algorithm, we have a set of segments PiPi+l approaching the 
curve. We still have to  determine the length of the curve in the metric specified. 
For each segment constructed: 

a we find the value of the metric at Pi and at  Pi+l, 

a we use an interpolation between these two values to determine a metric 
everywhere, 

we compute the length of the segment in this interpolated metric (or using 
a quadrature; see the beginning of this chapter), 

if the length is bigger than a given threshold value (for instance, one-half), 
we use the metric of the midpoint to refine the length calculation and the 
process is iterated. 

At completion of the procedure, we have segments whose lengths are less than or 
equal to  the given threshold. It is then easy to deduce the desired unit mesh. 

Other methods. We propose first a heuristic method: 

a if P is a known mesh point, we find the next point P+1 that, if it were 
retained as such, would allow the segment PP+l to  be formed, 

then, considering P+l, we travel the curve in the opposite direction to find 
the corresponding point P-1 and 

- if P-1 is “before” P ,  the point P+1 is judged correct, we form the 
segment PP+l and we analyze the corresponding portion of curve to  
make sure that it stays close (for instance, by dichotomy), 

else, we set P+1 = P-1 and we form as segment PP+l the segment PP-1 
and we analyze the two corresponding portions of curve (by dichotomy). 

Another method of the “dichotomy” or “divide and conquer’’ type (Chapter 2) 
can be envisaged. We identify the extrema of curvature and the singular points. 
We join two such consecutive points. The portion of curve limited by two such 
points is replaced by the corresponding segment. We analyze the gap between this 
segment and the curve. In the case of an intersection, we split the segment at the 
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intersection points and we apply one of the previously described methods to each 
sub-segment. If the gap is satisfactory, we have the desired mesh. Otherwise, we 
apply one of the previous methods. The advantage of this approach is that we 
very rapidly obtain a situation where the portion of the underlying curve is very 
close to  the segment and, moreover, is very regular. 

Finally, another possibility consists of working on a discrete representation of 
the curves as will be seen below. 

Remarks concerning mesh simplification. A point where the radius of cur- 
vature p is smaller than the given threshold E (within a coefficient) is not retained 
as an extremum. This very simple intuitive idea allows us to suppress insignificant 
details and, hence, to construct simplified geometric meshes, within E (i.e., such a 
mesh follows the geometry within E ) .  

As a particular case and to  complete the general discussion, we look at  how to 
mesh a circle while controlling the gap between the circle and the mesh segments. 

Meshing a circle. We consider a circle of radius p. We construct a chord of 
length h = a p, the gap 6 between this chord and the circle is given by the formula: 

and thus, imposing < E is equivalent to fixing: 

a 5 2 J& (2 - &) (14.12) 

and, thus, an accuracy of E (given) imposes that a is bounded in this way. 

Figure 14.10: Discretization of a cir- 
cle into segments of length a p. Left- 
hand side, we have a = 1; right-hand 
side, a is smaller. 

f f = l  ff = f (&) 

If we consider segments of sizes a p, so as to  satisfy Relation (14.12), we obtain 
a discretization for which the gap to  the circle is controlled, relative to  p, by a 

threshold of value 1 - d q ,  which again gives, as would be expected, according 

to Relation (14.5), a gap in -p(so), hence of the same order (better in fact) than 

the given threshold E .  

3 E  

4 
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As an example (see the exercise below), the choice E = 0.01 leads to  meshing 
the circle with 26 elements. 

Exercise 14.3 Verify that this number corresponds to a limited expansion of order 
2 with the value E = 0.01 (hint: start from Relation (14.6), assume it is equal to 
E As, set As = (up(so), deduce (u andfind the number of segments of length a p(s0) 
required to cover the perimeter of the circle). 

Exercise 14.4 Calculate the number of points required i f  a limited expansion of 
order 1 is used (Hint: suppose that & = E As, deduce, i f  As = (up(so), a value 
of a then deduce the number of points required to cover the circle). Deduce that 
this analysis is  not suficient as too many elements are in fact required to obtain 
the desired accuracy. Restart by  controlling the term in As3 with respect to the 
term in As2. What is  the conclusion? Notice that in fact the method deduced from 
these two approaches is  unusable in practice. At the same time, notice that we find 
a justification of the previous method. 

Meshing algorithm without a metric map 

As mentioned above, the geometric mesh of the curve is not necessarily suitable 
for a given calculation. For instance, a portion of curve reduced to  a line segment 
has a geometric mesh identical to  the segment, irrespective of its length. Hence, 
this element size can be very different from the other sizes of the neighboring 
elements and at  least, a control of the size variation from element to  element must 
be performed (see again in Chapter 10 the metric correction procedure). 

Meshing algorithm with a metric map 

The data is a curve and a field of isotropic or anisotropic metrics. This field, 
derived from an arbitrary calculation, does not necessarily follow the geometry of 
the curve. Hence, meshing the curve so as to  conform to this field does not usually 
lead to  a geometric approximation of the curve. 

The idea then is to  combine the given field with the intrinsic geometric field 
of the curve (i.e., the field of the radii of curvature). The metric to  consider is 
defined as the intersection of two given metrics (Chapter 10). 

14.3 Curve meshing using a discrete definition 

In this approach, the curve I? is not known explicitly during the meshing process. 
It is actually supposed to be known only via a discrete definition (i.e., a mesh 
reputed sufficiently small to  reflect the true geometry). The construction of this 
mesh, the so-called geometric mesh, is the responsibility of the user’s favorite CAD 
system. 

Each segment of the geometric mesh is replaced by a curve C1 or G1 by using 
the available information (neighbors, singular points, tangents, normals, etc.). The 
union of these curves forms the geometric support that now serves as a geometric 
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definition of the curve r. The mesh is then constructed based on this support 
so as to  follow a given metric map if such a map is specified. We then encounter 
three cases: 

without map specification, we construct a geometric mesh that can be made 
suitable for numerical computations afterwards via a smoothing of the pos- 
sible size shocks between two successive elements, 

is a map has been specified, we construct a mesh that follows this map, or 

a in the same case, we construct a mesh that both follows this map and which 
is geometric. 

The underlying idea is to get rid of the mathematical form of y (the function 
representing I’) and thus, to  propose a method disconnected from the CAD system 
that generated the curve. Actually, the sole data required is a mesh, possibly a 
very fine one, which any CAD system is able to provide. 

Construction of a definition from discrete data 

We follow here the principle given in Chapter 12 where we chose to  construct a 
curve of degree 3 based on each of the segments of the discrete data. If y(t) is the 
parameterization of this curve, we have: 

y(t) = a0 + a1t + ad2 + a d 3 ,  (14.13) 

and the question is to  find the coefficients ai as well as the interval of variation of 
the parameter t. The answer is given in Chapter 12 to  which the reader is referred. 
The values of the ai’s and the degree of the curve obtained are given with respect 
to the known information. 

The choice of a different type of curve is, needless to say, another solution. 

Curve approximation by a polygonal segment 

This construction consists of replacing the arcs of the curve by polygonal segments, 
by controlling the gap between each of these segments and the corresponding arc. 

A simple solution consists of distributing regularly (i.e., uniformly) an arbitrary 
large number of points along the curve. This solution, which is relatively easy to  
implement, usually leads to  a polygonal support that is much too fine (the number 
of elements being too great). Another solution consists of finding the points strictly 
required so that the above gap is bounded. The advantage is then to minimize 
the size of the resulting discretization while following the geometry accurately, 
especially in high curvature regions. 

Construction of the polygonal segment: method 1. The careful reader has 
most probably noticed that the desired polygonal segment is nothing other than a 
geometric mesh according to the previous definition. Hence, any of the previously 
introduced methods may serve to provide the desired result. 
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Figure 14.11: Geometric  approximation using a discrete definition formed by a 
polygonal segment respecting a given tolerance E .  Left-hand side; E = 0.08, right- 
hand side, E = 0.01. 

Construction of the polygonal segment: method 2 (bandwidth method). 
We suggest, however, a rather different method (which we could have presented 
at  the same time as the other methods). 

We consider an arc of the curve and the underlying segment. We denote in 
Figure 14.11 (left-hand side): 

h the distance from one point of the segment to  the arc, 

a d the length of this segment and 

we give E a tolerance threshold. The aim is to ensure h < ~ d ,  at  any point along 
the segment. To this end: 

a we find the extremum or the extrema in h and we denote such a point Ei, 

a if the relation h < ~d is satisfied at  this (these) point(s), then the segment 
is judged correct and is retained in the mesh, 

a else, we subdivide this segment at these points and we iterate. 

Simple in its principle, this method is nonetheless quite technical (in particular, 
to find the extrema). Figure 14.11 shows two results, depending on the value of E 

considered. 

Curve meshing from a discrete definition 

The general scheme is always identical. We compute the length of the curve, then 
we construct the discretization based on this length. The length of the curve is 
calculated based on the polygonal segment previously constructed. This length is 
evaluated with respect to the given metric. 

Mesh without field specification. Here again, we encounter the previously 
mentioned problem. The geometric mesh is not a priori necessarily correct in view 
of a numerical computation. The size variation between two adjacent elements may 
be large and, if this is the case, a control of this variation may be required. 
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Mesh with respect to a field specification. Once more, we reach the same 
conclusion as above. The metric to  follow does not necessarily conform to the 
geometry. Depending on whether we have to respect the latter or not, we must 
perform the intersection between the specified metric and the geometric metric. 
Notice, in principle, that we do not know explicitly the latter metric as we have 
only the polygonal segment serving as a geometric support. Therefore, a way 
of determining the points of minimal radii of curvature and the singular points 
(discontinuities) is, for instance, to  store this information during the construction 
of the polygonal segment. This being done, we find the usual situation. With a 
field specification, we mesh the curve by portions, each portion being delimited by 
two such consecutive points. 

Examples of planar curve meshes 

We propose, in Figures 14.13, two examples of meshes of a same curve obtained 
for the specification of the discrete metric field described in Figure 14.12. On 
the left-hand side, the metric specified has been interpolated linearly while on 
the right-hand side, the interpolation is geometric. In these figures, we give the 
interpolated metrics at the various vertices of the resulting mesh. This allows us 
to verify the coherence of the result with the type of interpolation used. 

Figure 14.12: Discrete anisotropic 
size specification. The information 
about directions and sizes is known 
only at specific points. 

14.4 Re-meshing algorithm 

Curve remeshing is a rather different problem although it is similar to  the pre- 
viously discussed problem. The applications are manifold. Let us mention, in 
particular, the possibility of simplifying the mesh, optimizing (for a given crite- 
rion) or also adapting the mesh, among the possible applications. 

The data is then a mesh and a goal to achieve. The aim is thus to modify the 
mesh so as to match (or to  satisfy) this requirement. 

The available mesh modification tools are very simple (see Chapter 18, for 
instance). We can in fact: 
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Figure 14.13: Mesh resulting f rom a linear interpolation (left-hand side) and a 
geometric interpolation (right-hand side). 

a add points, 

delete points, 

a move points. 

The idea is then to  use these tools in order to  remesh the underlying curve to  
conform to the fixed objective while preserving, in a certain way, the geometry 
of this curve. The goal can be expressed by assuming known a metric M which 
is continuous or discrete (mesh optimization or adaptation) or a given accuracy 
(mesh simplification). The immediate question is related to  the way in which the 
geometry of the underlying curve is defined. In fact, the aim is to retrieve (or even 
to invent) this geometry from the sole data available (the initial mesh). 

Discovering the geometry can be achieved in various ways. For instance: 

a we identify the presumed singular points (for example, by looking, with 
respect to  a threshold, a t  the angle variations from element to element), 

we split the initial mesh into pieces where each piece is limited by two such 
(consecutive) singular points, 

a we construct a geometric support, for instance, a cubic on each element (of 
each portion). To this end, we can follow the previously described method, 

this geometric support allows us to  directly or indirectly (via a piecewise 
linear approximation with a polygonal segment as already seen) find the 
geometric features of the curve (radii of curvature, tangents, normals) or, at 
least, approached values of these quantities. 

We then have a definition of the geometry that can be used to  drive the oper- 
ations required to achieve the fixed goal. We then find a situation similar to  that 
related to the meshing of a curve when a metric specification is given or to an 
objective formulated in a different way. 
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Remark 14.8 Numerous and various dificulties can be expected. Let us mention 
in particular the problem related to the definition, for a given portion of curve, of 
a reasonable normal (a tangent) at singular points, assuming the latter have been 
correctly identified. 

14.5 Curves in R3 

The construction of a mesh for a curve of R3 may have various forms, depending 
on whether the curve considered is part of a known surface or not. 

Dangling curves 

We consider here the curves of R3 that are not traced on a known surface, which 
can be used to  extract the required information. 

Remark 14.9 Initially, notice that, i f  we restrict ourselves to two dimensions, 
the following gives the results previously established. 

We reuse the same reasoning as for the planar curves. The local analysis of 
the curve corresponds, in the neighborhood of S O ,  to the limited expansion: 

As2 As3 
Y(S) =  SO) + ASY’(SO) +  so) +  so) + ... , 

with As = s - SO being sufficiently small to  ensure the validity of the development. 

We still have y’(s) = ?(s) and y”(s) = 3 while now: 
P ( S )  

where g(s) is the binormal vector a t  s (Chapter 11) and RT(s) is the radius of 
torsion of the curve at  s. Hence, we have: 

As2 As3 
Y(S) =  SO) +AS ?+ ~ v-- (p’(s0) v’ + ?+ g) + ... , (14.14) 

2 P(S0)  6 P(S0)  RT(S0) 
+ +  

where 7‘ = ?(so), v’ = v’(s0) and b = b(s0). The behavior of the curve if that of the 
parabola (the first three terms of the development) if 

(14.15) 

which involves the variation of p (i.e., the value p’) and the radius of torsion RT, 
is small before the previous terms. If the torsion is zero (the radius of torsion 
is infinite) the problem is then a planar problem and we return to the discussion 
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regarding planar curves. On the other hand, this implies, for a given E ,  a condition 
similar to Condition (14.7), which can be written as: 

The gap to  the parabola is then of the following form: 

(14.16) 

(14.17) 

If the torsion is sufficiently small (the radius of torsion T is large), we can neglect 
the gap according to 6 to the plane [.',GI and, locally, use the meshing method 
in the plane. In the opposite case, the parabola of the plane [?, G] is not a good 
approximation of the curve and the analysis must be extended to  the next term so 
as to  account for the torsion. Thus, we approach the curve by a cubic of R3 and 
we control the gap between this cubic and the curve via the following term in the 
development. It is obvious that the calculations required are very technical and, 
for that reason, we will go no further into this topic. 

Curves of a parametric surface 

We distinguish here several types of curves: 

the curves interface between patches, 

the curves traced on a patch, 

the curves images of a segment in parametric space which, approached by a 
segment, form the edges of the surface mesh elements. 

All these points will be dealt with in the next chapter. 



Chapter 15 

Surface Meshing and Re-meshing 

Mesh generation for surfaces representing the boundaries of a three-dimensional 
domain is, undoubtedly, a crucial point, especially for the computational schemes 
in finite element methods. As well as this field of application, the construction of 
surface meshes is also an important feature in applications such as visualization, 
virtual reality, animation, etc. 

In this chapter, we discuss some methods that make it possible to construct the 
mesh of a segment or a curve traced on a surface, as well as the mesh of a surface 
itself. As in the previous chapter, there are two possible approaches to dealing 
with this meshing problem, depending on the definition of the geometric model. In 
practical terms, the problem is of a different nature, depending on whether a CAD 
type definition is known or the sole data available corresponds to a discretization 
(i.e., a polyhedral approximation) of the given surface. The first case leads rather 
to envisaging the development of appropriate mesh generation methods, while in 
the second case, mesh modification methods will be preferred. 

First, we briefly discuss curve meshing (already mentioned in Chapter 14), in 
the particular case where they are traced onto a surface (or along a side of a patch). 

Then, by means of examples, we illustrate the different types of surface meshes 
that can be constructed, a priori. These examples allow us to  specify the nature 
of the given problem and to indicate the various possible approaches. We will see 
that there exists a direct approach (where the surface itself is meshed) and an 
indirect approach (where a mesh is constructed in a parametric space before being 
mapped onto the surface). 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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We have decided to  exclude here the case of implicit surfaces (discussed in 
Chapter 16) and explicit surfaces', and focus on the case of a surface defined by one 
or more patches (i.e., a parametric surface). To this end, we examine first the case 
of a single patch, before considering composite surfaces. In the latter situation, we 
discuss a possible alternative, depending on whether the resulting mesh is patch- 
dependent or not. Specific cases where the parametric space is defined in terms of 
a constructive method are discussed via the example of molecular surfaces. Then 
we add some comments about reconstruction methods where the data is a cloud 
of points. Finally, to end the chapter, we change data types to focus on surfaces 
defined in a discrete way, i.e., from a mesh. We study an approach that tends to  
provide an adequate mesh of the given surface, based on a series of modifications 
of the initial mesh, which forms the sole data at hand. 

All that has been mentioned, except the last case, assumes that the patches 
defining the surface are correct (in particular, that global conformity between 
patches is ensured, and that there are no overlaps, no holes, no folds or any other 
undesirable artifact). We also deal with what can be termed a true problem. In 
practice, the surfaces to  be meshed are usually not suitably defined with regard to  
the desired objective. Geometric modeling systems (CAD) allow us to define com- 
posite surfaces from a (bottom-up or top-down) analysis for which the constraints 
(imposed by the manufacturing or visualization process) are rather different from 
those required by the meshing techniques. Among the divergences, let us mention 
the problem related to  the numerical accuracy of the models. 

15.1 Curve meshing (curve member of a surface) 

The curves that are of interest here are essentially the curves interface between 
two patches and/or the curves traced on a surface. 

The different methods for curve meshing have been reviewed in Chapter 14 and 
the reader is referred to this chapter. In this section, we will simply make some 
practical remarks about the specificities of this problem, i.e., when we consider 
that the curves are part of a surface. 

We should immediately point out that a classical meshing technique for curves 
in R3 (such as described in Chapter 14) is still valid here, provided that care is 
taken with: 

a the local curvatures of the surface (in the vicinity of the curve) and/or, 

potential specifications and, obviously, 

a the envisaged application. 

Indeed, from the strictly geometric point of view, the mesh of a straight segment 
requires only one element. However, this straight segment is a (potential) edge of a 
surface mesh triangle that forms a polyhedral approximation of the surface. Hence, 

lSuch a surface can always be expressed in a parametric form (as indicated in Chapter ll), 
thus making it possible, in principle, to apply the techniques described in this chapter. 
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the edge lengths are proportional to  the principal radii of curvature of the surface. 
In the isotropic case, the construction of an equilateral element then needs to  
bound the mesh element size. This operation can be performed by considering, not 
only the intrinsic properties of the curve, but also those of its close neighborhood. 
In the anisotropic case, the reasoning is quite similar, except that this time the 
classical equilateral (Euclidean) element is not longer the aim. 

When the curve considered is an interface curve between two patches (a bound- 
ary curve), the meshing problem is rather similar. The desired edge size of the 
discretization also depends on the local curvatures of the curve and of its two (or 
more) adjacent surfaces. 

15.2 First steps in surface meshing 

In this section, we try to  give a global view of surface mesh generation and we make 
some remarks about this interesting problem. To this end, we start by introducing 
several examples of surface meshes obtained using different mesh generation tech- 
niques2. This will then allow us to state the expected properties of such meshes. 
Finally, we introduce various possible solutions (the main techniques employed 
being described in detail later). 

Various approaches to surface meshing 

Before going further in the discussion of the principle, we will illustrate, on a 
given geometry3, several examples that are representative of different mesh related 
aspects (Figures 15.1 and 15.2). 

Surface mesh by example. Let us focus first on structured mesh generation. 
The mesh in Figure 15.1 (left-hand side) was obtained using a multi-block type 
method, the different patches having been meshed using a transfinite interpolation 
on a quadrilateral (Chapter 4). In such an approach, the geometry of the surface 
is simply governed by the geometry of the four sides of each patch. Therefore, the 
surface mesh is defined only by the discretization of the boundary edges (composed 
here by 10 segments). 

The mesh in Figure 15.1 (right-hand side) was generated by mapping a regular 
grid (a 10 x 10 structured grid) onto the surface. Hence, in contrast to  the previous 
case, all resulting mesh vertices belong to this surface. 

Let us now turn to  unstructured meshing techniques based on the use of para- 
metric spaces associated with the patches. The mesh in Figure 15.2(i) was con- 
structed by mapping onto the surface uniform isotropic meshes in the parametric 
spaces. 

'The aim here is not to examine the different approaches used in detail, but rather to point 

3The perspicacious reader may have recognized the spout of the well-known Utah teapot, 
out the key problems in surface mesh generation. 

composed of four parametric patches. 
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Figure 15.1: Multiblock-method based o n  a local transfinite interpolation (left-hand 
side). Naive parametric mesh,  uni form grid, and projection onto the surface using 
the surface definition itself (right-hand side). 

The mesh in Figure 15.2(ii) was obtained by mapping onto the surface aniso- 
tropic meshes in the parametric spaces. These meshes were constructed so as to  
ensure that the resulting mesh, after mapping, will be uniform. 

The mesh in Figure 15.2(iii) was obtained by mapping onto the surface the 
anisotropic meshes of the parametric spaces, controlled by the minimal radius of 
curvature (so as to  bound the angles between the mesh edges and the tangent 
planes to the surface). 

The mesh in Figure 15.2(iv) was obtained by mapping the anisotropic meshes 
of the parametric spaces, controlled by the two principal radii of curvature. 

The mesh in Figure 15.2(v) was obtained by mapping the anisotropic meshes 
in the parametric spaces, controlled this time by bounding the ratio between the 
two principal radii of curvature. 

Finally, the mesh in Figure 15.2(vi) was obtained in a similar fashion, by more 
subtly controlling the use of the two radii of curvature. 

It is thus easy to realize that numerous possibilities exist to obtain a surface 
mesh, some of which may be more relevant than others. Therefore, the question 
arises: “What  i s  really needed and what has t o  be done to  get it?” 

We will now try to  answer this tedious and haunting question. 

Desired properties 

As can be easily imagined, the desired surface mesh must verify certain properties. 
Obviously, or rather a priori (as will be seen later), the vertices of the mesh 
elements must belong to the surface (that is, to the geometry, defined in one way 
or another). 
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iii) iv) 

v) vi) 

Figure 15.2: Unstructured meshes: i )  uniform unstructured mesh in the parametric 
space and mapping, ii) unstructured mesh projected onto the surface to obtain a 
uniform mesh at this level, iii) isotropic mesh based on the minimum of the radii of 
curvature, iv)  anisotropic mesh without a stretching limit, v)  anisotropic mesh with 
a (user-specified) control on  the ratio between the two principal radii of curvature, 
vi) anisotropic mesh with an automatic adjustment of the maximal ratio between 
the two principal radii of curvature. 
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Let C be the given surface and let P, Q ,  R, ..., be the vertices of mesh 7. Thus, 

Y P E 7  ===+ P E E ,  (15.1) 

As certain methods do not guarantee this feature (for all vertices in I), we can 
simply require that the minimal distance between any point P and C is as small 
as possible. In this case, we introduce an accuracy threshold E that controls this 
gap. 

Nevertheless, this feature is only a usually desired necessary condition (cf. 
Chapter 14) that does not, however, guarantee that the resulting mesh will be 
satisfactory. Hence, a stronger constraint can be expressed. For instance, we can 
require all mesh edges to  be as close to the true surface as possible. In this case, 
for each edge P Q  of 7, we want to have: 

we want to  have: 

d ( P Q ,  C) 5 E , (15.2) 

where E represents the desired tolerance value and d ( P Q ,  C) is the maximal dis- 
tance (the gap) between the edge P Q  and the surface C. 

Pursuing the analysis, it appears that Property (15.2) is a necessary although 
not a sufficient condition. The following property comes to  reinforce this condition: 

d ( P Q R ,  C) I E ,  (15.3) 

for each triple of points (P, Q ,  R) ,  vertices of a triangle of 7 (simplicia1 mesh). 
This relation indicates that the distance (the gap) between any triangle P Q R  and 
the surface C must be bounded. For quadrilateral (or hybrid) meshes, we have a 
similar property. 

Finally, the surface mesh must have the same aspect as the surface (i.e., it 
must reflect the geometry). Hence, if the surface is locally of order C1 or G1, 
the mesh must represent this feature as closely as possible (possible oscillations 
must be avoided in this case). Similarly, discontinuities (singular points, ridges 
or crest lines) must be present in the resulting mesh. These requirements can be 
formulated more concisely as follows: 

Smooth surface mesh. (15.4) 

Exercise 15.1 Find some examples where Property (15.1) holds while Property 
(15.2) is not satisfied. Similarly, discuss the relation between the two other prop- 
erties. 

Remark 15.1 Note that the above properties concern only the geometrical point 
of view of the surface. I n  the case where element sizes (densities, directions, etc.) 
are specified, this constraint must be coupled, in some sense, with the previous 
ones. 

To conclude, the problem here is to express the desired properties in terms of 
requirements that are usable by the mesh generation method considered. Thus, 
it is easy to imagine that a suitable method is one that can be controlled up to  a 
certain level (via a metric field). 
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Direct surface meshing 

A direct mesh generation method is a method acting directly at the level of the 
surface considered (without using, for example, a parametric space). Among the 
most commonly used techniques, we find some of the methods already discussed 
in the general chapters. 

Method related to a specific definition. When the surface is defined in a 
particular way, for example as a sweeping surface, it is possible to take advantage 
of this feature to construct the surface mesh. Thus, if the surface is constructed by 
sweeping a curve rl along a curve rz, a mesh can be easily obtained by sweeping 
a discretization of rl along a discretization of rz (or vice versa). 

This type of method is obviously limited in its range of application and, more- 
over, does not allow the quality of the geometric approximation (the mesh) of 
the true surface to be effectively controlled. Moreover, special care must be 
taken regarding potential degeneracies that can appear locally on the resulting 
surface [Rogers, Adams-19891. 

Extension of a two-dimensional method. An algebraic method (when the 
surface defines a quadrilateral-shaped domain) or an advancing-front type method 
(Chapter 6) can be extended to process surfaces. This extension feature is less ob- 
vious for a Delaunay type method (Chapter 7), which is more adapted to meshing 
a surface by meshing the associated parametric spaces. 

For an algebraic method (Chapters 4 and 13), the resulting surface is strongly 
related to the generation method. In fact, the geometry of the surface is defined 
by the method, usually from the mesh of the domain boundaries only. Notice that 
no explicit control of the gaps (at the level of the edges or faces) between the 
discretization and the surface can be obtained. Therefore, this type of method is 
of interest for particular geometries (although the low cost may be considered an 
advantage). From this point of view, parts of surfaces are frequently well processed 
by such an approach (a more sophisticated method then being unnecessary, or even 
too costly, to implement). 

The advancing-front approach, or more precisely its extension to surface pro- 
cessing, is more general4. This type of approach is also widely used in indus- 
trial meshing technologies. The main principle of this method follows, broadly 
speaking, the classical scheme of an advancing-front method in two dimensions 
([Lohner, Parikh-19881, [Nakahashi, Sharov-19951, etc.): 

a identify the key features of the boundary of the patch considered. These 
points are those making it possible to define a set of almost regular lines 
along the side of the patch. We then naturally retrieve the singular points 
of the surface among those points, 

4Notice by the way that it is common to find, when dealing with the extension of a known 
method, the assertion that this operation is both natural and easy. In practice, this judgment 
must be strongly qualified, the difficulties encountered not being of the same order. 
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a define a mesh vertex for each of these points and identify the set of lines 
joining two such vertices, 

mesh these lines (refer to the different curve meshing techniques discussed 
previously), 

connect the meshed lines together so as to define closed curves5, 

a use in each of the parts thus-defined a classical advancing-front approach. 
From a front edge (the initial front being formed by the discretized lines of 
the contour), construct (or choose) a candidate point on the surface to form 
an equilateral triangle. Several ways exist to construct (choose) a candidate 
point. The simplest idea is to consider, for a given front edge, an average 
tangent plane (II) in the middle of this edge (for example, by considering the 
tangent planes at its endpoints). An ideal point is defined in this plane at 
a distance that makes it possible to create an equilateral triangle, and then 
projected onto the surface, the corresponding triangle then being formed. 
The front is updated, 

a repeat the previous stage, as long as the front is not empty. 

Figure 15.3 illustrates the main steps of this method: i) characteristic points 
are identified, ii) the contour of the patch is constructed and then meshed, iii) a 
unique contour is defined and iv) an optimal triangle is formed. 

R 

&, 
iii) 

U.-’ 
iv) 

Figure 15.3: Main steps of an advancing-front type strategy. 

The proposed scheme, while being conceptually simple, hides however certain 
difficulties. Such difficulties exist in two dimensions, up to a certain point, but 

‘This point, which is unnecessary in two dimensions, is a source of substantial simplification 
here. 
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they are relatively easy to overcome. An immediate example where such a problem 
arises is the case where the candidate point is located outside the domain. In 
two dimensions, this means that there must be an intersection between the edges 
incident to that point (forming a new triangle) and one or more edges of the 
current mesh. As such, a simple intersection test allows us to detect and to avoid 
this configuration. 

It is more or less obvious that, for a surface, the same situation does not neces- 
sarily lead to an intersection. Therefore, the detection of this situation requires the 
use of more complex data structures (a neighborhood space, in three dimensions). 

The case where the projection of the point considered (supposed optimal) on 
the true surface does not exist, meaning that this point is probably located straight 
down a hole, outside the surface or even leads to  a topological ambiguity (for 
example, two neighboring surfaces exist and it is not possible to  decide which one 
is the surface on which the point must lie). 

In practice, provided the validity of the point creation process is ensured, as 
well as its valid connection with an edge, it is usual to conduct this creation stage 
iteratively. An initial optimal point is defined a priori and the corresponding 
solution is analyzed to possibly optimize the location. In other words, the pro- 
cess consists of using the additional information now available, about the point 
considered. 

The topological and geometrical difficulties supposedly being resolved, notice 
that the proposed method must, however, incorporate a control on the accuracy 
of the approximation of the surface obtained. This control6 can be performed by 
looking at  the gap between a mesh edge and the surface (control of the interpo- 
lation error between a segment and a curve) and, more precisely, by controlling 
the gap between a mesh triangle and the surface (control of the interpolation er- 
ror between a triangle and a surface; this control cannot be restricted to  the sole 
control of the triangles edges). We propose here re-examining the ideas developed 
in Chapter 10, which make it possible, using the second derivatives (the Hessian), 
to obtain such a control. 

Remark 15.2 The coupling between a direct approach and a parametric space 
offer additional information that makes it possible to overcome some of the dif i-  
culties mentioned previously [FmJkestig-l994]. 

Octree-type method. We have seen (Chapter 5) that an approach based on 
a spatial decomposition of the domain of interest makes it possible to  generate a 
mesh of this domain. This type of approach also allows us to  construct a mesh 
of the domain boundary if the discretization of the surface is not a data of the 
problem. We will now examine this last feature. 

Given a bounding box of the domain, it is possible to generate directly a 
mesh of the surface, without using a parametric space (cf. [Grice et al. 19881 and 
[Shephard, Georges-19911). The construction of the decomposition tree follows the 
general classical scheme already described, with only a few slight modifications (in 

6And this will be true for the whole range of methods discussed in this chapter. 
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fact numerous variants exist). The basic idea consists of inserting in the tree the 
entities of the geometric model7 in the increasing order of their dimensions. More 
precisely, the construction scheme includes the following stages: 

0 identifying corners and points of discontinuity of the model, 

0 inserting these points in the current tree, the stopping criterion for subdivi- 
sion being unchanged (i.e., a t  most one point per cell), 

0 then, for each terminal cell, using the local properties of the surface in order 
to  decide on the possible refinement of the cell. Recall that the element size 
is related to  the cell size, the latter also being related to the local curvature 
of the surface (which can be estimated at a finite number of points in the 
cell by sampling), 

0 and, when all cells have a size compatible with the given size map (intrinsic or 
specified), the critical point consists of determining the interactions between 
the tree cells and the geometric model, which can lead to  refining the cells. 

The analysis of the interactions between a cell and the geometric model involves 
calculating intersections. In fact, it is necessary to determine exactly (i.e., to  the 
required accuracy) the intersections of corners, edges and faces of the octants with 
the surface [Kela-19891. The intersection points are then used to  create edges 
(connecting to  such points) and loops (joining several edges and forming a closed 
contour) in each terminal cell. These entities will provide the vertices, edges and 
faces (possibly subdivided into triangles) of the final mesh. When the result of 
these tests is not known (if the intersection points are not returned by the modeler) 
or if this result is ambiguous, more costly operations may be used. 

Before discussing the meshing stage itself, a balancing procedure is applied on 
the tree structure, using the [2:1] rule (limiting the difference between neighboring 
cells to 2 levels). 

The creation of the mesh elements is performed as in the classical case. Here, 
however, only the boundary cells are of interest. There is no a priori limit on the 
geometric complexity of the entities contained in a tree cell. In practice, several 
criteria allow a cell to  be refined when the complexity becomes too great to handle. 
Notice that meshing the portion of surface enclosed within a cell is an operation 
which is approximatively of the same order of complexity as a classical automatic 
meshing technique. More details on creating mesh elements in boundary cells can 
be found in [Shephard et al. 1988133 and [Shephard, Georges-19911, among others. 

The main difficulties associated with the octree approach are related to: 

0 the creation of badly shaped elements (the intersections between the octants 
and the surface are not well handled), 

0 the topological ambiguity problems mentioned above that can compromise 
the meshing process of boundary octants. 

71nstead of the entities of the boundary discretization. 
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Figure 15.4 shows an example of a surface mesh obtained using a direct octree- 
based method. Notice that the resulting mesh has not been optimized, the align- 
ment of vertices clearly denotes the octants surface interactions. 

Figure 15.4: Example of a surface mesh generated using a direct octree-based ap- 
proach, without optimization (data courtesy of MacNeal-Schwendler Corp.). 

Other methods. Among the other possible methods, we find those methods 
based on grid mapping and all methods based on iso-surfaces (implicit surfaces, 
Marching-cubes type algorithms, voxels, etc., Chapter 16) and the methods for 
which the input data is a cloud of points located on the surface (for example, 
see below or [Hoppe et al. 19911). In this section, we only give some idea of the 
approaches based on the mapping of a predefined grid (which are indeed close to  
certain methods discussed in Chapter 8). 

Grid-mapping methods. 

The principle underlying these methods is very simple. We define a grid (a 
regular mesh) in a plane located above the surface, in such a way that the projec- 
tion of this grid, in a suitable direction 4 entirely encloses the surface. Supplied 
with this assuyption, we analyze the projection of the grid cells on the surface in 
the direction d. To this end, we examine (Figure 15.5) the projection of the grid 
nodes: 

if the direction line dcoming from a node intersects the surface, the inter- 
section point is kept as a mesh vertex, 

otherwise, we find mainly two configurations: either the projection goes 
through a hole (a loop of vertices exist in some neighborhood of the projected 
point that belongs to the previous class) or the projection falls outside the 
surface (an external side of the surface exists in some neighborhood). 
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Figure 15.5: Projection of a gr id  onto 
the surface. Two cases are visible: 
the projection is found (right-hand 
side) or the projection does not ex- 
ist (left-hand side) because of a hole. 
The third case, where the projection 
is  outside the surface, is not de- 
scribed here. 

Notice that this approach makes the mesh independent of the patches describ- 
ing the surface. However, it is obvious that the main drawback of the approach is 
related to  projection problems (independently of the fact that the approximation 
of the surface by the mesh is not controlled and that, in addition, a uniform grid 
is always used). 

In such an approach, several problems must be taken into account. Among the 
pertinent questions that arise, let us mention the following ones: 

0 How should the plane support of the grid (with respect to the surface) be 
chosen? 

0 Is such a plane always defined (bijectivity of the projection)? 

0 What are the potential perverse effects following a bad choice of the plane? 

0 What is the (possible) dependency between this choice and the presumed 
result? 

Assuming these questions to  be settled, several points need to  be discussed. 
The first obvious observation is that if the four nodes of a cell have a pro- 

jection on the surface, then the resulting quadrilateral so formed is a candidate 
mesh element. On the other hand, any different situation requires a more subtle 
discussion, as will be seen later. 

If the four projections of a cell vertices exist, it is possible to form a quadri- 
lateral. This element needs to be validated as a mesh element. This consists 
essentially of finding if this quadrilateral does not mask a hole (whose size is nec- 
essarily smaller than the grid stepsize) or does not overlap a “gap” between two 
portions of the surface (connected component problem or topology violation). In 
other words, we must verify the topological compatibility of the mesh, i.e., preserve 
the surface topology. 

The case where one or more vertices do not project onto the surface corresponds 
to the existence of a portion of boundary (internal, a hole, or external, an external 
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side) in a neighborhood whose size can be determined by looking at the projections 
of the adjacent nodes. An analysis of these cases is needed in order to find the 
corresponding configuration (or, at least, a plausible configuration from the point 
of view of topological compatibility): 

a the existence of a projection defect for a point, although there exists a loop of 
its neighbors that projects without difficulty, presumes the existence of a hole 
whose size is related to this loop. Provided this configuration is identified, 
it is possible to find a mesh that also includes a hole (in fact, a potentially 
rough approximation of the true hole) that therefore maintains the topology 
of the surface. To this end, we first detect an approximate side of this hole 
and we modify the neighboring elements so as to account for; 

a the same phenomenon without a suitable loop of neighbors representative of 
the existence of a surface border. As above, it is possible (although tedious) 
to find an approximation of this border preserving the initial topology. 

These remarks indicate the complexity of the problems to be taken into account 
and suggest that, in order to be applicable, this type of method must be coupled 
with rather complex techniques (adaptation, i.e., local refinement, quick search for 
intersection, verification of the topological consistency of the surface, etc.). 

Hence, to conclude, this type of method is only really applicable for relatively 
simple surfaces (low curvature, no hole and no topological ambiguity). 

Construction in two dimensions and mapping 

Unlike the methods mentioned above, here the mesh generation method is applied 
in an adequate R2 domain, then, via a projection function, the mesh constructed 
in this domain is projected onto the R3 surface. Three types of method may be 
considered, which is the so-called “classical” methods ( quadtree, advancing-front 
and Delaunay). In this context, the problem to be solved consists of governing the 
mesh generation in the one or the several parametric space(s) in order to guarantee 
the resulting mesh to be adequate after being projected onto the surface. In the 
following, we discuss more specifically the Delaunay approach while observing that 
the other classical methods can also be used (at least, if the mesh in the parametric 
space is isotropic, a classical limit for the quadtree type methods). 

15.3 A single patch 

We focus first on a surface composed of a single patch. We will deal later with 
surfaces composed of several patches, for which two situations need to be consid- 
ered, the patch-dependent case where a discretization of the patch boundaries is 
necessarily present in the final mesh, and the patch-independent case where the 
inter-patch boundaries are not necessarily present in the resulting mesh. 



504 MESH GENERATION 

.Typical patches 

Before dealing with the single patch case, let us recall the various types of patches 
used in CAD systems. The simplest patches and ones which are widely used 
are polygons with a small number of sides (thus, we usually find triangles and 
quadrilaterals). However, this type of patch does not offer the flexibility necessary 
and desirable to  define certain surfaces. This is why more complex patches have 
also been developed, for example, those where only part of the patch is used 
(hole(s)) and those where the useful area does not correspond to  the whole patch 
(the border limiting the useful area is not the “natural” side of the patch). 

Figure 15.6: Two examples of complex patches: left-hand side, only a part of the 
patch is used; right-hand side, a hole exists in the surface. 

For the sake of simplicity, we can, a t  first, leave to  one side all these special 
patches and deal with complete patches. Then, it is relatively easy to see what 
may happen with the other types of patches. 

.Desired features in the parametric case 

Let C denote the surface, a its parameterization and R its parametric space (0 c 
EX2). Let us denote by A, B ,  ... the points of R and by P, Q,  ... their images 
via a. As stated previously, the surface mesh must satisfy certain properties 
(Relations (15.1) et seq.). Relation (15.1) simply means that: 

A = ( u , v ) E R  ==+ P = a ( A ) = a ( u , v ) ~ C ,  (15.5) 

which is ensured if a is the exact definition of C. Otherwise, the distance from P to  
C must be smaller than a suitable threshold E (relative or absolute). Relation (15.2) 
indicates that the edges are close to the surface: 

AB E R ==+ PQ = a(A)a(B) is such that d(PQ, C) 5 E ,  (15.6) 

where E is a given threshold of accuracy. 

Remark 15.3 Saying that PQ = a(A)a(B) is only an approximation; indeed, 
a(AB) is a priori a curve traced on C and, in particular, a(AB) # a(A)a(B).  

Similarly, Relation (15.3) becomes: 

ABC E R ==+ PQR = a(A)a(B)a(C) is such that d(PQR, C) 5 E ,  (15.7) 
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hence, the distance from triangle PQR, the image8 of the triangle ABC, to  the 
surface C is bounded. 

Finally, Relation (15.4) must be verified, in particular to  preserve, via its mesh, 
the possible regularity of the underlying surface. 

The problem is then, if possible, to express these requirements in mesh require- 
ments in the parametric space. To this end, we return to  the basic definitions of 
parametric patches (Chapters 11 and 13), to the notion of metric (Chapter 10) 
and to  that of control space (Chapter 1). 

Briefly, and before going into further detail, let us recall that the edge length 
in R3 can be expressed as a function of the corresponding edge AB in R2 and of 
the first fundamental form of C. Similarly, the control of the distance between an 
edge and C can be done by using the second fundamental form of the surface. On 
the other hand, the control of the distance from a triangle to C requires a more 
subtle analysis. 

.Meshing a patch 

As already mentioned, any meshing technique in the plane is a pr ior i  a conceivable 
method. However, we will restrict ourselves to  a Delaunay-type method (Chap- 
ter 7). We have seen in fact that this type of method could rather easily follow 
a given field of constraints (of specifications). The idea is to govern the mesh in 
the parametric space in such a way that the desired properties are (automatically) 
satisfied, after mapping on the surface. 

Geometric aspects. Thus, we want to control the surface mesh by controlling 
the mesh of the patch in the parametric space. At first, notice that the control 
in the parametric space is essentially performed by controlling the lengths of the 
mesh edges. We must then evaluate the length of a mesh edge. To find this value, 
we go back to  the definition of the length of a curve, then we will improve this by 
considering that this curve is an edge. 

The context is illustrated in Figure 15.7. The surface is denoted C, its para- 
metric space (u, w) is R. Moreover, we consider an interval [a,  b] in R. The curve 
PQ of the surface C is the image by a function y of the interval [a,  b] in R. This 
curve is also the image by the function cr of a curve AB of R and this curve AB 
is the image by a function w of the interval [a,  b] .  We then have: 

3 
f7 : R - R ,  (u,w) - f7(u,w), 

7 : [a,  bl - R3, t - y(t) 7 

w : [a,  b] - R, t - w ( t )  , 

with the relation linking y, w and c: y = cr o w . 

'In fact, the triangle PQR is the triangle whose vertices are the images of the corresponding 
vertices in the parametric space (see the remark about the edges). 
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The length of the curve PQ, Chapter 11, can be written as: 

b b 

a a 

Figure 15.7: The segment [ a , b ]  
in R. The curve AB of a, image 
of [a,  b] by  w .  The curve PQ of 
C, image of a b  by  y is also the 
image of AB by a. 

b 
U 

Using a vector notation, t k  dot product (y’(t), y’(t)), is expressed by: 

(y’(t), y’(t)) = ty’(t)y’(t) = “ ’ ( t ) “ ’ (w( t ) )a ’ (w( t ) )w’ ( t )  7 

as y = a o w .  That is, by denoting ?I = ah and ?2 = ah, 

If we now assume that w ( t ) ,  for t between a = 0 and b = 1, is an edge, the 
edge AB, we have w ( t )  = A + ta and w’ ( t )  = a and, hence, we find: 

(y’(t), y’(t)) = ( 2 ) (6 ?2) a 
and, for PQ, the length is: 

1 .  

Z(PQ) = I ( 3 ) (?I ? 2 ) a d t ,  
7-2 

0 

which is also the classical formula: Z(PQ) = J “ a M 1 ( A  + ta)a dt . 1 0 

where M I  is the matrix expression of the first fundamental form of the surface C. 
We have thus found the link between the length of an edge AB in the parametric 
space and the length of the curve of C, image by a of this edge. 

will be an 
edge of C. In fact, this is equivalent to  approaching the curve PQ by the edge PQ, 
that is to  have: 

a(AB) M a(A)a(B) , 

In our case, during the meshing stage, the image of an edge of 
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which can be also written differently by saying a ( A + t a )  M P + t a ,  thus saying 
that: 

where PQ is an edge and, thus, we have found a link between the length of an edge 
AB in the parametric space and the expected approximate value of the length of 
an edge PQ of C. This link allows us to control the mesh on C by controlling the 
mesh of R. 

We now deal with the case where a metric is specified on the surface. Let 
M3 be the associated current matrix. This matrix is a 3 x 3 matrix (hence the 
index 3). The problem is then to find the relation between a length on C and 
the corresponding length in R, which is equivalent to  exhibiting the matrix M2, 
a 2 x 2 matrix, relative to  M3. 

In principle, it is sufficient to follow the same reasoning as previously, simply 
changing the definition of the dot product (Chapter 10). We now have: 

or: 

with Y’ the unit normal and the notation 11, that indicates that only the first two 
lines and two columns of the matrix are considered. By denoting II the transition 
matrix from the canonical basis of R3 to  the local basis a t  the current point 
M = P + tP&, this relation can be written: 

Posing: M2 = LtIIM3111, , which is, as mentioned, the matrix formed by the 
first two lines and two columns of the matrix tIIM311. Thus, we have found the 
matrix M2 corresponding to the given matrix M3. The length of the curve PQ 
for the metric M3 is then: 

To construct a mesh, we approach the len h of the edge PQ by the length of 
the curve PQ and we say that PQ = P + t& then, we want to  have as above: 

1 

IM,(PQ) = 1 J t B M 2 ( A  + t B ) B d t .  
0 
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Remark 15.4 By taking M3 = Id, we find M2 = L t I I I d I I ] ,  = LtIIII], = 

M I ,  the first fundamentalform of C. W e  then find the classical case as a particular 
case of the general situation. 

This leads to  the following remark. 

Remark 15.5 A Euclidean length of 1 in C corresponds to the choice M2 = M I  
for  R.  I n  other words, the unit circle of C corresponds to the ellipse M I  of R. 

The control of the gap between an edge and the surface is performed by using 
a metric M3 that still needs to be defined. To govern the surface mesh, the mesh 
of C when a metric M3 is specified, we must then govern the mesh of fd for a 
metric M2 (2 x 2 matrix) constructed as indicated above. This control will allow 
us, depending on the choice of M3, to the edge to satisfy a particular property. 
For example, as will be seen later, an adequate choice of M3 will mean that this 
edge will not be further from the surface than a given threshold value. 

From the metric point of view, we consider M3 and we want to  have 

l(PQ) = 1 for M 3 ,  

that is: 
1 

0 

To this unit value for M3 on C corresponds a unit value for M2 in R: 

1 = ] + a M 2 ( A  + t a ) a d t .  

The aim is then to  construct a mesh in fd for which the edges are of unit length 
so as to ensure the same property for the corresponding edges on C. 

Exercise 15.2 Verify that: 

0 

implies that the edges on  C are of uniform length of size h. O n  a simple example, 
to be defined, show the control matrix M2. 

Choice of the control metrics. A matrix of the form: 

(15.8) 
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specifies, as already seen, a field of uniform sizes h on the surface. A matrix of the 
form: 

M 3 ( P ) =  [ 1 (15.9) 

where now, h depends on the position, specifies a variable field of sizes on the 
surface. If we pose h(P)  = ap(P) where p(P) is the smallest of the radii of 
curvature p1 and p2 at point P of C and a is a adequate coefficient, we obtain an 
isotropic control of the sizes related to  the radii of curvature (thus to  the geometry 
of C). A matrix of the form: 

0 0 

1 

1 

h2 (PI 

h2 ; (PI ] 

0 

with D(P) the principal directions at P,  a and P adequate coefficients and X an 
arbitrary scalar value gives an anisotropic control over the geometry that takes 
the two principal radii of curvature into account. Also, a matrix of the general 

0 0 
I 

h ? /  P\ 
\ '"3\' J / 

with R ( P )  directions and hi three sizes, gives a control on the three directions of 
R ( P )  and specifies the length expected in these specific directions. 

Control obtained depending on the choice fixed: the edges. We have a 
priori four types of control matrices (Relations (15.8) to  (15.11)). 

Let consider a matrix of the form (15.9) and the choice h(P)  = ap(P) .  The 
question is to  fix (u so as to obtain a certain control within a given E of the gap 
between the mesh and the surface. Recall that p is the smallest of the two principal 
radii of curvature p1 and p2 at P. 

By definition (Chapter 11) the circle of radius p centered at point 0 = P + p v' 
is an approximation at  the order two of the curve intersection of the surface with 
any plane supported by v' with p the radius of curvature in this particular plane. 
Hence, approximating the surface by an edge while controlling the accuracy is 
equivalent to controlling, for this particular case, the gap between a discretization 
of the osculating circle (the circle above) of the plane and the latter. 

We can see immediately that fixing a = 1 is equivalent to discretizing this circle 
with 6 edges. The length of the circle for the metric (15.9) is indeed 2 7r M 6. Then, 
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Figure 15.8 (left-hand side), taking an edge of length p, we obtain 6 = p (1 - fi) 
and thus 6 = 1 - fi M 0.15. The relative gap to the circle is 15%. 

P 

Figure 15.8: Discretization of a circle with a stepsize p(P)  (left-hand side), or with 
a stepsize a p(P)  (right-hand side). 

On the other hand, let us assume that the discretized edge is of size a p ,  then 
we found: 

S = p ( l -  c 1--) 

and thus, setting $ < E comes down to fixing: 

(15.12) 

and, hence, an accuracy within a given E imposes that a is bounded as previously. 

Remark 15.6 W e  define thus a relative control, within E ,  of the distance between 
an edge and the surface. 

Let us now consider the anisotropic case: the control matrix is that of Re- 
lation (15.10) in which the coefficients a and p are involved. For a fixed E ,  the 
simplest choice consists of following Relation (15.12) for a and setting p = a. 

For p1 and the corresponding principal direction, we find a gap 61, for p2 and 
its direction, we have 6 2 .  According to the choice of a and p, we have 61 = ~ p 1  
while 62 = ~ p 2 .  Hence, if p2 and p1 are different, we have 62 > 61, the absolute gap 
is not the same in the two principal directions and thus this value varies according 
to the direction. Setting a constant gap comes down to setting 61 = 62 and leads 
to fixing: 

a < 2 J q T q  

as above and to defining: 

(15.13) 

Remark 15.7 Thus we have a local absolute control, within E ,  of the distance 
between an  edge and the surface, depending on  the directions. 
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The case of other matrices (i.e., non-geometric a priori) prescribes sizes based 
on physical criteria (related to  the behavior of the solution to the problem consid- 
ered). There is no specific reason why this specification must be consistent with 
the surface geometry. Hence, we must deduce from the given metrics a metric that 
reflects the desired physical aspect as well as taking the geometrical constraints 
into account. 

Control obtained: faces. The previous discussion gives hints about how to 
control the gap between the mesh edges and the surface. However, such a control 
gives no guarantee that the triangles created with these edges will be close to  
the surface or that the resulting mesh has the desired regularity (the presence of 
folds, for example). Hence, a specific process must be performed to ensure these 
properties. The basic idea is to modify the field M3 or to  involve mesh adaptation 
principles: 

0 Regarding the discussion in Chapter 10, we know that the gap between a 
triangle and the surface needs to account for a upper bound of the Hessian 
of the surface on this triangle. This bound allows us to  find, within a given 
tolerance, a bound on the edge size. This bound then serves to define the 
matrix M3 and, more precisely, its coefficients. 

0 A rather different idea consists of using the mesh adaptation principle (Chap- 
ter 21). An initial mesh is constructed, analyzed and, depending on the re- 
sult, the process is iterated with the field of the metrics deduced from the 
analysis. 

A meshing method. 
method (Chapter 7). Meshing a patch comes down to: 

To clarify the ideas, let us consider a Delaunay-type 

0 choosing the type of control (the metric) allowing us to  obtain the desired 
mesh (i.e., to  fix the field of matrices M3) ,  

0 deducing the field of corresponding matrices M2,  

0 meshing the parametric domain boundaries based on the field of M2 (Chap- 
ter 14), 

0 meshing the parametric domain, from the boundary discretization, using an 
anisotropic Delaunay-type method (Chapter 7), 

0 mapping this mesh on the surface C via the function u. 

The mesh in R following the approach described in Chapter 7 consists of con- 
structing an initial mesh based on the sole boundary vertices and in adding points 
along the edges. Then, these points are inserted and the process is iterated on 
the resulting mesh. The key is thus to  properly calculate the edge lengths. This 
calculation naturally requires the use of the surface, hence the meshing technique 
differs from a purely two dimensional meshing technique, in that it must have 
access to  the surface (in a discrete way, for instance). 
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We now provide an example. Figures 15.9 to  15.12 [Borouchaki et al. 19991, 
show different meshes of the patch defined by: 

a R, the parametric space is the circle of radius 10, 

a the function cr defining the surface is 

u3 + l 0 u  
v3 + 1 o v  

100 sin u cos 

The surface meshes in Figures 15.9 to 15.12 (right-hand side) have been created 
according to  this principle. Figures 15.9 to 15.12 (left-hand side) show the four 
two-dimensional meshes of the corresponding parametric spaces. 

Figure 15.9: Uniform mesh  on  C. Left-hand side: mesh  of the parametric space; 
right-hand side: uniform mesh  with a stepsize h = 50. 

Figure 15.10: Uniform mesh on  C. Left-hand side: mesh  of the parametric space; 
right-hand side: uniform mesh  with a stepsize h = 20. 
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Figure 15.11: Left-hand side: mesh  of the parametric space; right-hand side: 
isotropic mesh controlled by  p. 

Figure 15.12: Left-hand side: mesh  of the parametric space; right-hand side: 
anisotropic mesh  controlled by p1 and p2. 

15.4 Multi-patches surface (patch-dependent) 

When the surface is defined by several patches (each of them being parameterized), 
the previous algorithm (or a similar one) can be used, provided that the interfaces 
between the different patches are meshed first, in a unique way, so as to obtain 
a conforming join from one patch to another. The patch-dependent approach 
consists of processing the patches one by one and thus in preserving the interfaces 
between patches. 

Synthetic scheme. 
(Chapter 4). It involves two successive stages: 

The meshing scheme uses the idea of the multibloc methods 

a meshing the interface curves between patches, 

a meshing each patch using the discretization of its boundaries as defined in 
the previous stage. 
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Meshing the interfaces between patches 

The first stage of meshing a composite surface consists of meshing the interface 
curves. This operation makes it possible to  guarantee that the curves shared by 
several surfaces are meshed in a consistent (conforming) way. 

To this end, we apply the technique for meshing the curves of R3 already 
described in Chapter 14 and reviewed at  the beginning of this chapter. We will 
not spend more time on this issue here. 

At completion of this stage, the interface curves between patches are meshed 
in a geometric way or to take a specified field of sizes into account. 

Meshing the patches 

Using the discretized patch boundaries, we will construct the meshes of patches. 
The union of all meshes of the patches will lead to  a correct mesh of the surface, 
the interfaces having been correctly defined during the previous stage. 

The principle of the meshing technique for a multi-patches surface consists of 
meshing each patch separately via its associated parametric space. The final mesh 
is the union of the meshes of the different patches. The conformity of the resulting 
mesh is ensured by the conformity of the interfaces between patches (see above). 

Figure 15.13: Isotropic geometric mesh of the minimal radius of curvature of a 
multi-patches surface, the Utah teapot (left-hand side) and isotropic geometric 
mesh incorporating a size map correction (right-hand side). 

Notice that such an approach may lead to  some rather large disparities between 
the element sizes from one patch to  another. This is notably the case when the 
mesh is a geometric mesh, based on the model curvatures (Figure 15.13, left-hand 
side). 

To obtain a mesh in which the size gradation is controlled, the idea is to  use the 
resulting mesh to  construct a control space. More precisely, with each mesh vertex 
is associated information on the local size and, possibly, the stretching direction 
of the elements. This discrete field of sizes (metrics) being created, we can apply a 
smoothing procedure on it to bound the size variations from one point to another 
(Chapter 10). Once this operation has been performed, it is then possible to use 
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this information to govern the creation of a new surface mesh in the parametric 
spaces (Figure 15.13, right-hand side). 

15.5 Multi-patches surface (patch-independent) 

For various reasons, we now want the surface mesh not to  follow the patches in 
some regions. Consider first very small patches, which are probably not useful 
from the numerical point of view and which, if meshed, would lead to very large 
meshes. Consider also very thin patches having a small edge as compared with 
the neighboring ones. This case necessarily induces the creation of very stretched 
elements. Figure 15.14 shows an example of such situations. In this figure, we show 
the entire geometry (i) and the enlargement of an area composed of stretched 
patches (ii). Any mesh respecting these patches (for example, the mesh in iii) 
contains flat elements that are a pr ior i  inappropriate to  the calculations. 

Thus, it seems necessary to  get rid of the boundaries of some patches. To 
this end, two approaches can be envisaged. We can follow an indirect approach 
that consists of constructing a mesh respecting the patch boundaries and then 
in modifying this mesh to get rid of this constraint in the regions where it leads 
to undesirable effects. We can also consider a direct approach that, prior to any 
meshing, get rid of this type of situation. 

Indirect approach 

Each patch is processed via the previously described method (patch-dependent), 
then we get rid of (some) patch boundaries. The operators involved in this process 
are the classical operators for surface mesh modification and surface mesh opti- 
mization (as described more precisely in Chapter 19). We distinguish essentially 
a node relocation operator (that preserves the connections between the vertices) 
and operators that, with fixed point positions, modify their connections. Among 
these operators, we find the edge swaps (that change the common edge between 
two faces) and refinement or derefinement operators that make it possible to: 

0 subdivide a given edge and to modify the faces sharing the edge accordingly, 

0 suppress one or several edges either by merging nodes or by temporarily 
creating a hole (Figure 15.15), and then remeshing it. 

Whichever the operator is used, it is necessary to  preserve the geometric and 
topological coherence of the result. Firstly, the result must stay close to the 
surface. Then, the resulting topology must be identical to  the initial one. Notice 
that it is important to classify the entities of the mesh (points, edges and faces) 
and to  propagate this information from the current mesh and the modified mesh 
(in order, in particular, to  be capable later of identifying the entities subjected to  
boundary conditions for the problem considered). 
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ii) iii) 

Figure 15.14: An example of mesh construction preserving the patches defining the 
geometry and the perverse effects of this constraint on the resulting mesh. I n  i) ,  
we show the limits of several patches modeling the geometry, in ii) and iii), we 
show respectively the detail of a region of this description and the resulting mesh 
in which two flat  triangles are constructed. 

Figure 15.15: Left-hand side, the initial mesh. From left to right, the sequence of 
remeshing of a hole formed by  removing the ball of the point deleted. 

Direct approach 

A direct approach is based on the fact that meshing techniques are available to 
process a patch. The idea is then to represent a set of patches by a single patch. 
Hence, the difficulty is to construct this single patch. This is relatively easy to 
perform when the geometry is defined by a polyhedron (i.e., when the set of patches 
of this definition forms such a polyhedron). Moreover, this method can be extended 
to an arbitrary surface. Figure 15.16 illustrates an application of this methodg. 
We see in i), the initial surface, ii), a planar mapping of the complete surface where 
each triangle corresponds in a one to one way to a piece of the surface. Therefore, 
an injective function u can be constructed depending on the parameters u and v 
to project any point of the parametric space onto the surface. This being done, 
an anisotropic mesh of the parametric space must be created, its mapping onto 
the surface leading to the desired mesh. The example of the mesh in the figure 
is simpler, a regular (uniform) grid over the parametric space is developed, in iii) 
and, in iv), we show the mechanical mapping of this regular mesh on the surface. 
The main ideas of the method are the following: 

a identification of the boundaries (principal and secondary) and of the sides of 

'Work in progress a t  the 3s laboratory, Grenoble, by F. Noel. 
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the holes, 

a subdivision into triangles of the parametric space associated with each patch, 

a topological merging of the triangles, 

a identification of the edges of the main boundary and of the secondary bound- 
aries and sides of the holes, 

a topological meshing of the secondary contours and holes (edges and faces are 
associated with these contours), 

a node distribution for the main contour along the boundary of a convex do- 
main, 

determination of the positions of the other nodes using a barycentrage tech- 
nique from their neighbors. The resulting mesh allows us to  define the para- 
metric space associated with the whole surface. A bijection exists between 
each triangle of this two-dimensional mesh and a triangular-shaped portion 
of the surface. 

The convex planar domain (corresponding to the parametric space) is meshed 
so as to  take the constraints into account, for example, regarding the boundaries 
of the secondary contours or the holes. A governed meshing technique can thus be 
used (for example an anisotropic Delaunay-type method) to  mesh the parametric 
space (see above). 

The resulting mesh in the parametric space is then mapped onto the surface 
using the one to one function linking the mesh triangles to the corresponding 
triangular cells on the surface. 

Notice that this technique of planar mapping needs still to  be improved and 
that the example provided reflects only preliminary experiments on this very 
promising topic. 

15.6 Ill-defined mult i-pat ches surface 

As pointed out, complex surfaces can be defined with a rather important number 
of patches. In what precedes, we have implicitly assumed that the set of patches 
defining the surface considered formed, by itself, a conforming mesh (actually, 
rather a covering-up) of this surface (Chapter 1). In practice, this assumption is 
most likely not verified. Actually we find several situations preventing the desired 
conformity. This is related to  the fact that the geometric definitions of the patches 
are not, a priori, directly motivated by this criterion but are rather of a visual 
nature or related to a possible manufacturing process. Moreover, the numerical 
accuracy used in a CAD system may be variable from place to  place in a given 
model and, is definitely not conceived in a meshing view. 

In practice, the awkward situations encountered correspond to: 

a overlappings between two or more patches, 
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i i )  

Figure 15.16: An example of mesh construction based on  a single patch definition. 
W e  see, a), the definition with patches of the entire surface. I n  ii), we show the 
planar mapping of these patches. I n  iii), we define a regular grid in the parametric 
space and, in iv), we provide the mapping of this regular mesh onto the surface. 

0 gaps (holes) between patches assumed to  be joined, 

0 non-conforming joins between patches regarding corners assumed to be but 
not identical (within a tolerance) and supposedly common borders. For 
example, the boundary of a patch matches only part of the boundary of 
another patch instead of the entire patch, etc. 

All these defects, detected from a mesh generator but not visible in general by the 
user and with no effect in a manufacturing process, essentially concern defects re- 
lated to  points (absence or duplication of points), lines (bad join between successive 
or common lines, absence or duplication) or surfaces (holes, partial duplication). 
Moreover, as already mentioned, disparate edge sizes (patch boundaries) lead to  
ill-suited patches with respect to a possible mesh. Attempting to mesh, for exam- 
ple patch by patch, a surface composed of patches having these pathologies would 
certainly lead to  a failurelo. 

Thus, before attempting to  mesh, it is necessary to  fix, with respect to the 
objective, the surface components. This task is especially important, as pointed 
out, but is rather tedious to  carry out. To date, there is no fully automatic, 

'ONotice that it is the best desirable result. In fact, if the mesh generation algorithm fails 
to detect these defects, there may be no other easy way of detecting that the resulting mesh is 
wrong. Hence, any calculation performed on such a mesh would give surprising results. 
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quick and of universal range method allowing such a surface to  be repaired. Some 
mostly interactive (i.e., that require the user intervention) software products exist, 
which may ease this type of process. The idea is to offer a maximum of features 
regarding the visualization and the detection of the defects as well as to provide 
all types of local modification tools (node relocation, edge swapping, creation or 
deletion of entities, etc.) in order to correct the surface while ensuring that the 
result preserves the initial topology in a plausible way. It might well be imagined 
therefore that repairing a surface is, at present, a hot topic. 

We must however mention that work regarding the automation of such pro- 
cesses, [Barequet et al. 19981, is being carried out. 

15.7 Molecular surfaces 

The so-called computational chemistry by means of PDE’s models and FEM or 
similar solution methods is a relatively new field of activities. 

A typical example is concerned with solvation problems where the molecule be- 
havior is investigated using various models such as VWS (Van der Waals Surface), 
SAS (Solvent Accessible Surface) or SES (Solvent Excluded Surface or Connolly 
surface) where the surface, the spatial support of the computation, is defined in one 
way or another, [Tomasi et al. 20031, leading to various mesh generation problems. 

Whatever the case, in terms of the mesh generation method, this situation is 
basically of the parametric (thus indirect) type where a two-dimensional paramet- 
ric space is meshed and the resulting mesh is mapped on the real surface in order 
to obtain the desired three-dimensional surface mesh. 

One of the major differences between this case and the classical situation is in 
the manner in which the parametric space is defined. Instead of being defined by 
means of a CAD approach (using one or several patches and the corresponding 
cr functions), the parametric space is defined in a constructive way related to  the 
specificity of the geometry in hand, [Laug, Borouchaki-20021. 

A molecule is made up of atoms following some arrangement. A given atom is 
seen as a ball or its bounding sphere, S ,  known by its center, C, and its radius, 
T .  Therefore, a molecule is seen as the outer hull of a series of intersecting spheres 
Si given through the corresponding Ci and ri. 

With each atom is associated a patch by means of a stereographic projection 
(Figure 15.17). In the academic case of only one atom, the full sphere is split into 
two parts by introducing an artificial cut and two patches are defined. In the case 
of intersecting spheres, intersections are computed leading to restrict the domain 
to be projected and obtain trimmed (arbitrary) patches. The projection of a point 
P = (z, y, z )  is defined by considering the North pole of the sphere, N = (0, 0,2r) 
in the figure, and obtained as the intersection of line P N  with plane z = 0 which 
gives the function ~ ( u ,  w) of the related patch. 
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" f  

Figure 15.17: Definition of the para- 
metric space by means of a projec- 
tion. Po i s  the orthogonal projec- 
t ion of point P while P, i s  i ts  stere- 
ographic projection. 

Figure 15.18: Molecular surfaces. Left, SAS model of the papaine molecule. Right, 
SES model of the dna molecule. 

The parametric domains being defined, we return to the classical meshing 
process as discussed in the previous sections. Typical examples are depicted in 
Figure 15.18 demonstrating two different molecules and the related surface meshes 
(thanks to [Laug, Borouchaki-19991). The surface for the SAS example involves a 
sphere of radius rp,  the probe, whose center rolls on the VWS (the surface of the 
envelope of the union of the given atoms) and defines a new envelope, the SAS. 
The other example is a SES case where a probe is used to smooth the reentrant 
part of the initial surface. 
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15.8 Surface reconstruction 

Before going further, note that marching-cube methods and implicit surfaces are 
discussed in Chapter 16. 

We are given a set of points in R3 which have been captured on a surface by 
means of a particular device (such as a scanner) and the goal is to construct a 
mesh which is supposed to accurately represent this surface. 

Figure 15.19: Smooth surface. Left, the given cloud of points; right, the surface 
mesh after reconstruction (22,677 vertices (7 missing), 45,340 triangles, .60 sec. 
for the reconstruction process). 

Figure 15.20: Realistic surface. Left, the given cloud of points; right, the surface 
mesh after reconstruction (4,756 vertices (27 missing), 9,458 triangles, .30 sec. 
for the reconstruction process). 

Various methods exist to deal with this problem, in specific, for a given nature 
of the sample, e.g. unorganized or with a peculiar organisation (layers, etc.). 
Nevertheless, most of the proposed methods proves to be very poor in view of 
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further calculations. This is due to a number of reasons. On the one hand, a series 
of method have been devised for graphical purposes only leading to nice pictures 
(e.g. the goal). On the other hand, some methods are mainly of academic interest 
where the goal is to prove some propreties and to have some guarantees about the 
reconstructed surface. To this end a number of prerequisites is assumed about the 
sample itself (density, uniformity, etc.), the expected smoothness, the geometry 
(local thickness, etc.). With such a type of formulation of the problem, guarantees 
can be obtained but realistic cases generally violate a particular a priori necessary 
properties and thus the reconstructed surface is what it is and not more. 

The main drawbacks consist of undesirable holes, non-manifold edges, default 
of orientation, missing points, ambiguities (a solution has been constructed but 
other reasonable solutions seem also appropriate). 

Recent advances in this problem consider using the Delaunay triangulation of 
the given set of points and then extract the triangles defining the seeked surface 
among the facets of the tetrahedra of this triangulation. Criteria (see below) to 
decide whether a facet must be retained as a surface triangle are multiple and 
somehow antagonist, hence the difficulty of the problem. 

Indeed, we are interested in a smooth surface whether it is smooth or not (e.g. 
corners or ridges exist such as in mechanical parts). 

Mid-surface simulation can be used both to select a number of triangles and to 
delete some other. Nevertheless, the resulting surface is in general unsatisfactory. 
Indeed, some selected triangles are obviously not in the solution while some tri- 
angles not retained must be in the solution. In other words, the resulting surface 
includes a number of (relatively) small holes. Fixing these holes relies in finding 
one or several facets which recover them. 

To do this, criteria are used which must produce a “smooth” solution. Criteria 
include proximity concerns (such as distance from point to point) or emptyness of 
Gabriel’s balls (the diametral ball for an edge, the equatorial ball for a triangle), 
angles between adjacent facet normals (to prevent folds), control of the normal at 
a given vertex (which is evaluated using the cells of the dual), the three angles of 
a facet itself and angle defects. 

For a given point P,  the last criterium sums the angles in P of all the retained 
triangles including P as a vertex (note that this value is part of the discrete 
approximation of the Gauss curvature of a surface). The targeted value is then 
360 degrees for a planar closed surface, it is also 360 degrees along a straight ridge 
while it must be adapted for open or curved surfaces. Most of the vertex presents 
a value close to the targeted value. A value largely bigger or smaller than 360 is 
quite possible (for instance, at a corner) but evenly might be an indicator of bad 
reconstruction (for instance, a wide excess appears when a fold exists). 

None of these criteria is meaningless by itself but none is sufficient to decide for 
a solution. In specific, a given criterion is likely to be verified almost everywhere 
(as demonstrated by an a posteriori statistic about the corresponding quantity) 
while being strongly violated in some part of the solution. Therefore, the guarantee 
of correctness could be only of a statistical nature meaning validating the method 
using a large series of different cases. 
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Figure 15.19 shows a rather simple case illustrative of a smooth surface and a 
relatively good sample (while sharp regions around the teeth may lead to ambigu- 
ity). On the other side, Figure 15.20 shows a typical case illustrative of a mechan- 
ical surface with various "bad" features such as thin local thickness, ridges, etc., 
despite the apparent good quality of the sample. 

15.9 Discrete surface (re-meshing process) 

We consider here a situation in which the data of the problem is of a discrete 
nature. Actually, we have a meshed surface (a triangulation) with which additional 
information may be associated. These specifications, when given, allow us to know 
the particularities and specificities of the underlying geometric model (corners, 
ridges and/or constraints, tangents, etc.). Without such information, the task of 
the remeshing process will be more tedious [Lohner-19951, [LOhner-l996a]. 

We will first specify how the underlying surface can be defined from the given 
triangulation. Then, we will focus on the remeshing problem, treated in practice 
via geometric and topological modifications applied to the initial mesh. We will 
indicate in particular the main features of a remeshing algorithm. 

Definition of a discrete surface 

We will see in Chapter 19 that the intrinsic properties of a surface (normals, 
principal radii of curvature, etc.) can be extracted" from an initial mesh of the 
surface, so as to construct the metric of the tangent plane. Recall that this metric 
(defined in the tangent planes associated with the given mesh vertices) makes it 
possible to control (bound) the gap between the mesh edges and the underlying 
surface. 

Identification of the singularities. If the singularities of the model are not 
explicitly specified, a pre-processing stage makes it possible to identify these fea- 
tures. This stage, which is almost fully automatic, must be user-supervised. We 
have already mentioned that a ridge can be identified using a threshold on the 
adjacent face angle and that a corner is, notably, a vertex sharing three ridges. 

Other entities (constraints) can be provided (by the modeling system) which 
must be preserved in the final mesh. 

Construction of a geometric support. 
ing approach. Indeed, it is aimed at defining, internally, a geometry (that is, an 
analytical representation of the underlying surface, the initial mesh being sup- 
posed to be an approximation of this surface). In practice, the geometric support 
is a composed surface of class G1 (i.e., ensuring the identity of the tangent planes 
between adjacent patches). 

Among the various approaches possible, one of particular interest is that sug- 
gested by Walton and Meek [Walton, Meek-19961, based on the Gregory patches 

This operation is central to the remesh- 

"That is, evaluated approximatively. 
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[Gregory-19741 (Chapter 13). This support, suitably defined, can be used to  know 
the exact position of a vertex on a surface (usually the closest location), given a 
current mesh vertex and a direction. 

Re-meshing a discrete surface 

The remeshing of a surface defined by a polyhedral approximation (a mesh) in- 
volves topological modifications (edge swapping, vertex merging, edge splitting, 
etc.) and geometric modifications (node relocation) which will be considered in 
detail in Chapter 19. 

Optimal mesh. The objective of the remeshing process is to obtain a mesh in 
which the elements have a size (and possibly an orientation) conforming to  the 
geometric size field. In other words, the aim is to obtain an optimal mesh with 
respect to the given geometric specifications. To this end, the element edges of the 
current mesh are analyzed and possibly optimized in size, so that any edge AB of 
the final mesh has a length Z A B  (in the metric specified) such that: 

1 
- Z A B  5 Jz, VAB E 7. Jz- 

(15.14) 

Figure 15.21: Geometric remeshing of a discrete surface. 

Remeshing algorithm. 
can be written as follows: 

The general scheme of the surface remeshing algorithm 

0 initializations: identification of the singularities (corners, ridges, etc.); 

0 evaluation of the intrinsic properties of the surface (curvatures, normals, etc.); 

0 construction of a geometric support of class G1; 

0 remeshing: 

- for each edge AB of the current mesh, 
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- if ~ A B  > a, subdivide the edge into unit length segments, 

d2 
- else if ~ A B  < -, merge the two endpoints of the edges, 

2 
- if the mesh has been modified, apply edge swappings on the newly 

created faces; 

a optimization of the resulting mesh using node relocation as well as edge 
swapping. 

Figure 15.21 illustrates an example of a discrete surface remeshing. The surface 

Another example is depicted in Figure 15.22 while other examples can be found 
is defined from the mesh represented in Figure 15.4. 

in Chapter 21. 

Figure 15.22: Geometric remeshing of a discrete surface (left) with a size control. 



Chapter 16 

Meshing Implicit Curves and Surfaces 

In practical terms and notably in applications related to geometric modeling and 
graphical visualization, the usual representation of curves and surfaces is the para- 
metric one (cf. Chapters 12 and 13). Nevertheless, other representations exist and 
are employed to some extent depending on the applications envisaged. An explicit 
representation is based on functions of the form z = f ( x , y ) .  This approach is 
quite limited in practice, as the surfaces defined in this way are usually rather 
“rudimentary” or do not correspond to  concrete cases. A third approach consists 
of defining a surface as the set of points (x, y ,  z )  in EX3, which are solutions of an 
equation of the type f(x, y ,  z )  = 0. The study of such surfaces, called implicit 
surfaces, is the subject of this chapter. 

Interest in implicit curves and surfaces has increased over the last few years, 
notably due to  the emergence of discrete (sampled) data for modeling computa- 
tional domains. Discrete geometry attempts to  transpose the results of classical 
(affine and differential) geometry to the discrete field. However, as pointed out by 
[Hoffmann-19931, the application field of implicit functions seems to  remain largely 
underestimated. 

* * *  
Given an implicit curve or surface representing the boundary of a computa- 

tional domain, we focus here on the problem of meshing this boundary. In the 
first section, we recall some basic definitions and properties of implicit functions. 
Then, we deal with the mesh generation of implicitly defined planar curves. In 
the third section, we indicate how the meshing techniques for curves can be ex- 
tended to the meshing of implicit surfaces. Application examples are shown at  the 
end of this section to illustrate the various meshing techniques for these surfaces. 
The last section briefly presents the basic principles of constructive geometry for 
implicit domains before dealing with mesh generation of implicit domains (whose 
boundaries are implicit curves or surfaces), presented here as a natural extension 
of meshing techniques for curves and surfaces. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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16.1 Review of implicit functions 

In this section, we recall the main definitions and properties related to implicit 
planar curves and surfaces. In particular, we see how the main results of differential 
geometry introduced in Chapter 11 are involved. 

A preliminary remark 

As meshing techniques suitable for parametric curves and surfaces have been ex- 
tensively developed, as seen before, one might ask if it were not possible to  convert 
an implicit function into one (or more) equivalent parametric representation(s), so 
as to find a known problem (Chapter 14). 

Notice first that any parametric rational curve or surface assumes an implicit 
form, the way of obtaining it being widely known (see [Sederberg-19831, among 
others). However, obtaining the parametric form corresponding to  a given implicit 
function is not trivial, for many reasons that we need not concern ourselves with 
here [Hoffmann-19931. In practical terms, this old problem’ turns out to be ex- 
tremely difficult to solve in the general case, which justifies the development of 
direct meshing methods for implicit curves and surfaces. 

Implicit planar curves 

Let f : R - E be a function of class Ck ( k  2 1) on an open set R of the affine 
plane E (here E = R2). The set of points M ( x , y )  E R such that f ( M )  = 

f ( x ,  y )  = 0 is the so-called implicit curve defined by f = 0: 

= { M ( x ,  Y )  E I f (MI = f ( ( x ,  Y )  = 01 

Definition 16.1 A point M ( x , y )  of the curve r i s  said t o  be a n  ordinary (or 
regular) point i f  it i s  such that: 

where the operator V denotes the gradient. Thus,  the curve r i s  said t o  be regular 
i f  V f ( M )  # 0 for  each point M .  The  point M i s  said to  be singular i f  V f ( M )  = 0. 

Notice that the inverse image of a value k of R is the solution to  the equation 
f ( M )  = k, at  a point M of R2. Thus, the curve r, defined by f = 0, is f - ’ ( O ) ,  
the inverse image of 0. More generally, a curve r k  defined by f ( x ,  y )  = k is called 
an iso-value curve (or level curve), k being the level of f .  

The geometric interpretation of the theory of implicit functions makes it pos- 
sible to  deduce the following result. 

Theorem 16.1 (implicit functions) If Mo i s  a n  ordinary point of the curve F, 
there exists a neighborhood V (M0)  such that rnv i s  the support of a parameterized 
arc ro of class ck. 

lIn the last century, [Salmon, 18851 already proposed a way of getting rid of the parameters 
of parametric equations. 
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Hence, it is important to bear in mind from this result that the implicit curve 
admits local parameterizations at each of its regular points2 Theorem (16.1) makes 
it possible to  write in explicit form y = y(x) .  Figure 16.1 illustrates a parameter- 
ization of r. 

Figure 16.1: A parameterization x ( t ) ,  y( t )  of the implicit function f ( x ,  y )  = 0 
passing through the ordinary point ( X O ,  yo ) .  

Study of critical points. 
the study of the extrema o f f  requires a preliminary study of its critical points. 

In the case where the implicit function theorem holds, 

Definition 16.2 We say that a function f has a local maximum (rap. local 
minimum) at a point P,  if there exists a neighborhood V of P such that: 

An extremum is a maximum or a minimum. 

The curve r has a critical point, say M ( x ,  y ) ,  if 

By extension, a critical value represents the value of the function at  a critical point. 
The study of the Hessian H f  of f makes it possible to  specify the nature of this 
critical point. More precisely, if H f ( M )  > 0 we have a minimum, if H f ( M )  < 0 
we have a maximum and if H f ( M )  = 0 we cannot conclude (we must then study 
the “sign” of the derivatives a t  order 3). 

For an ordinary point M ( x ,  y )  of an implicit curve r to be a point of inflection, 
its coordinates must satisfy the equation H(x ,y )  = 0, where the function H is 
defined by: 

H = f;2f:x - ?f;f;f:y + fi2gY 7 

which can also be written as follows: 

2From the numerical point of view, it is important to know that the value close to the regular 
values are regular as well. 
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Tangent vector. Using the implicit function theorem, we deduce that the tan- 
gent at an ordinary point Mo(z0, yo) to the parameterized arc I70 is the line defined 
by the equation: 

In fact, there exist two intervals I and J and an application cp of class Ck verifying 
cp(x:o) = yo, such that the relations: 

(Of (Mo),  M )  = 0 .  

(z,y) E I x J and f ( z , y )  = 0 

are equivalent to z E I and y = cp(z). Thus, the set of corresponding points M is 
ro, the arc of Cartesian equation y = cp(z). 

The tangent at MO to I70 is the line of equation y - yo = cp’(zo)(z - zo) and 
thus we have: 

Hence, the tangent is defined by: 

(. - zo)f;(zo, Yo) + (Y - Yo)f;(zo, Yo) = 0 (16.1) 

Hence, we note 7‘ the unit tangent vector at an ordinary point MO to r. 

Principal normal. The normal v’to the curve r at a regular point Mo(z0, yo) is 
parallel to the vector of coordinates fk (z0 ,  yo), fi(z0, yo), that is, to the gradient 
vector O f .  The vector 

is called the principal normal  to the curve at MO and verifies 11v’(M0)11 = 1. Notice 
that, as expected, (7‘, 5) = 0, the two vectors being orthogonal. 

Curvature. The calculation of the local curvature at a regular point Mo(z0, yo) 
is based on the relation (7‘, v’) = 0. From a practical point of view, we again use the 
implicit functions theorem and we introduce the curvilinear abscissa s (considering 
this time the arc ro): 

which will allow us to retrieve one of Frknet’s formulae linking the local curvature 
at MO to the derivative of the tangent (Chapter 11): 

using a similar approach, the other FrBnet’s formula would be written: 

dv’ 
- = -C.? 
ds 

(16.2) 

(16.3) 
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Distance from a point to a curve. In Chapter 14, we discussed the tedious 
problem of geometric mesh generation for (parametric) curves. In order for the 
mesh to follow the arc geometry, the maximal distance 6 between the arc and 
the segment discretizing it must be bounded (i.e., the length of the curve and the 
length of the chord are close to each other). Thus, if h is the length of the segment, 
it is desirable that, for a given value E :  

One of the problems encountered consists of evaluating this distance 6. We will 
focus on calculating the Euclidean distance of a given point P to a planar curve r 
implicitly defined by f = 0. 

If the function f is a polynomial, numerical techniques can be used to  evaluate 
this distance [Kriegman, Ponce-19901. However, in most cases, it is rather tricky to  
obtain an accurate answer to this question and usually a first order approximation 
of this distance is sufficient to decide whether or not to pursue the algorithm. 

The distance d can be defined as the minimum of the distances from P to any 
other point Q of r: 

(16.4) d(P, r) = min IIQ - PI1 , 
Q E r  

which leads to  a minimization problem. 
If P is a regular point, a Taylor series of f in the neighborhood of P reads: 

where h = p& is sufficiently small to ensure the validity of this expansion. By 
truncating this expansion at the order 1, we have: 

f ( Q )  = f(p) + (h ,Vf (P) )  + Whl12). 

In practical terms, we simply consider the approximation: 

The triangular inequality then makes it possible to  write: 

If(P) + (h ,  Vf(P))l 2 If(P)I - I@, Vf(P))I 

then, using Cauchy-Schwartz's inequality: 

If(Q)l 2 If(p)I - llhll IlVf(P)II. (16.5) 

Finally, the distance d(P, r), defined as the value of llhll such that the right-hand 
term of the previous expression vanishes [Taubin-19921, is approached using the 
formula: 

(16.6) 



532 MESH GENERATION 

Practical aspects. In applications, to reduce the number of distance calcula- 
tions, we can use the properties of the Lipschitz functions. For such a function 
f ,  we have If(P) - f(Q)l 5 XIIP- QII, for all P ,Q,  X being a positive param- 
eter characterizing f. In fact, Lipschitz’s constant X (the smallest X satisfying 
the equation) defines the lower bound of the module of the derivative function. 
If f is a continuous function, then Lipschitz’s constant is the maximal slope of 
the function, which is reached at one of the zeros of the second derivative of the 
function (i.e., at a global minimum off’). 

Hence, for a given point P, let us denote Q E f - l ( O )  the point such that: 

IIP-Qll =d(P , f - l (0 ) ) .  

Then, we can write that: 

Hence, X- l f  (P) represents a distance bound for f (the sign is meaningful). 

Remark 16.1 This result makes it possible in practice to use a Newton’s method 
(that locally converges at the order two) to f i nd  the coordinates of the root in only 
a few iterations using the formula: 

Po being a given starting point. W e  can thus search the first intersection between 
a given line and the function f .  

We will go into more detail on how to use this result in the section related to 
the mesh generation of implicit planar curves. 

Extension to implicit surfaces 

We will now focus on implicit surfaces defined by a function f ( M )  = f (x, y ,  z )  = 0. 
Most of the results on planar curves can be extended to the case of surfaces. 

Normal, tangent. For a regular surface C, the vector V f defines a vector that 
is orthogonal to C. In fact, a regular surface is orientable. The unit normal vector 
to the surface at a regular point P is given by: 

(16.7) 

Critical points. 
point is the following: 

As for planar curves, a necessary condition to have a critical 
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We introduce then the Hessian matrix: 

(16.8) 

which is a symmetric matrix if the function is of class C2. The study of the 
determinant D e t ( H f )  of the Hessian matrix makes it possible to conclude: if 
D e t ( H f )  < 0 we have a saddle point, if D e t ( H f )  > 0 we have an extremum (if 
H f  > 0 (resp. H f  < 0) it is a minimum (resp. maximum)) and if D e t ( H f )  = 0, 
we cannot conclude, we must then study the partial derivatives a t  the order 3. 

Principal curvatures. To find the principal curvatures and the principal di- 
rections at a regular point Mo(x0, yo), we again use the fact that (J, 7') = 0. Let 
u' and 8 be two vectors forming an orthonormal basis of the tangent plane II(M0) 
and let 7' be a unit tangent vector at Mo. We can write: 

7' = cos 8u' + sin 88. 

From the formula giving the curvature n, in the direction ? 

we can deduce the formulae of the principal curvatures nl and n2 and the principal 
directions 7-1 and 7-2 (expressed in the basis [u', 4 [Monga, Benayoun-1995I): 

(16.9) 

Supplied with this theoretical background, we will now discuss the problem 
of meshing a domain defined by an implicit function. However, prior to  focusing 
more closely on meshing techniques for implicit curves and surfaces, we will first 
introduce a general formulation of this problem which then makes it possible to  
find a general meshing scheme, in two and three dimensions. 

16.2 Implicit function and meshing 

We will first attempt to formulate the problem in a practical way, that is, in view 
of the envisaged application, the geometric meshing of an implicit domain for a 
numerical simulation using finite element methods. For the sake of simplicity, we 
will limit ourselves to the two-dimensional case only. 

Problem statement 

Let I? be an implicitly defined curve, i.e., the solution to an equation of the form 
f(x, y) = 0, f being a differentiable function admitting 0 as a regular value. 
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The problem of discretizing r can be seen as the search for a polygonal curve 
r of same topology as r that forms a sufficiently accurate approximation of 
I?. This problem can be formally described using the following conditions (see 
[Velho et al. 19971): 

- 
0 r is a piecewise linear approximation of r, 
0 there exists a homeomorphism3 h : r - such that: 

V P  E r ,  d(P,h(P))  < E ,  (16.10) 

where E > 0 is a user-specified tolerance and d is the usual Euclidean distance 
in R2. 

Remark 16.2 The tolerance value E corresponds to the quality of the geometric 
approximation of the curve geometry. 

In practice, we have seen that with a piecewise linear approximation, the lengths of 
the edges of the discretization being locally proportional to  the radii of curvature 
(Chapter 14). 

Geometric mesh 

The problem we are interested in is to mesh an implicit curve in order to correctly 
approach its geometry. In other words, the metric to  follow is of a purely geometric 
nature. 

Desired properties and related problems. The first property desired is to  
assume a relative control over the curve, such that the length of the curve (the 
arc) and that of the chord locally approaching it (the underlying chord) are close. 
To this end, if h denotes the length of a segment and if S measures the largest 
distance between this segment and the curve, then, for a given E ,  we want to  have 
the following condition: 

6 1 E h .  

Notice that with parametric curves, the length of the arc can be easily obtained 
using the curvilinear abscissa s. With implicit curves, such a feature does not exist 
(the implicit function theorem allowing only a local parameterization). One way 
of evaluating the distance between the segment and the curve consists of sampling 
the segment and in calculating the largest distance between the sampled points 
and r: 

6 = maxd(Pi, r) , 
P i E I  

where I represents a small interval along the segment considered. 
The second problem is related to the location of the points along the curve. 

From a given point Mo, it is necessary to  find the series of points M i ,  i = 2,3,  ... 

3Thus ensuring that r and have the same topology. 
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such that the length of the segments MJMi+l is compatible with the given accuracy 
E .  It is obvious that the points of discontinuity (the singular points) must be part 
of the mesh (Chapter 14). We still have to  find the number and the location of 
the other points. If we consider a neighborhood that is sufficiently small around 
the point Mo, we can apply the local study introduced in Chapter 14. This leads 
to locating the point M I  at  a distance ap(M0) from the point Mo, where the 
coefficient (u is given by Relation (14.7) and p(M0) is the radius of curvature of 
r at Mo. The point M I  is then defined as the intersection of the circle of radius 
(up(M0) centered at  MO and the curve r. 

General scheme. 
following manner: 

A geometric mesh of an implicit curve can be obtained in the 

0 identify the extrema (of the radii of curvature) of the curve and the singular 
points, 

0 initialize the mesh with these points, 

0 approach the curve using sub-curves corresponding to  the curves joining two 
such consecutive points, 

0 mesh each piece using the previous principle. 

The main difficulty of this approach is related to the calculation of the lengths 
of the portions of curve. An easy way consists of using a sufficiently small (uniform) 
sampling to evaluate the desired length numerically. Obviously, this method can be 
costly. A “binary-searching” type method or a “divide-and-conquer” type method 
(Chapter 2) can also be envisaged. We will study different possible approaches 
below. 

Before going in more detail about the meshing of implicit curves, notice that 
for a given accuracy threshold E ,  it is possible to obtain different meshes of the 
same implicit curve, depending on the nature of the meshing algorithm employed. 
Hence, the notion of optimal result must be considered. 

Optimal mesh. In Chapter 1, we already mentioned the notion of an optimal 
mesh and indicated that this notion is related to  the application envisaged (i.e., 
a mesh is optimal with respect to a certain criterion and not necessarily optimal 
for another criterion). Here, we will consider an optimal mesh to  be that which 
corresponds to a good geometric approximation (see below) and which contains a 
minimal number of vertices. In fact, we consider the following. 

Definition 16.3 The optimal piecewise linear approximation is  that which, among 
all possible solutions having the same quality of geometric approximation, mini- 
mizes the number of elements. 

However, this simple geometric criterion is not sufficient in practice to  estimate 
the optimality of a solution (see also Chapter 18). Thus, for example, for a finite 
element computation, the number of elements of a mesh is an important factor 
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(as it conditions the size of the matrices). Moreover, the (shape and size) element 
qualities are also important as they relate to  the numerical accuracy of the results 
and the convergence of some computational schemes [Ciarlet-19781. It is thus 
important to avoid the creation of (poor quality) badly-shaped elements. 

In practical terms, it is convenient to  consider as optimal a mesh that achieves 
an acceptable compromise between the different criteria considered. Thus, for 
isotropic triangles in two dimensions, a quality close to 1 defines well-shaped el- 
ements. Such a quality indicates that the lengths of the edges are close to  l 
(possibly in a given metric). We bring the notion of optimal mesh down to the 
notion of unit mesh. 

Definition 16.4 I n  two dimensions, a unit mesh is  a mesh whose edge lengths 
are close to 1. 

Such a mesh is considered to be optimal. 

General principle 

Implicit curves and surfaces offer less flexibility than parametric curves and sur- 
faces. In particular, it is rather tedious to determine the intrinsic properties of 
these curves and surfaces. In addition, tracking an implicit curve is a difficult 
problem (we will see that, from a given point, numerical techniques make it possi- 
ble to  locate a neighboring point on the curve). This is why, meshing techniques 
are largely inspired by heuristics. In particular, the classical approaches (see for 
instance, [Allgower, Schmidt-19851 and [Allgower, Gnutzmann-19871) consist of 

0 sampling the domain of definition (using a covering-up of the domain), 

0 searching the roots of the function in the cells of the covering-up, 

0 constructing a topology (i.e., a mesh) whose vertices are the root of the 

In other words, a spatial partitioning (a set of disjoint and congruent cells en- 
closing the domain) of the domain is created and the implicit function is locally 
approached in each cell of this covering-up. These approaches usually involve 
numerical techniques to  find the points along the curve (surface) in a given cell. 

Remark 16.3 Notice that creating a sampling makes the problem a discrete one, 
the value of the implicit function being known at the vertices of the sample. I n  
fact, most of the envisaged methods are capable of dealing directly with discrete 
data (for instance, those obtained using a scanning device). 

function. 

Remark 16.4 Notice that this problem is  slightly different from that aiming at 
reconstructing a topology from a set of points all belonging to the boundary of the 
domain (see [Hoppe-1994] for example). 

In the next section, we examine different approaches to  constructing a geomet- 
ric mesh of an implicit curve in two dimensions (the meshing problem for implicit 
surfaces will be dealt with in the following section). 
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16.3 Implicit curve meshing 

As we have already mentioned, meshing an (implicit) curve consists of discretizing 
it into a finite number of segments of suitable lengths. It is obvious that these 
lengths depend on the envisaged application (i.e., on the constraints related to the 
application) and on the given metric information. 

Construction of a spatial covering-up 

Consider a given implicit curve r. The sampling stage consists of finding a set 
of points Pi E r sufficiently dense for the geometry of r to be approached within 
a tolerance of E .  The several techniques proposed can be classified into different 
classes, based on whether they proceed: 

0 by (exhaustive) enumeration, 

0 by continuation, 

0 by (adaptive) subdivision, etc. 

To see this more clearly, we will first consider a naive approach to finding the 
points of r. 

A “naive” approach (ray-tracing). To find the points on the curve, we can 
intersect r with a family 2) of lines (the domain is somehow sampled by a beam 
of lines). 

Thus formulated, the problem consists of solving a set of one-variable equations 
of the type f ( z i , y )  = 0 for a sample of uniformly distributed points zi 
(Figure 16.2). 

€E% 

Figure 16.2: Naive method for a n  implicit curve. Notice that  the same curve r 
leads t o  different samplings depending o n  whether the family  of lines i s  horizontal 
(left-hand side) or vertical (right-hand side). 

This example simply illustrates the influence of the lines. Clearly, there does 
not exist any suitable criterion (i.e., working in all cases) to  fix the size and the 
density of the rays a priori. In fact, some lines do not contribute to  the sampling 
while others can “miss” some intersections. 

Close to  the naive approach, we then find an approach of the exhaustive enu- 
meration type. 
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Exhaustive enumeration approaches. The existence of discrete data, sup- 
plied by scanning devices for instance, leads to a problem for which the spatial 
covering-up is given. Usually, this covering-up is a regular grid (uniform and axis- 
aligned) or a Coxeter-Freudenthal triangulation (each cell of a regular grid is split 
into two triangles, [Freudenthal-19421, [Coxeter-1963]), the values of the implicit 
function being known at  its vertices. 

Figure 16.3: Uniform approximation of a parametric curve (left-hand side) and of 
an implicit curve using a method of the exhaustive enumeration type (right-hand 
side). 

We can make here an analogy with the mesh of parametric curves: the segment 
representing the domain of the parameters is split into equally-sized sub-segments 
and the function f is used to find the vertices and to  construct the polygonal 
approximation of the curve (Figure 16.3). 

The principle of the exhaustive enumeration method consists of examining all 
cells of the partition and to process only those that are intersected by the curve. 
At the vertices of such a cell, the signs of the function are not constant. The 
curve r intersects a given cell side if the values of f at the two endpoints of this 
side are of opposite signs (Figure 16.4). The intersection points of r with a cell 
sides are either determined by a linear interpolation based on the values at the 
two edge endpoints, or using a procedure to  find the roots (see below). We will see 
later that this t_echnique allows us to approach the curve using a piecewise linear 
approximation r. 

Figure 16.4: Exhaustive enumeration 
method : intersection of the implicit 
curve r with two cells of the Freuden- 
thal triangulation. 
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As for the naive approach, the main difficulty of this type of approach (espe- 
cially well-suited to discrete data) is to fix the resolution (i.e., the cell size) so as 
to capture the local behavior of the curve as well as possible. Again, too coarse 
a sampling can lead to intersections being missed or to reconstructing a topology 
that is different from that of the curve4. 

This leads us to envisage methods that allow the curve to be tracked (in a sense 
that we will specify later). 

Methods by continuation. The techniques by continuation aim at finding, 
from a given point Mi E r, a point Mi+l close to it on the curve. Depending on 
the manner of predicting the position of Mi+l, the methods are of the progression 
type or of the prediction-correction type. 

0 Methods by progression. 

This concerns incremental methods. From a basic cell (i.e., containing a portion 
of the curve), the curve is approached by a set of cells, the partitioning being con- 
structed “on the fly”. Adding a cell can be performed by adjacency, the adjacency 
direction being determined by studying of the sign of the function at the vertices 
of the current cell (Figure 16.5). The neighboring cell is thus the cell sharing the 
edge of the current cell having its endpoints of opposite signs (the values of the 
implicit functions being evaluated at the cell vertices). The process stops as soon 
as the curve is fully enclosed in the cells. A coloring scheme can be used to avoid 
going back to cells that have already been analyzed. A stack (Chapter 2) is used 
to store the cells to be processed. 

Figure 16.5: Method by progression, the partitioning i s  constructed “on the fly’’ 
f r o m  a root cell. 

Such an approach is sensitive to the cell sizes which, if too coarse, do not 
allow the local behavior of the implicit curve to be captured (see the ambiguity 
problems below) and, if too fine, lead to a too great number of samples (thus 
penalizing further processing). Notice that, as for the naive approach, no criterion 
exists to fix the cell size a priori. 

4However, too small a size is penalizing as it slightly increases the number of intersections 
checks and requires more accurate algorithms. 
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a Methods by “prediction-correction” . 

These methods allow us to calculate the position of a point on the curve from a 
known point Mi E F and a small displacement. The point Mi is “moved” along the 
tangent ?(Mi) to the curve at Mi, to get a point Ml+l. The position of this point 
(which does not belong to  F) is then (iteratively) corrected, for example using a 
Newton-Raphson method (Chapter ll), to  find a point Mi+l E F (Figure 16.6). 

In this approach, the covering-up is virtual. One difficulty consists of fixing the 
stepsize of the displacement to avoid too fine a sampling or, on the other hand, 
to “miss” the curve (the correction method is not converging, especially in highly 
curved regions). Another problem consists of finding a starting point MO in each 
connected component of F. 

Figure 16.6: Method by cont inuat ion of the  prediction-correction type. From a 
position Mo, we  determine a series of points  Ml,..,Mn along the curve F. 

This type of method is based on the property of orthogonality (in two dimen- 
sions) of the gradient vector V f and the vector d = (-a f / a y ,  a f /ax) .  The latter 
is thus tangent to  the level curves5 o f f  and, in particular, to  f ( x , y )  = 0. Given 
a point MO = (20, yo) ,  the points of the connected component containing MO are 
solutions to  a system of the form: 

and x(0) = X O ,  

and y ( 0 )  = y o .  

d x  

dt  ax 
(16.11) 

The position of the new point M I  is estimated as M; = MO + ad(M0) .  The point 
Mi does not belong in principle to F. A correction scheme of the Newton-Raphson 
type aims at moving Mi back to a point M I  of F. 

Method by recursive subdivision. From the study of the previous approaches, 
we can observe that controlling the geometric approximation of F is rather deli- 
cate. We have seen that there does not exist a general criterion to fix, a priori, 
the size of the cells of the partition (supposed to be uniform so far). In particular, 

5The level curves of f correspond to the curves defined by f(z, y) = k ,  k E W. 
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the curves with discontinuities of the order G1 are difficult to approach with such 
methods. 

On the contrary, it seems reasonable to  suppose that if the cell size is variable 
and, for example, related to  the local curvature, the approximation of the curve 
would be better (even without talking about a reduced number of elements). That 
is the basic idea of adaptive subdivision methods. 

According to the principle of spatial decomposition methods (Chapter 5), from 
a bounding box of the domain, this type of approach constructs the partitioning of 
the domain in a recursive way. The bounding box is subdivided into four equally 
sized cells that can be organized hierarchically (using a quadtree, for example). 
The cell refinement is linked to a criterion related to the local curvature of r. 

Among the useful criteria commonly used, we should mention: 

0 the planarity (i.e., the angle between the normals at the intersection points), 

0 the variation of the radii of curvature a t  the intersection points, 

0 the number of intersection points, etc. 

Figure 16.7: Adaptive subdivision based on  the evaluation of the local curvature. 
The normals .’(Mi) at the intersection points Mi o f r  with the edges of the covering 
up are calculated and, from their variation (gap), we deduce a possible refinement 
of the cells (right-hand side). 

This type of approach again raises the problems already discussed in Chapter 5 
for the meshing of the domain boundaries. Notice here, however, that the tree 
structure is not necessarily balanced (using the 2:l  rule, for example). Actually, 
the aim of the decomposition is to  provide a sample of points belonging to  r and 
which is sufficiently representative of the behavior of the curve. 

Once the sampling has been done (and independently of the approach chosen), 
we must connect the points of r together in order to obtain a mesh of the curve. 

Remark 16.5 Notice that i f  the objective is to visualize the curve r, it is suficient 
to create a cloud of points that is dense enough to capture the variations of the 
curve and to provide its visual aspect. 
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Meshing an implicit curve from a point cloud 

From the cloud of points defined at the previous stage, we now try to extract a mesh 
of the given curve. Notice immediately that this problem is very similar to  that of 
the search for a curve passing through a given set of points (see [Hoppe et al. 19911, 
for example). However, unlike the latter6, we have here some additional informa- 
tion provided by the spatial covering up. 

Construction of a geometric mesh. Depending on the sampling technique 
adopted, the mesh creation can be more or less trivial. Thus, with a continua- 
tion method, the mesh is obtained by simply connecting the intersection points 
(the Mi’s) two-by-two in the order of their creation. With the enumeration type 
methods, the task is more tedious. In this case, the discretization is obtained by 
analyzing each cell intersected by the curve and by connecting the intersection 
points belonging to  the cell sides. It should be pointed out that some configura- 
tions can lead to  topological ambiguities (Figure 16.8). 

Figure 16.8: Example of topological ambiguities: we illustrate here two ways of 
connecting the intersection points that violate the topology of the implicit curve. 

Exercise 16.1 Identify the topological ambiguities possible with a enumeration 
type method and propose a simple way of getting rid of these ambiguities (hint: 
examine the sign of the function at the vertices of the partition and use the intrinsic 
properties of the curve). 

From a practical point of view, the mesh edges are created by using predefined 
patterns (templates) based on the sign of the implicit function at  the cell vertices. 
For a uniform decomposition or a quadtree type decomposition, only the terminal 
cells intersected by the curve need to be considered. We thus identify 24 = 16 
distinct patterns. 

At completion of this stage, the implicit curve r is thus approached by a polygo- 
nal segment. However, the geometric mesh obtained is not necessarily correct with 
a view to numerical computation (the size variations between two edges incident 
a t  a vertex might be great). A control on the edge size variation can be imposed. 
Here, we come up against a well-known problem. 

6Which can sometimes be NP-hard, for example, when the goal is to find the closed polygon 
of minimal perimeter having the given points as vertices (traveling salesman problem). 
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Mesh of an implicit curve defined by a discretization. We find here a case 
where the metric to follow is not necessarily of a geometric nature. We must then 
intersect this metric (Chapter 10) with the geometric metric. The problem can 
be identified with the rather difficult curve remeshing detailed in Chapter 14. We 
can thus adopt a technique which consists of reconstructing a geometric support 
(a parametric arc this time) and then remeshing this support using classical op- 
timization tools (point insertion, vertex removal and node relocation). However, 
we can also use the information extracted from this covering up (singular points, 
normals, tangents, etc.) to  control the remeshing procedures. Notice that point 
insertion can be performed via the spatial covering up (to facilitate root searching). 

In this section, we have mentioned root searching several times (i.e., the in- 
tersections between the curve and a given edge). Before dealing with the surface 
meshing, we will go back to  several practical aspects of curve meshing. 

Computational aspects of implicit curve meshing 

In this short section, we briefly mention several practical aspects of the implicit 
function meshing and especially the search for intersection points and the approx- 
imate calculation of the gradient of the function at  a given point. 

Root finding. The methods previously discussed all rely on the identification of 
the intersection points between an edge of the covering up and the curve r. When 
the implicit function is continuous and monotonic, the intermediate value theorem 
ensures the existence of (at least) one solution along the edge AB, if the values 
~ ( ~ A , Y A )  and f ( z ~ , y ~ )  of the function at these points are of opposite signs. If 
the derivative of the function is known exactly, a Newton type method can be used 
to find the root, that is, the point P(z,y) such that f ( z , y )  = 0. However, this 
method can be quite impredictable and may not converge for some functions. 

In all cases, a binary searching method allows us to  quickly find the root within 
a given tolerance E .  The tolerance is usually based on a fraction of the edge length 
or on a maximum number of iterations [Bloomenthal-19881. In some special cases, 
the algorithm can be modified so as to  improve the localization of the intersection 
point, notably when the function f vanishes on a sub-segment of AB (Figure 16.9 
and see [Blinn-19821, [F’rey, Borouchaki-l996], for example). 

is known in a discrete way (i.e., the corresponding implicit 
function is not known explicitly), the intersection points may be approached us- 
ing a linear interpolation based on the given values of the function. Given an 
edge AB for which the values ~ ( Z A , Y A )  and f(z~,y~) are of opposite signs, a 
linear interpolation along AB makes it possible to find the value of f at  P(x,y) 
(corresponding to the parameter t) using the formula: 

When the curve 

(16.12) 

where the function f varies linearly between f ( z ~ ,  YA) for t = 0 and f ( z ~ ,  YB) for 
t = l .  
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r I 

Figure 16.9: Search for the intersection point using a binary searching method 
along the edge AB. Left-hand side; the intersection point is identified as the point 
M3. Right-hand side; the vertex A is a root, but the modified algorithm makes it 
possible to find a point Mi as the intersection point. 

Remark 16.6 The detection and the identification of singular and critical points 
can be performed during the binary searching of the roots by modifying the corre- 
sponding algorithm in order to take into account information regarding the gradient 
of the function at each of the evaluation points [Attili-l997], [Schoberl-l997]. 

Estimation of the gradient. At a regular point P = (x,y), the normal G(P) 
to the curve r can be estimated as the unit gradient vector at this point. If the 
partial derivatives are not known analytically, the gradient can be approached 
numerically, using a finite difference scheme: 

(16.13) 

where b(P) represents a small size (generally chosen as a fraction of the cell size 
of the covering up) vector. A centered difference scheme, which is also possible, 
then gives: 

(Of ( P ) ,  2 S(P))  = f ( P  + S(P))  - f ( P  - S(P) ) .  (16.14) 

Posing S(P)i = hei where ei is the unit vector related to the i-axis and h is a small 
value, we obtain, for the first approximation: 

where Pi = P + h ei and this approximation relates the error to h while the second 
approximation relates the error to  h2. Depending on the value of h, either of these 
approximations can be chosen. 

Remark 16.7 At singular points, where the gradient is not defined, the normal 
can be obtained as a mean value of the normals at the neighboring vertices. 

We will now show that mesh generation for implicit surfaces involves similar 
approaches to  those used for meshing implicit curves. 
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16.4 Implicit surface meshing 

The techniques used to  mesh an implicit surface derive from the techniques devel- 
oped for meshing implicit curves. However, several problems that are particular 
to surfaces will be dealt with in this section. 

For the same reasons as in two dimensions, the meshing of implicit surfaces 
relies on a sampling stage and a mesh construction stage given a point cloud. 
Constructing a spatial covering up makes it possible to localize the processes. In 
other words, the goal is to capture locally the behavior of the surface in a small 
volume element. Hence, each element of the covering up intersected by the surface 
is analyzed and the roots of the function (i.e., the points of C) are identified along 
the edges of this element. 

Construction of a spatial covering-up 

The objective is here to find a covering up of the domain of study that allows us 
to extract a set of points Pi E C which is sufficiently dense for the geometry of the 
surface C to  be approached within a given tolerance E .  As in two dimensions, we 
have the following classification of spatial covering methods: 

a methods by exhaustive enumeration, 

a methods by continuation, 

a methods by adaptive subdivision. 

Methods by exhaustive enumeration. In this type of approach, the covering 
up R is usually an input of the problem and this covering up is then a regular 
grid or a triangulation (Coxeter-Freudenthal type, for example). This is notably 
the case when the implicit surface is an iso-surface defined in a discrete way using 
scanning devices (scanners). The implicit function is sampled and its value is 
known at  the nodes of a lattice of (usually cubical) cells, that is both structured (for 
each point, the number of adjacent points is constant) and uniform (the distance 
being two points is constant). The principle of an exhaustive enumeration method 
consists of 

identifying the elements of R intersected by the surface and 

a locating the intersection points (of C with the edges of the elements of R). 

The surface C will then be discretized using a piecewise linear approximation c 
in each element of R. 

As in two dimensions, this type of approach is sensitive to the grid resolution 
(this being given or constructed). Figure 16.10 shows the influence of the element 
size on the accuracy of the geometric approximation. 
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Figure 16.10: Discretizations of a sphere by successive refinements. At each stage, 
the covering up  i s  uniform (i.e., formed by equally-sized cells). 

Continuation methods. Continuation methods for surfaces are on all points 
similar to continuation methods for curves in two dimensions. We thus find meth- 
ods by progression and methods by prediction-correction. 

Recall just that a progression method consists of starting from an element of 
R, the seed and progressing by adjacency towards the neighboring elements. The 
direction of the progression is defined by the sign of the values of the function at 
the vertices of the current element. A stack is used to  store the elements to be 
processed. In principle, this method makes it possible to  process a single connected 
component for a given seed. 

As for implicit curves, prediction-correction type methods can be applied suc- 
cessfully to “track” an implicit surface. From an initial point Mo, we look for a 
point Mi obtained by a small displacement of MO in the tangent plane II(M0) 
associated with Mo. The point Mi predicted is then iteratively relocated onto 
the surface to  a point M I ,  via a correction stage based on a Newton-Raphson 
procedure. 

Remark 16.8 The tedious part corresponds to the determination a priori of a 
seed for  each connected component. Moreover, the set of vertices obtained i s  not 
intrinsically ordered which may  result later (during the structuration stage) in 
overlapping elements. 

Adaptive subdivision methods. For the same reasons as in two dimensions, 
it is desirable to construct a covering up R that is representative of the intrinsic 
properties of the surface. 

An adaptive subdivision method consists of including the domain of study into 
a bounding box which is recursively subdivided into identical elements7. We thus 
obtain a structure that is naturally organized hierarchically, an octree for example 
in the case where the basic element is a cube (Chapter 5). 

7The requisite of getting identically shaped elements is justified by the need to avoid the 
degeneracy of volumes resulting from the subdivision. 
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Remark 16.9 A covering up based on tetrahedral cells is  also possible. Hence, 
the Kuhn tetrahedron, based on the points (O,O,  0 ) ,  ( l , O ,  0), (1,1,0) and (1,1, l), 
can be subdivided into similarly shaped tetrahedra. The subdivision procedure leads 
to eight sub-tetrahedra, four of which share a vertex of the initial tetrahedron and 
the four others being internal (Figure 16.1 1). 

Figure 16.11: Decomposition 
of Kuhn’s tetrahedron (left-hand 
side) into eight tetrahedra (right- 
hand side). 

Exercise 16.2 Enumerate the tetrahedra of Kuhn’s decomposition. Show that the 
same decomposition applied on the tetrahedron based on the points (0, 0 ,  0 ) ,  (1,0,0), 
(0,1,0) and (O,O,  1) does not lead to similarly shaped elements. 

An element of R is subdivided whenever a specific criterion is not satisfied for 
this element. The criteria considered for refining an element of R are mainly based 
on [Schmidt-19931: 

the variation between the normals a t  the vertices (or the faces) of the current 
element (planarity criterion): 

max(i&, G(Pi))  < cos (&I) , 

where 17i represents the unit vector supported by the segment PiPi+l, :(Pi) 
is the unit normal a t  Pi and ~1 is a given tolerance, 

Pi 

a the divergence of the normals a t  the vertices Pi with respect to the normal 
at the center of the element M ,  measured by the quantity: 

1 - min((G(Pi), G(M))  < COS(EZ), 
Pi 

the changes between the signs of the values of the function at  the vertices, 

a the proximity of a singularity, etc. 

We will see in Chapter 19 that some criteria can also be used to optimize the 
surface meshes. 

With this type of approach, the subdivision leads to  a partitioning for which 
the element density (and thus that of the sampling points) is proportional to  the 
local curvature (for a geometric triangulation, that is, for which the geometric 
approximation to  the surface is controlled by a given tolerance value E). However, 
the discontinuities of order Co of the surfaces are more tedious to capture exactly 
and require more sophisticated algorithms. Figure 16.12 illustrates the problem of 
searching for the intersection points along the edges of the elements of R. 
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Figure 16.12: Example of root finding, ‘‘wiffle cube”. Left-hand side: a linear 
interpolation is  used to find a root along an edge of the decomposition. Right-hand 
side: a binary searching algorithm is  used to find a change of sign of the function 
along the edge, thus improving the approximation of the sphere. 

Remark 16.10 Another approach consists of starting from a coarse partition of 
the space into tetrahedra. The latter are analyzed to decide on  a possible refine- 
ment, according to the criteria mentioned. The difference lies in the fact that 
when a tetrahedron is subdivided, its barycenter (or any other suitable point) is cre- 
ated and inserted in the current triangulation using the Delaunay kernel procedure 
(Chapter 7) [Frey, Borouchaki-l996]. This approach constructs, incrementally, a 
triangulation of the domain conforming to the Delaunay criterion. 

We now deal with the construction of a surface mesh from the point cloud 
obtained at completion of the sampling stage. 

Mesh of an implicit surface defined by a point cloud 

At this stage, we have a cloud of points located on the surface, as dense as the 
partitioning was fine. We now have to  connect these points in order to obtain a 
geometric mesh of the surface. It seems obvious that the tedious aspect of this 
operation consists of making sure that the topology of the discretization conforms 
to that of the implicit surface it represents. 

For the sake of convenience, we will detail here the construction of a mesh 
where the cloud of points comes from a enumeration type methods or an adaptive 
subdivision method. We will leave it up to the reader to see how a mesh may be 
obtained from a continuation method [Bloomenthal-19881, [Wyvill et al. 19861. 

Construction of a geometric mesh. When the covering up R is a uniform 
grid, the connectivity of R allows us to use a very simple (and nowadays very 
popular) algorithm to construct a surface mesh. This algorithm has also proved 
to be especially well-suited for processing discrete data [Lorensen, Cline-19871. 

8This choice is also justified by the fact that this type of technique is widely used in practice. 
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Figure 16.13: ‘Marching Cubes” algorithm: surface-cell intersections. T h e  2’ = 

256 possible pat terns  can be reduced t o  a set of 15 configurations using different 
properties of s y m m e t r y  and rotation preserving the topology of the triangulated 
surface (notice here that  the polygons having more  t h a n  three vertices have been 
subdivided i n t o  triangles). 
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a “Marching Cubes” algorithm 

Based on a divide and conquer approach, the method consists of analyzing any 
element of R intersected by C (the identification of an element K being based 
on the study of the signs of the function at the vertices of K ) .  Each vertex can 
be either positive or negative (the case where the value is zero is a peculiar case 
that can be resolved by dilating the surface locally), the eight vertices of a given 
element K allowing us to construct an index with a value in ]0,256[, (as 256 = 28). 

In practice, each value of the index is associated with a list of polygons used 
to locally approach the surface. The 255 potential lists can be reduced to 15 
representative cases, using symmetric and rotational properties. These 15 cases 
lead to 15 predefined patterns (templates) that serve to define a piecewise linear 
approximation of the surface in each element. 

Exercise 16.3 Retrieve the cases representative in Figure 16.13 from the 256 
possible cases. 

Such an algorithm constructs polygons that have 3 to 6 vertices (Figure 16.14). 
To get a mesh composed only of triangles, we have to subdivide the polygons of 
a higher degree than 3 into triangles. This involves a combinatorial procedure (to 
find all the possible topologies) as well as a geometrical procedure (to choose from 
all the possible ones, the one that leads to the best geometric approximation). 

Theoretically, Catalan’s number of order n 

(2n - 2) !  
Cat(n) = 

n!(n - l ) !  ’ 

is a formula giving the number N,  of different triangulations of a polygon with n vertices: 
N, = Cat(n - 1). Thus, when n = 3 ,4 ,5  or 6, we find respectively N, = 1,2,5,14 
(Chapter 18). 

The drawback of the method is related to the fact that topological ambiguities 
and/or non-closed surfaces can be created. This is the case when an element of 
R contains a face in which vertices of opposite signs are diagonally opposed two-by- 
two (Figure 16.15) [Diirst-1988], [van Gelder, Wilhelms-19921, [Montani et al. 19941. 

Figure 16.14: Diflerent types of polygons constructed using predefined patterns 
(“templates”) by a ‘Marching-Cubes ” algorithm, i f  the numbers of vertices are 
3,4,5,6, from left to right, respectively. 

Several techniques enable us to remedy this problem, for example using: 

a the value of the function at the center of the face [Wyvill et al. 19861 (al- 
though this solution may fail [Matveyev-1994]), 
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a a bilinear representation of the function, a hyperbolic curve describing the 
intersection of C with an edge, the value of the function at the intersection 
points of the asymptotes of the hyperbola making it possible to predict the 
topology [Nielson, Hamann-19911. 

Notice, however, that these approaches cannot in practice be used for discrete 
data. 

Figure 16.15: Faces presenting a 
possible between the vertices. 

topological ambiguity. Several connections are 

Adaptive subdivision methods. In this type of approach, the elements of the 
spatial partitioning R are all of the same type (cubes or tetrahedra) although their 
shapes and sizes can vary locally, based on the local properties of the surface. 

If the partitioning is represented by an octree, the construction of the geometric 
mesh is close to that used in the “Marching Cubes” algorithm (see, for instance, 
[Wilhelms, van Gelder-19901, [F’rey-19931). 

When the partitioning is simplicial, vertices of opposite signs can be separated 
by a single plane, thus leading to only 24 = 16 possible configurations, the only 
polygons formed being triangles and quadrilaterals (Figure 16.16). The quadrilat- 
erals obtained can then be subdivided into triangles according to geometric criteria 
(Chapter 19). The degenerate cases (a tetrahedron vertex belongs to the surface) 
can be avoided by locally expanding the surface [F’rey, Borouchaki-19961. 

Figure 16.16: Different triangulations possible, depending on  the sign at the ver- 
tices, of a cell for a simplicia1 covering up. 

Meshes obtained by such approaches are geometric meshes. However, the size 
variations between neighboring elements are not controlled, thus this type of mesh 
may not be suitable for a finite element type calculation. Here we are confronted 
again with the problem of surface mesh optimization. 
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Surface mesh optimization 

The purpose here is not to specify the optimization operations used for surface 
meshes which will be described in Chapter 19, but to  present the context of such 
an optimization. 

Shape quality optimization. The objective is to optimize a pertinent quality 
criterion with respect to the envisaged application (here a finite element type 
calculation). A shape quality measure for a triangle K is given by the formula: 

(16.15) 

where hmax represents the diameter of the element and p~ the radius of the 
inscribed circle (a  is a normalization coefficient so that QK = 1 for an equilateral 
triangle). The goal is to obtain a quality value close to  1 for all mesh elements. 
To this end, topological modification operators are used (which preserve the point 
locations but modify their connections) as well as metric modifications (which 
modify the points locations while preserving their connections). 

Mesh simplification. The number of elements in a geometric mesh is related 
to the gap between the element and the underlying surface. However, depending 
on the application envisaged, too great a number of elements can be penalizing. 
Simplification (or decimation) methods reduce the number of elements of a mesh 
while preserving the quality of the geometric approximation (Chapter 19). Such 
methods involve the same modification operators as optimization procedures. 

Computational aspects of implicit surface meshing 

In some applications (such as computer graphic visualization or when the surface 
mesh is the input of a volumetric meshing technique), the consistent orientation 
of the triangulation can be a very important requirement (Chapter 6). 

Orientation of the triangles. The orientation of the triangles in the surface 
mesh can be performed either a priori, or a posteriori. In the first approach, the 
polygons of the patterns used to mesh are oriented counterclockwise (for example) 
based on a canonical orientation at the cell level (Figure 16.17 for a tetrahedron). 
In the second approach, the polygons are oriented by adjacency in a consistent 
way, in each connected component (see Chapters 1 and 2 for data structures and 
algorithms appropriate to  this type of process). 

Memory resources and data structures. Memory resources correspond to  
the data structures necessary to  store the information related to the mesh (nodes, 
triangles, etc.) as well as the structures related to the spatial partitioning. The 
main internal data structures contain: 

0 an array of mesh vertices (coordinates), 
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case 1 
case 2 
case 3 

Figure 16.17: Consistent orientation of polygons in a tetrahedron. 

n P  n e  QM Qpire 

6,656 12,816 1.88 22.07 
36,208 72,432 3.57 190. 

122,940 244,431 4.02 925. 

0 an array of triangles (list of vertices), 

0 an array for the neighboring elements (edge adjacency), 

0 an array for the vertices of the covering up, 

0 an array for the elements of the covering up, 

0 additional resources (for example, to store the value of the function at the 
vertices of the covering up), etc. 

The evaluation of (implicit) surface meshes is based on geometric criteria re- 
lated to the quality of the geometric approximation (see [Frey, Borouchaki-19981 
and Chapter 19). On the other hand, depending on the envisaged application, 
(i.e., a finite element calculation), it is important to guarantee a good element 
shape quality. 

The example in Figure 16.18 corresponds to the reconstruction of an iso-surface 
using an exhaustive enumeration method based on a regular grid. 

The second example (Figure 16.19) presents different meshes of an implicit 
surface of degree six corresponding to the equation [Schmidt-19931: 

f (z, 9 ,  Z )  = (x2 + y2  - 4 ) ( 2  + Z’ - 4 ) ( y 2  + z2 - 4) - 4.0078 = 0 .  

The initial mesh (left-hand side) has been created using an adaptive partition 
in tetrahedra. Notice that the geometric approximation of the surface is correct, 
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. . ~. . 

Figure 16.18: Exhaustive enumeration method applied to  the reconstruction of a 
surface f rom a regular grid. Initial mesh  (left-hand side) and optimized mesh  
(right-hand side). 

although the shape quality of the mesh is not acceptable (at least for a finite 
element calculation). Hence, this mesh has been optimized (middle) and then 
simplified (right-hand side). 

Figure 16.19: Different meshes of a n  implicit surface: initial geometric mesh  ob- 
tained by a n  adaptive method (left-hand side), mesh  optimized with respect t o  the 
triangle shape quality (middle) and simplified geometric mesh  (right-hand side). 

Finally, the last two examples (Figures 16.20 and 16.21) show iso-surface 
meshes for biomedical applicationsg created from discrete data. 

In the example in Figure 16.20 it seems obvious that the original mesh (left- 
hand side) contains too many elements to  be numerically exploitable (67,106 ver- 
tices and 134,212 triangles). Therefore, a simplification procedure is applied to  
obtain a geometric mesh where the density of the elements is related to the local 
curvature of the surface [Frey, Borouchaki-19981. 

gHere, the ismsurfaces are associated with anatomic structures. 



MESHING IMPLICIT CURVES AND SURFACES 555 

Figure 16.20: Mesh of an iso-surface of a head from volumetric data (left-hand 
side, data courtesy of Mika Seppa, Low Temp. Lab., University of Technology, 
Helsinki, Finland) and simplified and optimized mesh (right-hand side). 

Figure 16.21: Biomedical iso-surface meshes (an anevrism of the central cerebral 
artery) from discrete data. Left-hand side: initial mesh obtained using a “March- 
ing Lines” algorithm [Thir ion-l99q Right-hand side: optimized and simplified 
mesh. 
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16.5 Extensions 

To conclude this chapter, we will briefly evoke the possibility of using implicit 
functions for modeling purposes. We will then mention the construction of meshes 
for such domains. 

Modeling based on implicit functions 

Traditionally, we can distinguish three geometric modeling systems, depending on 
whet her they: 

0 are based on a boundary representation of the solid (a B-Rep), the objects 
being represented by the union of their boundaries, 

0 use a spatial decomposition, the domain being approached by the union of 
the internal cells or the cells intersected by the domain boundary, 

0 involve constructive geometry (CSG), the domain being represented by a tree 
structure in which the leaves are the primitives and the nodes correspond to  
Boolean operations. 

Constructive solid geometry. Constructive solid geometry (CSG) stems from 
the work of [Rvachev-19631 related to  R-functions, in the context of the numerical 
resolution of problems in complex domains. In this type of representation, the 
domain is defined via a unique function, which is a t  least Co-continuous, with real 
values f : Rd - R+, called the representation function (F-Rep). This function 
can be defined either algorithmically (that is encoded with an algorithm that 
returns the value of the function at  a given point), or in a discrete manner, for 
instance, at the nodes of a regular grid [Pasko et al. 19951. With this approach, 
the topology of the domain is preserved both implicitly (within the tree structure) 
and explicitly (by the primitives). 

A functional representation. 
a function f, we assume that: 

If we consider a closed domain defined by such 

P &  * f ( P ) > O  

P E R d \ f l  * f ( P ) < O  
P E d R  * f ( P ) = O  (16.16) 

which introduces a classification of the points of Rd. Hence, the points P internal 
to the domain are those verifying f ( P )  > 0, whereas the boundary points are such 
that f ( P )  = 0. We can see how this approach relates with implicit curves and 
surfaces introduced in the previous sections. 

Primitives. In CSG, numerous geometric forms can be considered as primi- 
tives, from the simplest ones to the more “exotic” ones, from planes and quadrics 
(spheres, cones, cylinders, ellipsoids, etc.), to  superquadrics (Figure 16.22). 



MESHING IMPLICIT CURVES AND SURFACES 557 

Figure 16.22: Examples of superquadric surfaces (supertorus) that can be used as 
primitives in CSG. 

More generally, each primitive can be expressed as a special instance (occur- 
rence) of a function chosen from a finite set of possible types. Hence, for instance, 
the equation: 

2 2 
f(x, Y, z )  = r - ((x - cXI2 + (y - cYl2 + ( z  - c,) ) = o 

defines, in three dimensions, the primitive corresponding to the representation of 
a sphere of radius r and centered at the point C = (ex, cy, c,). 

Boolean operations. As we have already mentioned, constructive geometry is 
based on the combination of primitives using boolean unary and binary opera- 
tions. In this context, the set operations is replaced by operations related to  the 
corresponding functions. 

For example, the union and the intersection of two primitives, defined by the 
function f l  and f 2 ,  can be written as follows1o: 

f l  u f2  = f1+  f2  + Jfi2+fi2 and f l  n f2  = fl  + f2  - JG. (16.17) 

Notice that these functions Ck-continuous (k 2 1) present C1 discontinuities when 
f1 = f 2  = 0. 

See [Pasko et al. 19951 for the definition of several other operations. 

Implicit domain meshing 

We have seen that an implicit domain is one whose boundary is an implicit curve 
(surface). Given this remark, two approaches are possible to mesh such a domain: 

a the hierarchical approach which consists of meshing the boundaries of the do- 
main using one of the meshing techniques described here, prior to  providing 
the resulting mesh to  a “classical” meshing technique (Chapters 5 to 7), 

lousing the symbols relative to the underlying sets. 
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a the global approach which considers the mesh generation for implicit domains 
as an extension of the meshing techniques for implicit curves and surfaces. 

We will now briefly explain the global approach. 

Global approach. Enumeration or adaptive subdivision methods are more adap- 
ted to this problem than continuation methods, mainly because the latter “track” 
the boundary and “forget” the elements not intersected by the boundary. The 
creation of the point cloud and then of the boundary mesh (curve or surface) is 
thus considered to  be resolved. 

The internal point creation and thus of the elements is related to  the type of 
the spatial partitioning used. Hence, in three dimensions, when the covering up 
is of composed of woxels (uniform regular grid), or of the octree type, predefined 
patterns can be used [Frey et al. 19941. For a simplicia1 covering up, the texel 
approach proposed by [Frey et al. 19961, consists of introducing a point in each 
simplex (this point is chosen so as to guarantee a suitable mesh gradation) and in 
using the Delaunay kernel as the element creation procedure (cf. Chapter 7). 

Finally, an optimization procedure based on the element shape quality is ap- 
plied, first on the boundary elements, then on the interior of the domain (see 
Chapters 18 and 19 for more details about the modifications used). 



Chapter 17 

Mesh Modifications 

The aim of this chapter is to  review some methods designed for mesh modification 
and manipulation (except for those concerning mesh optimization which will be 
discussed in the next two chapters). Provided with one or several meshes we are 
concerned with the methods that manipulate this (these) mesh(es) in various ways. 
Among the points of interest here, we first review mesh transformations with a 
geometric nature, the way in which two meshes can be merged into a single one, 
refinement techniques and various operations related to the attributes associated 
with the mesh in question. 

* * *  
Geometric mesh transformations are briefly reviewed together with transfor- 

mations resulting in a global or a local mesh refinement and methods for geometric 
type change. In addition we discuss how to merge two meshes (sharing a com- 
mon boundary part). Then, we give some information about node construction 
and node numbering for elements other than P1 elements (namely where the nodes 
can be different from the vertices). Various representative finite elements are listed 
to illustrate how to construct (to number) the nodes. Then we focus on how to 
optimize, in some sense, both the vertex (node) and the element numbering in 
a mesh. To conclude the chapter, various other aspects are discussed (including 
how to manage the mesh physical attributes properly, how to use two different 
meshes, etc.). 

17.1 Mesh (geometric) modifications 

Depending on the geometry of the domain we want to  mesh and the capabilities 
of the mesh generation method that is used, it is often tedious to construct a 
mesh that satisfies certain repetitive properties (such as symmetry) enjoyed by 
the domain itself. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 



560 MESH GENERATION 

Thus, one way to  achieve such repetitive features is to design the mesh genera- 
tion process by defining explicitly what is expected. In other words, a domain with 
a symmetry (if we consider this example) is split into two parts. One of these is 
effectively meshed (using a mesh generation method), then a symmetry is applied 
to the resulting mesh and both meshes are merged in order to complete a mesh of 
the whole domain that obviously includes this symmetry. 

Popular geometric transformations 

For the sake of simplicity, we only consider P1 meshes (the element nodes are the 
element vertices, the element edges are straight and the element faces (in three 
dimensions) are planar; see Definitions (17.1) and (17.2) below. 

Given a mesh, the goal is to create a new mesh resulting from a classical 
geometric transformation (symmetry, translation, rotation, isotropic or anisotropic 
dilation or a more general transformation explicitly defined by a transformation 
matrix). 

If the transformation corresponds to a positive isometry, it only affects the 
position of the mesh points; thus both the connectivity and the numbering of the 
elements remain unchanged. 

Otherwise, a transformation corresponding to  a negative isometry, acts on the 
position of the mesh points and, in our situation, on the numbering (or connec- 
tivity) of the element vertices, in such a way that the resulting elements maintain 
positive surface areas (in two dimensions), or positive volumes (in three dimen- 
sions). To achieve this, a permutation of the list of the element vertices must be 
carried out (for example, a triangle with vertices (1,2,3) must be transformed into 
the triangle with vertices (1,3,2)). The different transformations of interest are: 

0 symmetries with respect to a line or a plane, 

0 translations or shifts of a given vector, 

0 isotropic or anisotropic dilations about a given center, whose dilation coeffi- 
cients are given, 

0 rotations of a given angle around a point or an axis (in three dimensions), 

0 or general transformations (given through their explicit matrices). 

In addition, any combination of these operators defines a new transformation. 

a vertex in the initial mesh, the corresponding vertex, PI, is obtained as: 
In practice, a transformation can be defined using a matrix 7ra. Thus, if P is 

PI = I ra (P) .  (17.1) 

This simply means that we have, in R2: 

( f: ) = [ I r a ]  ( f ) 7 
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with I,, a 2 x 2 matrix (or more generally, a d x d matrix, in d dimensions). 
Nevertheless, in order to give an explicit and easy description of the trans- 

formations considered, we use a coordinate system where these coordinates are 
homogenous (i.e., vertex with coordinates (x, y) is seen as the triple (x, y, 1)). 
The matrix is then a (d + 1) x (d + 1) matrix (regarding these matrices, see 
[Rogers, Adams-19891). Hence, in two dimensions: 

-2 
A2 + B2 

1+B2F  BCF w i t h F =  
0 1 

corresponds to  a symmetry with respect to the line Ax + B y  + C = 0, while 

is a translation of vector (T,, T,). A dilation of coefficients (a,, a,) whose center 
is (Cz, C,) is characterized by 

1 
and a rotation of angle a about a point P = (P,, P,) is defined by 

1 

In three dimensions, we have respectively (with similar notations) 

1 + A 2 F  A B F  ACF A D F  

A C F  BCF 1+C2F  CDF 
0 0 0 1 

-2 
A 2 + B 2 + C 2  

with F = 

l O O T ,  
O l O T ,  

I,, = 

for a symmetry. 

‘ ,=I0 0 0 0  0 1 T , ]  1 

for a translation and 

l I 0 0 0  1 

a, 0 0 Cz(l-az) 
0 a, 0 Cy(1-ay) 
0 0 a, C,(l-a,) 

%a = 
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for a dilation. For a rotation about the x-axis, I,, reads: 

1 0  0 0  1 0  0 pz 1 0 0 -Px 
0 COSQ -sina 0 0 cosa -sina 0 1 0 -Py 1 :: siga co;a :] 0' [ :: siga co;a !] 1 :: :: -:I 

depending on whether the rotation is made around the origin or an arbitrary point 
P. For the rotations about the other axis, we find similar expressions, i.e., (with 
P at origin): 

%a = 

cosa 0 sina 0 cosa -sina 0 0 

-sina 0 0 1 0 0  cosa 0 ] and 1 siia e ]  0 0 0 1  

about the y and the z-axis respectively. Matrix I,, defined by: 

a2 - Sd + CS2g 
SC2a + Cd + SS2g 

ab - Se + CS2h 
SCzb + Ce + SSzh 

ac - Sf + CS2i 
SCzc + Cf + SS2i 

0 
0 

0 0 0 1 
-S2a + C2g -Szb + C2h -szc + c2i 0 

corresponds to a rotation of angle a,  of axis A = (Ax, A,, A,) around point P = 

( O , O ,  0). In this matrix (cf. Figure 17.1), we have: 

(J&), 
if Ax # o , $  = arctan (1), = arctan 

C = cos$ and S =sin$, C2 = cose and S2 sine,  

(&), a otherwise, if A, # 0, 8 = arctan 

C = 0, S = 1 and C2 = case, S2 = sine, 

otherwise C = 0, S = 1 and C2 = 0, S2 = 1,  

where 

a = C2C, b = CZS, c = -S2 and d = - cosaS - sinaS2C, 

e = cosaC - sinaSS2 and f = - sinaC2 and finally 

g = - sin aS + cos aSzC, h = sin aC + cos ass2 and i = cos aC2 . 
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t "  

Figure 17.1: Rotation about axis 
A = (A,, A,, A z ) .  The angles q5 

* and 8 enable us to return to a ro- 
tation in terms of a about the x -  
axis. 

X 

As an exercise, we now check that the above matrix is nothing other than the 
combination of the matrices 

Za(4 ,  2) 0 z~(Q, 0 ~ a ( a r  2) 0 Z a ( - Q ,  p) 0 Z a ( - $ ,  2) 
where I , ,(angle,vedeur) stands for the matrix related to  the rotation of angle 
angle and axis vecteur. 

We consider the case where A, # 0. Then, writing only the sub-matrices 
corresponding to  the rotation, the above expression leads to  computing the product 
of the five following matrices: 

c -s 0 cz 0 sz 0 0  cz 0 -sz c s o  

using the above notations (where c a  is short for C O S Q  and s a  is short for s i n a ) .  
It is then easy to  write this operation as follows: 

TI T2 T3 T4 T5 ' 

Now, we compute the product TI T2, thus: 

cc, -s cs, 

-s, 0 cz 
sc, c ss,] 

We note the product T3 T4 T5 by: 

[:' 8 " 1  
g h i  

We then return to the above matrix T,, after completing the product of these two 
matrices. To end, we express T3 T4 T5 as a function of T3 and the product T4 T5, 

0 thus leading to the coefficients a,  b, ..., i. 
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Remark 17.1 The center of rotation is supposed t o  be at the origin; to  return 
t o  a general situation, this corresponds t o  adding the translation which takes into 
account the adequate point P = (Pz,  Py, P,) This comes down t o  applying first 
a translation of vector (-P,, -Py, -Pz) and, after applying this to  the result of 
above matrix T,,, t o  applying the opposite translation. 

Remark 17.2 In the case of a rotation, the definition of angles q5 and 8 by an  
arctangent gives a determination at modulo 7r. W h e n  programming such an  op- 
erator, this ambiguity mus t  be removed using the sine and cosine of the angles in 
such a way that they are well determined. Thus, we compute the coeficients C, 
S, Cz and Sz directly according t o  A,, A, and A, t o  avoid this indetermination. 

Local and global refinement 

We briefly discuss methods resulting in a global or a local refinement in a mesh. 

Global refinement method 

Figure 17.2: Global partitioning A- A of a triangle fo r  n = 3. 

Provided with a global subdivision parameter, n, a global refinement method 
involves a “uniform” partition of all elements in the mesh. Each element is then 
split into nd (d  being the spatial dimension) elements with the same geometric 
nature. It could be noted that splitting triangles, quads, as well as hexahedra 
or pentahedra results in similar elements. On the other hand, the same method 
results in non-similar sub-meshes in the case of tetrahedral elements. 

A global refinement method can be used both for mesh construction and for 
analyzing the quality of a solution. In the first case, a coarse mesh is constructed 
which is then subdivided in order to achieve a fine enough mesh. In the second case, 
repeated global refinements is one way to check some convergence issues about the 
solutions computed at  the different levels. Note that such a method rapidly leads 
to large meshes (in terms of the number of elements). In this respect, the different 
refined meshes can be used to  compare a mesh adaptation method with variable 
and local stepsizes with a “reference” solution computed on a uniform fine mesh. 

Remark 17.3 A particular process mus t  be carried out when the element under 
partition has a boundary edge (face). This mus t  be subdivided by taking into ac- 
count the geometry of the boundary. 
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Local refinement method. Unlike the previous global method, a local refine- 
ment method allows the creation of meshes with variable densities (in terms of 
element or vertex spacing). Thus, some extent of flexibility is obtained. Such a 
method can serve as a way to  achieve some adaptive features and can therefore be 
used to  deal with adaptive processes (as will be seen in Chapter 21 for example). 

Figure 17.3: Some local possibilities for splitting a triangle. 

In practice, a list of vertices is given, around which a refinement is expected. 
The way in which this list is defined depends on the criteria used in the computa- 
tional process. For instance, edges in the current mesh which are judged to be too 
long can be defined and their endpoints can be put into the above list of vertices. 
Then, the elements are split according to the local situation. Figure 17.3 shows 
an example where a point is created along one edge (left-hand side), three points 
are defined as edge midpoints (middle) and a point is inserted inside the initial 
triangle (right-hand side). 

Figure 17.4: Several local partitionings of a quad. 

Figure 17.4 considers the case of a quad. The initial quad (left-hand side) is 
split into four sub-quads by introducing the edge midpoints (middle) or into three 
sub-elements by introducing two points along two consecutive edges (right-hand 
side). Figure 17.5 illustrates a tet example. One point is created along one edge 
(left-hand side), one point is created in a face (middle) while a point is created 
inside the initial tet (right-hand side). 

Figure 17.5: Several local partitionings of a tet. 
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Remark 17.4 The important point is to ensure a good quality of the resulting 
elements, which means seeing whether the shape of the initial elements is  preserved 
or altered by the local process. 

Remark 17.5 Another topic to be addressed is  that of maintaining a conforming 
mesh. To this end, elements in some neighborhood of the elements which are 
refined must be considered as candidates for some extent of refinement. 

Numerous theoretical works can be found on how angles, shapes, etc., are 
preserved or not when applying local splitting (see, for instance, [Rivara-l984b], 
[Rivara-19901, [Rivara-19971). 

The reader is also referred to Chapter 21 for more details about local mesh 
modification tools and to Chapter 8 where some other possibilities for local split- 
ting are given. 

Type conversion 

Geometric type change of the elements in a mesh proves to be useful in various 
contexts. A quad element can be split by means of triangles using three different 
patterns (Figure 17.6). A triangle may be split into three quads (same figure) 
but the resulting quads may be poorly-shaped (see Chapter 18 regarding quality 
measures for both triangles and quads). 

Figure 17.6: A triangle leading to three quads (bottom) and a quad leading to two 
or four triangles (top). 

Similar change type operators can be formally defined for three-dimensional 
elements. The above transformation of a triangle into quads extends to three 
dimensions which allows a tet to be split by means of hexahedra. Nevertheless, 
as will be seen in Chapter 18, the degree of the vertices in the resulting mesh is 
very poor. Pentahedra can be split using tets (actually three tets are required). 
Hexahedra can be split into tets using five or six tets (Figures 18.3 and 18.4). 

Remark 17.6 There are 74 possibilities for  remeshing a given hex into tets, with 
two solutions for a five-element splitting and 72 for  a six-element pattern. 
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Exercise 17.1 Find this number of splitting (hint: find all the types of tet that can 
be constructed based on the hex vertices (58 cases are encountered), then, examine 
all the possible valid pairs. Suppress the pairs of tets separated by a face plane, 
look at the case where a face plane is common to two tets and show the 72 cases 
where the face is really a common face). 

17.2 Merging two meshes 

Various other mesh modification or mesh post-processing are also of interest. 
Among these is a process for merging two given meshes into a single one when 
these two initial meshes share a boundary region. 

Merging two meshes into a single one is frequently necessary. Several points 
must be taken into account including how to find the common entities (vertices, 
edges and faces), in spite of the round-off errors, and how to complete this task 
quickly. Another question is to  find a new numbering (labeling) for the vertices 
(resp. elements) in the resulting mesh. 

Before going further, let us give a more precise formulation of the merging 
problem. Let fl1 and f l 2  be two domains in two or three dimensions and let 71 
and 7 2  be the two corresponding meshes. We assume that these two domains share 
a common boundary region. We also assume that these meshes have been pro- 
duced by any of the suitable mesh generation methods in an independent manner. 
Nevertheless (at least irrespective of the round-off errors) the meshes of the inter- 
face regions are assumed to  be strictly identical. This mesh is in d - 1 dimensions 
and thus consists of segments (d = 2) or of faces (d = 3). 

If 71 n 7 2  stands for the mesh of the above interface, the merging problem 
consists of combining the vertices and the elements in 71 and in 7 2  in such a way 
as to  obtain a single mesh 7 = 71 Ulz .  This question can be subdivided into three 
sub-problems: 

0 a problem of a metric (geometric) nature which consists of identifying the 
entities (vertices, edges and faces) common to the two meshes, 

0 a problem of vertex numbering that leads to finding an index (a label) for all 
the vertices in the mesh resulting from the merging process. This involves 
assigning, in a consistent manner, a numbering system to the three types of 
vertices that are met in the resulting mesh, say the former vertices in 71 not 
common with 7 2 ,  those in 7 2  not common in 71 and, finally, those in 71 nT2, 

the interface, 

0 and a problem of element numbering that consists of finding a global num- 
bering system in the resulting mesh. 

As assumed, the points in the interface are supposed identical (i.e., this interface is 
meshed in a similar way once the two initial meshes have been constructed). Nev- 
ertheless, in practice, and due to  the potential round-off problems, these points 
which are assumed to be identical are in fact identical for a given tolerance thresh- 
old. Thus, a searching technique with an accuracy of E must be used. The common 
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entities being identified, it remains to  find the numbering of both the vertices and 
the elements. Let num(P)z  be the index (the label or the number) of vertex P 
in Z for i = 1,2. The problem becomes one of finding these values for the entire 
set of vertices whereas the element labeling problem is obvious. 

All these points will be discussed below, but first we discuss how to find the 
common entities and then we turn to the numbering issues. 

Finding the common vertices (geometric point of view). Here, given a 
vertex in 71 also included in 71 n 7 2 ,  we discuss how to find the corresponding 
vertex in 12 (and conversely). Using a hashing technique (Chapter 2) has proved 
very efficient for this task. This operation consists of several stages: 

a Constructing a hashing table based on mesh 71, the first mesh. 

The two initial meshes are enclosed' in a quadrilateral "box" (hexahedral box in 
three dimensions). The box dimensions A,, Ay and, in three dimensions, A, are 
computed as well as A = max (Az, Ag, Az) ,  see Figure 17.7. Given E ,  a threshold 
tolerance, we define a sampling stepzize 6 as: 

6 = 2 ~ A ,  

which is the resolution power of the method. 

C-, A, * 

Figure 17.7: The box enclosing the two initial meshes and the virtual grid with the 
parameter values associated with the merging algorithm. 

A grid with boxes (cells) of size 6 is defined2 which formally discretizes the 
space. The vertices in 71, the first mesh, are classified with respect to  the grid 
boxes. To this end, if x, y and z are the coordinates of a given point P,  we associate 

X - Xmin Y - Ymin 

6 
with this triple a triple of integers i ,  j and k defined as i = , j =  

'Note that it is also relevant to define the enclosing box as the box based on only one mesh (for 

21n practice, this grid is not actually constructed. 
instance, the smaller mesh, in terms of the number of vertices), this box being slightly dilated. 
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Z - Zmin 

6 
, where xmin, xmin and zmin are the coordinates of the bottom and k = 

left corner of the introduced box. 
Then, a hashing function is used which associates a hashing value with the 

triple i ,  j ,  k (and thus with point P) .  For example, H f u n c ( i ,  j ,  k )  = i + j + 
k modu lo (mod) ,  where mod is a given integer, is a possible hashing function (see 
also Chapter 2). 

This key serves as an entry point in a linked list containing the points of mesh 
71. For example, if H f unc and L i n k  are the two above “tables”, for a given point 
P with coordinates z , y , z ,  we compute keyhach = H f u n c ( P )  = H f u n c ( i , j , k ) ,  
then, if Link(keyh,,h) # 0, Q1 = Link(keyhach)  is the index of the first point 
related to  P while the other points (91, if any) related to  P are obtained via the 
sequence: 

1 + 1, keYhach + &I 

REPEAT keYhach = Link(keyhach)  
IF keYhach # 0, 

Z t l + l ,  
&i + keYhach 

OTHERWISE, END. 

Then, this material3 is used to  find the vertices in the second mesh which are 
common to the vertices in the first mesh. 

Remark 17.7 In some geometric situations, the virtual enclosing grid can be de- 
jined as the intersection of the two enclosing boxes associated with the two initial 
meshes in which the interface necessarily falls. Depending o n  the relative posi- 
tions of the initial meshes, the virtual grid i s  significantly reduced and thus the 
corresponding parameters are better adapted. 

Now, we can proceed to the next stage of the process. 

a Analysis of mesh 7 2  with regard to  the above hashing table. 

Once all the points in 7 1  have been processed, we consider the vertices in 7 2 .  Given 
point P in 12, we compute4 keyhach = Hfunc(P) ,  the value associated with P,  
i.e., the equivalent of the box in which P falls. If z, y are the coordinates of P (for 
the sake of simplicity, in what follows, we assume a two-dimensional problem), we 
also compute the keys associated with the virtual eight points whose coordinates 
are (x, y f s h i f t ) ,  (x f s h i f t ,  y ) ,  (x - s h i f t ,  y f shi f t )  and (x + s h i f t ,  y f shi f t )  
where s h i f t  = $ = E A (in fact, a value smaller than this theoretical value must be 
used, for instance, instead of shif t  = 0.5 6 ,  it is advisable to take s h i f t  = 0.499 6 ) .  

3Another use of this hashing is to find the points in ‘TI which are “close” to a given point. 
41f the grid is based on the first mesh only, it is necessary to check that P falls within the 

grid before computing its key, otherwise, point P is not considered. 
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Figure 17.8: The eight virtual points 
result in four different hashing keys. 

Due to the value of s h i f t ,  only four different keys can be found (Figure 17.8). 
Then, let keyhach be one of these entry points, we just have to visit table H f u n c  
in parallel with table Link  to find the vertices of M1 which are “close” to point 
P under examination. 

Let Q be such a point, then if max(Ixp - ZQ~, lyp - Y Q ~ )  5 6, the pair (P, Q) 
is a candidate pair of common points, otherwise, table Link  is visited to find any 
other possible candidates. 

Remark 17.8 I n  this algorithm, we can stop once the first candidate pair has 
been obtained or we can continue in order to check i f  there is  more than one point 
in 1 2  which forms a candidate pair. I n  such a case, a natural idea is  to pick the 
closest point as the solution. 

Remark 17.9 Following the previous remark, due to round-off errors or due to 
the more or less strict coincidence of the “common” boundaries, it is possible to find 
several points in 1 2  which are identified with only one point in 11; see Figure 17.9. 
To prevent such a problem, we consider the pairs of “identical” points resulting 
from the merging of11 with 1 2  along with those resulting from the merging of 1 2  

with 11. Then, the pairs which are in both lists are solutions. 

Finding the common entities. Common geometric vertices are obtained using 
the previous algorithm. Nevertheless, merging two meshes requires finding not only 
the common vertices but the common edges and faces as well. In addition, the 
merge can be based on a more general definition of the common entities involving 
not only the geometric point of view. 

0 Pure geometric merging process 

In this case, the common vertices are determined using the above method. Then, 
common edges are those whose endpoints are common while common faces are 
those whose vertices are common. Exhibiting both the common edges and faces 
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F- : B1 

Figure 17.9: Merging and 12 results in the pairs 
(B1, A l ) ,  (B2, A l ) ,  (B3, A4), (B4, As),  ... (left-hand side) while merging 12 and ‘& 
produces the pairs (A l ,  Bz) ,  (Az, Bz) ,  (As, B4), (A4, B3), (As, B4), ... (right-hand 
side). Then  the points which are judged coincident are A1 and B2, A4 and B3, A5 
and Bg, etc. Note  that, for clarity, the two meshes have been slightly shrunk, in 
fac t  the common boundaries are assumed to  be coincident or, at  least, very close. 

and not only the common vertices allows for an easy check of the Euler formula 
(Chapter l), thus providing a way to guarantee the correctness of the resulting 
mesh. 

0 More sophisticated merging process 

In this case, we consider both the geometric aspect and the physics of the problem. 
Including the physics in a mesh (see Chapter 1) involves associating some physical 
attributes (integer values, for instance) with the mesh entities (vertices, edges and 
faces). Then two vertices are said to be common if they are geometrically common 
and, in addition, if their two physical attributes are identical. Similarly, common 
edges and faces are defined by taking into account the physics. For instance, 
introducing physical considerations is a simple way to  define cracks (in fact, two 
edges located at  the same location exist a t  a given time and, due to  the nature of 
the problem under consideration, are then clearly different: a crack appears.) 

Numbering issues. This point may concern two aspects, element numbering 
and vertex numbering. Actually, depending on how the mesh data structure is 
defined, the mesh elements have an explicit numbering (or index) or are simply 
sequentially enumerated (meaning that the first element is that located at the 
beginning of the “table” which stores them). Whatever the case, the elements 
in mesh 7 are formed by the elements in mesh 71 sequentially followed by those 
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of mesh 7 2 .  On the other hand, vertex numbering must receive some explicit 
attention. 

If n1 (resp. n2) is the number of vertices in ?; (resp. 3) and if n u r n ( P ) z  
is the index5 of vertex P in mesh ?;, then the aim is to  define n u r n ( P ) ~  for any 
point P in 7.  The points in 7 are classified into three categories: those which are 
points of the former mesh 7 1 ,  those which are common to 7 1  and 7 2 ,  the interface, 
and, finally, those which are points of the former mesh 7 2  not common to the 
interface. 

Once the common entities have been established, the common points are known. 
In other words, we know a correspondence table like 

P E ~  Q E ? ; ,  

for all the points in the interface. Then, the following algorithm can be used to  
find the vertex numbering: 

num(P)7 = 0 f o r  a l l  P E 1 2  

n t n l ,  
IF PET1  

num(P)T t num(P)I, 

IF P E T~ n 1 2  

IF P E T 2  

n u m ( P ) ~  t num(Q)7, where P E 12 U Q E II 

n t n + l  
n u m ( P ) ~  t n.  

OTHERWISE IF n u m ( P ) ~  = 0 

END IF 
END IF 

In fact, initializing this table from n1 + 1 to n1 + 722 ensures an adequate 
initialization (since nl + n2 is larger than the number of vertices in the final 
mesh). Using the initialization stage of this algorithm allows us to number the 
vertices by visiting the elements in the global mesh. Indeed, n u r n ( P ) I  = 0 means 
that the index of vertex P must be defined while n u r n ( P ) ~  # 0 means that the 
index of P has been already established ( P  is a member of the (former) first mesh 
or P is in the interface or, finally, P has already been labeled when processing an 
element prior to the current element). 

Remark 17.10 The vertex numbering is a priori not optimal ( in  any sense), es- 
pecially, merging II and 12 results in a different numbering f rom merging 3 and 
71. Thus, a renumbering algorithm can be necessary t o  optimize the final mesh. 

Remark 17.11 The merging of two meshes, a very natural and frequent operation 
in mesh  generation packages, can be seen in a very different way. In fact, based 
on  the methodology used to  define the mesh  of the entire domain by partitioning 
this domain in to  regions where a mesh generator is  used, the regions common to  
two (local) meshes are formed by a set of two lines or two surfaces that have been 

5~ndeed, in general, n u r n ( ~ ) 7 ,  = P. 
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explicitly defined beforehand. Therefore, the interfaces are a priori known, i.e., 
no t  t o  be sought in one way or another. In fact ,  the storage of this information 
in a mesh  data structure i s  no t  trivial, and consequently we mus t  regenerate t h e m  
by computation. This  apparent weakness i s  compensated for, o n  the one hand, by 
the e f ic iency  of the merging algorithm and, o n  the other hand, by the resulting 
modularity in the sense that merging formally becomes independent of the design 
of the local meshes. 

To conclude, it should be noted that, in terms of CPU, the hashing technique 
used to find the coincident vertices has proved to be fairly inexpensive. Thus, the 
computational effort necessary to  merge two meshes is mainly due to the 1/0 steps 
of the process. 

17.3 Node creation and node labeling 

Both the creation and the adequate numbering of finite element nodes is a crucial 
task when finite elements other than P1 are needed (a section, at the end of the 
chapter, will come back to  this question, which is also discussed in Chapter 20). 
In this section we discuss how to assign a number (an index) to  the nodes of a 
given mesh. We briefly consider this numbering issue at the mesh generation step 
and we turn to  the case of meshes whose nodes do not reduce to  their vertices. 
Renumbering issues (for optimization purposes) will be discussed in the next sec- 
tion. 

Vertex and element labeling 

As discussed in many chapters, numerous mesh generation methods exist which 
complete a so-called P1 mesh (see Definition (17.2), below). Apart from some 
specific methods which result in a specific vertex (element) numbering, there is no 
particular reason that the vertex (element) numbering obtained should be optimal. 
The creation of a mesh with nodes other than the mesh vertices leads to the same 
conclusion since the sole aim of the node numbering (discussed below) is to assign 
a number to the mesh nodes without any concern about the optimality of this 
numbering. 

Node creation 

To introduce the problem, we discuss how to define P2 finite elements. As previ- 
ously seen, mesh generation algorithms implicitly construct P1 meshes. To make 
this notion precise, we first review Definition (1.15) in Chapter 1: 

Definition 17.1 A node i s  a point supporting one or several unknowns or degrees 
of freedom (dof). 

A formal definition of a P1 type mesh is as follows. 
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Definition 17.2 A P1 mesh i f  a mesh whose geometry is  Pl, meaning that the 
element edges are straight and, in three dimensions, the element faces are planar, 
and whose nodes are reduced to its vertices. 

Every mesh vertex is then considered as a node and the geometric elements6 are 
actually the finite elements (once the basis functions are defined; see Chapter 20). 

In this section, we assume that a mesh implicitly of a Pl-type is given and we 
wish to define a P2-type mesh. We assume in addition that the given mesh is com- 
patible in a sense that will made clear hereafter, with respect to a P2 interpolation. 
The problem is then to  define the “midpoint” nodes along the boundary edges (for 
a problem in two dimensions; see Figure 17.10), as the extra nodes required for the 
interior edges are trivial to  obtain. Boundary nodes must be properly located on 
the boundary and thus we need to  know which edge is a boundary edge and, for 
a boundary edge, we also need to  have a suitable representation of the geometry, 
so as to enable the proper location of the new node. 

P P 

Figure 17.10: Construction of a P2 finite element. An element resulting from the 
mesh generation method previously used is  shown on the left where r denotes the 
boundary domain. The corresponding P2 element is depicted on the right-hand 
side. This six node triangle includes as nodes the three vertices P,a,p together 
with the above three edge “midpoints” ai. Actually, for a straight six node triangle, 
the iimidpoints” are the edge midpoints while for  a curved (isoparametric) six node 
triangle, these ai ’s must be properly located on r (for a boundary edge). 

Hence, two problems must be addressed. First, how to find a proper location for 
the nodes (other than element vertices). Second, how to find a global numbering 
of the nodes. 

Node construction and p-compatibility 

The most used finite elements (see below) involve either edge midpoints as nodes, 
several points along every element edge and/or some points inside the element. 
In three dimensions, nodes may be defined along element edges, element faces or 
inside the elements. Note also that element vertices may or may not be nodes. 

Definition 17.3 A given mesh, assumed to be P1 is termed p-compatible i f  finite 
elements of degree p can be constructed resulting in a valid mesh. 

61.e., the elements constructed by any mesh generation method. 
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Actually a mesh is p-compatible if all of its elements are p-compatible. The 
element depicted in Figure 17.10 is 2-compatible. 

At this stage, the p-compatibility is assumed and remains purely intuitive. 
Let us simply consider that edges close enough to a curved boundary r result 
in a p-compatible mesh. This will be discussed with more detail in Chapters 20 
and 22 where conditions ensuring this property will be developed. In fact, we 
have introduced this notion to make the node numbering problem consistent (we 
assume that creating these nodes poses no problem). 

Node labeling 

When the nodes are created, it is necessary to find a suitable numbering system 
for them both at the element level (local numbering) and at  the mesh level (global 
numbering). At the element level, it is necessary to  find a number (an index) for 
a given node. At the mesh level, it is necessary to  associate a global index with 
the above local indices. Furthermore, it could be of great interest to optimize the 
resulting node numbering (see below). 

Nodes are created along the mesh edges, in the mesh faces or inside the mesh 
elements based on the type of the finite element which must be defined. In the 
case where a constant number of nodes is defined for a given entity, the index of 
a node can be easily related to  the index of the underlying entity. On the other 
hand, when the number of nodes varies for a given entity, finding a node index 
requires more subtle attention. 

0 Local numbering. 

The definition of a finite element includes the definition of its nodes (see C K  
hereafter). In other words the local numbering of the nodes is explicitly known. 
For example, the P2 triangle consists of six nodes. The first three nodes are the 
three vertices while the mid-edge nodes form the nodes 4,5 and 6 of the element. 
Usually, the first nodes are the vertices and they follow their local numbering while 
the others, if any, are sequentially numbered based on their supporting entities (the 
edges, then the faces and, finally, (the interior of) the element). 

0 Global numbering. 

Given a finite element, i.e., its node list, the aim is to find a global node numbering 
over the entire mesh. In practice, a t  the computational step, the elements are 
considered one at  a time and the correspondence (let us consider again the six 
node triangle) 

[I, 2,3,4,5,6] ==+ [ni, 722,723, ..., 7261 , 
is used to  perform the necessary calculation. Indeed, the labels nl, n2 and n 3  are 
known (as a result of the mesh generation step which completes a P1 mesh) and 
the numbering problem reduces to  finding the three remaining labels. To this end, 
we can construct the list of the mesh edges, assign a number to any edge while 
maintaining the relationship between this edge number and the element numbers. 
Then, fix num = np, where n p  is the number of mesh vertices and we use the 
following algorithm: 
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FOR i = l , n e ,  ne being the number of elements 
Visit the edges of element i in the mesh. 
If the examined edge has not been previously visited 

(while visiting an element with index i less than the current index), 
Assign the index of the known node to the edge node 
Proceed to the next edge. 

OTHERWISE 
Set num = num + 1 
Associate num with the edge and 
Take num as the index of the node in the examined edge. 

END IF 
END FOR 

For a finite element with more than one node on a given edge, the previous 
scheme must be slightly modified. Let k, be the (constant) number of nodes per 
edge, then the following algorithm must be used: 

FOR i = 1,ne 
Visit the edges in the mesh. 
If the examined edge has not been previously visited 

Use the index of the edge to find the various indices 
for the nodes related to this unique index 
Assign these indices to the nodes of the edge when considering 
it as indicated above based on the indices of its endpoints. 
Proceed to the next edge. 

then the values numl = np + k n ( j  - 1) + 1, . . . , 
numk, = np + k , ( J ' - 1) + k ,  = np + k ,  j are the node indices 
for this edge. 
Consider the endpoint indices, il and i2 and 
IF il < 22 

OTHERWISE, IF j is the edge index, 

Assign numl, num2, . . . , numk, to the edge nodes 
while seeing it from il to i2 

Assign numl, num2, . . . , numk, to the edge nodes 
now seen from i2 to il , 

IF il > 22 

END FOR 

For a finite element having some nodes on their faces (other than the nodes 
located on the face edges), the previous algorithm allows the face node numbering. 
An index is assigned to  the face and one has just to take care how the corresponding 
node labels are assigned so as to  insure a consistent numbering for a face shared 
by two elements. Again, comparing the labels of the face vertices is a solution 
to complete a consistent node numbering. Nodes inside an element are numbered 
according to the same principle. 

Remark 17.12 I n  this discussion we have assumed a constant number of nodes 
for  each entity. If this number varies, the global index is  not obtained by  a simple 
formula as above but by  adding one to the previous index used (note that the 
relationship between the entity index and the (first) node index is also required). 
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Some popular finite elements 

Due to node definition and numbering problems, we recall here some of the fi- 
nite elements that are, for the most part, extensively used in the finite element 
computational processes commonly included in available software packages. 

A finite element is fully characterized by a triple (see Chapter 20): 

where K is a mesh element, C K  is the set of degrees of freedom defined over K 
and PK denotes the basis polynomials (the shape functions) on K .  

In terms of geometry, we are mostly interested in what K should be. In terms 
of node definition, we have to focus on C K .  The other point, the basis polynomials, 
does not fall within the scoop of this book (see the ad-hoc literature). 

The geometry. Let us consider a triangle. The geometry of the three node 
triangle (namely the Lagrange P1 finite element) is fully determined by the three 
vertex elements. Similarly, the geometry of the straight six node triangle (Lagrange 
P2 element) is characterized by the three element vertices while the geometry of 
the curved (isoparametric) six node triangle is defined using the three element 
vertices along with the three edge “midpoints”. Thus, in the defining triple, K is 
the triangle resulting from the mesh generator or this triangle enriched by three 
more points. 

The node definition. The nodes are the support of the degrees of freedom. A 
given node may support one or several degrees. There are various types of de- 
grees. The most simple finite elements, namely Lagrange type elements, involve 
as degrees the value(s) of the unknown(s) which is (are) computed. For instance, 
depending on the physical problem, the pressure, the temperature, the displace- 
ments, the stresses, the velocity, the Mach number, etc., could be the unknown 
functions. Then, a temperature leads to one degree, its value, while a velocity is 
associated with two (three) degrees (one degree for one direction). More sophisti- 
cated finite elements, such as Hermi te  type elements, involve as degree the value 
of the unknown function together with some of its derivatives. Also beam, plate 
and shell elements use various derivatives as degrees of freedom. 

Now, given an element, the nodes can be located at  various places. “Poor” 
elements have only their vertices as nodes. Other elements, in addition, use some 
nodes located along their edges, on their faces or inside them. Note also that there 
exist elements whose vertices are not nodes. In addition, finite elements exist where 
several types of nodes are encountered for which the number of degrees of freedom 
varies. A few examples of finite elements can be found in Chapter 20. 

17.4 Renumbering issues 

As a consequence of vertex, node or element numbering problems, another issue of 
interest concerns the vertex (node) or element renumbering methods that allow the 
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minimization, in some sense, of the resulting matrices (i.e., based on the created 
mesh) used at  the solution step of a computational process. 

Renumbering concerns the solution methods that will be used subsequently. 
The aim is both to  minimize the memory resources needed to store the matrix 
associated with the current mesh and to  allow an efficient solution step for some 
solution methods where a matrix system must be considered. 

Vertex renumbering 

Various methods exist for mesh vertex (element) renumbering purposes. In what 
follows, we discuss in some detail one of the possible methods, namely the so-called 
Gibbs method ([Gibbs et al. 1976a]), and a variation of it. 

For the sake of simplicity, we consider Pl-type meshes and the case of arbi- 
trary meshes is discussed afterwards. The basic scheme of this method can be 
summarized by the three following steps: 

0 the search for a good starting point to  initialize the algorithm (following 
[A.George, Liu-1979]), 

0 the optimization of the numbering descent, 

0 the numbering itself based on the previous material using the Cuthill-MacKee 
algorithm ([Cuthill, McKee-19691). 

In order to describe the method, we need to introduce some notations and defini- 
tions. 

The mesh under consideration is 7, Pi is a mesh vertex and np and ne are the 
number of vertices and the number of elements, Kj is a mesh element. In terms 
of graphs, the vertices are also referred to as the nodes. Two such nodes are said 
to be neighbors if there exists an element in 7 with these two nodes as vertices 
(or nodes, in terms of finite element nodes). The degree of a node P, deg(P), is 
the number of its neighboring nodes. The graph, Gr, associated with 7 indicates 
the connections between the nodes (Figure 17.11). Note that a graph may contain 
one or more connected components, the connected component number k denoted 
as ck.  The neighbors of node P constitute Nl(P) level one of its descent. The 
neighbors of the nodes in Nl(P), not yet referenced, form N2(P), level two of the 
descent of P and so on. The descent of node P, D(P) is the collection of the levels 
&(P) .  The depth of P, d(P) ,  is the number of levels in D(P) .  

First, we establish the neighboring relationships from element to  element. At 
the same time, the degrees of the mesh nodes are found. Then, several steps are 
performed: 

0 Step 1: an initialization step corresponding to  the following algorithm: 

Pick in  7- the node P of minimal degree deg(P) 
(1) define D(P),  the descent of P ,  
consider the l a s t  l eve l  in  t h i s  s e t ,  i . e . ,  Nk(P) ,  
se lect  the node Q of minimal degree. 
form D(Q)  and compare D(P) with D ( Q ) ,  
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i) ii) iii) 

Figure 17.11: Connections f rom nodes t o  nodes f o r  a triangle i )  and a quadrilateral 
ii). Al l  the nodes of the element interact. For a quadrilateral iii),  a reduced graph 
can be constructed by  omitting the connections corresponding to  the diagonals. 

IF 4Q) > 4 P )  
replace P by Q 
RETURN to (1) 

OTHERWISE 

END IF. 
the initialization is completed. 

This step merits some comments. Actually, the initial guess P is the point with 
minimal degree. Indeed, P must be a boundary point but this way of processing 
avoids explicitly establishing the list of the boundary points while leading to  the 
desired result after very few iterations. 

On completion of the initialization step, we have found PQ the pseudo-diameter 
of the renumbering graph which now serves to  pursue the method. 

a Step 2: 

Given the pseudo-diameter PQ together with D(P) = {Nl(P), Nz(P), ..., Np(P)} 
and D(Q) = {Nl(Q), Nz(Q), ..., Np(Q)} where p is the depth of both the descent 
of P and that of Q, we construct the mesh descent D and more precisely its level 
Ni which will enable us to find the desired renumbering of the nodes. 

To this end, three stages are necessary. First, we construct the pairs ( i , j )  as 
follows: 

f o r  M a given point in 7 
find the level of D ( P )  and that of D(Q)  where is M 
Let N:2(P) and Nk(Q)  be these two levels, 
form the pair (i,j) such that j = p + 1 - k .  

Using this information, we can start the construction of the global levels: 

If the pair (i,i) exists for point M 
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put M in the level Ni 
suppress M from the list of nodes to be examined, i.e., from graph Gr .  

If Gr is empty, we go to  Step 3 of the global algorithm, otherwise, the remaining 
nodes must be classified in the different levels. 

The current graph Gr can now consist of a set of one or more disjoint connected 
components. These are found and ordered following the decreasing number of 
nodes they have. Let Cr, be the component of index k and let ncomp be the 
number of connected components, then we analyze the ncomp components: 

FOR k = 1, ncomp 
FOR m = 1 , p  

compute n, the number of nodes in level N,, 
compute h, = n,+ (the number of nodes) E ck nN,(P), 
compute 1 ,  = n,+ (the number of nodes) E ck n N,(Q), 

END FOR 
compute ho = max (h,) where h, - n, > 0 ,  

compute lo  = max ( I , )  where I ,  - n, > 0 ,  
m = l , p  

m=l,p 

IF ho < lo 
put all the nodes in ck in level Ni 
where i is the first index in the pair (i,j) associated with 
the node under examination, 

put all the nodes in C k  in level Nj 
where j is the second index in the pair (i,j) associated 
with the node, 

put all the nodes in ck in the level with the 
smallest dimension, 

OTHERWISE IF ho > lo 

OTHERWISE IF ho = lo 

END IF 
END FOR 

In this way, each vertex of Gr has been assigned a level in the descent. More- 
over, a nice balancing is obtained in the different levels, then the numbering, 
following Cuthill-Mackee, can be processed. This is the purpose of the following 
step. 

Step 3: 

First, if deg(Q) < deg(P),  we reverse P and Q and the levels obtained at 
the previous step to ensure that the numbering will start from the endpoint of the 
pseudo-diameter of lower degree. Reversing the levels leads to fixing Ni = Np-i+lr 
for i = 1,p. Then we want to  obtain newnum(M),  for M E M ,  the desired number 
of the vertex M .  To this end: 

Initialization, one starts from P ,  thus M = P  
n = l  
newnum(M) = n 
No = { P }  

FOR k = 1 
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If 3 M E Nk with adjacent vertices not yet renumbered 
construct the list C ( M )  = ad j (M)  flNk where adj (M)  notes 
the vertices neighbor of M 

OTHERWISE IF 3s E C ( M )  not yet renumbered (such points being 
considered following the increasing order of their degrees) 

n = n + l  
newnum(M) = n . 

END IF 
END FOR 

FOR k = 2 , p  - 1 
WHILE 3 M E Nk with adjacent vertices not yet renumbered 

construct the list C ( M )  = ad j (M)  flNk+l where ad j (M)  notes 
the vertices neighbor of M 

S OTHERWISE IF 3s E C ( M )  not yet renumbered (such points being 
considered following the increasing order of their degrees) 

n = n + l  
newnum(M) = n .  

END FOR 

If some cases (in fact, if P and Q were reversed and if j was selected in the 
previous step, i.e., ho > 10 was found when component C1 was analyzed or P 
and Q were not reversed but i was selected in the previous step) the previous 
renumbering is reversed: 

FOR z = 1 , n p  

END FOR 
i t n p - i + l  

This vertex renumbering method has proved very efficient, and is, moreover, 
fully automatic. It results in a significant minimization of both the bandwidth 
and the profile of the sparse matrix that will be associated with the mesh being 
processed. 

Arbitrary meshes. Given an arbitrary mesh (in terms of the node definition), 
the previous material can be applied for node renumbering. Let us consider a 
simple example, a P2 mesh where the nodes are the mesh vertices together with 
the edge midpoints. A possible node renumbering method could be as follows: 

0 apply the previous method to the P1 mesh associated with the current mesh. 
This comes down to only considering the vertices of the P2 mesh as nodes, 

0 use the resulting node numbering to complete the node numbering of the P2 
mesh. To this end, initialize i = 1 and num = 1, then 

- pick the node i in the P1 mesh, find the ball of node i, assign numbers 
num, num + 1, ... to  the P2 nodes of the elements in this ball that have 
not yet been renumbered, update num and repeat this process (with 
i = i + 1). 
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Remark 17.13 This  rather simple renumbering method i s  probably n o t  optimal 
but appears t o  be reasonable o n  average. T o  obtain better results, the  classical 
method could be performed by considering the f u l l  node graph of the mesh,  which 
therefore increases the effort required. 

Remark 17.14 T h e  case of adapted meshes,  in specific anisotropic meshes, i s  n o t  
really a suitable situation f o r  the above numbering method. 

Element renumbering 

A compact numbering of the elements may be a source of benefit a t  the solution 
step as this could minimize some cache default or some memory access default. 

A simple idea to  achieve this feature is to make the element numbering more 
compact around the mesh vertices. Thus, it could be of interest to renumber the 
mesh vertices first before processing the element renumbering step. A synthetic 
algorithm is then: 

Ini t ia l izat ions  
num = 0 
newnum(1 : ne)  = 0 

FOR j = 1,ne 
FOR z = 1 , n p  

IF Pi is  a vertex in  Kj and newnum( j )  = 0 
num = num + 1 
newnum( j )  = num 

END IF 
END FOR j 

END FOR z 

with the same notations as above (Kj  denotes an element and Pi denotes a ver- 
tex). At a glance, the complexity of this algorithm is something like O(n2)  where 
n stands for n e  (or n p ) ,  thus, this algorithm is not really suitable in terms of 
computer implementation. 

Application examples 

To illustrate the efficiency of the above method (for vertex renumbering), we give 
some selected examples related to various meshes. 

Table 17.1 presents various characteristics of the meshes before and after being 
renumbered. The first two meshes are in two-dimensional space, the two others 
correspond to three-dimensional cases. The values of interest are the total profile, 
the m e a n  profile, the bandwidth and v the number of nodes dealt with per second as 
a function of the size of the expected matrix, assumed to  be an n by n symmetric 
matrix (with n = n p ,  the number of nodes of the mesh). The bandwidth, p, is 
defined by 

P = m z ~ l i - j i I ,  

where i = l , n  and ji is the index of the first row where an a priori non-zero 
coefficient may exist. Indeed the value Ii -ji 1 ,  denoted as &, measures the distance 
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Mesh 

nP 
n e  

,8 (initial) 

Pr 
F m e a n  

P (final) 
pr 
Prmean 
pr 
Pr,, , ,  

v 

between the first " non-zero" row and the diagonal of the resulting matrix (i.e., 
in terms of vertex indices, the distance, given vertex index i ,  between the vertex, 
adjacent to  vertex i ,  which is as far as possible from vertex i) .  The profile and the 
mean profile are then 

1 2 3 4 

36,624 59,313 43,434 92,051 
72,783 116,839 237,489 463,201 

35,396 53,580 42,516 89,530 
364,616,352 827,498,368 483,132,896 2,194,965,760 

9,955 13,951 11,123 23,845 

811 458 1,368 5,186 
11,115,036 9,166,162 39,944,464 172,534,912 

303 154 919 1,874 
33 90 12 13 

29,000 27,000 11,000 10,600 

n 
pr 
n 

p r  =C& and prmean = - with n = n p  
i=l 

Table 17.1: Gibbs: bandwidth and profile before and after renumbering. Examples 
one and two concern two-dimensional triangle meshes while the two other examples 
are three-dimensional tetrahedral meshes. 

The Gibbs method proves to  be robust and efficient. In addition, it is fully 
automatic and does not require any directive. Comments on these statistics can 
be seen below (to allow the comparison with other renumbering methods). 

Remark 17.15 A n y  conclusion o n  the eficiency of a Gibbs based renumbering 
method must  be made more carefilly in the case of adapted meshes where the 
density of elements varies greatly f rom place t o  place or also when anisotropic 
elements made up  the mesh. In such cases, other renumbering methods m a y  be 
advocated (see below). 

Other renumbering methods 

Among the various renumbering methods, the so-called frontal method7 is now 
briefly discussed (to make some comparisons with the Gibbs method possible and 
to take into account the above remark). 

In essence, this method consists of radiating from a starting front. Let .Fo be 
a set reduced to  one node or a collection of adjacent nodes (generally chosen on 
the domain boundary), then the algorithm can formally be written as follows: 

7 ~ i ~ ~  referred to as greedy. 
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Figure 17.12: Matrix occupation associated with a given mesh before (left-hand 
side) and after node renumbering (right-hand side). For the sake of clarity, this 
example concerns a “small” mesh different from those described in Table 17.1. 

k t O  
(A) FOR i = l,curd(Fk) (the number of nodes in Fk) 

FOR all the elements sharing node i in Fk 
construct V i ,  the set of indices of the nodes neighboring 
node i, not yet renumbered 
FOR all the nodes in Vi (let j be the index of such a node) 

END FOR 
renumber the nodes in Vi as a function of nbneigh(j), 
the number of neighbors (in increasing or decreasing order 
of nbneigh) 

compute nbneigh(j), the number of neighbors of node j 

END FOR 

Thus, set Vi forms the new renumbering front, then: 

k t k + l  

I F  curd(Fk) > 0 

OTHERWISE, END. 

Fk = vi 

return to (A) 

The process is completed (the numbering may be reversed). 

Numerous variations exist. For instance, this method of node renumbering 
depends greatly on the choice of the initial front and could therefore require the 
user’s directive. It also depends on the way in which the nodes of the Vi’s are 
selected. 

Finding the initial front can be the user’s responsibility or can be obtained using 
the above technique for the construction of the pseudo-diameter of the mesh. 
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Mesh 1 2 3 4 

n P  36,624 59,313 43,434 92,051 
ne 72,783 116,839 237,489 463,201 

P (initial) 35,396 53,580 42,516 89,530 
Pr 364,616,352 827,498,368 483,132,896 2,194,965,760 
Prmean 9,955 13,951 11,123 23,845 

P (final) 552 303 1,390 4,527 
P r  16,145,040 12,647,528 39,873,528 254,601,584 
Prmean 440 213 918 2,765 
pr 23 65 12 9 

v 55.000 50.000 15.000 15.000 
~~~~ 

Choosing how to proceed the Vis can be done: 

a by selecting the node in Vi with minimum degree, 

a by selecting the node in Vi with maximum degree, 

a by selecting the node in Vi with minimum index, 

a and so on. 

Mesh 

n P  
ne 
P (initial) 

Pr 
Prmean 

P (final) 
P r  
Prmean 
pr 
Pr,,,, 

v 

Tables 17.2 and 17.3, similar to  the previous table, give the statistics related to  
two different variations of a frontal method. Table 17.2 considers a method whose 
initial front is the point with minimal degree (presumably a boundary point) while 
Table 17.3 shows a method where the pseudo-diameter is used to  initialize the 
front. 

1 2 3 4 

36,624 59,313 43,434 92,051 
72,783 116,839 237,489 463,201 

35,396 53,580 42,516 89,530 
364,616,352 827,498,368 483,132,896 2,194,965,760 

9,955 13,951 11,123 23,845 

630 357 1,425 5,172 
12,296,281 10,045,739 41,060,840 235,254,128 

335 169 945 2,555 
30 82 12 9 

39.000 37.000 13.000 12.300 

Table 17.2: Naive frontal method: bandwidth and profile before and after renum- 
bering (the examples are the same as in Table 17.1). 

Table 17.3: Frontal method starting from the pseudo-diameter: bandwidth and 
profile before and after renumbering. 
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Comparing the three tables leads to some comments. In terms of bandwidth, in 
our (limited) experience the two frontal methods give as the worst value one smaller 
(i.e., better) than the Gibbs method. Nevertheless, the Gibbs method results in 
a better profile (and thus the ratio & is larger for any of the examples we 
have tried). In terms of CPU, the naive method is less demanding than the other 
frontal method and the Gibbs method requires more effort. As a final remark, it 
could be observed that the ratio of improvement due to a renumbering method 
depends on the geometry of the domain. In this respect, thin regions connected 
to large regions, loops (holes), etc., interact on the result. 

. .  
. . . . . . . .  . .  . .  . . .  

ii) 

iii) iv) 

Figure 17.13: Gibbs versus frontal methods. The original mesh i); Gibbs ii); naive 
frontal iii); and frontal with pseudo-diameter iv). Colors are associated with ver- 
tex indices (from white (vertex #1) to black (vertex #np) .  The color variation 
indicates the way the methods proceed. 

Element coloring. A method can be constructed to  color the elements of a 
given mesh. The goal is to obtain several disjoint packets of elements, each of 
which corresponds to one color while two elements in two different neighboring 
packets have two different colors. Using ideas similar to the four colors theorem, 
this method consists of renumbering the elements of a mesh by creating packets 
of elements such that any neighbor of an element in a given packet is not located 
in the same packet. When only two packets are created, this method clearly looks 
like the “Red-Black” method [Melhem-19871 which allows separation of nodes into 
two disjoint sets. Put briefly, the algorithm is based on searching for the neighbors 
of an element with the aim of separating these elements. The main application of 
this method is the numerical solution to  a problem on a vector computer, but the 
idea may be applied to  various areas. 
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Other numbering (coloring) issues. 
on particular numbering or coloring techniques. 

Various methods can be developed based 

17.5 Miscellaneous 

In this section, we briefly mention some topics about mesh modification that have 
not already been covered. 

Mesh manipulation and physical attributes. As mentioned earlier, a mesh 
devoted to a given numerical simulation does not include only a geometric aspect 
and must contain information about the physics of the problem. In this respect, 
the elements in the mesh are not fully described when the vertex coordinates and 
the vertex connection are known. Actually, physical attributes are also part of the 
mesh description. At the element level, it has proved to be useful to have some 
physical attributes associated with the element itself as well as with the element 
entities (vertex, edge, face). Therefore, any mesh modification includes two parts. 
The part concerned with the geometric aspect of the mesh manipulation has been 
already described while the way to manage the physical attributes of the given 
mesh and to derive the corresponding information for the resulting mesh must be 
now discussed. 

In practice, the physical aspects of the resulting mesh inherit, in some way, the 
physical aspects included in the initial mesh. The issue is to  make the desired cor- 
respondences precise, based on the type of mesh manipulation used. Figure 17.14 
shows two basic examples and gives some idea of what must be done. 

4<*2-4<*2 Figure 17.14: According to  
1 1 the transformation (translation 

(top), symmetry  (bottom)), at- 
tributes 1 , 2 , 3  and 4 remain un-  

<-2 - y/ changed or  mus t  be permuted as 
1 , 4 , 3  and 2. 1 1 

Non-obtuse mesh. See Chapter 18. 

Crack or widthless region construction. Defining one or several cracks or 
regions with little thickness makes it possible to deal with some types of problems 
in solid or fluid mechanics. 
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A crack (a thin region) is a line (a surface) which has a priori  two meshes. 
In the case of a crack, these two meshes are coincident, in some sense. After 
processing, the crack may open and become longer. 

Constructing a thin zone makes it possible, for example, to  introduce finite 
elements like line elements between the two initial elements sharing the common 
edge (in two dimensions). 

Figure 17.15: Left-hand side: a part  of t he  domain ,  a se t  of edges tha t  m u s t  be 
duplicated (a), t h e  boundary I? and  t h e  init ial  endpoint  of t he  crack (A). Middle: 
t h e  crack appears and  the  ini t ial  po in t  A i s  duplicated (in po in t  A and  ano ther  
po in t  B which  is distinct) .  Right-hand side: init ial  po in t  A i s  n o t  duplicated. 

Creating a crack of a zone with no thickness is not an easy task for a mesh gener- 
ation method. The fact that there is a t  least one pair of strictly coincident points at 
the beginning implies that the classical methods (quadtree-octree, advancing-front 
or Delaunay based) are not suitable, at least in their classical versions (Chapters 5, 
6, 7). Such a situation is indeed seen as a cause of failure. Therefore, defining 
such a zone is not possible without using specific post-processing8. 

Figure 17.16: E l e m e n t s  located o n  one  of t he  side of t h e  crack are identif ied,  t h e n  
t h e  crack i s  defined by duplicating the  edges that have been detected in this way.  

The first method consists of a suitable construction of two meshes which are 
then merged while avoiding the points and the edges previously identified (see 
above) to be merged. Thus, a merging operator is used to complete the desired 
result. A second method (Figure 17.16) consists of finding all the elements that 
share the edges to be duplicated, identifying the adjacencies and then suppressing 
these adjacencies by duplicating the entities concerned. 

Periodic mesh. Some problems show periodic properties at the boundary con- 
dition level in some part of the domain boundary which, in turn, has the same 
periodic aspect (think about a translation or a rotation). 

80r,  at least, some degree of tinkering inside the mesh generation method! 
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Some computational software then make it possible to  reduce the analysis to  
only one portion of the domain provided the appropriate periodic conditions are 
defined in such a way as to  relate some parts one with another. It is then possible to  
deduce the entire domain together with the solution in this entire domain whereas 
the computation has only been done in one portion of this domain (for example, 
an analysis of a single turbine blade allows us to obtain the result for the whole 
turbine). 

In terms of how to construct a periodic mesh, it is sufficient to be sure that 
the two zones that must be in correspondence have been meshed in the same 
way. Thus consistency will be ensured when the pair of nodes to  be connected are 
identified. 

Remark 17.16 If the region t o  be processed i s  composed of quads ( i n  three dimen-  
sions) and i f  the e lements  (hexs or pentahedra) are split i n t o  tets, it i s  necessary 
t o  constrain the element  split in order t o  obtain a compatible m e s h  o n  both sides 
(if m e s h  conformity i s  required). 

* * *  
In conclusion, mesh modification methods (with a view of mesh optimization) 

have not been discussed in this chapter. This point is discussed in Chapter 18 for 
planar and volumic meshes and Chapter 19 deals with surface meshes. 



Chapter 18 

Mesh Optimization 

Optimizing a mesh with respect to a given criterion is an operation that is fre- 
quently used with various goals in mind for a wide range of applications. First, 
optimization in itself is useful because the quality (the convergence of the com- 
putational schemes and the accuracy of the results) of the numerical solutions 
computed at the mesh nodes clearly depends on the quality of the mesh. In this 
respect, mesh generation methods usually include an optimization stage that takes 
place at the end of the entire mesh generation process. An optimization process 
may serve some more specific purposes such as the mesh adaptation, for instance, 
included in an adaptive computational procedure. Moreover, the tools involved 
in optimization methods can be also used in some particular applications (mesh 
simplification being a significant example). 

* * *  
The aim of this chapter is to  introduce some methods designed for mesh opti- 

mization purposes. First, some information is given on how to compute element 
surface areas and volumes. Applications based on surface area and volume values 
are discussed, including localization and intersection problems, then we turn to  
the definition of mesh quality. Afterwards, we introduce some local tools for mesh 
optimization. 

Having introduced these tools, and with regard to  the given objectives, mesh 
optimization methods are discussed both in terms of strategies and computational 
aspects. Actually, mesh optimization can be considered as a step of a mesh gen- 
eration method (in general, the last step of the method). It also can be seen as a 
stand-alone process. 

This chapter only considers planar and volumic meshes. Moreover, only the 
geometrical aspect is considered meaning that P1 meshes (and more generally 
meshes whose element nodes are identical to element vertices) are discussed. Sur- 
face meshes, which are slightly different, will be discussed in the next chapter. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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18.1 About element measurement 

’ 

In this section, we discuss how to compute the surface areas or volumes of the 
different types of mesh elements. We then give some indications about how such 
values can be used for various purposes. Note that the elements we are interested 
in are defined with an orientation (see Chapter 1). 

VK = S 

Element surface area 

x2 -x1 x3 -x1 x4 -x1 

92 -91 93 -91 94 -91 I (18.3) 
zz - z1 z3 - z1 z4 - z1 

The only element for which the surface area can be obtained directly is the triangle 
(due to its simplicia1 aspect). Thus, if K is a triangle whose vertex coordinates 
are denoted by xi, yi, (i = 1,3), then the surface area of K is: 

or, in an equivalent form: 

(18.1) 

(18.2) 

In the case of a quad, the surface area can be computed as the sum of the 
surface areas of the two triangles formed by considering one of its diagonals (either 
diagonal being suitable; see Figure 18.1). 

Figure 18.1: Analysis of a quad by  means of the four corresponding triangles. Two 
triangles allow for  the surface area calculation while four triangles are necessary 
to check the convexity of the quad (see below). 

Element volume 
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(18.4) 

To compute the volume of a pentahedron, it must be subdivided into three tets 
(Figure 18.2). 

6 

4 p 7 - B -  , , 

l I > 3  

2 1 

Figure 18.2: Analysis of a pentahedron by  means of three tets. Note that only one 
of the various possible partitions is given. 

For a hexahedral element, six or five tets are necessary. The partition based 
on six tets involves first splitting the hex into two pentahedral elements to which 
the above partition into three tets is applied (Figure 18.3). 

A pattern with five tets is also possible (Figure 18.4) where the tet inside 
the volume is considerably different to the four others (unlike the pattern with 6 
elements) for a regular initial hex. 

Other measurements 

Surface areas or volumes can provide other information which is useful in this 
context. 

Convexity of a quad. A quad element in two dimensions can be analyzed to 
decide whether it is convex by using four triangle surface areas. Actually we define 
the four triangles that can be constructed using one or the other diagonal of the 
quad (Figure 18.1). We then compute the four surface areas, Si, of these triangles. 
Hence, if the four Sis are positive, the quad is convex. Otherwise, if one of the 
Sis is negative, the quad is non-convex. If one of the Sis is zero, the quad is said 
to be degenerated (i.e., two consecutive sides are aligned). If two of the Sis are 
negative, each being one part of the two possible decompositions, then the quad is 
self-intersecting while if two negative Sis correspond to the same decomposition, 
the quad is negative (Figure 18.5). 
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5 /?I7 
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1 I 

1 

5fl: 1 , 

I 2  

Figure 18.3: Analysis of a hex by means of six tets. The initial hex 12345678 is 
primarily split into two pentahedra (123567 and 134578). I n  this example, the re- 
sulting partition is  not a conforming mesh of the initial hex. Thus, such a partition 
is  suitable for  volume computation while a different one must be considered for  a 
different purpose (for instance, i f  we want to convert a hex mesh into a tet mesh). 

Figure 18.4: Analysis of a hex by means of jive tets. 
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i) ii) iii) 

Figure 18.5: The various configurations for a quad. A positive quad i); a degener- 
ated quad ii); a non-convex quad iii); a self-intersecting quad iv); and a negative 
quad v). 

Localization processes. The localization of a given point in a mesh is a fre- 
quent issue that arises in various situations. In Chapter 7, we saw that it enables 
us to find, in a current mesh, the element within which a given point falls, for 
instance, the point we want to insert in this mesh. Also in Chapter 2, this lo- 
calization problem was mentioned in the examples on data structures and basis 
algorithms. 

Here, we consider this problem again while observing that the localization of 
a given point in a given mesh can be completed with the help of surface area 
or volume evaluations. For the sake of simplicity we first restrict ourselves to  
simplicial meshes and we consider a convex domain. 

Let P be a point and 7 be a simplicial mesh whose elements are denoted 
by K .  The method relies on the observation that, given an element K in 7, we 
can compute the d + 1 (d being the spatial dimension) surface areas (volumes) of 
the virtual-simplices defined by joining P to  the d + 1 edges (faces) of K ,  and if 
the d + 1 quantities are positive then P falls in K ,  otherwise, if there exist one 
or several negative (null) quantities, then P can be classified as a member of a 
particular precise half-plane (half-space). 

As a consequence, if KO is an arbitrary element in 7, we compute the d + 1 
surface areas (volumes) associated with K and we decide to pass to  the neighboring 
element of KO through the edge (face) related to  the negative quantity (we assume 
that the neighboring relationships from element to  element are known). Then the 
element thus-defined is used as the basis of the localization process and we repeat 
the same procedure. 

It should be noted that using a control space (see Chapter 1) enables us to  
pick as the element KO an element not too far from P,  resulting in a low cost 
algorithm. 

Remark 18.1 For meshes other than simplicial ones, the same method applies 
while, in some cases, replacing the elements with simplices. Thus, the problem 
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could be significantly more expensive in terms of CPU time. 

Remark 18.2 Non-convex domains lead to a tedious solution of the localization 
problem. Indeed, it could be necessary to pass through a boundary in order to reach 
the solution. Thus, the latter problem must be addressed, which is  not so easy. 

Intersection processes. Similarly, surface area or volume computations may 
serve to  solve some intersection problems. Indeed, we define some adequate virtual- 
elements whose surface area or volume signs allow the decision. 

18.2 Mesh quality (classical case) 

Relatively easy to define for simplicial meshes, the notion of quality must be care- 
fully addressed for other types of meshes. In every case, several criteria may be 
used to  evaluate mesh quality. 

Shape or aspect ratio 

This notion is basically associated with simplicial elements (triangles' or tetrahe- 
dra). The aspect ratio of a given simplex K is defined by: 

(18.5) 

where hmax is the element diameter, i.e., its longest edge while p~ is the inradius 
of element K .  Notice that this value varies between 1 to 00 and that, moreover, 
the closer QK is to  1, the better triangle K is. Indeed, QK measures the so-called 
degradation of element K .  In two dimensions, we have: 

(18.6) 

where p~ is the half-perimeter of K and SK is the surface area of K .  Similarly, 
in three dimensions, we have: 

(18.7) 

where, now, SK is the sum of the face surface areas and VK is the volume of K .  
In these expressions, a is a normalization factor which results in the value one for 
the equilateral (regular, in three dimensions) simplex. 

Exercise 18.1 Find the value of the normalization coeficients a of Relation- 
ships (18.6) and (18.7). 

Remark 18.3 I n  terms of computation, it is  advisable to compute the inverse of 
the above relationships. I n  this way a zero surface (volume) element does not lead 
to a numerical problem. 

In Figure 18.6, we give a graphic impression of the way in which the quality of 
a triangle, Relation (18.6), varies according to the location of the three vertices. 

'See the next chapter for surface triangles. 
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5 5 

Figure 18.6: Variation of the aspect ratio according to vertex C of triangle ABC, 
given AB. Edge AB spans the interval [-0.5,0.5] along the x-axis (rear) and 
C is  in the half-plane bounded by this axis. Left: quality function. Right: iso- 
contour values of the quality function. For the sake of clarity, this figure displays 
the inverse of the quality defined in Relationships (18.5) and (18.6) (note that the 
maximum value 1 is  obtained when C is at location (0, q)). 

Other criteria 

Numerous quality functions can be used as an alternative way to determine the 
quality of a given simplex. The simplest one is: 

(18.8) 

in two dimensions, with p a normalization factor and h, = /$ L: where Li is 
i=l 

I 

the length of edge i of triangle K .  Similarly, in three dimensions, we have: 

(18.9) 

where h, = C L: , Li also being the length of edge a of tetrahedron K .  J" i= 1 

Exercise 18.2 Find the value of the normalization coeficients ,8 for the above 
cases. 

Remark 18.4 See the previous remark regarding the case where zero elements 
may exist. 

Apart from the two above functions to  appreciate the quality of a simplex, 
we encounter numerous other ways. For more details about this, see, among 
others, [Cavendish et al. 19851, [Baker-l989b] or [deCougny et al. 19901 or again 
[Dannelongue, Tanguy-19911 and a survey by [Parthasarathy et al. 19931. 
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Before enumerating some of the possible quality measures (in three dimen- 
sions), we introduce a few notations. For a given element K ,  with volume VK, the 
inradius is denoted by p~ and the circumradius is T K .  The length of edge a of K 
is Li, the surface area of face i is Si. We now introduce SK = CSi, the sum of 
the surface areas of the faces of K ,  hmax the diameter of K ,  i.e., hmax = max Li, 
and hmin = min Li and, lastly, Lmean the average of the Lis. Then, the quality 

measures are as follows: 

2 

2 

T K  
a -, the ratio between the radii of the two relevant spheres, 

PK 

r K  r K  

hmax hmin 
a - (or -), the ratio between the circumradius and the element diam- 

eter (the shortest edge), 

, the ratio between the edges with extremal lengths, .-or- hmax hmin 
hmin hmax 

O 4  v' , the ratio between the volume and the surface areas of the faces, 

3 
hmean 

V K  
, the ratio between the average edge length and the volume, a- 

a dmaX,  the maximal dihedral angle between two faces, 

a emin, the minimal solid angle associated with the vertices of K .  

with, for the two last measures, the following definitions. 

Definition 18.1 The dihedral angle between two faces is  the value 

7r f arccos(n'1, n'2) 

depending on  the configuration of the two faces with respect to n'i, the normals of 
the faces under interest. 

Definition 18.2 The solid angle at a vertex is the surface area of the portion of 
a unit sphere centered at this vertex bounded by  the three faces sharing this point. 

Exercise 18.3 Find the equivalent definitions in two dimensions (for those cases 
where it makes sense). 

Exercise 18.4 Give the normalization factors resulting in a unit value for the 
above quality measures (when it makes sense). 
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Figure 18.7: Dihedral angle (top) and solid angle (bottom). 

Simplicia1 element classification 

The above quality criteria enable us to decide whether a simplex is good or not 
in terms of quality. It could be interesting to classify the bad-quality elements so 
as to discard one or other causes from which this bad quality results. This task 
is covered in the exercises (see also [George, Borouchaki-19971 where a detailed 
discussion is given). 

Exercise 18.5 Show that, in terms of the geometrical aspect, there exist three 
types of triangles (hint: there are only two types of ill-shaped triangles). Show the 
criterion leading to this classification without ambiguity. 

Exercise 18.6 Similarly, show the eight types of tetrahedral elements (hint: con- 
sider both the volume and the type of the element faces following the triangle clas- 
sification). 

Exercise 18.7 Discuss how the above measures allow (or are not suitable in all 
cases) for the element classification. 

Non-simplicia1 elements 

In this section, we discuss the quality of quad, hex and pentahedral elements. 
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Quad. In two dimensions2, quads are usually appreciated through several quan- 
tities including the so-called aspect ratio, skew parameter along with two ta- 
per coeficients (one taper being related to one axis); see [Robinson-19871 and 
[Robinson-19881. Although quite natural for some peculiar geometries, the above 
notions are not so well defined in a general context. Thus, we can look for other 
types of measurements. One idea could be to find in the above series of measures 

those which apply in this case. For instance, the ratio - where hmin and hmax 

denote the smallest and the largest edges can be considered. Nevertheless, this 
measure must be coupled with information about angles between two edges. 

We would like to propose a new3 formula which offers several advantages. 
First, it looks like Relationship (18.7). Second, it appears to be an efficient way 
to discriminate between the elements (in terms of quality). Then, negative or 
non-convex quads are detected on the fly. Finally, only one measure is involved. 
Thus, we propose the following: 

hmax 

hmin 

(18.10) 

where cx is a normalization factor (a = $), Smin is the minimum of the four 
surface areas that can be associated with K .  Indeed, these surface areas are those 
of the four triangles that can be defined (review the way to decide whether a quad 

/4 
is convex or not, Figure 18.1), h, = L: with Li the length of edge i of K and 

i= 1 
I 

hmax is the longest length among the four edges and the two diagonals. In practice, 
we compute Smin and if this value is correct, we pursue the test, otherwise, the 
quad being invalid, it is useless to continue. 

Remark 18.5 Another way to judge a quad is to consider that its quality is  that 
of the worst triangle that can be constructed based on three of the quad vertices. 

Remark 18.6 Following Remark 18.3, it is  advisable to compute the inverse of 
the above quality function (to avoid a possible overflow when one of the surface 
areas involved is zero). 

Figure 18.8 gives an impression of how the measure of Relation (18.10) varies 
according to the geometry of the analyzed quad. In this respect, the classical 
aspect ratio, skew parameter and taper coefficients as well as the global measure 
are displayed for an arbitrary variation. 

Preliminary remarks about hex and pentahedral elements. Examining 
the quality of the element faces only gives a rough idea of the element quality. 
Indeed, the case of the sliver tet where the four faces are well-shaped while the 
volume is (almost) zero clearly indicates that the face qualities alone are not suf- 
ficient to qualify an element. In addition, quad faces are not necessarily planar, 

2See the next chapter for a surface quad. 
3As far as we know. 
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Figure 18.8: Variation of the quality function in a quadrilateral (edge AB is fixed). 
Optimal quadrilateral is  denoted by A B C D :  i )  taper measure: points C and D vary 
along the dashed line; ii) skewness measure: the point C varies along the circle of 
radius 1 = IlABll (edge C D  is  parallel to A B ) ;  iii) aspect ratio measure: the edge 
C D  (along the y-axis) varies in the interval [0,5]; iv)  global measure: points A, B 
and D are fixed, point C varies in the interval [0,5] x [0,5]. 
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thus introducing some extent of torsion that must be taken into account to  qualify 
an element with such a face. Thus, other measurements are needed which are not 
purely two-dimensional. 

Quad face. In advance (see Chapter 19), we introduce the roughness (or smooth- 
ness) of a quad face. We consider the two diagonals of the quad ABCD, i.e, AC 
and BD and we consider the two dihedral angles that are defined in this way. 
Then, the smoothness of ABCD is: 

SABCD = m i n ( P ~ c ,  PBD) , (18.11) 

where 

are the two edge planarities involved in the construction. In these relations, GABC, 
for instance, denotes the unit normal related to triangle ABC. 

In practice, the face smoothness measure will be used to  quantify the torsion 
of a three-dimensional element. 

Hex. As there is not a unique formula as for a quad or different criteria for 
analysis, it is possible to appreciate the quality of an element by observing the 
quality of the various partitions of it into tets. The worst tet then gives the desired 
answer which, combined with the element face qualities, enables us to  conclude. 

Pentahedral element. 
analysis is based on a partition by means of tets. 

The previous idea can also be retained, the element 

18.3 Mesh quality (isotropic and anisotropic case) 

The previous discussion allows mesh appreciation when the only concern is the 
shape aspect of the elements in the mesh, i.e., without other considerations (such 
as metric specifications). We now turn to  a different view-point. In what follows, 
a metric map is supplied and the mesh is evaluated to decide if it conforms to this 
specification or not. In other words, the problem concerns the appreciation of a 
given mesh with regard to some specified size (isotropic case) or directional and 
size prescriptions (anisotropic case). 

Efficiency index 

Let li be the length of the edge a with respect to the given metric. The eficiency 
index of a mesh is defined as the average value of the squares of the differences 
to 1 of all mesh edge lengths (let nu be the number of mesh edges), hence: 

(18.12) 
i= I 
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with ei = l i  if l i  5 1, ei = l / l i  if li > 1. 
This coefficient seems adequate for a quick estimation of the mesh quality with 

respect to  a given metric map. Table 18.1 presents the sensitivity of this measure 
in the case of an isotropic map, 1 being constant for all mesh edges (which is highly 
unlikely although it shows the effect of the size variation on r )  and indicates that 
the edge lengths are 1 times too long or too short (a value 1 = 5 or 1 = 0.2 means 
that all edges are 5 times too long or 5 times too short). The optimal value is 1 = 1 
and in fact, any value of r greater than 0.91 ensures a reasonable mesh quality 
with respect to  the metric map. 

1 I 100 I 20 I 10 I 5 1  3 1  2 1  J 2 I 1.3 I 1.2 I 1.1 I 1 
T I 0.019 I 0.097 I 0.19 I 0.36 I 0.51 I 0.75 I 0.91 I .9467 I .9722 I .9917 I 1. 

Table 18.1: Sensitivity of the efficiency index. 

The reader could consult this table in order to  interpret the numerical results 
obtained in a given governed problem. More recently, [Dobrzynski-2005] proposed 
another more sensitive formula: 

na 

r = e x p  (L.xei) nu , 
i=l 

(18.13) 

with ei = li - 1 if li 5 1, ei = l / l i  - 1 if li > 1. 

Element quality 

In this section, we turn to a general point of view. 

Simplicia1 elements. In this case element quality reduces to  the above aspect 
ratio. When the metric map the mesh must conform to is isotropic, we return to  
Relation (18.6) or equivalent relations. In the case of an anisotropic metric map, 
the notion of aspect ratio is more delicate. In fact, an approximate expression can 
be used. For instance, in two dimensions, Q K ,  the quality of triangle K ,  can be 
defined as: 

QK = ly$3Q& (18.14) 

where Qk is the triangle quality in the Euclidean space related to the metric 
specified at any vertex Pi of K .  To evaluate the quality Q L  of K ,  it is merely 
necessary to transform the Euclidean space associated with the metric specified at 
any vertex Pi in the classical Euclidean space and to  consider the quality of the 
triangle Ki which is the triangle image of K .  This means that: 

Qi - 
K - Q K ; .  (18.15) 

Let ( M i ) i i i g  be the metrics specified at the vertices (Pi)l<ii3 of K .  We 

M i  = PiAiPtT1 1 5 i 5 3 ,  (18.16) 
have: 
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where Pi is the matrix enabling us to transform the canonical basis into the basis 

associated with the eigenvectors of M i  and Ai = ( hP2 ) is the diagonal 

matrix formed by the eigenvalues of M i .  Let (hi,j)l<i<j<2 be the quantities 
defined by hi,j = 1 1 6 ;  these values represent the unit length in the direction 
of the eigenvector related to the eigenvalue Ai,j of M i .  The matrix Z transforming 
the Euclidean space associated with M i  in the usual Euclidean space is defined 
by: 

Z = 'H ip , ,  (18.17) 

where 'Hi is the diagonal matrix ( "ki>' l/:i,2 ). As a result, the vertices of 

Ki are 'Hi Pi PI ,  7ii Pi Pz and 'Hi Pi P3, respectively, and we have: 

with a the same normalization factor as in the classical case, and 

However, as 

D e t ( P i )  = 1 , 

and 

(18.18) 

we have 

Exercise 18.8 Show that the above relation reduces t o  the classical aspect ratio 
formula when we consider the case of isotropic metric maps (i.e., the corresponding 
matrices are identity matrices with a given ratio). 

Elements other than simplices. A quad with unit length edges and f i  length 
diagonals are the targeted values. In practice, these values are sufficient to appre- 
ciate the element (and no angle consideration is needed). Similar notions extend 
to hex and pentahedral elements. 
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Optimal mesh 

A formal notion of an optimal mesh is relatively tedious to define. This question 
was already raised in Chapter 1, while noticing that optimality must be considered 
with regard to the reason for which the mesh has been constructed and therefore 
with regard to  its further use. 

Given QK, a quality measure for the element K in mesh 7, we have previously 
defined the mesh quality as: 

QT = max QK . 

In a later section we will see that other characteristic values may be suitably used 
to analyze a mesh, such as the mean of the element qualities, the distribution of 
the elements based on their quality, etc. Whatever the choice, it may be noticed 
that the notion of optimality lies in theory in a family of meshes. For instance, 
given several meshes, it can be said that the optimal mesh is that for which the 
chosen measure is optimal (minimal if we return to  the usual definition about the 
shape of the elements in an isotropic simplicia1 mesh). In practice, the size (the 
number of vertices or elements) must also be used as one of the parameters in the 
analysis (so as to minimize the computational cost in a numerical simulation using 
this mesh, for example). Therefore, it could be stated that an optimal mesh is 
that for which the chosen quality function is optimal while, at the same time, its 
number of vertices (elements) is minimal. 

In practical terms, it may be concluded that the optimal mesh is that which 
gives a suitable compromise between various criteria. The problem then reduces 
to only one quality measure. In fact, in the isotropic case in two dimensions and 
for a mesh composed only of triangles, a quality value of 1 (i.e., close to  1) implies 
that: 

K E T  

0 the elements in the mesh have a quality value close to  1, 

0 the number of elements is minimal. 

A quality value close to 1, for a triangle, implies that its edges have a length close 
to 1 (or a constant value h).  For a given size map, we again see that this means 
that the edge lengths are close to  1 (with respect to  this size map). Therefore, the 
definition we now propose is rather natural (and intuitive). 

Definition 18.3 A unit mesh is  a mesh with unit length edges. 

In two dimensions, a unit triangle (with unit edges) is optimal (it is equilateral) 
while this is not the case for a tet. 

Remark 18.7 A triangle with unit length edges is necessarily a good element 
whose surface area is  4. I n  contrast, a tet with unit length edges4 may have 
a volume as small as we want thus corresponding to a ill-shaped element (the 
infamous sliver). 

4Consider a tet where four edge lengths are close to one and where the two other edge lengths 
are close to fi. The edges therefore have a length “close” to 1 and, nevertheless, the tet volume 
is zero! 
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Following this remark, the notion of optimality is made more precise. It in- 
cludes a length aspect combined with a surface (volume) aspect. 

Definition 18.4 An optimal simplicia1 mesh  is a unit mesh in which the element 
surface areas are 4 in two dimensions or in which the element volumes are 

in three dimensions (or, more generally, 

Remark 18.8 Notice (again) that optimality is  here related to  a quality measure 
with regard to  a size map and not directly related to  the number of elements (see 
the above remark about this aspect). 

in d dimensions). 
d ! m ’  

After the two above definitions together with the previous remarks and in 
practical terms, the efficiency index is a consistent way to  judge a mesh in two 
dimensions. In three dimensions, the same analysis must be based on edge length 
appreciation and on the aspect ratio of the elements (in order to  see whether the 
element volumes are consistent or not). 

Remark 18.9 For elements other than simplices, unit edge length could be a rea- 
sonable requirement as coupled with other considerations in some cases (for in- 
stance, & length diagonals for a quad as previously mentioned). 

Remarks about optimality 

Discussing optimality may raise to some interesting issues. Various questions may 
be discussed. For a given problem (based on what data are known): 

0 is there a mesh with unit quality? 

0 is there a mesh with minimal size? 

For an a priori given number of elements: 

0 is there a mesh having this number of elements and, if so, what is its quality? 

Note, in practice, and mostly in three dimensions, that the objective is to  have 
good quality meshes (i.e., with a quality value close to  the theoretical value) and 
that a mesh not too far from this abstract target is generally considered to be 
satisfactory. 

18.4 Tools for mesh optimization 

Various local tools can be used for optimization purposes. The most popular 
include the following: 

0 node relocation, 

0 edge collapsing (to remove a vertex), 

0 edge swapping, 
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0 face swapping, 

0 vertex degree relaxation (which, as will be seen, can be achieved by a judi- 
cious combination of the three above tools), 

0 edge splitting (to add a vertex), etc. 

Actually, mesh optimization tools can be classified into two categories. Those 
maintaining mesh connectivity (i.e., acting on the vertex positions) and those 
acting on mesh connectivity (while the vertex locations are preserved). 

Optimization maintaining the connect ivit ies 

In this category of local tools, we basically encounter those methods which result 
in moving the element vertices. All methods that can be developed in this sense 
can be seen as a variant of the well known Laplacian smoothing, [Field-19881, 
[Frey, Field-19911. 

Basically, a process acting on node relocation concerns the so-called balls. Let 
us recall the following definition. 

Definition 18.5 Let P be a vertex in mesh 7,  the ball associated with P is the 
set of elements in 7 having P as a vertex. 

A ball could be a closed ball (the vertex is an internal vertex) or an open ball 
(the vertex is a boundary vertex). In the following, we only consider closed balls. 

The simplest node relocation method can be written as: 

(1 8.20) 

where the Pjs are the vertices of the ball other than P. A first variation consists 
of adding some relative weights; thus, we obtain: 

(18.21) 

where 'u j  is an appropriate weight associated with point Pj. 

Nevertheless, before going further, we propose replacing the above scheme by 
a relaxation method. In fact, efficiency reasons can be involved along with the two 
following observations. 

Remark 18.10 Above point P' (one or the other) could fall outside the ball in 
the case of a non-convex ball. 

and, as a consequence 
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Remark 18.11 Moving a given point to its “optimal” location may result in an 
invalid mesh, thus cancelling the operation. A non-optimal relocation, however, 
may improve the mesh quality to some degree. 

Hence, an auxiliary point, P*, is introduced, for instance, such as in Relation- 
ship (18.20): 

(1 8.22) 

and a relaxation scheme is defined as: 

P =  ( lLW)P+WP*,  (1 8.23) 

where w is the relaxation parameter5. Following this method, we now introduce 
various vertex relocation methods. 

Laplacian smoothing. The relaxed variant of this well-known method uses 
auxiliary point defined in Relationship (18.22). Following the previous remark, an 
explicit check of the positiveness of the surface areas (volumes) is required. 

Remark 18.12 Classical optimization strategies can be used for smoothing pur- 
poses. A cost function is  defined which is  assumed to be suficiently smooth. De- 
scent directions are then exhibited and the process is governed as in a classical 
optimization process, [Freitag, Gooch-l997]. I t  should be noted that most of the 
quality functions described above are non-differentiable thus leading to a tedious 
optimization process. 

Weighted smoothing. 
ing it possible to define the auxiliary point by 

In this case, a weight is associated with each point mak- 

“jPj 
j=1 

n 
p* = 

7 (1 8.24) 

c “ j  
j=1 

where an appropriate choice of the a j s  must be made (see below). 

Smoothing based on element quality. Provided with a simplicia1 mesh, we 
consider the ball of a given point P. Let f j  be the external edges (faces in three 
dimensions) of this ball. Then the elements in the ball are nothing more than the 
combinations (P, fj) (where j = 1, n, n being the number of elements in the ball). 
Thus an ideal point I j  is associated with each f j  in such a way as to  ensure an 
optimal quality (aspect ratio) for the virtual element ( I j ,  fj). Using these points, 

51t seems advisable to set w close to one in two dimensions and smaller in three dimensions. 
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we define the smoothing process as: 

(1 8.25) 

where the aj can be defined as follows: 

0 aj = 1, the weights are constant and we return to the classical method, 

0 aj = 0, for every element of the ball except for the worst one (in terms of 
quality) for which we take aj = 1, 

0 aj = QK,, the weights are related to  the quality of the elements, 

0 aj = Q$,, the weights are related to  the square of the element qualities, 

0 or, more generally, aj = g(QK,), meaning that the weights are related to a 

This method can also be applied in an anisotropic case by using the relevant 

certain function g of the quality of the elements in the ball. 

definition of the quality, which leads to  a different positioning of the points I j .  

Smoothing based on edge lengths. In this case, the key-idea is to define the 
I j s  so as to  obtain as far as possible a unit length for the edges emanating from 
these points. The unit length notion is based on the metric map which is assumed. 
Thus, a relation like: 

Ij = Pj + ~ e T E , ,  IIeII (1 8.26) 

where the Pjs are the vertices of the external faces in the ball and hj is the 
average size related to  the edge PjP approaches the desired result. Indeed, the 
above relation is nothing more than: 

(1 8.27) 

where Z M  (Pj P )  is the length of the edge Pj P evaluated in the metric M associated 
with the edge. 

Non-simplicia1 elements. To some degree, the above methods extend to  this 
case. In particular, for a quadrilateral element, an edge length based smoothing 
operator must lead to unit edge lengths and a f i  length for the two diagonals of 
the elements (as previously indicated). 

Global smoothing. The above discussion concerns a local smoothing procedure 
where the points are considered one at a time. A global smoothing procedure can 
be developed leading to  the solution of a global problem. It is, however, uncertain 
whether such a method is really efficient. 
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Topologically driven node relocation. 
vertex and, in addition, to  

The objective is now to relocate a 

move it away from a given edge, 

move it away from a given plane, 

move it along a given edge, 

etc. 

Any method of the above type can be used by adding the constraint during 
the analysis of the criterion that must be optimized. In some cases, the goal is 
not to optimize the mesh but just to maintain some degree of quality, meaning 
that the main concern is to  remove an undesired topological pattern rather than 
to effectively optimize the mesh. 

Exercise 18.9 Revisit the smoothing techniques in the case where a ball may be 
an open ball (for a boundary vertex for instance). 

Optimization maintaining the vertex positions 

We turn to various local tools that leave the vertex location unchanged. 

Edge swapping in two dimensions. Edge swapping6, or simply swap, is a 
rather simple topological operation involving swapping the edge shared by two 
elements. In the case of triangular elements, the swap is possible since the quad 
formed by the two adjacent triangles is a convex polygon. Swap can also be 
performed in quad meshes or mixed meshes (whose elements include both triangles 
and quadrilaterals). In general, a swap procedure must first be validated to ensure 
that the resulting mesh is still valid and, second, be evaluated with regard to the 
optimization criterion that must be enhanced. 

Edge swap can be seen as an optimization procedure in itself or it can be 
used as one ingredient in some more sophisticated processes (node removal, degree 
relaxation, etc.). 

Figure 18.9: Edge swapping for a pair of adjacent triangles (left-hand side) and 
in the case of adjacent quads (right-hand side) where two solutions are possible a 
priori. 

6Also referred to as diagonal swapping or diagonal flipping. 



MESH OPTIMIZATION 611 

Generalized edge swapping (the three-dimensional case). In what fol- 
lows, only simplicia1 meshes are discussed. Within this context, we first consider 
the extension to three dimensions of two-dimensional edge swapping. This leads to  
a face swapping where the face common to two tetrahedra is removed, an edge is 
created and the two-element initial polyhedron is replaced by a three tetrahedron 
polyhedron (note that only convex polyhedra can be successfully dealt with). 

The inverse local transformation can be defined leading to replacing three tetra- 
hedra sharing an edge by two tetrahedra by suppressing the edge considered. Ac- 
tually, a more general transformation corresponds to  this operation. It acts on a 
so-called shell. Recall the following definition. 

Definition 18.6 Let a/? be a n  edge in mesh 7, the shell associated with a/? is the 
set of elements sharing this edge. 

As for balls, a shell could be opened or closed. In what follows we only discuss 
the case of closed shells where the edge of the shell is an internal edge. 

Then the key idea is to  consider such shells. Formally speaking, the generalized 
edge swapping operator leads to  considering all the possible triangulations of a 
pseudo-polygon associated with the edge. The vertices of this polygon are defined 
by the shell vertices other than a and p, the two endpoints of the edge defining the 
shell. Figure 18.10 shows these possible remeshings in the case of a five-element 
shell, every triangulation being formed by joining all the triangles of the polygon 
with both a and p, in order to define the pair of tetrahedra which are part of the 
desired mesh. 

P2 P3 

Figure 18.10: The five triangulations related t o  a five-point polygon. 

The Catalan number of order n 

(2n - 2)! 
n!(n - I)! 

C a t ( n )  = 
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n 
N, 1 2 
Tr, 1 4 

gives the maximal number of topologically possible triangulations, N,, of a shell7 
of n elements. Indeed, we have 

N, = C a t ( n  - 1). (1 8.28) 

Exercise 18.10 Establish the previous relation. 

3 4 5 6 7  8 9 10 11 12 13 

5 14 42 132 429 1,430 4,862 16,796 58,786 
10 20 35 56 84 120 165 220 

Table 18.2: Number of topologically different triangulations that are valid as a 
function of the number of vertices in the polygon related to one edge. 

Table 18.2 gives N,, the number of possible triangulations as a function of n. It 
also indicates Tr, the number of different triangles in each possible triangulation. 
In this enumeration, the validity of the triangulations is not considered (only the 
topological aspect is taken into account). 

Remark 18.13 As previously mentioned, the swap procedure requires that the 
polyhedron under treatment is convex for a two or three element pattern while this 
requirement is  not strictly needed for patterns involving more than three elements. 
Indeed, the swap must be validated by checking explicitly the positiveness of the 
element volumes that are concerned. 

Remark 18.14 The generalized swap is a tedious problem for elements other than 
simplices. 

Edge collapsing. Provided with an edge, a@, we replace this edge by only one 
point A. Formally speaking, this leads to positioning a on p, or vice versa or again 
finding a point location between a and p. Figure 18.11 shows the three possible 
solutions on an example. From a practical point of view, it is sufficient to check if 
the ball of point A,  resulting from the reduction, is valid. To this end, we examine 
the shell a/? and we check the validity of the balls of a and p when these two 
vertices are replaced by point A. 

This operator may be classified among the geometric operators as it maintains 
the connectivities, if the new connections to A are seen as the “union” of the 
former connections to a and p. 

Degree relaxation. First, we give the definition of the degree of a mesh vertex. 

Definition 18.7 The degree or the valence of a mesh vertex is  the number of 
edges’ emanating from this point. 

7The topologically possible solutions in three dimensions are constructed by enumerating all 

81t is also, in two dimensions, the number of elements sharing the point. 
the twedimensional geometric valid remeshings of a convex (planar) polygon with R. vertices. 
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Figure 18.11: Edge collapsing. The initial pattern can be replaced by  three different 
configurations, vertex p is collapsed with vertex a, vertex (u is  collapsed with vertex 
,8 or these two vertices are collapsed using vertex A, for example, the midpoint of 
the initial edge. 

We consider the edges and not the elements because in the matrices used in finite 
element calculus and for P1 simplicial meshes, the edges determine the matrix 
bandwidth. 

Now the question is deciding what an optimal degree is. In two dimensions, 
a value of six is desired for simplicial meshes while a value of four is optimal for 
quad meshes. In three dimensions, a value of twelve allows for tetrahedral meshesg 
while six is the optimal degree of a vertex in a hexahedral mesh. 

A point with a degree less than the targeted value is said to  be under-connected, 
while a point with a degree larger than this value is said to  be over-connected. Note 
that the same notion applies to an edge. 

Relaxing the degree of a mesh consists of modifying the vertex (or edge) de- 
grees, by means of topological operators, so as to  tend on average to  the targeted 
value; see [Frey, Field-19911. 

Remark 18.15 Optimizing a mesh with bad vertex degrees may result in poor 
results. This means that the optimization tools are penalized when dealing with 
such situations. O n  the other hand, optimization tools may lead to good results 
when a degree relaxation has been carried out beforehand. 

Ill-constrained entities. 
well as to edges, faces or elements, which will now be discussed. 

This notion applies to  vertices (as previously seen) as 

Definition 18.8 A triangle is said to be over-constrained i f  two of its edges are 

'This value corresponds to a ball with 20 optimal elements, i.e., the triangulation by a regular 
icosahedron of the space centered at the point defining the ball. 
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members of the domain boundary. Similarly, a tet with three boundary faces is 
over-constrained. 

Thus, in terms of edges or faces (extending the previous definition to  elements 
other than simplices), we have the following. 

Definition 18.9 An internal edge is  said to be over-constrained i f  its two end- 
points are members of the domain boundary. Similarly, an internal face whose 
extremities are in the boundary is  over-constrained. 

For most problems, such ill-constrained entities must be avoided. Thus, optimiza- 
tion tools can serve to remove this kind of pathologies. 

Exercise 18.11 Consider again the modification operators when the shells are 
opened (i.e., those associated with a boundary edge). 

Non-obtuse mesh 

This point concerns simplicial meshes in two dimensions. Non-obtuse meshes are 
required for some particular applications. For instance, a problem solved by means 
of a finite volume method takes advantage of non-obtuse meshes. To specify the 
notion of a non-obtuse mesh, we firstly give the formal definition of such a mesh. 

Definition 18.10 A two-dimensional simplicia1 mesh is said to be non-obtuse i f  
it does not include any obtuse angles, such angles being defined by  the pairs of 
edges sharing a vertex. 

Figure 18.12: Obtuse and non-obtuse meshes. The cells associated with the tri- 
angles sharing a given vertex are displayed. A s  the mesh is non-obtuse, the cell 
around the point is  fully included in the ball of this point (left-hand side) while, on 
the other hand, it has a part outside this ball (right-hand side) when the mesh is 
obtuse. 

As mentioned earlier, non-obtuse meshes are of special interest in some appli- 
cations. This is due to the fact that the cells around the element vertices are fully 
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included in the corresponding balls. Note that the cells are constructed from the 
perpendicular bisector related to the element edges (Figure 18.12). The fundamen- 
tal property is the orthogonality of these cells and the current mesh (more precisely 
the mesh edges and the cell edges are orthogonal). Hence, this nice feature coupled 
with the internal aspect of the cells can be a benefit for some problems. 

Remark 18.16 W e  return here to the Voronoi' cells the duals of the triangula- 
tion (see Chapter 7) only in the case of a Delaunay mesh. I n  this respect, one 
could note that even a Delaunay mesh is not necessarily a non-obtuse mesh. See, 
for instance, Figure 18.13, where a point outside the circle ensures the Delaunay 
property but could be outside the two lines depicted in the figure, thus resulting in 
an obtuse angle. 

Clearly, a non-obtuse mesh allows the construction of cells enjoying the above 
properties (i.e., an orthogonality property while entirely inside the domainlo). 
Thus, given a mesh resulting from such or such a method, it could be interesting 
to develop an algorithm that allows us to remove the obtuse angles (if any). 

Figure 18.13: Given an edge AB, we 
define the circle whose diameter is 
AB, then we construct the two lines 
orthogonal to AB passing through A 
and B .  This results in three regions. 
The interior of the circle, the exte- 
rior of this circle exterior to the two 
above lines and the exterior of this 
circle inside the two lines. Clearly a 
point like PI (or P 4 )  leads to an ob- 
tuse triangle and a point like P3 leads 
to a non-obtuse triangle. 

P4 
,I 

1 

~ 

A precise analysis of Figure 18.13 can be fruitful to define an algorithm based 
on local modifications that makes it possible to suppress the obtuse angles. 

A rough idea of the method could be to  process all balls in the mesh (see 
Definition 18.5). Let P be the vertex defining a ball, we consider the edges external 
to this ball (thus, these edges act as the edge AB in Figure 18.13). We define 
the circles and the two orthogonal lines associated with these edges to exhibit a 
region intersection of the suitable area where P can be located. If this region is 

"Note that defining the cells around the vertices by means of the median lines results in cells 
fully inside the domain but the orthogonality feature is lost. 
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not empty, then P is relocated inside and all the elements in the ball are non- 
obtuse". Otherwise, a more subtle process must be defined. For instance, we can 
try to  move A and/or B along AB so as to  obtain a smaller edge, thus resulting in a 
smaller circle. Note also that vertices opposite a boundary edge have some degree 
of rigidity. To overcome this fact, points can be required to  further subdivide the 
boundary edges. 

Remark 18.17 I n  the above method, essentially based on  heuristics, no proof of 
convergence is  given. Nevertheless, careful use of the classical optimization tools 
governed by the previous scheme, results in the desired solution in most cases. 

To conclude, it should be noted the analogy with the condition of Delaunay 
admissibility for an edge as described in Chapter 9. 

Delaunay triangulations and non-obtuse meshes. As pointed out, a Delau- 
nay triangulation in two dimensions is not necessarily a non-obtuse triangulation. 
In fact we have a property of maximization about the minimum angle included in 
a pair of adjacent triangles and not the opposite property. Nevertheless, a method 
for point placement can be found in [Chew-l989b] which results in a bound for the 
angle of the mesh element in the case of a Delaunay strategy for vertex connec- 
tion. Given a domain, i.e., a polygonal discretization of its boundary, a Delaunay 
algorithm based on the boundary vertices and using as internal points the circum- 
centers of the elements allows a mesh where the angles are bounded. Note that 
when a circumcenter falls outside the domain, the corresponding boundary edge 
is subdivided by introducing its midpoint. 

Following this remark where an upper bound on the angles exists, we could 
observe that a Delaunay triangulation is not necessarily non-obtuse. Conversely, 
a non-obtuse triangulation is necessarily a Delaunay triangulation. 

Now, we look at what could be the extension to three dimensions of the notion 
of a non-obtuse triangulation. Before introducing a reasonable characterization, 
we return to the two-dimensional case. Given a triangulation, if we consider the 
circles of minimum radius (the smallest circles) that enclose the triangles, then for 
a non-obtuse triangulation, we have the following properties: 

0 the smallest circle enclosing a non-obtuse triangle is its circumcircle, 

0 a non-obtuse triangle is self-centered, meaning that its circumcenter falls 
inside the triangle. 

Thus, based on the above property, a triangulation in three dimensions is termed 
non-obtuse if all of its tets are self-centered. 

"For the sake of simplicity, we use the term non-obtuse triangle to describe an element whose 
angles are non-obtuse. 
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18.5 Strategies for mesh optimization 

First we compute the initial quality of the point, the edge, the element or the set 
of such entities included in the initial configuration. We then compute the same 
quality for the entity or all the entities related to the solution or the different 
possible solutions based on a simulation. Finally, we decide to effectively apply 
the optimization process, as a function of the quality evolution. Several strategies 
can be chosen to govern the decision. The process is applied: 

0 if the resulting configuration is strictly improved, 

0 if the resulting configuration is improved to some extent, 

0 in the case of multiple possible solutions, by selecting the first valid solution 
occurring in the simulation or by choosing the best solution among all, 

0 and so on. 

Another issue consists of defining the way in which the operator is used. We 
can decide to process 

0 all the mesh entities starting from the first and going to the last, 

0 only some entities selected ad-hoc (using a heap based on a relevant criterion, 
edge length if edges are to be processed, or using a quality threshold, etc.), 

0 all the entities, or only some of them, randomly picked, 

0 and so on. 

The question is now to design an automatic and global optimization method 
by deciding on a strategy for both the choice of the local operators and the order 
in which to use them (see below), assuming that the strategy related to a given 
local operator is fixed. 

Several observations can be helpful in defining such a strategy. Assuming that 
a local operator sequence is given, a stopping criterion must first be defined. In 
fact, several classes of criteria are possible, as indicated below. The process is 
repeated as long as: 

0 the mesh is affected by one operation, 

0 the mesh is affected by one or several operations, 

0 a given threshold (in terms of quality) has not been achieved, 

0 and so on. 

Once this has been decided, a strategy must be defined. There is some flexibility 
regarding the possible choices. Indeed, we can 

0 apply every local operator to all the entities concerned by its application, 
and then turn to a different operator, 
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a consider a given mesh entity and apply all the possible local operators before 
turning to  a different entity, 

a combine the two above approaches. 

It is also possible to classify the pathologies following the degree of optimization 
that could be expected and to deal with the mesh entities accordingly. In other 
words, the worst entities are dealt with first. 

Remark 18.18 An immediate question about an optimization process is  to know 
i f  the optimum has been reached. I n  practice, the purpose is  to improve the mesh 
and achieving the optimum or not remains a purely theoretical, non-trivial issue. 
For example, the presence of wells, the fact that the function in optimization is 
differentiable or not, etc., are parameters that act on  the conclusion. From a 
practical point of view, using some degree of randomization in the possible choices 
may, in most cases, avoid the cases where a well is found. O n  the other hand, 
looking for a strict optimum may turn out to be costly and, ultimately, for relatively 
little gain in eficiency. 

18.6 Computational issues 

In this section, we discuss some computational aspects related to the above tools. 
First, we consider how to construct the balls or shells which, as previously seen, 
are the local supports of the procedure. We then give some indications about how 
to develop optimization tools. 

Ball construction. For a simplicial mesh, we refer the reader to Chapter 2 
where some solutions resulting in a ball construction are described. For other 
types of meshes, similar methods can be defined. 

Shell construction. 
in simplicial meshes that can be extended to other mesh types. 

Again, Chapter 2 presents a method for shell construction 

Choice of a criterion. As previously indicated, there may be several criteria 
for quality evaluation. In such a case, it is necessary to decide which criterion to  
choose. In practice, if we take two different criteria which vary in the same way 
(i.e., both measure the quality in any case), optimizing one of these automatically 
leads to optimizing the other. 

Computing a criterion. When the simulation of a given optimization tool 
includes a large number of possible solutions (as is the case when considering the 
generalized swap for a shell), CPU cost considerations impose the optimization of 
the “simulation-effective application” pair. The operations used in the simulation 
are of a purely geometric nature (surface or volume computations, element quality 
evaluations, before and after the process in question has been applied), while the 
effective application of the operator leads to  defining the new elements and the 
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new neighborhood relationships (if these must be maintained) that can be affected 
in the process. A careful computer implementation of these two phases enables us 
to minimize the global CPU cost of the whole process. 

In order to reduce the cost it could be noted that some quantities involved in a 
given optimization process, while part of the global evaluation of the configuration, 
remain constant during the process (for instance, the external faces of the ball of 
a given point P are not affected by any relocation of point P. In this example the 
neighboring relationships are also preserved). 

General scheme for a local optimization procedure. Using an optimization 
operator is quite simple. First, its result is simulated regarding both the validity 
and the quality evolution of the elements concerned. If an improvement is observed 
in the simulation phase, the simulated output is retained. When several solutions 
are possible, the best one is selected (or the first possible solution which has 
been observed). Thus, instead of computing the full criterion, we could look first 
a t  the surface (volume) and if it is negative, there is no point in pursuing the 
computation. As a consequence, when numerous criteria of this type must be 
evaluated, we could first compute all the surfaces and, if one of these quantities is 
wrong, stop the process. 

Exercise 18.12 Return to Table 18.2 and examine how the CPU cost could be 
minimized. 

18.7 Application examples 

In this section, we first indicate how to judge a mesh and then we give some 
particular examples of mesh optimization. 

Mesh appreciation 

Mesh analysis is a crucial and difficult point when investigating meshes with a large 
number of elements, especially in the three-dimensional case. Two complementary 
approaches can be followed: a graphic visualization and a purely numerical anal- 
ysis. 

Both methods have advantages and drawbacks. First of all, in some cases, 
using graphic software could be helpful to  give some idea of the appearance of 
the mesh aspect or its quality. Nevertheless, despite the powerful graphic software 
available, this method of mesh appreciation could be unsuitable when meshes with 
a large number of elements are considered (the screen is too black) or, simply, for 
three-dimensional meshes. In addition, the CPU time necessary to display a large 
mesh could be rather long. 

On the other hand, numerical analysis of a mesh must be defined carefully. 
The aim here is to find one or several pertinent criteria that are easily readable 
and unambiguously reflect the aspect of the mesh we wish to examine. 
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Visualization. For efficiency, graphic visualization must offer numerous tools 
which allow the easy examination of the mesh under consideration. In addition, 
these tools must be incorporated in a system which must be as user-friendly as 
possible. 

In terms of mesh correctness, a shrink applied to the mesh elements is a fast 
way to  detect any overlapping or defaults of connectivity. Nevertheless, it is not 
so easy to  detect a negative surface (volume) element. One possible way to make 
this check possible is to associate a color with the element, this color being related 
to an oriented normal. 

In terms of quality functions, using colors and cuts (in three dimensions) allows 
us to display some isocontours of these functions. 

Numerical appreciation. The numerical verification of meshes is based on 
the computation of quantities associated with them. For example, in terms of 
mesh correctness, it is of interest to be sure that both the surfaces or volumes of 
elements are all positive and that mesh connectivity is right. In terms of mesh 
quality, element quality extrema, average element quality and histograms showing 
the distribution of elements according to  their quality give a quick understanding 
of the mesh under consideration. 

Positiveness of element surface areas or volumes is obvious to  check by simply 
computing these quantities. To check whether or not a mesh is correct in terms of 
connectivity, it is necessary to  construct the adjacency graph associated with the 
mesh (i.e., to establish for every element the list of its neighboring elements) and 
to verify that this graph is closed12. 

Mesh quality is easy to  obtain by computing the quality of all the entities 
concerned based on the quality function we are interested in. Then various nu- 
merical values (extrema, mean value, adequate norms, etc.) as well as histograms 
of distribution of the analyzed entities according to  their quality can be used. 

A few examples 

We now give an example in two dimensions (for the sake of clarity) that concerns 
the optimization of a triangular mesh. Figure 18.14 shows the mesh in its initial 
configuration (left-hand side) and after being optimized (right-hand side). In this 
case (in two dimensions), a simple view makes it possible to  see the efficiency of 
the optimization process since the mesh includes a reasonable number of elements. 

To demonstrate the effect of shape optimization in three dimensions, we ob- 
serve the distribution of the mesh elements with regard to  their quality value. 
As a visualization has no real interest, Table 18.3 presents various parameters 
characterizing the mesh before and after optimization. The example given (after 
[George, Borouchaki-19971) corresponds to a tet mesh. 

Table 18.3 gives, in the first line, the distribution, as a percentage of the total 
number of elements, of the elements according to their quality and the ranks from 

"For a non-manifold mesh, a more subtle method must be considered. For instance, an edge 
on a surface mesh could be shared by more than two elements. 
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Q 
before 

a f t e r  

Figure 18.14: Optimization of a mesh in two dimensions. The brute mesh 
(quadtree) of the domain (left-hand side) and the optimized mesh (right-hand side). 

1 - 2  2 - 3  3 -  10 > 10 target &.r n e  n p  
63 21 12 3 8.30 755 3,917 1,004 

2,475 824 486 132 

72 21 6 0 8.30 11.44 3,608 1,015 
2,620 759 224 5 

1 to 2, from 2 to 3, from 3 to 10 and larger than 10. In the second line, we give 
the number of corresponding elements. The value denoted as target is the quality 
value of the best possible tet that can be created based on the worst face in the 
domain boundary. &- is the global quality value of the mesh, i.e., the value of 
the worst element, n e  and n p  respectively note the number of elements and the 
number of vertices in the mesh. The last two lines show the same quantities for the 
mesh after optimization. A rapid examination of these figures gives an immediate 
impression of the efficiency of the optimization process. 

Table 18.3: Shape quality of the tet mesh before and after optimization. 

Specifically, it can be seen that QT is close to  target (i.e., in the same range) 
and that the percentages of elements in the various quality ranges have been 
changed as desired. Nevertheless, there are still some elements with a relatively 
poor quality. This fact is generally due to two reasons. The worst quality (the 
value target)  is not necessarily attainable if the domain, for instance, is such that 
moving the point related to the worst face in the boundary is not possible (or the 
required swaps at  some vicinity of this face are not permitted). Moreover, the 
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optimization process, due to  its computer implementation in terms of strategy, 
does not always lead to  the optimum (as previously indicated). Note also that the 
optimization procedures have been applied only on the internal vertices and edges 
in the mesh, the boundary mesh entities remaining unchanged. 

For other examples, when the optimization criterion is no longer the element 
shape but includes some other aspects (via a metric, for example), we suggest that 
the reader refers to  some other chapters in the book which deal more specifically 
with this problem. 



Chapter 19 

Surface Mesh Optimization 

In Chapter 18, we described several methods to  optimize planar or volumic meshes 
based on criteria notably related to  the shape and the size of the elements. We 
mentioned that these methods cannot generally be applied directly to  surfaces. 
This is why we now deal with the optimization of surface meshes which, while using 
the same general principles as the methods described in Chapter 18, nevertheless 
presents numerous specificities. 

Surface meshes play an important role in various numerical applications. Hence, 
for finite element methods, it is well established that the quality of the geometric 
approximation may affect the accuracy of the numerical results as well as the con- 
vergence of the computational scheme [Ciarlet-19911. In this type of application, 
a surface mesh is conceived, in principle, as the description of the boundary of 
a computational domain in three dimensions (cf. Chapters 5 to 7). Actually, to  
be useful, these meshes must conform to certain criteria, related to  the geometry 
of the surfaces they represent (we expect an element size variation based on the 
local curvature) or to  the physical behavior of the problems studied (element den- 
sity greater in regions where the gradient of the solution varies). However, in the 
last case, following a physical criterion does not mean excluding conformity to  the 
geometric properties of the surface. 

Moreover, it is frequent that a given surface mesh is not satisfactory, either 
because it corresponds to too coarse an approximation of the surface, or because 
it contains too many elements to be usable. We focus here on the optimization of 
such a mesh with respect to the geometry it represents, so as to  obtain a mesh of a 
geometric nature (for which the gap between the discretization and the geometry 
of the surface is bounded by a given tolerance value) and such that the quality (in 
shape and/or in size) of the triangles and/or the quadrilaterals is acceptable for 
finite element calculations. 

Surface mesh modification and optimization operators need to  access certain 
information about the surface and its properties. This information serves, in par- 
ticular, to  position a point on the surface or to  locate a point on the surface, given 
a point and a direction. If such a surface is known exactly (given an analytical def- 
inition, for example) or indirectly (using queries to a geometric modeling system, 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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for example), this information is easily accessible. However, if the input is already 
a mesh, the surface approached by the polyhedral representation is not known. 
The given discretization will then be used to  construct a geometric support (i.e., 
a mathematical representation) having adequate regularity and continuity proper- 
ties. This support can then be queried to  obtain the information about the surface 
required by the optimization process. 

Once the intrinsic properties of the surface are known (or a t  least estimated), 
it is possible to construct the metric of the tangent plane (cf. Chapter 15). This 
metric will be used to govern the mesh modification and mesh modification pro- 
cedures. In particular, the edge lengths are calculated in this metric'. 

* * *  
In this chapter, we specify the criteria and the methods used to  optimize surface 

meshes. The first section introduces the shape and size quality measures adapted 
to surface meshes. In the second section, we indicate how to retrieve, from the 
given discretization, the intrinsic properties of the surface (radii of curvature, 
normals, etc.) and thus to  construct the metric associated with the tangent planes 
that will be used to  govern optimization algorithms. The third section deals with 
the problem of constructing a geometric support when the input is a mesh. Mesh 
optimization operators and algorithms are introduced respectively in the fourth 
and fifth sections. Finally, several examples of optimized surface meshes are given 
in the sixth section. Examples of simplified meshes are also proposed to  illustrate 
a particular application of the optimization, the surface mesh simplification. 

19.1 Quality measures 

In this section, we deal with how to evaluate the quality of surface meshes. This 
information will be useful during a global surface mesh optimization procedure. 
We mainly examine the case of meshes composed exclusively of triangles, giving 
some indications nonetheless about quadrilateral meshes. 

Surface mesh quality (classical case) 

Recall that (cf. Chapter 18) the shape ratio of a triangle K is defined by the 
relation: 

(19.1) 

where hma, is the diameter of K ,  p~ is the in-radius, p~ is the half-perimeter and 
SK is the area of K .  The coefficient a is chosen in such a way that the quality of 
an equilateral triangle is equal to  one. 

lWhich may also be combined with a "physical" metric which is, for instance, representative 
of the behavior of a solution during a numerical computation. 
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This formula indicates the degradation of an element K as compared with the 
equilateral triangle. In practice, we use the inverse value of Q K ,  to avoid numerical 
problems. 

Remark 19.1 Notice that this quality measure makes it possible to appreciate a 
triangle with no other metric consideration but the geometry. 

This element quality measure allows us to define a more global quality measure, 
for a whole set of triangles. Hence, the quality of the ball B ( P )  of a point P is 
given by: 

By extension, the quality of a surface mesh 7 is defined by the relation: 

QT = max QK . 
K E T  

(19.2) 

(19.3) 

We can, similarly, define an average quality value for a mesh, using the relation: 

(19.4) 

where n e  denotes the number of mesh elements. 

Surface mesh quality (general case) 

If size specifications are given or if a metric map is provided, the previous approach 
is slightly modified. We now have to decide whether or not the current mesh 
conforms to  these specifications. 

Efficiency index. Let ~ A B  be the length of an edge AB in the metric specified. 
The eficiency index allows us to  estimate the average deviation of the lengths as 
compared to 1 (the reference value). More precisely, this index is defined as: 

(19.5) 

where nu denotes the number of mesh edges and ei = li if l i  5 1, ei = l / l i  if 
l i  > 1. 

This measure enables a rapid estimation of the conformity of a mesh with 
respect to a given (isotropic or anisotropic) size map. In practice, a value 7- 2 0.91 
indicates that the mesh respects the specification well. The reader can refer to  
Table 18.1 (Chapter 18) to  appreciate the sensitivity of the index in the isotropic 
case. 
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Quality of a triangle (in two dimensions). If the metric map is isotropic, 
we naturally retrieve Relation (19.1). When the metric map is anisotropic, the 
quality of a triangle, in two dimensions, is then defined by the relation: 

(19.6) 

where Qk represents the quality of triangle K measured in the Euclidean space 
related to vertex Pi of K .  If (Mi)l<i<3 is the metric specified at the vertices Pi 
of K ,  we can also write (see the proofin Chapter 18): 

where (u is a coefficient of normalization. 

This quality measure, defined in the plane (i.e., in two dimensions), can be 
extended to surface triangles. The metric M i  at a vertex Pi is then defined in 
the tangent plane II(Pi) associated with this vertex and the expression of QX is 
modified accordingly [Frey, Borouchaki-19991 . 

Quality of a surface triangle. Let us consider the vertex P of triangle K .  Let 
ZK be the unit normal to the plane of triangle K and let d ( P )  be the unit normal 
to the surface (at the tangent plane II(P)) at P. We note by 8 the angle between 
the vectors d~ and d ( P )  and we denote K the image of triangle K by a rotation 
of angle 8 around the axis defined by the vector d~ A d ( P )  (cf. Figure 19.1). 

By construction, the triangle I? belongs to the tangent plane II(P). Its quality 
QK can then be measured with respect to the metric M ( P )  defined in the tangent 
plane II(P) at vertex P ,  using Relation (19.7). This comes down to defining the 
quality QK of a surface triangle as: 

QK = max QZ- 
P,EK K i '  

(19.8) 

By extension, the quality Q7 of a surface mesh 7 and its average quality el 
are defined, as in the classical case, by the following relations: 

- n e  

(19.9) 

Quality of a surface quadrilateral. We have seen (Chapter 18) that in two 
dimensions, the shape quality QK of a quadrilateral K can be evaluated, in the 
isotropic case, using Formula (18.10): 

(19.10) hmm hs 
Smin 

& = ( u p ,  
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Figure 19.1: Evaluation of the quality of a surface triangle in the tangent plane 
II(P) associated with the vertex P.  The metric Mz(P)  represents the metric of 
the tangent plane at P.  

where a is a normalization factor(a = g), Smin is the minimum among the four 

surfaces that can be associated with K ,  h, = C h: with hi the length of edge i 

of K and h,,, the largest length among the four edges and the two diagonals. 
In general (when a metric map has been supplied), an optimal quadrilateral is 

a quadrilateral having unit length edges and diagonals of lengths a. 
We can also use the notion of roughness of a quadrilateral. To this end, we 

consider the two diagonals (AC and BD) of the quadrilateral ABCD and we 
measure the two dihedral angles so defined. Then, the regularity of ABCD is 
defined as: 

r i=l 

(19.11) 

where 

represent the values of planarity of the edges present in the construction (see 
below the geometric criteria). In these relations, i i ~  denotes the unit normal to  
the considered triangle K .  

In practice, the measure of the regularity of a quadrilateral face will be used 
to quantify the torsion of a tridimensional element. 

Quality of the geometric approximation 

The quality measures introduced in the previous paragraphs translate numerically 
the deformation of a triangle and/or its conformity with respect to  the size (metric) 
map specified. However, these measures do not allow2 us to  evaluate the quality 

2 0 r  only in a indirect way. 
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of the geometric approximation (of the discretization), which is the way the mesh 
reflects the geometry of the surface. In particular, it is important to make sure 
that the gap between the elements and the surface is locally controlled. Indeed, 
recall the following definition (Chapter 15). 

Definition 19.1 A geometric mesh (of type P') within a given E of a surface 
surface C is a piecewise linear discretization of this surface for  which the relative 
gap to r is  at any point of the order of E .  

In other words, the problem is then to  make sure that a given surface mesh 
is a geometric mesh for a fixed relative gap E .  To this end, we introduce several 
measures to evaluate the quality of the geometric approximation of a surface. 

Geometric criteria. Several rather simple (almost intuitive) geometric criteria 
can be used to  characterize a surface mesh. These measures are normalized (i.e., 
range between 0 and 1) according to  the usual principle that a value close to 1 
indicates that the element (and by extension, the mesh) under consideration is 
satisfactory with respect to  this criterion. These geometric criteria thus behave 
like quality measures rather than like degradation (deformation) measures of the 
mesh elements. 

We will now specify several criteria such as planarity, deviation and roughness 
of a surface. These criteria are local measures of the behavior of the surface in the 
vicinity of a mesh vertex [F'rey, Borouchaki-19981. 

0 Planarity 

The geometric discontinuities of a surface are generally expressed by a rapid vari- 
ation of the directions of the normals to the surface in the neighborhood of a point 
(or between two adjacent triangles). The ridges and singularities are characteris- 
tic examples of Co continuity. However, when the surface is supposed to be G1 
continuous in the neighborhood of a point, a rapid variation of the normal to the 
surface in this neighborhood is most likely an indication that the mesh density in 
this area is not able to  capture the local variations of the surface. To evaluate this 
lack of density, we introduce the following definition. 

Definition 19.2 The planarity Pp at point P is  defined as the maximal angle 
between the normal Tip to the surface at P and the normals Gp, at the vertices Pi 
of the ball of P ,  other than P: 

(19.12) ~p = -(I +min(Gp,Gpi)). 

According to  this principle, we can define the planarity PAB of an edge AB as 
follows: 

PAB = ~ ( 1 +  ( G ~ K ~ , ~ K ~ ) ) ,  

where K1 and KZ are two triangles sharing the edge AB. Hence, the planarity of 
an edge is the measure of the dihedral angle between two triangles characterizing 
the geometric continuity of the surface along AB. 

1 
2 Pi 

1 



SURFACE MESH OPTIMIZATION 629 

Remark 19.2 When the planarity value P p  at P and the minimum of the pla- 
narity values Ppp, at the edges PPi incident to P are slightly different, the point 
P is  a singular point. 

0 Roughness 

Considering the set of edges PPi incident to a point P of the surface, we can 
define, from the previous measure, the local roughness S p  of the surface at point 
P as: 

S p  = min Ppp, . (19.13) 
Pi 

The degree of roughness3 of the surface in the neighborhood of point P thus 
represents the minimal value of the planarity values over the set of edges incident 
to P. 

0 Deviation 

A variant of the planarity measure at point P consists of evaluating the deviation 
of the mesh edges with respect to the geometry (i.e., the surface). In other words, 
we attempt here to evaluate the maximal gap between the edges and the tangent 
plane II(P) at P. Thus, we suggest the following definition: 

Definition 19.3 The deviation D p  at point P corresponds to the maximal angle 
between the edges PPi incident to P and the tangent plane II(P), calculated as 

D p  = 1 - min l(Tip,Gi)l , (19.14) 

where Gi represents the unit vector supported by  the line PPi and Tip is the unit 
normal vector to the surface at P.  

follows: 

z 

Remark 19.3 From a practical point of view, the deviation criterion is less ac- 
curate than the planarity. Indeed, consider a point P for  which the three following 
relations are satisfied: 

(Tip, Gi) = 0 ,  (Tip,, Gi) = 0 ,  (Tip, Tip,) = -1. 

At point P ,  the deviation of the edges with respect to the tangent plane is judged to 
be good, while the planarity criterion indicates that the surface is locally badly dis- 
cretized in the neighborhood of P (Figure 19.2). Such a point P is  then considered 
as a singular point (for which the normal to the surface is not defined). 

3Notice that the notion of roughness of a piecewise linear interpolation surface (or a Cartesian 
surface) has been defined as the L2 norm squared of the gradient of the function f defining the 
surface, integrated over the triangulation 7 [Rippa-19901: 

where Ki denotes a triangle of 7 and n is the number of elements of 7. 



630 MESH GENERATION 

Figure 19.2: Example for which the 
variation of the unit normals between 
two neighboring vertices is  better cap- 
tured by the planarity measure than 
by the measure of the local deviation 
at P.  

Notice that these criteria do not involve the map of the geometric metrics which 
may possibly be supplied. In other words, we consider here isotropic criteria. In 
the anisotropic case, the surface mesh is geometric if it complies with a geometric 
metric map, for which the edge lengths are locally proportional to the principal 
radii of curvature. To verify that a mesh complies with such a map, we introduce 
the following criterion. 

Size quality. 
of a mesh edge AB is defined by the relation: 

Suppose given a (geometric) metric map M ,  the size quality LAB 

(19.15) 

where ~ A B  represents the length of edge AB in the metric M specified (Chap- 
ter 10). In other words, if edge AB is parameterized by t E [0,1]: 

~ A B  = ] $a M ( A  + ta) a d t  , (19.16) 

0 

and, when the metric is position independent: ~ A B  = d m .  

edge PPi incident to P,  in the following manner: 
By extension, the size quality can be defined at a vertex P,  depending on the 

L p  = min L p p ; .  (19.17) 
P% 

Combined criterion. 
criterion Cp defined at a vertex P,  for example, in the following way: 

The previous criteria can be combined into a single weighted 

c p  = P;' DF SF LF , (19.18) 
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where the coefficients ai are such that: 
4 

a;=] 

Remark 19.4 The context of the application makes it possible to specify the values 
of these coeficients, depending on their desired relative weights. 

A global measure and an average measure at  the mesh level can also be defined 
as: 

C I =  min C p  et 
PET 

PET 
(19.19) 

where n p  is the number of vertices in the mesh 7.  
We now have a set of criteria allowing us to  analyze whether a given mesh is 

a geometric mesh or not. We will see later that these criteria can also be used to  
control the mesh modification and mesh optimization operators. 

Optimal surface mesh 

We have already mentioned that, given QK a quality measure for an element K 
of a mesh 7,  the global mesh quality is defined as: 

QT = max QK . 
K E I  

The notion of an optimal mesh theoretically refers to a set of meshes. As for 
planar or volumic meshes, we could say that the optimal surface mesh is that for 
which the measure considered is optimal. Formally speaking, the optimal surface 
mesh is that which, simultaneously: 

0 optimizes the geometric criterion (or the quality function) considered, 

0 minimizes the number of elements (vertices). 

In practice, we are trying to  comply as well as possible with the various ge- 
ometric criteria, the quality measures and the need to minimize the number of 
elements. As in two dimensions, a surface mesh composed exclusively of triangles 
must have edge lengths close to  1. Here we again encounter the notion of unit 
mesh (Chapter 18). 

Definition 19.4 A unit mesh is  a mesh in which the elements edges are of unit 
length. 

Given this definition, we can state the following. 

Definition 19.5 A surface mesh composed exclusively of triangles is optimal i f  it 
is  a unit mesh with respect to the geometric metric map (i.e., proportional to the 
principal radii of curvature). 

A good way of evaluating the optimality of a surface mesh consists of using the 
efficiency index previously introduced. 

Remark 19.5 For quadrilaterals, we try to have unit edge lengths and diagonals 
of length a. 
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19.2 Discrete evaluation of surface properties 

In the previous section, we have seen that the geometric criteria and the other 
quality measures involve quantities such as face normals or normals to  the surface 
at  mesh vertices. Moreover, we know that a geometric mesh is unit mesh according 
to the geometric metric map (i.e., the map proportional to  the principal radii of 
curvature). If the mesh is the unique data of the problem, the intrinsic properties 
of the surface (normals, tangent planes, radii of curvature, etc.) are not known 
explicitly. 

In this section, we first show how to find these properties in an approximate 
(discrete) way. Then, we indicate how to establish the metric of the tangent plane. 
Finally, several practical aspects (related to  the data structure) are mentioned. 

Intrinsic properties 

Normal and tangent plane. The tangent plane II(P) at  a regular point P of 
the surface is defined from the unit normal at P. If the unit normal vector G(P) 
is not known, it can be approached as the average (possibly weighted) values of 
the normals GK; at the triangles incident to P (i.e., the triangles of the ball of P ) :  

(1 9.20) 

In practice, the weights wi associated with the normals at the triangles can be 
related to  various (representative) quantities of the mesh, for example: 

0 the surfaces S(Ki)  of the triangles, 

0 the inverse of the surfaces S(Ki)  of the triangles (to emphasize the smallest 
elements), 

0 the angle ai (P)  at P of each triangle Ki, 

0 etc. 

The unit normal vector G(P) at  P serves to define the tangent plane. In fact, 
the point P belongs to  II(P) and the vector G(P) is a vector orthogonal to  II(P) 
(Chapter 11 and Figure 19.3). 

Remark 19.6 When the point P is  a singular point, the tangent plane is not 
defined. If P is along a ridge, we can define a normal on each side of the edge. 
To this end, we consider the two open balls at P (limited by the ridge) and we 
calculate a unit normal vector using Formula (19.20). 

Remark 19.7 Recall that for parametric surfaces (Chapter l l ) ,  the tangent plane 
is  directed by the two tangent vectors ?1(P) and ?2(P): 
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Figure 19.3: Unit normal vector at P and associated tangent plane. 

We will now examine how to determine the curvatures and the principal direc- 
tions of curvature at the vertices of a given mesh. 

Principal curvatures (summary). At a point P ,  which is assumed to be 
regular, of the mesh, the normal d ( P )  is calculated using Formula (19.20). Let 
us consider the ball B ( P )  of point P. The edges PPi, for each Pi E B(P) ,  are 
assumed to be traced on the surface. 

Given a tangent vector ?(P) E II(P) to the surface at P ,  there exists a curve 
I? traced on the surface admitting ?(P) as tangent. If C ( P )  is the curvature of I? 
at P ,  we have seen that the normal curvature4 n,(?(P)) of I? at P is defined as 
(Chapter 11): 

n,(?(P)) = C ( P )  cos a ,  (19.21) 

where a is the angle between d ( P )  and G(P): cos a = (G(P), d ( P ) ) ,  G(P) being 
the unit normal vector to I? at P (Figure 19.4). 

To find the principal curvatures, we use Meusnier’s theorem. We know that 
all curves traced on the surface and having the same tangent vector at P have the 
same curvature n ( P )  = In(?(P))l at P. We then consider a particular curve, the 
normal section (corresponding to the intersection of a plane defined by the vectors 
?(P) and d ( P ) ) .  For such a curve, the vectors d ( P )  and G(P) are collinear. 
Indeed, recall that if I? is the intersection of the surface C by a normal section, the 
Meusnier’s circle of diameter n, is the geometric locus of the points Pi endpoints 
of the segments PPi such that IIPp’211 = C ( P ) ,  the curvature of a curve whose 
normal G forms an angle a with the unit normal n’ to C at P. 

By definition, an infinity of normal sections exist around P. Among these, 
let us consider the two sections (orthogonal together) whose normal curvatures 
are respectively minimal and maximal. These two curvatures are the principal 
curvatures at P ,  denoted nl (P)  and nz(P),  and the associated directions are the 
principal directions of unit vectors ?1(P) and ?z(P). 

4Notice that the sign of C ( P )  changes with the orientation of n’(P). 
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W )  

Figure 19.4: A normal section at P 
and the curve r traced on the surface 
of vector director ?(P). 

Thus, we propose a way of evaluating the mean curvature and the principal 
curvatures at any vertex of a given mesh. More precisely, we will calculate the 
minimal radius of curvature and the principal radii of curvature that will serve 
later to define the geometric metric at any mesh vertex P. 

Calculation of the minimal radius of curvature (isotropic case). Let 7 
be a surface mesh representing locally the geometry of the surface. Let us then 
consider B(P) the ball of a vertex P (supposed regular). It seems natural to 
consider an edge PPi of B(P) as the discretization of a curve ri traced on the 
surface and belonging to a normal section. 

Let ri be such a curve, of normal parameterization yi(s). Using a Taylor 
expansion at order 2 of yi(s) at P = yi(so), we can write: 

(1 9.22) 

where As represents a small increment of s. The osculating circle Ci(P) to yi at 
P is the circle of radius pi(s0) and its center Oi is given by: 

Consider then the point Pi defined by: 

As2 
Pi = P + As?(s~) + ~ 

2 Pi(S0) ' 

that is the point of the parabola whose tangent is ?(SO) and which is at a distance 
As from y(s0). This point is thus very close to the osculating circle of the curve 
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(Chapter 14). This allows us to write (Figure 19.5, left-hand side): 

(e, ;e - p,’y’(so)) = 0 ,  

considering a circle of radius pf passing through P and Pi. 
According to the previous remark (relative to  the proximity of Pi to the oscu- 

lating circle), we can then approach pi(s0) by pf (for a sufficiently small value of 
As, refer to  the discussion in Chapter 11). The circle of radius pf is called the 
approximate osculating circle and we deduce the value of the radius of curvature: 

(1 9.23) 

Figure 19.5: Approximation of the osculating circle at point P (left-hand side). 
%vial determination of the principal radii of curvature and the principal directions 
of curvature (right-hand side). 

In other words, when the point of abscissis (SO + As) is approached by the 
point Pi, the approximate radius of curvature pf is a good (accurate) approxima- 
tion of the radius of curvature a t  P. 

This result now makes it possible to define the minimal radius of curvature 
p(P) at  P by the relation: 

p(P) = min p,’ . (1 9.24) 

This value will allow us to  define the isotropic metric (i.e., the size here) a t  any 
vertex P of the mesh (see below). 

PP% 

Calculation of the principal radii of curvature (“naive” approach). The 
calculation of the minimal radius of curvature at a regular mesh vertex P using 
the previous approach can be slightly modified, in order to find the principal radii 
of curvature a t  P. 
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In fact, reconsider the previous reasoning about the edges PPi incident to P. 
It is easy to find the edge PP1 corresponding to the minimal radius of curvature, 
p1(P). Hence, the unit vector ?1(P) supported by the edge PPj gives the direction 
of maximal curvature. To determine the maximal radius pz(P),  we proceed as 
follows (Figure 19.5, right-hand side): 

0 calculate the line D orthogonal to ?l(P), 

0 then position (in distance) the points Pi of B ( P )  (the ball of P )  on D, 

0 identify the point P2 (on D) such that 

0 we obtain ?2(P) = 4, the unit vector indicating the direction of minimal 

is maximal, 

P T  
llPP2ll 

curvature. 

Remark 19.8 An alternative consists of considering the maximal radius of cur- 
vature first and then of applying the above procedure to find the minimal radius of 
curvature. 

Remark 19.9 This calculation, although very simple in principle, leads in prac- 
tice to some problems. The fact of fixing one of the directions to find the other 
makes this procedure strongly dependent on  the given mesh. If the given mesh is, 
for  example, a triangulation obtained by  refinement of a regular gr id ,  the directions 
of curvature can be %hifled” as compared to the true directions (Figure 19.6). 

Figure 19.6: Particular case where the calculation of the principal directions of 
curvature is distorted by the discretization. 

For this reason, we now indicate a more accurate approach to calculating the 
principal directions of curvature. 

Calculation of the principal radii of curvature (approach 2). Various 
approaches have been proposed. Let us mention, in particular, one based on a 
least square approximation formula of Dupin’s indicatrix suggested, among others, 
by [Todd, McLeod-19861 and [Chen, Schmitt-19921. However, to be valid, this 
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calculation supposes that the vertices around the vertex P considered can be 
matched together two by two. 

Dupin's indicatrix of the surface at  P,  which allows us to  locally approximate 
the surface by a paraboloid, corresponding to  a Taylor expansion at  the order 2 is 
defined by the equation: 

K I X 2  + K z y 2  = 1,  (1 9.25) 

where x = &I cos 8 and y = &I sin 8 for a point M ( x ,  y )  of the tangent plane at P 
(in polar coordinates, function of p and 8).  This equation is that of a conic section, 
each point M in the direction 8 is located at  a distance &I from P. If the point 
P is an elliptical point, the Dupin's indicatrix is an ellipse, if P is hyperbolic, the 
indicatrix is formed by two branches of hyperbolas (Chapter 11). 

Another possible approach consists of using a least square approximation of 
the directions of the tangents and the normal curvatures to calculate the principal 
directions and curvatures. To this end, we calculate for each edge PPi incident 
to P a normal curvature, based on the technique previously described. We thus 
obtain on B(P)  a set of directions (tangents) and of normal curvatures. The 
normal curvature K ~ ( P )  can be expressed in a quadratic form (Chapter 11). Let 
[P, 7'1, 7'21 be an orthonormal basis of the tangent plane II(P), any vector 7' can be 
written as a linear combination 7' = A71 + ~ 7 ' 2 .  Then, the normal curvature in the 
direction 7' can be written as: 

(1 9.26) 

where tsA2 = 6:'. As the matrix is symmetric, the vectors 7'1 and 7'2 can be chosen 
so as to  diagonalize the matrix: K A ~  = K:' = 0. 

Let us write the normal curvature as follows: 

where I - ~  and I - ~  denote the components of ?(P) in the basis and V corresponds 
to the principal directions at P. We can express 2) according to  only one of the 
principal directions (the two vectors being orthogonal): 

V =  

Repeating the same process for the m edges PPi incident to  P,  we finally 
obtain a system of m linear equations [Moreton-19921: 

T 1 , x K 1  2 + 7?,,K2 

~ T I , ~ T I , ~ ( K I  - ~ 2 )  ) = ( "?'" ) , (19.27) 

where the unknowns are obviously the expressions depending on the principal 
curvatures and directions. This system is of the form A X  = B. 

2 uk,x um,xum,y uk,y 7 1 , x K 2  + Tf,yK1 K n , m  
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Remark 19.10 Notice, however, that this system depends on the mesh (i.e., of 
the number of edges incident to P).  Hence, some of the equations may be redundant 
(think in particular of the pairs of opposite edges). I t  is thus important to identify 
and remove such equations. 

Remark 19.11 Another particular case corresponds to the configuration where 
only three edges are incident to P.  The system is then fully determined (3 equations 
and 3 unknowns). 

To resolve such a system (usually over-determined), we proceed as follows. Sat- 
isfying all the equations simultaneously is (in principle) not possible, hence we look 
for the best possible compromise, for example in the least squares sense (i.e., the 
sum of the squares of the distances between the left and the right members is min- 
imal). The general formula to approximate the least squares solution consists of 
obtaining a well determined system (n equations and n unknowns) by multiplying 
by t A  and by introducing X the approximate solution of X :  

( t A A ) X  = t A B .  

Once this system has been solved5 (i.e., the values of X are known) and according 
to the relation I - ; ,~  + T ; , ~  = 1, we then have the system of four equations with four 
unknowns to solve: 

2 
T1,xKl +7;,y‘62 = 30 

2 T i , ~ T i , y ( K i  - Q) = 31 (1 9.28) 2 
T1,xK2 +T;  K i  = 3 2  ’ 

T1,z 2 + T1,y dY = 1  

3 1  + 3 3  + J ( 3 3  - 3 1 ) 2  + 3; 

2 
and ~2 = 

{ 
The expressions of the principal curvatures are: 

3 1  + 3 3  - J ( 3 3  - 3 1 ) 2  + 3;) 

2 
K1 = 

(1 9.29) 
and the components of the vector ?I corresponding to the first principal direction 
are: 

the unit vector 6 being orthogonal to ?I. 

Exercise 19.1 Retrieve the two expressions of the principal curvatures and direc- 
tions from Relations (19.28). 

An extension of this approach consists of constraining each pair of opposite 
edges incident to  a vertex P to join with a continuity of order G 2 .  The pairs of 
edges are G1 continuous when they share the same tangent vectors. G2 continu- 
ity means that the curves defined by the pairs of opposite edges share the same 
binormal vector [Shirman, S6quin-1991], [Moreton-19921. 

5Using a classical method of linear algebra (see for instance [Golub, VanLoan-19831). 
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Calculation of the principal curvatures (approach 3). Finally, to conclude 
this discussion about the calculation of the principal curvatures and directions, we 
present here a third approach (suggested by [Hamann-19931, among others). 

The basic idea is to go back to a problem of parametric surface, for which the 
calculation of the principal curvatures can be performed analytically (using the 
fundamental forms; see Chapter 11). To this end, we start by searching for an 
interpolation surface passing through P and approaching at best the endpoints of 
the edges PPi incident to P. More precisely, this scheme consists of: 

0 finding the ball B(P)  of P ,  

0 calculating the projections of the Pi E B ( P )  ,pi  # P on the tangent plane 
II(P) at P ,  

0 considering the projections as abscissas and the distances 1 1  Pxll as ordinates 
in a local frame in II(P),  

0 constructing a polynomial of approximation (a quadric, for example) for 
these points in the local frame, 

0 calculating the principal curvatures according to this polynomial. 

Remark 19.12 Notice that with this approach, we also f ind  a (over-determined) 
system of linear equations (depending on the number of incident edges). 

Let ~ ( u ,  v) be the polynomial of approximation, the surface of approximation 
is then defined as the set of points (u ,  v, U(U, v)) E EX3. The principal curvatures 
6 1  and 6 2  of the polynomial: 

U ( U ,  v) = -(c2,0u2 1 + 2C1,lUV + co,2v 2 ) I 2 

at point ( O , O ,  a(0,O)) are given by the roots of the equation: 

n2 - (cz,o + C 0 , 2 ) 6  + cz,oc0,2 - = 0 .  (19.31) 

Remark 19.13 Variants of this approach consist of using cubical splines as ap- 
proximation functions [Wang, Liang-19891 or Beta-splines [Tanalca et al. 19901, 
for example, or even more simply of considering the circles circumscribed to the 
triangles (PPiPj) [Chen, Schmitt-19921. 

Metric of the tangent plane 

Once the principal curvatures and directions have been calculated using one of 
the methods described previously, the metric M3 of the tangent plane can be 
constructed at each vertex P of the given mesh. We have already seen that the 
control of the gap between an edge and the surface for a given value E fixed can 
be obtained via the metric M3, the so-called geometric metric (Chapter 15). 
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As we consider edges as curves traced on the surface, this leads to the matrix 
M2(P) ,  which is the trace of the matrix M3(P) on the tangent plane II(P) at P: 

M2(P) = M3(P) n II(P) . 

In other words, at any point P,  the metric M z ( P )  is the metric induced by M3(P) 
on the tangent plane II(P) to  the surface at P (Chapter 10). 

Remark 19.14 The metric M2 i s  only defined in the tangent planes associated 
with the vertices. 

It is obvious that the choice of the metric induces the nature of the mesh to  
obtain. In principle, we are looking for a metric having the general form: 

(19.32) 

Hence, we consider the following geometric metrics (i.e., in the tangent plane): 

0 (anisotropic) metric of the principal curvatures (or metric of the principal 
radii of curvature): 

(19.33) 

where D ( P )  is a matrix corresponding to  the principal directions ?I and ?z 
at P,  where a, (resp. /I,) is a coefficient allowing an anisotropic (relative) 
control of the gap E to  the geometry (Chapter 13), which takes into account 
the principal directions and curvatures; 

0 (isotropic) metric of the minimal radius of curvature: 

(19.34) 

where p is the minimal radius of curvature and the variable h(P)  = ap(P) 
depends on the position and a is an adequate coefficient, related to the geo- 
metric approximation (i.e., to the gap between the edges of the discretization 
and the surface); 

0 anisotropic (resp. isotropic) physico-geometric metric. Here we consider the 
metric G2(P)nl,n2 (resp. G Z ( P ) ~ )  intersected by an arbitrary field of metrics 
(for example, supplied after a calculation). 

Exercise 19.2 Retrieve and justi fy the value of the coeficients a and /I used in 
Relation (19.33). 
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In practice, we could also consider the isotropic map M3(P) of the intrinsic 
sizes. 

Definition 19.6 The intrinsic size at any vertex P E 7 corresponds to an average 
value (possibly weighted) of the Euclidean lengths of the edges PPi incident to P.  

The average value corresponds to  the solution of a minimization problem (between 
the desired size and the edge length). Actually, the problem is to  find h(P)  for 
any vertex P so as to minimize the function: 

W P )  = C ( h ( P )  - IIpp'z11)2 I 
Pi 

where the Pis denote the points of the ball of P but P. 

Remark 19.15 When the size h (P)  is, at any point P ,  smaller than or equal to 
p(P),  the metric M3(P) thus defined is a geometric metric. 

Once these metrics have been defined, the problem arises of evaluating the edge 
lengths with respect to  the geometric metric. 

Calculation of the edge lengths in M2. At a given point P,  the length of 
an edge PPi can be approximated using Formula (19.16) by considering the point 
P* = PP; n M2(P) where P; is the projection of point Pi in the tangent plane 
II(P) (Figure 19.7). 

Figure 19.7: Calculation of the length of edge PPi in the metric M2(P) associated 
with the tangent plane II(P) at P.  

From these results, we now have a theoretical framework to  evaluate the con- 
formity of the mesh with respect to a given metric M3. 

Mesh conformity. 
metric metric specification 63 defined at  any mesh vertex. 

Definition 19.7 A mesh 7 conforms to a given metric map M3 (or more pre- 
cisely to its restriction M2 in the tangent planes) i f  and only if: 

We aim to decide whether a given mesh conforms to  a geo- 

(19.35) 

When the metric map M2 considered is the map ~ K I , K ~  (resp. Gp), the mesh is 
an anisotropic (resp. isotropic) geometric mesh. Such a mesh is called a 6-mesh. 

1 
- < ~ A B  5 Jz, VAB E 7. 
Jz- 
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Remark 19.16 W h e n  the metric map 92 i s  isotropic, the following assertions are 
equivalent: 

7 conforms to  92 7 conforms to 93. 

Combination of metrics. When a metric map other than that corresponding 
to the geometric metrics (intrinsic map) is supplied, it is interesting to combine 
these two maps. To this end, we consider the metric map corresponding to the 
intersection of metrics 'H2(P) = 92(P) n M2(P) in the tangent planes associated 
with the mesh vertices (Chapter 10). 

Remark 19.17 By definition, the map 7 - i ~  i s  a geometric map. 

Computational aspects 

We will close this section by noticing briefly several practical aspects related to 
the evaluation of the intrinsic properties of surface meshes. 

Data structure. The approaches described above involve the ball of a mesh 
vertex P. It is thus important to use an efficient internal data structure that 
allows us to retrieve the elements of the ball of a vertex easily. 

For a triangular surface mesh, it is convenient to use a topological data struc- 
ture such as those introduced in Chapter 2. The triangles are considered as ori- 
ented triples6 to which are associated (at most) three edge neighbors. We could 
also use a richer representation, using a connection matrix for each triangle. 

The case of mixed meshes (composed of triangles and/or quadrilaterals) re- 
quires more care in the definition and the management of the data structure. 

Identification of singular points. For meshes representing real surfaces (i.e., 
the boundaries of a real domain), we need to carefully identify the singularities 
(corners, ridges, etc.) of the model. If the points of C1 or G1 discontinuity are 
not explicitly provided (for instance, supplied by a geometric modeling system), 
we must carry out a pre-processing stage on the data to extract this information. 

Hence, for example, a ridge7 could be identified as a mesh edge such that the 
dihedral angle between the adjacent faces along the edge is larger than a given 
threshold. A comer  is a mesh vertex where three (or more) ridges are incident or 
a vertex such that two incident ridges form a very acute angle. 

In addition to the singular points, a certain number of entities (points, edges, 
faces) can be imposed, the required or constrained entities. These entities must be 
present in the resulting mesh (see [George, Borouchaki-19971 for a description of 
a data structure allowing this type of entity to be specified). 

6This is not a restriction, the surfaces concerned being supposed orientable. 
7 ~ i ~ ~  called crest line. 
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19.3 Constructing a geometric support 

When the sole data available is a surface mesh, the construction of a geometric 
support makes it possible to define, internally to  the procedure, a geometry. The 
latter is actually a mathematical representation of a surface, the given discretiza- 
tion then being supposed to be an approximation (at the second order) of it. This 
support must, at least, interpolate the vertices and the normals a t  the mesh ver- 
tices’, in order to  satisfy the conditions of continuity of order G1, except at the 
points of discontinuity (which are supposed explicitly known). 

The problem is then to  construct (to invent, so to  speak) a surface composed 
of order G1, from the given surface mesh, each triangle serving to  define a patch. 
To this end, two adjacent patches must necessarily have the same tangent plane 
along their common edge, if the latter is not a singularity of the surface (i.e., is 
not a ridge). 

Classical approaches 

Several approaches have been proposed to  construct a geometric support globally 
of class G1 from a piecewise triangular representation of a surface. In principle, in 
all these approaches, each triangle serves as support of a patch (cf. Chapter 13). 

The methods suggested by [Farin-19861 and [Piper-19871 seem well-suited to  
dealing with the problem of defining a geometric support. They consist of sub- 
dividing each triangle into three triangles and in defining on each newly created 
triangle a polynomial patch of degree 4 (quartic), such that the continuity of the 
transverse tangent planes along each boundary edge is ensured, on the one hand 
between the new triangles resulting from the subdivision of the original triangle 
and, on the other hand, between the couples of new triangles issued from the 
subdivision of two adjacent triangles. 

Figure 19.8: Walton’s 
patch of order G1 asso- 
ciated with a surface tri- 
angle. 

, ,  

This technique, however, requires rather large memory resources. Actually, 
after subdivision, 28 control points (9 of them common to the adjacent triangles) 

8 A  priori ,  as the initial mesh is a sufficiently accurate geometric approximation of the surface, 
this geometric support reasonably “emulates” the role of the geometric modeling system. 
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are associated with each initial mesh triangle. Moreover, each triangle leads to 
the definition of three patches. The definition of these patches greatly depends on 
the shape quality of the triangle support (thus, if the latter is badly shaped, for 
example too stretched, the current method presents some instability in the patch 
definition). 

Modified approach and Walton’s patch 

More recently, the method proposed by Walton and Meek [Walton, Meek-19961, 
presents the advantage, on the one hand, of explicitly taking into account the 
geometric specifications (notably the normals to the surface at the vertices) and, 
on the other hand, of being relatively simple in its formulation and less memory 
consuming than the previous approaches. 

Basically, this method consists of defining a network of boundary curves for 
the patches, as well as the related transverse tangent planes, independently of one 
another, using an interpolation of the normals to the surface at the vertices. Each 
patch is then defined independently, from its boundary, by taking the specifica- 
tions related to its boundary (the tangent planes) into account using Gregory’s 
approach [Gregory-19741 (Chapter 13). 

The specificity of this method lies in the definition of the network of curves 
from the sole data of the normals at the vertices (each curve and the related 
transverse tangent plane is completely defined from the normals at its endpoints). 
Each boundary curve represents a cubic polynomial whose principal normals (to 
the curve) are coincident with the normals to the surface at the endpoints. The 
transverse tangent planes (to the boundary curves) are generated from the tangent 
vectors at any point along these curves and from vectors resulting from a quadric 
interpolation of the binormals at the endpoints. Hence, the sole specification of 
the normals at the two endpoints of an edge is sufficient to define a boundary 
curve of a patch (based on the endpoints) as well as the transverse tangent plane 
to the surface along the curve. Finally, from the transverse tangent planes of any 
triangle, a Gregory patch is generated using a classical approach. Each triangle is 
thus associated with a patch defined analytically using a rational function in the 
interior and a quartic along its boundary. This method requires, for each triangle, 
only 9 control points common to the adjacent triangles. 

Remark 19.18 The scheme suggested by Walton-Meek can be extended t o  the 
case of Co discontinuities present in “realistic” geometries (ridges, corners, etc.). 

Constructing the geometric support 

Here we briefly recall the construction principle for a surface composed of patches 
globally of class G1 from an initial (geometric) surface mesh. 

The construction scheme comprises the following stages: 

a associate with each mesh edge AB a curved segment of degree 3 passing 
through A and B ,  while making sure that the principal normals in A and B 
are collinear to the unit normals to the surface in A and B ,  
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a define the tangent plane generated by the vectors tangent to the curve and 
to the binormal and associated with the boundary curve, 

a raise the degree of the boundary curves so as to construct a polynomial 
surface of degree 4 (Gregory) over each triangle. 

The surface thus defined is of order G1. This is related to the unique (unam- 
biguous) definition of the tangents (from the normals to the edges), so as to ensure 
the desired transition between the patches. 

Remark 19.19 For domains presenting Co discontinuities, the geometric sup- 
port is  constructed as previously, except at the entities of discontinuity where the 
tangents are defined in order to obtain a Co continuous surface. 

Using the geometric support 

As mentioned previously and to conclude on this topic, let us recall that the 
geometric support is used to answer the following queries: 

a given a point and a direction, find the closest surface point, 

a return the normal and the minimal radius of curvature at a surface point. 

This support thus represents an analytical definition of the surface compara- 
ble to that generated by a modeling system (CAD). This support enables us to 
know the position of the closest surface point from a given point and a specified 
direction. A second essential requisite concerns the geometric specifications of the 
surface in the vicinity of these points, a fundamental requirement for any local 
topological mesh modification (see below). This query provides two types of infor- 
mation, depending on the surface characteristics in the neighborhood of the point 
considered. 

If the point presents (at least) a continuity of order C2 (in practice, a continuity 
of order G1, a tangent plane continuity, is sufficient), the normal to the surface and 
the minimal of the principal radii of curvature at this point is the sole information 
required. If the point presents a discontinuity of the tangent planes (the case 
of points located on a ridge), the two normals to the surface as well as the two 
minimals of the principal radii of curvature on both sides of the ridge and the 
tangent to this edge at this point are supplied. This information is returned by 
the modeling system together with the location of the point considered. 

19.4 Optimization operators 

As we have seen in Chapter 18, numerous specific tools have been developed for 
mesh optimization. Similarly, for surface meshes, these operators can be classified 
into two categories, either of topological or geometric nature. The first ones pre- 
serve the mesh connectivity but modify the positions of the mesh vertices and are 
thus, in some way, related to the geometry of the mesh (a point should be located 
on the surface). The main operation is the node relation. The second type affect 
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the mesh topology, that is, the mesh connectivity (i.e., the connections between 
vertices, cf. Chapter 1) and are thus related to  the geometry in a different way (for 
instance, an edge flip must preserve the quality of the geometric approximation). 
Among these operators, we can mention the edge swap and the entity (vertex or 
edge) deletion, for example. 

In the following sections, we will describe these operators in detail, in a par- 
ticular case of surface meshes. 

Geometric optimization 

The basic principle of a geometric optimization operator consists of moving the 
vertices (by modifying their coordinates) while making sure that these vertices 
remain (to a certain extent that will be specified later) on the surface. 

Node relocation algorithms are usually based on the local notion of vertex ball 
(the union of all elements sharing a vertex P ) .  The ball of a vertex can be closed, 
for an internal vertex, or open, for a boundary vertex. For the sake of convenience, 
we will only study here the case of closed balls. 

Node relocation. A trivial node relocation process consists of moving the ver- 
tex P under consideration to  the barycenter of the positions of the n vertices Pi 
of the ball of P. This can be formally written (Chapter 18): 

l n  
P = - C P ,  

n i=l 
(19.36) 

Notice however that after this modification, the new position of the vertex P is 
no longer on the surface. Hence, the geometric support must be used to move the 
point back to  the surface, that is to  modify its coordinates again . A variation 
consists of weighting the previous barycentrage, Relation (18.21). 

As for two and three dimensional meshes, a more efficient technique consists 
of introducing a relaxation. The role of the relaxation is to  avoid moving the 
point too far from its original position, which is considered correct (geometrically 
speaking) during the iterations. Hence, we consider the point P* defined as the P 
in Relation (19.36): 

. n  
1 

P* = - X P i ,  
i=l 

and the relaxation, of parameter w ,  then consists of calculating (as in Chapter 18) 
the new position of the point P as: 

P =  ( l L W ) P + W P * .  (1 9.37) 

In practice, we can choose a sub-relaxation, for example, by taking a value w = 0.5. 
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Smoothing techniques. As for two and three-dimensional meshes, smoothing 
techniques can be applied to  surface meshes. We indicate here two particular 
techniques, based on element quality or edge lengths. 

a Smoothing based on quality 

In this approach, we consider the ball of a given vertex P. With each external 
edge f i  of the ball (i.e., each edge not connected to  P )  is associated an ideal point 
Pc such that the element formed by f i  and Pc has an optimal shape quality. The 
smoothing process is then defined as: 

p* = i=l 
n 7 (19.38) 

where the coefficients ai can be chosen in several ways (cf. Chapter 18). 

Remark 19.20 This method is  also applicable in the case of anisotropic meshes, 
provided the corresponding notion of quality is used. 

a Smoothing based on edge lengths 

The idea consists this time of defining the position of the optimal points Pc of the 
ball of P ,  so as to define internal edges of unit length. The unit length is related 
to the size (or metric) map specified. Hence, we obtain a relation like: 

(19.39) 

where l ~ ( P i ,  P )  represents the length of edge Pip in the metric M associated 
with Pip. 

Notice that in practice, regardless of the approach taken, we want to  move 
the point P in the associated tangent plane II(P).  To this end, we consider the 
projections f,! of the external edges f i  of the ball in the tangent plane II(P) and 
we look for the position of the associated optimal point using any of the above 
approaches. 

Constrained node relocation. Smoothing and node relocation techniques de- 
scribed previously make it possible to find the position of an optimal point (in the 
tangent plane associated with the point P to  be moved). However, it is necessary 
to validate this position before accepting the move. In particular, the point P* is 
accepted if: 

the geometric approximation associated with the ball of the new point is 
better than that related to  the initial configuration. This can be expressed 
as : 

min(dKj, G(Pi)) 5 min(dK;, G(P;)) , 
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0 the shape quality of the elements of the ball of P*, B(P*),  is better than 
that of B(P) ,  

0 the lengths of the internal edges of B(P*) conform to the specified metric: 

Jz 
- I l P * P ,  I Jz, 2 

where n ' ~ ~  and G(Pi) denote respectively the normals to  the triangles Kj and to  
the vertices Pj of the ball of P. 

For a given vertex P,  the node relocation consists of redefining the elements 
incident to this vertex. To this end, from each edge on the boundary of this 
configuration, we define an optimal element, thus a point, that belongs to the 
plane supporting the element of the configuration containing the edge. Then, 
we determine the barycenter of all these points to  get an ideal point. The node 
relocation then consists of moving step by step the vertex toward the ideal point 
(considering the projections on the surface) if the previous criteria are satisfied. 

Figure 19.9: Node relocation for a surface mesh. Left-hand side: node relocation 
for a G1 vertex. Right-hand side: node relocation when the vertex is located in a 
discontinuity of the surface (ridge). 

Remark 19.21 If the point P considered is located on  a ridge (Co discontinuity), 
the relocation procedure is  more tedious. Actually, we must consider open balls 
around P.  I n  fact, the geometric constraints are slightly changed and the checks 
must be performed in each open ball (Figure 19.9, right-hand side). 

Edge splitting. The subdivision of an edge PQ is an operation that consists of 
inserting points along the edge, so as to  split the edge into unit length segments in 
the metric specified. We retrieve here the problem of splitting a segment, already 
discussed in Chapter 14. 

In practice, we replace this general procedure by a simpler one consisting in 
inserting the midpoint M of the edge PQ in the current mesh. More precisely, 
the midpoint of the edge is created (on the straight segment) and then mapped on 
the surface using the geometric support. This process involves replacing the two 
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P P 

Figure 19.10: Edge splitting by adding a point on  the surface. The two triangles 
sharing the initial edge (left-hand side) are replaced by four  triangles sharing the 
two newly created sub-segments (right-hand side). 

triangles sharing the initial edge by four new triangles sharing two by two the two 
sub-segments created after the insertion of the midpoint (Figure 19.10). 

Specific geometric conditions must be satisfied for the subdivision to  be applied: 

0 the geometric approximation of the new configuration must be better than 
(or equal to) that of the initial configuration, 

0 the lengths of the edges AB of the newly created triangles must conform (or 
at least be close to  unit length) to  the metric specified: 

0 the shape quality of the final configuration must be improved (as compared 
with that of the initial configuration). 

Remark 19.22 Notice that the edge splitting operation i s  usually combined with 
edge swapping operations (see below), to  form a more complex operator. In this 
case, the last geometric constraint can be slightly relaxed. 

Topological optimization 

We now examine the different operators that make it possible to  modify a mesh 
while preserving the vertex positions. 

Edge swapping. Edge swapping is a simple operation consisting in replacing 
the edge common to two adjacent triangles by the alternate edge (i.e., the diagonal 
linking the vertices not connected by the initial edge). In principle, this operation 
is similar to edge swapping in two dimensions. However, we will see that additional 
constraints are applied in the case of surface meshes. 

In two dimensions, edge swapping is possible as soon as the polygon formed 
by the union of the two triangles is convex. For surfaces, we will examine if the 
configuration of the pair of alternative triangles (after swapping) is optimal (in a 
sense that will be specified) with respect to  the geometric approximation and to  
the element shape quality compared with the original configuration. 
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Remark 19.23 Notice than an edge can be swapped i f  and only i f  it is not con- 
strained (it i s  not a ridge, for  example). 

For surfaces, verifying that the initial configuration is convex is only meaningful 
if the two triangles are exactly in the same plane (which is a rather particular case). 
However, according to the shape quality measures introduced previously, we can 
express several conditions that must be checked and satisfied in order to apply the 
edge swapping. 

Figure 19.11: Edge swapping on  the surface, initial configuration (left-hand side) 
and alternative configuration (right-hand side). 

Let K1 = APQ and Kz = BQP be two adjacent triangles sharing the edge 
PQ (Figure 19.11) and let K{ = APB and Ki = BQA be the triangles of the 
alternate configuration. We denote by $(Ki) the normal to the triangle Ki and 
by d(Pi) the normal to the vertex Pi. The edge PQ can be changed into the edge 
AB if and only if: 

0 the (dihedral) angle between faces K; of the alternative configuration does 
not exceed the angle limit of a ridge (Co discontinuity). In other words, the 
surface must not be "folded' locally, 

0 the geometric approximation (of the underlying surface) of the alternative 
configuration is better than (or identical to) that of the initial configuration. 
This can be expressed by the relation: 

min ( i (Kj ) ,  d(Pi)) 5 min(i(K;),  d(Pi)) , 1 5 i 5 3 , l  5 j 5 2 ,  

0 the shape quality of the triangles of the alternative configuration is better 
than that of the original configuration: 

minQK; < minQKj, 1 5 j  5 2 ,  

0 the length Z A B  of the edge AB conforms to the specified metric: 
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a the edge AB does not already exist in the meshg. We can use a hash table 
(Chapter 2) to avoid this problem (Figure 19.12, left-hand side). A similar 
case (Figure 19.12, right-hand side) can be detected using the geometric 
criteria, the new face after swapping be almost coplanar with two (or more) 
existing faces. 

Here, the order of the checks is arbitrary. In practice, the user must choose an 
order that favors, as much as possible, a quick reject (a condition not satisfied). 

Figure 19.12: Particular cases where the edge swapping P Q  is not possible: the 
alternative edge AB already exists (left-hand side), the face A B Q  and the faces 
A S Q ,  B S Q  are almost coplanar (right-hand side). 

Edge deletion (vertex removal). This operator consists of retriangulating the 
ball of the vertex P to be deleted. In two dimensions, this operation comes down 
to triangulating a star-shaped polygon (with respect to the vertex P ) ,  without an 
internal point. To this end, several methods have been proposed. We suggest here 
a method that presents the advantage of being applicable to surface meshes. We 
recall first the principle of the method in two dimensions. 

The basic principle of the operation aims at reducing the degree (i.e., the 
number of incident edges; see Chapter 18) of the vertex to be deleted to the value 
3 or 4 (in the degenerate case). The cavity can then be retriangulated trivially 
(Figure 19.13). 

The process involves applying to each edge incident to P an edge swapping, if 
possible (if the orientation of the resulting triangles is preserved). Schematically, 
the reduction algorithm can be written as follows: 

a apply edge swappings to each edge incident to P,  

a iterate the process, if a modification has been carried out. 

This process converges in principle toward a configuration of 3 or 4 edges incident 
to the vertex to be deleted (the second configuration representing a quadrilateral 
having two orthogonal diagonals). 

The application of this algorithm to geometric surface meshes requires a mini- 
mum of attention. In two dimensions, the edge swapping is applied if the triangles 
of the alternative configuration are valid. For surfaces, the alternative configura- 
tion must be validated by the conditions described in the previous paragraph. We 
can, however, relax a little this constraint by requiring that each newly created 

9A situation which is impossible with planar or volumic meshes. 
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iii) iv) 

Figure 19.13: Edge deletion by  vertex removal. Edge swappings are applied itera- 
tively (steps i) to iv))  to reduce the degree of the vertex P to 3. The three triangles 
sharing this vertex can then be removed. 

triangle of the cavity not enclosing the vertex to  be removed (hence a triangle that 
will be part of the final configuration) must be close to  the surface. This is equiv- 
alent to imposing that the gap (the angle) between the normal to the triangle and 
the normals to the surface at  the three vertices is bounded by a given tolerance 
value. We can also impose a condition regarding the shape quality of the triangles 
formed. 

The deletion operator being defined, the convergence of the procedure is no 
longer ensured. In practice, this means that if an intermediate configuration is 
blocked, the deletion cannot be carried out and the initial situation must be re- 
stored. This leads to extra (useless) work. 

For these reasons, we favor another edge deletion operator consisting in merging 
the two edge endpoints into a single point. 

Identification (merging) of the edge endpoints. Given an edge PQ, we try 
to replace this edge by a single point. To this end, we consider two operators that 
reduce the edge either into one of its endpoints (cf. Figure 19.14), or into a new 
point (cf. Figure 19.15). 

Identification on one of the endpoints. 

This operation can be seen as a specific re-writing (remeshing) of the ball of 
the vertex merged. The final configuration being known, it can thus be validated 
a priori, based on the geometric constraints. This is indeed a specific remeshing 
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as all possible configurations are not analyzed systematically to retriangulate the 
vertex ball (see Chapter 18). 

Figure 19.14: Edge deletion by identifying its two endpoints (the vertex P is merged 
with the vertex Q). 

In practice, it is sufficient to substitute the vertex Q to  the vertex P in all 
triangles of the ball (without the two triangles sharing the edge PQ) and then to  
verify if the following conditions are satisfied: 

0 the shape quality of the new triangles is acceptable, 

0 the length lQpi of any edge of the triangles in the final configuration conforms 
to  the specified metric, 

0 the geometric approximation of the final configuration is controlled: 

for each triangle Kj of vertices Pi,i = 1,3.  For an isotropic mesh, for 
example, the value 7 represents the maximum gap allowed, 7 = cos 8, where 
8 is such that a = 2 sin 8, ap(P) being the size imposed locally by the metric 
map at  each point P (depending on the minimal radius of curvature p(P)) ,  
cf. Chapter 15). 

Remark 19.24 W e  are not trying here to strictly improve the shape quality of 
the initial ball. I n  practice, i f  Q p  denotes the quality of the initial ball and Q the 
quality of the new mesh, we want to have Q 2 0.6Qp (the coeficient 0.6 is  chosen 
so that a configuration of six equilateral triangles can be retriangulated into four 
triangles). 

Edge reduction. 

The reduction of an edge into a new vertex is an operation similar to  the 
previous one, although it is more costly. Actually, in this case, two balls must be 
retriangulated (the ball of P and that of 4). Moreover, the position of the new 
vertex A 4  must be supplied by the geometric support associated with the mesh. 
The geometric and shape quality requirements are identical to those used in the 
identification of the edge endpoints. 
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Figure 19.15: Edge deletion by  reduction. The  vertices P and Q are merged into 
a new vertex M .  

Relaxation of the degree of a point. Recall that the degree of a vertex is 
the number of edges incident to this vertex. We have seen in Chapter 18 that in 
two dimensions, 6 is the optimal value for the degree of a mesh vertex. This value 
is also optimal for surface meshes. 

The aim of the procedures for relaxing the degree of a point is to get rid of 
the under-connected and over-connected vertices (vertices for which the degree is 
respectively lesser than or greater than the target value). To this end, the process 
consists of iteratively applying edge swappings in order to reach the target value. 

In the following section, we describe several techniques used for surface mesh 
optimization. 

19.5 Optimization methods 

The strategies carried out to optimize surface meshes are very close to those used 
for classical meshes in two and three dimensions. 

The initial values of the quality measures relative to the mesh or to a particular 
set E of triangles (for example, a vertex ball or a pair of adjacent triangles) of 
the initial mesh are calculated and serve to initialize the optimization procedure. 
The same quantities are evaluated for each new configuration E' corresponding to 
a topological or geometric operation. The operator is applied if the optimization 
criteria are satisfied. In particular, the modification is carried out if the resulting 
configuration strictly improves the measure chosen ( Q E ~  > Q E ) ,  or if the resulting 
configuration improves the measures by a certain coefficient ( Q E ~  > a&). 

Among the various possible configurations, the one leading to the best (resp. 
first) optimization is picked. All these choices can also depend on the order in 
which the mesh entities are considered. Hence, it is possible to process the ele- 
ments: 

a in a natural order (i.e., based on the increasing or decreasing indices), 

a according to a specific relation of order (for example, sorted according to an 
increasing order of the edge lengths), 
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0 of a certain type exclusively (for example, all triangles of a connected com- 
ponent, all boundary points, etc.), 

0 according to  any other criterion, including a random order. 

Shape optimization (classical case) 

In the classical case, the surface mesh is optimized exclusively with respect to  the 
element shape quality. From the initial mesh, a geometric support G1 continuous 
is constructed to  represent the underlying surface. This support is used notably 
to find the position of a point on the surface. 

From the algorithmic point of view, the current mesh elements are iteratively 
analyzed and those whose quality exceeds a certain tolerance are removed. The 
deletion of badly-shaped elements is performed using the topological and geometric 
mesh modification tools. 

In principle, a heuristic procedure is used which consists of simulating the 
application of an operator on the badly-shaped configuration and, based on the 
simulated results, in carrying out an optimization procedure on the mesh. Notice 
that it may sometimes be useful to  degrade locally the mesh quality. Hence, for 
example, it may be interesting to  merge two closely spaced points (event if the 
quality of the resulting configuration is worse than that of the initial one) before 
applying edge swapping to improve the shape quality of the new configuration. 

Size optimization (isotropic and anisotropic case) 

When one (or several) metric map(s) is (are) supplied, the optimization problem 
is a little more tedious. We first try to  get back to  a one size map problem, 
the geometric metric &. Hence, the required metric intersections are carried out 
(Chapter 10). 

Remark 19.25 If the metr ic  m a p  supplied is  n o t  geometric, we calculate the m e t -  
ric m a p  G3 using one  of the approaches described in this  chapter. 

The problem boils down to evaluating and then modifying a given mesh 7 
according to a metric map M3. In practice, we use the induced metric M2, 
in other words, we consider the trace M2(P)  of M3(P)  in the tangent plane 
associated with each mesh vertex P .  

The aim of size optimization for a surface mesh is to  obtain a unit mesh with 
respect to  the metric map M z .  This approach is (obviously) based on the edge 
lengths analysis. Hence, mesh optimization involves applying the following process 
iteratively on the current mesh edges: 

REPEAT 
FOR ALL edges AB in 7 

calculation of Z A B  

deletion of AB 
IF ~ A B  < 5 
ELSE IF l A B  > Jz 
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subdivide AB into n sub-segments (n  depending of l ~ e )  
END IF 

END FOR 
FOR ALL mesh vertices P 

node smoothing, coupled with 
local edge swappings 

END FOR 
WHILE the current mesh is modified. 

Remark 19.26 The edges are, generally, processed in a random order. Thus, the 
edge splitting or vertex deletion operators are carried out alternatively. 

Remark 19.27 A patch of the geometric support is associated with each newly 
created point so as to improve the further searching and localization procedures. 

Remark 19.28 Finally, notice that it is more interesting (for practical consid- 
erations) to subdivide an edge using its midpoint, rather than inserting n points 
along this edge. 

Optimal mesh 

Let us simply recall here that we aim at getting an optimal surface mesh, that is 
a mesh 7 such that: 

1 
- ~ A B  5 Jz, VAB E 7. Jz- 

The above procedure (size optimization) aims at creating 
criterion. 

(19.40) 

edges that satisfy this 

19.6 Application examples 

To conclude, we now provide several examples of optimized isotropic surface 
meshes. 

Surface mesh optimization examples 

Table 19.1 presents some information related to the surface meshes. For the sake 
of clarity, we denote respectively by To the initial mesh, by xg a geometric mesh 
(with respect to  the map of the minimal radius of curvature) and by a simplified 
geometric mesh. In this table, n p  and nt denote respectively the number of vertices 
and triangles in the mesh, E is the relative distance to  the surface allowed (in 
degrees; see Chapter 15) and the quantities PT, DT, RT and correspond 
respectively to  the average values of the geometric criteria of planarity, deviation, 
roughness and edge sizes in the meshes. Finally, the value represents the shape 
quality of the mesh (i.e., the quality of the worst element). 

Figure 19.16 shows an example of initial surface mesh, i). From this mesh, 
the edges separating the faces of Co continuity and the singular points have been 

-~~ 
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ii) 

iii) iv) 

Figure 19.16: Optimization of a surface mesh. i) initial surface mesh (data cour- 
tesy of MacNeal-Schwendler Corp.) ii) identification of the ridges, G1 disconti- 
nuities and constrained entities, iii) enriched geometric mesh (metric correction 
E = 1.5, surface deviation 5 degrees) iv) simplified geometric mesh (surface devia- 
t ion 14 degrees, without metric correction). 

identified, ii). Two meshes can then be generated from these specifications: an 
enriched and optimized mesh, iii) and a simplified mesh, iv). From the initial 
mesh, a surface composed of patches globally of class G1 has been constructed 
thus defining the geometric support. This has been used to find the position of 
the vertices in the enriched mesh, obtained by subdividing the initial mesh edges. 
A simplified mesh has been extracted from the enriched mesh (see below). 

Figure 19.17 depictes another example where the intial surface mesh comes 
from a reconstruction method (see Chapter 15) and is optimized with regard to  
geometric properties (isotropy, gradation and element shape while preserving the 
geometry). 

Mesh simplification 

A particular and interesting application of optimization concerns the geometric 
simplification of surface meshes. When the surface meshes have a number of 
elements that is too large to be used (for example, in numerical simulations or for 
visualization purposes; see below), it is desirable to reduce the number of elements, 
while preserving (to some extent) the geometric approximation of the surface. This 
is the aim of mesh simplification10 algorithms. 

'OAlso called decimation, coarsening or reduction. 
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Figure 19.17: Original mesh reconstru 
Department, Stanford University) and 

cted from scanned data (Computer Science 
corresponding isotropic geometric mesh. 

I I 

Table 19.1: Statistics related to various surface meshes. 
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Basic principle. In principle, mesh simplification is an operation of the same 
nature as optimization, in that it involves the same operators. In practice, given a 
(geometric) surface mesh that is assumed to  comply with a given size map 6 2 ,  the 
simplification aims at creating an optimal surface mesh with respect to  a modified 
size map, corresponding to a greater surface approximation. 

Figure 19.18: Geometric simplifications of a surface mesh, corresponding to de- 
viations to the surface E = 0.03, E = 0.1 and E = 0.29. Notice that as we move 
further from the object (as simulated here), the visual aspect remains very close to 
the original one. 

The first stage consists of calculating a geometric metric map z from the map 
6 2  for a greater tolerance E than the original one. Then, a classical optimization 
procedure described previously is applied to obtain a simplified surface mesh. 

The key to the method lies in respecting the following rules (see, for example, 
[F’rey, Borouchaki-19981) : 

the control of the distance to  the geometry, the simplified map is a geometric 
map, 

a the resulting mesh is optimal with respect to this modified map, 

a the shape quality of the final mesh elements is controlled. 

Remark 19.29 Notice however that a vertex where the minimal radius of cur- 
vature p is smaller than the threshold E (within a coeficient) can be simplified. 
This idea makes it possible to remove details that are judged useless (at the given 
resolution) and, therefore, to construct simplified geometric meshes, within E .  

Actually, given the previous remark, it is easy to  note that mesh simplification 
consists of working in a “strip” of a given width (obviously related to the specified 
tolerance value). The modifications are applied when the edges concerned by the 
operation remain in this strip. 
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Figure 19.19: Application to terrain simplification: the original map is made up 
of 1,024 x 1,024 vertices, thus 1,046,529 quadrangles; the simplified map includes 
only 57,714 vertices and 45,421 triangles and the gap is  S = 5. 

Alternative method. Instead of using optimization tools, the Delaunay kernel 
(Chapter 7) after being reversed can be used to simplify a given mesh. The idea 
is to consider the classical insertion method of Relation 7.2 

Z+l = z - c P + B P ,  (19.41) 

where point P = Pi+l is inserted in Z and to reverse it before considering 

z-1 = Z - B p + C p ,  (19.42) 

where vertex P = Pi is removed from Z while giving sense to the corresponding 
entities with regard to the surface in hand. Actually the ball Bp is nothing more 
than the triangles sharing point P and C p  is a set of triangles covering the polygon 
bounded by the external edges of the ball. While this makes sense only for a planar 
case, such a method can be used in the case of a surface and, in both case, not 
only one solution exists. Therefore, the problem simply turns to control the surface 
before and after a vertex deletion by observing the same criteria as in the previous 
approach. It is clear that deciding if a vertex must be removed must be made 
using a strategy to give some judicious priority in the deletion process. 

Remark 19.30 W e  have a clear parallel with the opposite process, e.g. surface 
enrichment by adding points to achieve some objectives. I n  this case, starting from 
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a coarse surface mesh and given the set of points that can be added, the strategy 
relies in adding the point whose effect in the geometry approximation is  maximal. 

Application to visualization. A “natural” application of mesh simplification 
is related to the representation of scenes (graphic visualization). Based on the 
distance and the point of view selected, it may be interesting to have various 
surface meshes at variable resolutions. Figures 19.18 and 19.19 illustrate this idea 
of mesh simplification adapted to graphic visualization. 

Remark 19.31 Moreover, mesh simplification enables the compression of sur- 
face meshes, which may be extremely useful, particularly for transmitting data 
[Taubin, Rossignac-19981. 



Chapter 20 

A Touch of Finite Elements 

Up to now we have discussed many aspects regarding mesh generation and mesh 
modification and while our final objective is to  provide meshes required for finite 
element simulations, we have not yet dealt with such methods’ directly. 

However, in some parts of the book, we have faced some mesh generation 
problems where more advanced knowledge about finite elements was necessary 
to understand what needed to be done (see, for instance, the numbering issues 
related to finite element nodes in Chapter 17). Also, in later chapters, we will 
discuss h-methods, pmethods and hpmethods (in terms of meshing technologies) 
and clearly, at that time, it will be necessary to  know more about the corresponding 
finite element requirements. Thus, covergae of the finite element method appears 
to be necessary before moving on to  further investigations. 

Nonetheless, library bookshelves are straining under the weight of literature on 
finite element theory as well as practical manuals for finite element methods, and 
it is clearly impossible for this book to compete with such a wealth of specialized 
literature. Thus, the point of view adopted here will be clearly motivated by 
the following question: “what must be known about finite elements in order to  
successfully deal with a meshing problem?”. 

In what follows, the theoretical point of view is largely based on [Ciarlet-19911 
to which the reader is referred for a more advanced view of the problem together 
with a comprehensive list of relevant references about finite element theory and 
practice. 

* * *  
Given this objective, the chapter is organized as follows. We consider a simple 

problem to which the finite element method is applied in order to  find an approx- 
imate solution. The main aspects of the method are introduced. We start from 
the continuous PDE problem which models the problem under investigation. We 
replace this problem by a discrete problem whose solution is approached by means 

‘Only some brief allusions to finite element theory were given in Chapter 1. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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of a finite element method. The notion of a finite element is discussed, defined 
as a geometrical element considered along with a set of degrees of freedom and a 
set of basic functions. Several types of finite elements are given including curved 
elements. Error estimate issues are briefly covered and related to  the notions 
introduced in Chapter 10. 

In terms of practice, curved finite elements are analyzed. Then, explicit use of a 
finite element approximation is discussed where we show how to compute a stiffness 
matrix, a right hand side and the resulting discrete system. This will present an 
opportunity to see how a finite element approximation can be implemented on a 
computer. Finally, some examples of popular finite elements are given to illustrate 
what types of interpolation, nodes and degrees of freedom can be encountered. 

20.1 Introduction to a finite element style com- 
putat ion 

To introduce the terminology, notations, etc., which will be used, we consider 
a very simple PDE problem and we briefly mention the main steps of its finite 
element approximation. Furthermore, P1 and P2 examples of finite elements will 
be illustrated. In specific, we will show how to compute the stiffness matrix and 
the right-hand side of such elements for the PDEs used as an example. 

Let us consider a simple academic example. Let R be a domain and be its 
boundary. We assume that fd is composed of two sub-domains, denoted as Ri, 
and that r includes three parts, denoted as ri. We want to  solve the following 
problem: find u, the solution to  

-div(lciVu) = Fi in fdi ( i  = 1 ,2 )  

+giu  = fi on ri ( i  = 1 ,2 )  (20.1) 

u = 0 o n r 3  

a 
where V represents the gradient and - is the derivative with respect to the 

an 
normal along ri. 

Figure 20. The domain R with 
its two sub-domains and the domain 
boundary r with its three compo- 
nents. 

rl 
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This system of partial differential equations models a heat transfer problem2. 
The physical conditions and the material coefficients to which the problem is sub- 
jected include the conductivity coefficient ki of domain Ri, the source term Fi for 
the sub-domain Ri, the flux term fi for the boundary ri, the transfer coefficient gi 
for the boundary ri and, finally, the Dirichlet condition u = 0 which is prescribed 
on r3. 

In what follows, we will describe the method, without going into too much 
detail. The initial PDE problem is then analyzed with a view to a finite ele- 
ment approximation. This analysis includes several steps. A weak formulation is 
established, then approximate solutions are constructed. 

First, a better suited formulation, called the variational formulation, or weak 
formulation, is derived from the above formulation by means of partial differential 
equations (PDE) (after a Green formula). This weak formulation can be written 
as follows: 

Find u E V such that { a ( u ,  w) = f (w) , Vw E V ,  

where V is the space of admissible values. In this way, we meet the operator a 
and the form f which are associated with the operators of Relationship (20.1). 

In fact, using a Green formula, it can be seen that if u conforms to  (20.1) and 
if v is an appropriate differentiable function, we have successively: 

(20.2) 

2 

(- div(k i  V U )  - Fi) v = 0 ,  

This leads to a formulation equivalent to  (20.1), this variational formulation then 
serves as a starting point for the finite element approximation. We return to the 
formulation given in (20.2) by introducing the following definitions: 

21.e., the initial problem is a heat transfer problem and physicists have proved that such a 
PDE system is an adequate model for it. 
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This continuous problem is then replaced by an approximate problem. In prac- 
tice, the explicit solution of the continuous problem is not generally possible. This 
has led to the investigation of approximate solutions using, in our context, the 
finite element method. Basically, this method consists of constructing a finite di- 
mensional sub-space v h  of space v and defining u h ,  an approximate solution of u, 
the solution to  the following problem: 

(20.3) 

Under appropriate assumptions (see below), it can be shown that this problem 
has a unique solution, Uh, and that the convergence of Uh to the solution, u, is 
directly related to the manner in which the functions Wh of space v h  approach the 
functions w of space V and therefore the manner in which the space v h  is defined. 

Thus, the finite element method consists of constructing a finite dimensional 
space v h  such that, on the one hand, a suitable approximation is obtained and, 
on the other hand, the actual computer implementation is not too difficult. This 
construction is based on the three following basic ideas: 

1. the creation of a mesh, denoted by ;rh3 or simply 7,  of domain fd so that the 
domain can be written as a finite union of elements K ,  the members of 7; 

2. the definition of v h  as the set of functions Wh, whose restriction to each 
element K in 7 is, in general, a polynomial; 

3. the existence of a basis for the space v h  whose functions have a small support. 

In other words, constructing a mesh 7 h  is an essential prerequisite when defin- 
ing space v h .  The functions in v h  are usually polynomials over every element 
in the mesh which are continuous over the neighboring elements (i.e., across the 
element interfaces). The simplest case for triangular meshes (in two dimensions) 
is to choose piecewise linear functions which, after interpolation on the mesh node 
values, make it possible to define the desired solution everywhere. 

Remark 20.1 Index h an v h  (and in 7 h )  is  related to the fact that v h  depends on 
the mesh. This value h must be seen as a size parameter (the element diameter) 
which, in fact, defines a family of meshes and, therefore, a family of approxi- 
mations and which, to demonstrate the theoretical convergence and accuracy (the 
approximation order), tends towards 0 .  

The elements K in mesh 7 h  have a certain number of properties which are 
characteristics in the finite element method (Chapter 1). 

3By convention, Th denotes a triangulation of R such that: 

h =  max hK 
K E l h  

where h K  is the diameter of polyhedron K .  
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The choice of the basis function in vh consists of taking functions whose re- 
striction at  every element K is written as: 

N 

(20.4) 

where pi is the basis function a of the polynomial space previously defined (while 
p i ( x )  is the value of this basis function at a location x in K )  and $i(u) is the 
value of the degree of freedom a associated with U h  while N denotes the number of 
degrees of freedom and the number of pis as well, i.e., the dimension of the space 
engendered by these pis. As will be seen in greater detail below, a finite element 
is then characterized by a suitable choice of the following triple: 

a K ,  a geometrical element; 

PK, a finite dimensional space of functions defined over K ;  

a C K ,  a set of degrees of freedom associated with the functions defined over K .  

Hence, for all unknowns in the problem (here, the unique unknown, u, is a “tem- 
perature”) we have dimPK = card(CK)  = N and a section below discusses this 
triple in more detail, the basic support for defining the finite elements. 

Provided with these choices, Problem (20.3) is then replaced by a matrix prob- 
lem. In fact, if locally, in each K ,  we have: 

N 

uh(x) = $ i ( u ) P i ( Z )  I 

i= 1 

globally we have a similar expression, i.e.,: 

M 

uh (.I = c 4; (u )  Pj* (.I 7 

j=1 

where M is now the total number of degrees of freedom when the mesh is considered 
globally and when we have removed4 the degrees of freedom of the nodes in r3, 

while $;(u) and pj*(x) ,  at index j ,  are indeed the values $i(u) and p i ( x )  for the 
indices i of the corresponding elements K .  Therefore, for (20.3), we have: 

a(uh ,Pj*(x) )  = f (P j* (x ) )  f o r j = l , M  

and the problem is now: 

Find u k  k = 1, M such that 
a ( c u k P ; ( Z ) , P j * ( x ) )  = f ( P j * ( X ) )  7 (20.5) 

{ k  

4This is a formal point of view, in practice, some techniques are used that allow for the 
Dirichlet boundary conditions with no specific numbering of the nodes as implicitly assumed 
here. 
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which can be written in a matrix form as follows: 

d U = B  

where d is the matrix with coefficient ai,j = a(p,T(x),p; (x)) and B is the right-hand 
side, whose component bj is bj = f ( p ; ( x ) ) .  

Before discussing the element level, note that the basis function j, in the linear 
case, is 1 at node j and 0 otherwise (the hut function). This property leads to  
sparse matrices, in fact, we have ai,j = 0 for most pairs ( i , j ) .  For example, again 
in the simplest case, the triangle of degree 1, we have ai,j = 0, unless the nodes i 
and j belong to  the same triangle K .  

20.2 Definition and first examples of finite ele- 
ments 

Here, we return to the formal definition of a finite element, using the above triple. 
We then give some examples of such triples. 

Definition of a finite element 

Now, we specify what the above triple means. As previously mentioned and again 
after [Ciarlet-19911, a finite element is defined by the triple5: 

In this triple K is the “geometric” element, i.e., a mesh element. PK denotes the 
space functions of the finite element. The basis functions in this space are referred 
to as the shape func t ions  of the finite element. Finally, C K  is the set of degrees of 
freedom associated with K .  

From a geometric point of view, and according to the space dimension, K may 
be a triangle, a quadrilateral, a tet, a pentahedron, a hex, etc. 

Space PK is generally made of polynomials. This space with the finite dimen- 
sion N is built from N basis functions. Thus, if pi is a basis function, any function 
p in PK can be written (cf. Relation (20.4)) as: 

where the a i s  are some coefficients (in fact, the degrees of freedom). 
The set of degrees of freedom C K ,  the q5is in Relation (20.4) or, similarly, the 

above a i s  may be some values of the function p ,  where p is a function in PK, at 

51n fact, K itself is often referred to as a finite element. This clearly corresponds to a 
simplification in the notations since, indeed, this is K combined with PK and C K  which is a 
finite element. 
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a node6 in the element K .  Such a node is denoted by a in the following. A finite 
element with this type of node is said to be a Lagrange type element. 

When the $i (p)s  include at least one value of a derivative of p ,  for example, 
with evident notations, D p ,  2, 3, 2, D 2 p ,  3, etc., we face a Hermite type 
finite element. 

Following these definitions, we note that PK can be seen as a space of functions 
(the p s )  or directly as a list of basis functions (the p i s ) ,  which is clearly two ways 
of writing the same thing. Similarly, C K  can be defined as a set of degrees of 
freedom, the $i(p)s, and we reach a global node definition, or a set of nodes, the 
as, with which one or several degree(s) of freedom is(are) associated. Based on 
the context, one or the other of these definitions will be used. 

The important fact is that the triple [K,  PK, C K ]  properly defines a finite ele- 
ment if the set C K  is PK-unisolvent. This means that there exist N functions pis  
in space PK which are linearly independent. In particular, we have: 

$.(  .) = 6. .  
3 p ,  23 

with S i j  the Kronecker delta ( S i j  = 1 if i = j and 6, = 0 otherwise). 

A more general definition of this concept is to  make use of one reference ele- 
ment, K, together with a mapping function FK so as to  define the above triple 
from a reference triple denoted by: 

[K, @, 21 . 

In other words, a unique reference triple [I?, @, 21 may serve to  characterize all 
finite elements in the mesh which have the same geometric type provided the 
corresponding functions FK are given. Thus, starting from one triple [I?, P ,  21 and 
one function FK,  it is possible to obtain the triple [K,  PK, C K ]  of every element 
K .  If 6 (resp. 6) denotes the functions (resp. the nodes) in P (resp. in I?), we 
have: 

K = F  K (K) 
PK = { p = $ O F i 1 , $ € @ }  (20.6) 
C K  = {p (a )  , a  = F K ( ~ ) ,  6 E I?}. 

where, for the sake of simplicity, we assume only one degree of freedom of the form 
p( . )  and where 6 stands for the nodes in K. As previously mentioned, PK can be 
also written as: 

PK = { p = c c ~ i p i  with p i = $ i o F i 1 , 6 i ~ P , i = 1 , N }  (20.7) 

for convenience, while in turn and for the same reason, C K  can be expressed in 
two ways: 

CK = {$i(P)  I = 1 ,  N )  . (20.8) 

C K  = { a j , j = l , M ; $ i ( p ( a $ ) ) , i = l , N } .  (20.9) 

6A node supports one (or several) degrees of freedom. According to their type, the nodes 
in a finite element may be its vertices, its mid-edge points, some points in its facets or some 
particular points inside K .  
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In other words, either using the entire list of degrees of freedom, or using the list 
of nodes and, for each of them, the list of the corresponding degrees of freedom. 

To make sense, the above definition implies that FK is invertible. This being 
satisfied, the two triples are equivalent (and, if in addition, FK is afine as it is in 
the P1 case, the two triples are afine equivalent). In this way, we have defined 
a family of finite elements which may be represented using a unique element, the 
reference element. Notice that making use of a reference element is not strictly 
required in the case of simplicia1 element, but this is a source of simplification due 
to its great ease of application. 

Remark 20.2 This notion of equivalence allows us to reduce the definition of a 
finite element to that of the corresponding reference element. As will be seen, this 
property is  met  again at the computational step, a part of the computation for  a 
given element concerns the reference element and therefore does not change when 
we consider one element or another of the mesh. 

Remark 20.3 I n  the case where the function is af ine,  we have af ine elements. 
I n  contrast, other types of elements can be defined, for example, curved (or isopara- 
metric) elements. 

First examples of finite elements 

In this section we give some examples of finite elements which are rather simple 
(and widely used). At the end of this chapter, a certain number of other finite 
elements will be given. 

The P1 triangle in two dimensions. The first example is the well known 
P1 Lagrange triangle in two dimensions (also referred to as Courant’s triangle or 
as the T3 element). It is defined, Figure 20.2 (top), by means of the following 
reference definitions: 

0 k ,  the straight triangle of “unit” side whose vertices are $1 = (O,O), $2 = (1,O) 

0 F = P ’ = { I - ? - $ , ?  , ~ } , i . e . , d i r n ~ K = 3 .  

0 C = { B i = $ i , i = 1 , 3 ; ~ i ( p ) = p ( a i ) , a i = F ~ ( B i ) ,  i =  1,3} 

FK E (P’)’. 

and & = (0 , l ) .  

Remark 20.4 Note that FK can be written as FK = {Fi}i=l,d where d is the 
spatial dimension and we have F i  E Pl .  

The Q1 quadrilateral in two dimensions. The Q1 Lagrange quad in two 
dimensions (also referred to  as the Q4 element) is defined as shown in Figure 20.2 
(bottom): 
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a2 

Figure 20.2: Lagrange type f i n i t e  e l emen t s  of degree 1, the  T3 and  t h e  Q4 f i n i t e  
e lements .  Lef t -hand side: t h e  ver t ex  labeling in t h e  reference e l emen t  (indeed 61 
could s imply be t h e  ver t ex  of label 1, etc.). Middle: t he  reference node labeling. 
Right-hand side: t he  current  node labeling. 

0 K, the unit square whose first vertex 61 is a t  the origin7 

The two P2 triangles in two dimensions. Figure 20.3 (left-hand side), the 
a f i n e  P2 Lagrange triangle in two dimensions (also referred to  as the T 6  element) 
is defined as: 

0 K, the “unit” triangle as for the T3 element. 

P = P2 = ((1 - 2 - $)(1 - 22 - 26) , 2 (22  - 1) ,6(26 - 1) ,42(1 - 2 - 
$) ,426 ,4$(1 - 2 - 6) }. d i m P K  = 6. 

0 C = {& = v i ,  ai+3 = ‘i+.iri+l , i = 1 , 3  ; C$i(p) = p ( a i ) ,  ai = FK(&) ,  i = 1,6} 

FK E (P’)’. 

The isoparametric P2 Lagrange triangle in two dimensions is similarly defined 
but, in this case, we have FK E (P2)2.  

70bviously, it is also possible to center the square, to give it a side 2 and to define if from -1 
to +1, for example. 
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The two Q2 quadrilaterals in two dimensions. The Q2 Lagrange quad in 
two dimensions (also referred to as the Q8 element), (see Figure 20.3 (right-hand 
side)), is defined as: 

a K, the unit square. 

P = Q2 = ((1 -2)(l- Y)(l- 22 - 28) ,2 ( l -  $)(22 - 26 - 1) , -2y(3 - 22 - 
28) , (1 - 2)$( -22 + 28 - 1) ,42(  1 - 2)  (1 - 8) ,42$( 1 - 8) ,42( 1 - 2)ij , 4 (  1 - 
i)ij(1 - 8) }. d imPK = 8. 

a c = {i& = 6(, &+4 = ~ ei+ei+l , i  = 1 , 4  ; $ i ( p )  = p ( ~ i ) , ~ i  = FK(&),  i = 
2 

198). 

FK E (Q1)' (affine case) or FK E (Q2)2 (isoparametric case). 

Figure 20.3: Lagrange type finite elements of degree 2, a f i n e  (top) and isoparamet- 
ric (bottom) T6 and Q8 finite elements together with the corresponding reference 
element. 

Remark 20.5 In the case of a n  a f i n e  element, the mid-edge node i s  the midpoint 
of the edge and, for instance, for the T6 element, a4 = FK(&) = F K ( ~ ) .  In 

this case, we have FK( y) = FK(B1)+FK(B2) 2 and a4 can be obtained as q. 
However, for the curved T6 element F K ( ~ )  # FK(B1)+FK(B2) 2 and then a4 = 

FK(&) = F ~ ( - )  is  not, in general, q. 
In a subsequent section, we will give various examples of common finite ele- 

ments other than those presented here. 

20.3 Error estimation and convergence 

The initial problem, Problem (20.2), concerns a solution in space V of a(u ,v )  = 

f (v). The approached problem, Problem (20.3), is to  find a solution to a(uh ,  vh) = 

f (wh) in space Vh. If this problem is solved using one or several numerical schemes 
or quadratures, this leads to the solution ah(uh ,  vh) = fh(wh) in which ah (resp. fh )  

are approximations of a (resp. of f ) .  The question is then to  ensure that the 
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approached solution U h  tends towards u with h in a pertinent way thanks to a 
proper choice of the various parameters and ingredients used in the various steps 
included in the approximation. 

Local (element) quantity and global quantities 

Passing from the initial continuous problem (formulated in domain R) to  its nu- 
merical approximation and to  the calculus corresponding to the mesh elements 
approaching R is thus made by replacing the global quantities by some local dis- 
crete quantities. The various relationships between these two types of quantities 
are as follows: 

0 R is replaced by 7 = U K, 
KET 

0 r is approached by the “sides”dK of the appropriate element K, 

0 a function V h  in vh is replaced by its restriction in K ,  vh/K,  in space P = PK, 

0 a global node bj corresponds to a set of local nodes ai, several elements 
A numbering problem is found here leading to  K sharing this node b j .  

identifying the global index of a local node, 

0 similarly, the basis functions and the degrees of freedom are seen at a global 
and a local level, 

0 the restriction in K of a vh = nhv is ~ K V .  

These notions (and notations) being done, we recall, using a simple example (an 
elliptic problem) the abstract basis of the convergence and error estimate issues. 

Error estimation and convergence issues 

Error estimate as well as convergence of the approximation is analyzed by observ- 
ing if 

IIu - Uhll - 0 

when h - 0 in some sense, i.e., for an appropriate norm 1 1 . 1 1 .  
From a mathematical point of view, the notion of a convergence is linked not 

to a (discrete) approximation but to a family of (discrete) approximations defined 
by a parameter h which tends towards zero. With each value of h is associated a 
space vh and with each vh is associated one approximation U h  of Problem (20.3): 

a(uh, vh) = f ( v h )  . 

Such a family is said to be convergent if 
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After the previous discussion, the convergence of u towards uh, i.e., IIu - - 0, is based on Cea’s lemma which proves that a constant C exists, uhll 
independent of h, such that: 

and, therefore, a sufficient condition for convergence is that there exists a family 
of v h  such that: 

lim inf IIu-whll = 0 .  
h d o  V h E V h  

Then, we need to show that: 

meaning that the convergence is of order ,B for the norm 1 1  . I I ,  while it is obvious 
that different norms can be found according to the regularity of the problem and 
the nature of the approximation. 

The distance between u and uh, i.e, infvhEvh IIu - whll, is estimated by looking 
at  the distance between u and n h U  the interpolate of u. This leads to a result in: 

1111 - wll I c 1111 - nhull. 

If we assume R to  be a polygonal (resp. polyhedral) domain, then we have strictly: 

where K is a polygonal (resp. polyhedron) and, in this case, straight finite elements 
(the above triple) can be chosen in ordert To construct the sub-spaces Vh (which 
are therefore included in V ) .  Then, in such a situation, we have a conforming 
finite element method. 

Hence, 
(nh U ) / K  = ~ K U  

for all K in 7 and, we can write: 

1111 - nh 1111 = { 1111 - n K  UII2}+ . 
K E I  

As a consequence, estimating the error between u and uh comes down to seeing 
what the local errors of interpolation are: 

We then show (after some assumptions about the interpolation) that there exists 
a constant C,  independent of K ,  such that: 
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for 0 5 m 5 k + 1 and for all w in H"'(K). This relation is related to the degree 
k of the polynomials in PK and two quantities already mentioned many times: 

0 the diameter of element K ,  say h K  and 

0 the radius of the circle (the sphere) inscribed in K ,  i.e., p ~ .  

From a practical point of view and for the envisaged error estimate, we use one 
reference element, K, on which the error is estimated. We then evaluate this error 
on element K (assumed to be affine equivalent). The full proof for this estimation 
is slightly delicate and makes use of various issues in functional analysis. This 
is beyond our scope here. It is enough to  retain that, based on the problem 
considered and according to  the assumed regularity, we obtain some majorations 
for some appropriate norms which enable us to  prove the convergence of these 
approximations together with the order of this convergence. 

Remark 20.6 Unsurprisingly, some quality criteria seen in Chapter 18 involve 
the ratio between h and p. 

Quadrature influence 

As already seen, the actual computation often makes use of integration schemes. 
In this way, the problem to be solved is no longer u(uh,wh) = f(wh) but rather 
ah(uh,wh) = fh(wh). If q5 stands for a function that must be integrated in K ,  we 
then compute: 

where the quadrature is defined by means of 1 points (21, yl)  and 1 weights w1. 
Bear in mind that the choice of the quadrature formula must be made in such 

a way as to  retrieve the corresponding error estimate (the order of convergence) 
when no quadrature is used. In other words, the quality of the approximation is 
preserved. 

For instance, this is the case when, for an approximation based on polyno- 
mials of degree k, we use a formula which exactly integrates the polynomials of 
degree 2k - 2. 

Curved elements 

Using curved or isoparametric elements is one way to deal with non-polygonal 
(polyhedral) domains for which an approximation by means of straight finite ele- 
ments leads to a poor geometric approximation. 

For such domains whose boundary or a portion of the boundary is curved, 
we generally use two types of finite elements. Inside the domain', straight finite 
elements are employed. Near the domain boundary, we use finite elements with at 
least one curved edge (face), in order to have a more precise approximation of the 
underlying geometry. These elements are said to  be "curved" or isoparametric. 

81n principle, as it is not necessarily true everywhere. 
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In this short section, we give some indications about this type of element and, 
specifically, we show how they can be constructed. 

For such elements, the error analysis is made as it was for straight (affine) 
elements. In particular, provided the deformation between the curved elements 
and the straight elements is not too great, the same discussion holds. Similarly, 
the role of a quadrature formula is as above. 

The concern is more specifically how to define an isoparametric element. This 
leads to a problem of element node definition which comes down to finding a (local) 
index and, more importantly, a suitable location for these nodes. 

Let us again take the case of a curved T6 triangle. As previously seen, this 
element has as its nodes its three vertices and its three mid-edge points. In fact, 
these last three nodes are effectively the midpoints of the edges when these edges 
are straight segments. The case of a curved edge is slightly different. Here the 
theory and the practice are somewhat different. In theory, specifically for a con- 
vergence study, it is convenient to take as a mid-edge node for a given edge the 
point projection on the boundary of the mid-edge point; we assume in addition 
that the distance between these two points is small. This is clearly the case when 
h tends towards zero, and therefore the convergence issue may be based on such 
an assumption. Nevertheless in practice, the curved edges are represented by a 
number of arcs of parabola and, unfortunately, the best approximation possible for 
a curve by such arcs does not mean that the projection of the midpoint of the 
edge is the best possible candidate to construct an arc of parabola close enough 
to the geometry. Moreover, since h does not tend towards zero, such a fact is not 
necessarily without effect. Thus, as will be seen in detail in Chapter 22, the mid- 
edge nodes are not necessarily the projections of the mid-edge points concerned, 
they are also related to the local curvature of the boundary near the region under 
examination. 

To summarize, it is necessary to: 

a mesh the curve related to the boundary edge by means of an arc of parabola 
as close as possible to the geometry (Chapter 22), 

check that the Jacobian of the transformation defined from the reference 
element to the current element is strictly positive in all points, so as to ensure 
the property of invertibility and thus results in elements with a positive 
surface area. 

Nevertheless, this scheme merits some remarks. First, it is not always true, in 
practice, that the edge is close enough to the boundary curve. This condition would 
hold in regions with a high curvature (i.e., where the minimal radius of curvature 
is small) only for a sufficiently small edge. Then, the P2 element (if we consider 
this case) thus constructed would probably be adequate but certainly too small, 
therefore leading to a mesh with too many elements. This refutes the fact that 
we know in advance that, for an equivalent or a better geometric approximation, 
the size h of a curved element may be larger than the size of a straight element 
constructed at the same place. An intuitive idea is to consider that a P1 mesh of 
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size at least 2 h allows the construction of a P2 mesh with the same size which 
is equivalent or better than a P1 mesh with the half size (i.e., h).  Note that in 
this way, for the same number of degrees of freedom, the number of elements is 
less. We refer the reader to  Chapter 22, where there are some indications about 
the construction of P2 meshes (the discussion is based on a P1 mesh completed 
by one of the automatic mesh generation methods previously described). 

Remark 20.7 I n  this discussion, we have essentially seen as a curved element 
example the case of simplicia1 elements (in two dimensions) of degree 2. However, 
it is clear that there exist other isoparametric elements, with a degree other than 
2, a dimension other than 2 and a geometric nature other than simplicial. 

Remark 20.8 To conclude, notice that the case of elements in three dimensions 
is  far from being trivial. Indeed, this case leads to surface meshing problems. 

20.4 Stiffness matrix and right-hand side 

In this section, we firstly give the general expressions of the stiffness matrix and 
the right-hand side associated with the problem presented here. We give the 
corresponding element quantities (at the level of one element) and we show the case 
of an affine T3 triangle and for an affine T6 triangle together with an isoparametric 
T6 triangle. Then we discuss some specific questions regarding the information 
that must be stored or found in the mesh so as to make it possible to  obtain these 
quantities. We also look at  the quadrature formula and the way in which the 
global quantities are obtained by assembling the element quantities thus obtained. 

General expression of a stiffness matrix 

The stiffness matrix results from the contribution of a(uh,  uh) of Equation (20.1) 
through the two terms -diu(kiVu)  and giu. After a Green formula, we have 

and thus (omitting index i )  

Apart from the coefficients, the quantities we are interested in are the restric- 
tions over the elements of the various functions of the above relationship. For 
convenience we denote [K] the d x d matrix with coefficients k .  We now con- 
sider ( U h ) / K ,  the restriction over K of uh. Following the approximation we have 
( U h ) / K  = $ i (u )p i  where $i(u) is the degree of freedom i associated with func- 

tion uh and pi is the basis polynomial a of space PK (note that U h  is similarly 
considered). 

i 
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With [PI the row [p l ,p2 ,  ...,pN] and { u ~ , K }  the vector of the degrees of freedom 
in K ,  the above expression is conveniently written as 

{(UdlK) = [PI { U i , K ) .  

With this concise notation, we have 

which is simply expressed by 

where 

[DP] = ... 
aY  dY dY 
dPl d P 2  a P N  

Thus, using these quantities, we have 

where sK ' [ D P ]  [Ic] [DPIdK + saK t[P]g[P]daK forms [AK] the so-called elemen- 
tary stiffness matrix of element K .  

As previously indicated, this matrix is actually computed by means of the 
corresponding reference element K. We have, following (20.7), pi  = $i o Fil, thus 

[PI = [PI and [DP] = [D3-1][DP]  

hold where [DF] denotes the derivatives of FK. Using this yields: 

with J the Jacobian of FK,  i.e., J = det(D3) and Jr the corresponding term on 
I?, i.e., we have ddK = JrddK. In terms of computation, the above integrals can 
be obtained directly (exact quadrature) or after a numerical quadrature based on 
some quadrature nodes (and coefficients). In this case, an integral is replaced by a 
summation and we need to evaluate the quantities of interest at the nodes of the 
quadrature formula. 

Having the elementary matrices ready, we can obtained the global stiffness 
matrix [A]. As can be easily established we have 
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where [BK] ensures the correspondence between the local node numbering (i.e., 
when element K is considered) and the global node numbering (when all the mesh 
is considered). Thus, [BK] gives the correspondence between the local and the 
global numbering and enables us to assembleg the global matrix by merging in it 
the contributions due to  the local matrices (see below). 

General expression of a right-hand side 

The right-hand side results from the contribution of f(wh) of Equation (20.1) 
through the term over the domain and that due to  the boundary. We have, 

and thus (omitting index i ) ,  

or again 

The elementary contribution, the so-called elementary right-hand side, is com- 
posed of the two terms sK t[P]FdK + sKn, t [P] fddK.  It is denoted by [RZSK].  
The calculation is performed over k: 

As before, using the matrix [ B K ]  allows us to  obtain the global right-hand side: 

Remark 20.9 Elementary (global) quantities other than the stiffness matrix or 
the right-hand side, namely, the mass matrix (in an evolution problem), etc., can 
be obtained in the same way. 

About the 7'3 triangle 

To demonstrate the above discussion, we look at  the T3 triangle in two dimensions. 
In this example, we consider d = 2 and N = 3 while the basis polynomials are 
[P] = { 1 - P - ij , P , ij } . Then, we have: 

'Notice that some solution methods do not require the explicit construction of the global 
matrix. 
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Also FK = {F&}i=l,2 E (I")'. Then, if ai stands for node i of K and (xi ,yi)  
denotes its two coordinates, we define aij = ai - a j  and similar expressions for xij 

and y i j  and since 

FK(% 8) = (1 - 2 - ti){al} + 2{a2} + 8{a3}, 

we have 

Thus, 

Now, we have all the ingredients ready for the stiffness matrix calculation. 
Since the latter is symmetric in our case, we just write its lower part. The integral 
over k leads to the term": 

923923 + 223x23 ... ... 
[ d K l  = +L [ 931923 + 231x23 931931 + 231x31 ... ] d K ,  

1 .  
- 921923 - 221x23 - 921931 - 221x31 921921 + 221x21 

which, since Jk d K  = i, reduces to 

923923 + 223x23 ... ... 
[AK] = ~ 931923 + 231x23 931931 + 231x31 ... 

- 921923 - 221x23 - 921931 - 221x31 921921 + x2lx2l 
2 3  k [  

The integral over 8K leads to boundary contributions if 8K is a boundary edge 
where g acts. Let us assume that edge a1a2 is such a boundary edge, then the 
corresponding contribution is ( g  being assumed to  be constant per element edge) 

[ d K ]  = L% 1' [ 2(1 -2) Z2 ... d 2 .  

The element of integration is &d2. Indeed, for this edge, we have a = a1 + Pa21 
where a is a point on edge 0102. Then we have x = XI  + 2x21 and y = y1+  2921. 

1 (1 - 2 ) 2  ... ... 

0 0 0  

'OThe conductivity is assumed to be isotropic (and constant per element), then [IC] acts through 
the single coefficient k in all matrix coefficients. The general case where [IC] is not isotropic results 
in a similar calculation provided several different values of k are employed in the appropriate 
terms. 
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and, finally, if Jr = d m  we have d d K  = Jrd2. Using an exact quadrature 
leads to 

[&]=gJr  [ . . . I  . 
... ... 1 

0 0 0  

Similarly, provided they are in the adequate part of the boundary, the two other 
edges contribute in the same way. We have Jr = d- (edge 0203)  or 
Jr = d a  (edge 0301)  and the corresponding contributions are successively 

and 

1 
1 
3 ... ... 
0 0 ... . 
; 0 3  1 

Now the complete elementary stiffness matrix is the sum of the above contribu- 
tions. 

We turn now to the right-hand side calculation. For the term over K ,  we 
consider a quadrature formula based on the three element vertices, then, using K ,  
we have 

which leads to  the term: 

depending on whether F is assumed to be constant per element or used via its 
values at the element vertices. The boundary term is simply: 

for edge 0102 with Jr = d m .  In the first solution we have assumed f 
to be constant per edge and an exact integration while in the second solution we 
have used a quadrature (based on the two edge endpoints) and f l  (resp. f 2 )  are 
the corresponding values of f. For the two other edges, in the case where they 
contribute, we obtain a similar contribution, for instance, 

for edge 0203 with now: Jr = d-. 
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The linear T6 triangle 

This section deals only with the affine triangle, and the isoparametric case will be 
discussed in the next section. In this example, we have d = 2 and we consider the 
so-called T6 triangle as a finite element. For both triangles (affine or curved), we 
have N = 6 and: 

[@I = {(1-2-6)(1-22-26) ,2(22-1) ,$(26-1) ,42(1-2-$) ,426,4$(1-2-$)} .  

Then [VP] is now: 

-42 42 4 - 4 2 - 8 6  ' -46 1 3 + 4 2 + 4 6  4 2 - 1  0 4 - 8 2 - 4 6  46 
3 + 4 2 + 4 6  0 4 6 - 1  [VP] = [ I 

hence, [VP] is now a function of 2 and 6. For convenience, we write this fact as: 

[VP] = [VP(2,6)]. 

For this affine case, the mapping function is the same as for the T3 element, 
i.e., 

FK(2, 6 )  = {al) + 2 (a21) + 6 (a31). 
Thus, [DF], J and [DF]-l are as in the T3 element. The general expression of 
the stiffness matrix, for element K ,  is: 

In the first term, t[DF-l] [Ic] [DF-l] is constant. Indeed, if [FIcF] stands for this 
2 x 2 matrix, we have: 

- 921931 - 221231 

Thus, the first term of the stiffness matrix is: 

921921 + 221221 1 ' 931931 + 231231 - 921931 - 221231 

'["D'P(P, 6)][FIcF] [VP(P, $)]Jdk, L 
and, although it is tedious, an exact integration can be used. The terms we have 
to compute are of the form: 

for a = 1 , 6  and j = 1 , 6  while we have: 
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'" 

Thus we need to compute 108 integrals of the above type. For example, we have: 

- 
- (1 - q ( 1  - 2 4 2  . .  

x(x - 1)(1 - 2 4 2  2 ( 2 x  - 1 ) 2  . .  
0 0 0 . .  

0 0 0 0 0 .  
0 0 0 0 0 0  

4x(1 - ~ ) ~ ( 1  - 22) 4x2(1 - x)(2x - 1) 0 16x2(; - x ) ~  . . dx 7 

- - 

Jr 

which, with Jr = ,/x21221 + ~ 2 1 ~ 2 1  and since an exact quadrature can be used, 

- 2  - 
- l2 . . . . . . . . . . . . . . .  

2 -- - 3o 15 . . . . . . . . . . . .  
0 0 0  . . . . . . . . .  

0 0 0 0 o . . .  
0 0 0 0 0 0  

I 15 1 15 0 6 . . . . . . .  

- - 

gJr 

- 

are dealt with in the same way as for the T3 element. For edge a 2 ~ 3 ,  we have: 
Jr = ,/X32X32 + 932932 and the possible contribution is: 

- - 
0 . . . . . . . . . . . . . . .  
o z  lp . . . . . . . . . . . .  
0 -_ z 

30 15 "' "' "' 

0 0 0 . . . . . .  

0 0 0 0 0 0  
0 I l 0 6 . . . .  15 15 

- - 

while edge a1a3 possibly contributes through the term: 
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with Jr = J X 3 1 2 3 1  + 931931 as can be easily seen. 

The right-hand side comprises two possible terms. The term over K is: 

if the quadrature used is based on the three mid-edge vertices and F is assumed 
to be constant per element or used via its three relevant values. The boundary 
term (for instance, for edge ala2) is computed using a quadrature based on the 
edge endpoints and its midpoint, thus we have (with evident notation for f,): 

The isoparametric 7'6 triangle 

We now turn to an isoparametric T6 element. Basically the same approach can 
be retained. In specific [PI, the basis polynomials, are those of the afine case. 

However, since F K ( ~ ,  ti) = C pi(?,  6) {ai} ,  the matrix [DF] is no longer constant 

over K .  Thus both J and [DF-l]  are functions of 2 and 8. Consequently a 
numerical quadrature must be employed and we obtain, as a K contribution: 

6 

i=l 

Using the three mid-edges as quadrature nodes we have to  compute [ F K F ] ,  [CP] 
and J at these nodes. Following: 

we find: 

] 3 + 4 2 + 4 y  4 2 - 1  0 4 - 8 2 - 4 9  49 -4Y 
PI = [ I 3 + 4 2 + 4 y  0 4 y - 1  -42 42 4 - 4 2 - 8 y  
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then, for the node (i, 0) we find: 

which reduces to: 

and 
1 2954 + 961 + 963 

[DF(i' O)-'] = [ -(2254 + 261 + 263) -:,": ] ' 
whose determinant is J ( i , O ) .  Similarly, and left as an exercise, we can obtain 
[ D F ( i ,  ;)-'I and J(i ,  i) as well as [DF(O, ;)-'I and J ( 0 ,  i). From these quan- 
tities, we have [F'ICF] ready at the three quadrature nodes. Similarly, we compute 
the ['D^P]s involved in the formula. We find successively: 

Now using the above ['DIP(Pl,&)]s, we have all the ingredients required to  
compute the contribution of element K to the stiffness matrix. 

Let us now consider the contribution of an edge part of the boundary which 
contributes to the stiffness matrix. We want to  use a quadrature whose nodes are 
the edge endpoints along with the edge midpoints. Let u1u2 be this edge. If u 
stands for a point on this edge, we have 

u = F K ( ~ ,  6) = (1 - 2)(l - 2 2 ) ~ l  + 2(22 - l ) ~ 2  + 42(1 - 2 ) ~ 4 ,  

and, for instance, 

2 = (1 - 2)(l - 22)21 + 2(22 - 1 ) 2 2  + 42(1 - 2)24, 

thus, 
d X  = { (42 - 3)21+ (42 - 1 ) 2 2  + 2(4 - 82)24 }d2, 

and similar expressions hold for y and dy. For 2 = 0, this reduces to: 
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and we have, in this first quadrature node, 

Jr = J r (0)  = d(324i + 242)’  + (3W + ~ 4 2 ) ~ .  

The same calculation for the midpoint P = i and for the other endpoint, P = 1, 
leads to a similar expression for the corresponding Jr. We obtain successively: 

Jr(1) = d(zi4 + 3224)’ + ( ~ 1 4  + 3Yz4)’. 

Now, the boundary contribution is obtained based on these three quadrature 
nodes. We have: 

L K  

with ui = (i, $, i), this leads to: 

1 
[ d ~ ]  = ; 

giJr(0) ... ... ... . . . . . .  
0 gzJr(1) ... ... . . . . . .  

0 o o 4g12&(;) . . . . . .  
0 0 0 ... . . . . . .  

0 0 0 0 0 ... 
0 0 0 0 0 0  

The contribution of the two other edges, if relevant, is obtained in a similar way. 
We find successively: 

1 
[ d ~ ]  = ; 

... ... ... 0 ... ... 
0 gzJr(0) ... ... ... ... 
0 0 93Jr(1) ... ... ... 
0 0  0 ... ... ... 
0 0  0 0 0 ... 

0 0  0 0 0 0 
0 0 0 0 4gz3Jr(i) ... 

where 

and, for the last edge: 

giJr(0) ... ... . . . . . .  ... 

0 0 gsJr(1) . . . . . .  ... 

0 0 o 0 0 4913&(;) 

... . . . . . .  ... 0 0 

0 0 0 . . . . . .  ... 
0 0 0 0 0  ... 
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To complete this example, we have to  compute the right-hand side. The term 
over K is computed based on a quadrature formula using as nodes the three vertices 
and the three edge midpoints. Thus, we have: 

which, with evident notations, reduces to: 

Nevertheless, the above formula is too poor and a more precise quadrature must 
be used. It is also based on the six nodes in K and, after [Glowinski-19731, it 
results in the following contribution: 

1 
360 

[R'FISK] = ~ 

The RHS boundary contributions, if any, are computed using a quadrature 
formula based on the two edge endpoints and the edge midpoint. For edge ( 1 1 ~ 2 ,  

we have: 

[R'FISK] = L, t[P]fJrddK 

which reduces to: 

1 
6 

[R'FISK] = - 
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where the Jrs are identical to those used for the boundary contribution of the 
same edge to  the stiffness matrix. Other edge contributions are obtained in the 
same way. 

Exercise 20.1 Based on the previous examples, compute the stiffness matrix and 
the right-hand side for a PDE modeling a two-dimensional elasticity problem (pro- 
vided a small deformation problem with planar stress). Hint: we face a prob- 
lem with two degrees of freedom per node where can be easily expressed using 
the previous quantities (polynomials, mapping, Jacobian, etc.; see [Ciarlet-l986], 
[Ciarlet-19881). 

Element quantities and data structure 

In the previous finite element examples we have seen how to compute a stiffness 
matrix and a right-hand side. Based on these calculations, some practical details 
about what a mesh data structure could be have been implicitly introduced. In- 
deed, a mesh data structure must store any information which is required to make 
the desired calculation possible. In this respect, we have used various information, 
including: 

0 the vertex (node) numbering, 

0 the vertex (node) coordinates, 

0 the classification of the mesh elements in terms of sub-domains (or materials), 

0 the classification of the mesh boundaries (mesh edges in two dimensions) in 
terms of the part of the boundary in which they are located, 

0 the classification of the mesh vertices (nodes) with the same objective (in 
our example, to easily find the nodes subjected to a Dirichlet condition). 

Numbering and coordinates are natural entries. The problem of membership is a 
mesh entity classification problem. 

Provided with this information, both relevant calculations are possible while 
using adequate physical coefficients. In what follows, we give some details about 
these issues (restricting ourselves to a two-dimensional problem). 

Vertex (node) coordinates. The node coordinates are obviously used when 
computing such or such elementary quantities. Note that provided with the co- 
ordinates of the three vertices of the affine T6 triangle, it is easy to retrieve the 
coordinates of the mid-edge nodes. Thus, it is not strictly necessary to  store these 
values in the mesh data structure. On the other hand, the 6 pairs of coordinates 
must be stored for an isoparametric T6 triangle if we want to  avoid calculating on 
the fly which would also require a geometric description of the domain boundaries. 
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Vertex (node) numbering. The (global) node numbering allows us to com- 
plete the global matrix and the global right-hand side of the discrete system (see 
below). 

Classification of the mesh entities. The point is to know to which material 
belongs a given element. In this way, it is possible to assign the right material 
coefficient to this element. Similarly, we have to know which part of the boundary 
an element edge belongs to  (provided it is not internal). Based on this knowledge, 
the contribution to the stiffness matrix or to the right-hand side is possible while 
assigning appropriate coefficients. 

It is then desirable to  associate an integer value" with the elements in the 
mesh (serving as material number or material pointer) and, similarly, an integer 
value (pointer) with all faces, edges and nodes for each element [Shephard-19881, 
[Beall, Shephard-19971. 

Note that this data about elements, faces, edges and vertices makes it possible 
to easily find the information at  the node level. Indeed, if a node is also a vertex, 
there is no problem and if a node is not a vertex it is only necessary to  know where 
it is located. If it belongs to  an edge, then its attribute for classification (the above 
integer) is that of this edge, etc. 

Curved boundaries. Following the previous paragraph and based on the same 
classification, it is easy to see whether or not an edge belongs to a curved boundary. 
In such a case, the relevant boundary is identified and the node(s), if any, that 
must be constructed are created on this entity. 

Mesh data structure. After the above discussion, the mesh data structure 
must be designed with these objectives in mind. In this respect, return to Chap- 
ter 1 and see the section about the external structure. 

Integrals, quadratures and global system 

As seen above, it is sometimes possible, given some assumptions about the nature 
of the data used (about what are the polynomials, the complexity of the oper- 
ators involved in the problem, the case where the data values are constant per 
element, for example), to  compute exactly some of the integrals involved in the 
quantity sought. This is, nevertheless, not the case in general. Thus, making use 
of numerical scheme is generally required. 

As seen and based on the degree of the functions in space PK and on what 
needs to be computed, a particular formula must be retained. The objective is to  
make sure that the error due to the quadrature is "consistent" with regard to the 
interpolation error of the finite element itself. 

Usually, the numerical scheme for quadrature is chosen in such a way as to  
exactly integrate a polynomial of degree n, where n is defined in accordance with 
the finite element, of the order of the expression resulting from the development 

"Or pointer or any other equivalent manner. 
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of the operator and the nature of the data (for example, if the latter are assumed 
to be constant per entity (element, face, edge, etc.)). 

The global system As previously seen, assembling the contributions of the 
mesh elements takes the following form: 

[dl = C t " a ~ l [ d ~ l [ B ~ l  , 
K E I  

to complete the global matrix and: 

[RZs] = ' [ B K ] [ R Z S K ]  
K E I  

to obtain the global right-hand side of the system. In these expressions, matrix 
[BK] related to element K is a boolean matrix (whose coefficients are 0 and l), 
which makes it possible to merge the local contribution at  the right place in the 
global quantity. 

To specify what matrix [BK] is, let us return to  the above example with the 
simplest element, the T3 triangle. Thus, [BK] is a N x M matrix where N = 3 is 
the number of degrees of freedom in the T3 triangle and M is the total number 
of degrees of freedom in the mesh12. All the coefficients of the matrix are zero 
except three. Indeed we have [ B j ~ ] l , i ~  = 1,  [Bj~]2 , i~  = 1 and [BK]3,is = 1, , 
if 21,  22 and 23 are the global indices of the three degrees in K (i.e., the degree with 
indices 1 , 2  and 3 in this element). 

From a practical point of view, the different matrices [BK] do not really exist 
and a careful writing can be used which luckily avoids their construction (and their 
storage) while reflecting the mechanism they represent. 

20.5 A few examples of popular finite elements 

In the following list, we do not seek to  be exhaustive, we just want to give several 
examples of finite elements representative of the various types of element that may 
be encountered. In this respect, examples of planar, surface and volume elements 
are given illustrated by different interpolation methods (Lagrange, Hermite, etc.) 
and different geometrical natures (straight element, curved element). 

121ncluding now the degrees corresponding to a Dirichlet condition. 



A TOUCH OF FINITE ELEMENTS 691 

Figure 20.4: Examples of planar finite elements. T3 Lagrange, the three node 
triangle, T 6  Lagrange, the straight six node triangle and the isoparametric six node 
triangle, Lagrange triangle with 10 nodes and Hermite triangle with 10 nodes. 
A f i n e  Q4 and QS quads and isoparametric Q8 and Q9 Lagrange element, with 
respectively four, eight and nine nodes. 

Figure 20.5: Examples of triangular finite elements for  surfaces, plates or shells. 

A \ / 

\ / 
\ /  
\ /  

/ \  
/ \ 

/ \ 

A 

/ 1 

Figure 20.6: Examples of hybrid finite elements where the nodes are less usual. 
From left to right, the nodes are the mid-edge points (the vertices not being nodes), 
the nodes are the vertices and the intersection points of the two diagonals, the nodes 
are the vertices and the Gauss points. 
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Figure 20.7: Examples of volume finite elements. The T4 tet and the af ine and 
isoparametric T10 tets. A pentahedral element with 10 nodes and an isoparametric 
hex with 20 nodes. 



Chapter 2 1 

Mesh Adaptation and H-methods 

In this chapter, we consider mesh construction from the perspective of a finite 
element style computation. The objective is to  introduce some mesh generation 
methods or mesh modification methods resulting in a mesh that conforms to some 
pre-specified requirements in terms of sizes (isotropic problem) or in terms of sizes 
and directional properties (anisotropic problem). The basic principle for adapted 
mesh construction is to collect information about the sizes, the directions and the 
related sizes using an adequate data structure, a control space (or a background 
mesh), and then to use this information to construct a mesh conforming (as far as 
possible) to these specifications. 

As pointed out in Chapter 20 for finite element convergence and accuracy, 
theoretical error estimates involve the parameter h, the size of the mesh elements. 
Thus, a t  least for isotropic situations, the necessity of adapting the hs in the mesh 
is rather natural'. On the other hand, anisotropic cases are not so trivial. Actually, 
numerical experiments (mainly in two dimensions) resulting in nice solutions could 
lead us to think that h-adaptation is well suited to the problem, and yet theoretical 
proofs are not fully available a t  this time (except for simple problems). 

Hence, we discuss a mesh adaptation method related to the element size (di- 
rection), in other words an h-method. This type of method is, as will be seen, 
the basic ingredient that makes it possible to  compute the solution by means of 
adaptive solution methods. In brief, such a method is an iterative process where, 
a t  each iteration step (or after a small number of steps), an adapted mesh is con- 
structed which is used to  calculate the solution. Then this solution is analyzed in 
order to  decide whether the iterations should continue or not. 

Several categories of h-adaptive methods may be considered. One class of 
methods is based on the local modification of the current mesh so as to fit the sizing 
(directional) requirements. Another class of methods involves reconstructing the 
whole mesh of the domain from its boundary discretization while conforming to  

'Intuitively, adapting the element sizes, according to the problem, comes down to constructing 
elements which are smaller or larger in some regions, the size h then being changed from one 
region to another (problems involving mechanics or fluids, etc.) or to adjust this h while keeping 
it as constant as possible (for wave propagation problems, for example). 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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the sizing (directional) requirements. On the other hand, we can find adaptive 
methods that belong to  neither of these above classes. For instance, hierarchic 
methods, multigrid type methods and non-conforming or overlapping methods 
are examples of such approaches (and are not covered in this book). Finally, 
adaptation methods by means of degree adaptation also exist, the so-called p- 
methods, which are discussed in the next chapter. 

In what follows we discuss the first two types of methods with special empha- 
sis on the global approach where the mesh is entirely recreated. Indeed, issues 
discussed throughout the previous chapters are now reviewed with the present ob- 
jective in mind. This means that most of the aspects covered in this chapter have 
been already discussed to some extent in various parts of the book2. However, to  
keep the chapter as self-contained as possible, some notions will be recalled within 
the context of a h-adaptive mesh generation method. 

* * *  
To this end, this chapter first recalls what a control space is and how it can be 

used to give the information that is required to  control the mesh generation process. 
In this respect, localization as well as interpolation problems are discussed. Then 
we turn to  h-adaptation by means of the local modification of a given mesh. 
Afterwards, h-adaptation based on the whole construction of a mesh is presented. 
Finally, computational schemes suitable for adaptive methods are given, together 
with details about the various steps involved in these schemes. The metric aspect 
(i.e., the error estimate problem) is assumed to be known and thus will only be 
touched upon briefly. 

21.1 Control space (background mesh) 

A control space (Chapter 1) is a structure whose purpose is to  govern a mesh mod- 
ification or a mesh generation process by providing the required information about 
the adaptation. Such information may be specified in various ways. Among these, 
and based on the adaptive strategy, we can find element refinement (coarsening) 
demands, desired sizes (or densities) or desired directions and related directional 
sizes. 

A demand at the element level mainly corresponds to an isotropic adaptation 
problem addressed by means of local mesh modifications. On the other hand, 
isotropic or anisotropic specifications expressed in terms of sizes, densities, di- 
rections, etc., are mostly related to an adaptation problem based on complete 
reconstruction of the mesh. 

In the first case, a list of elements (vertices) is specified which must be processed 
locally. As an example, if a refinement is demanded (at the element level) then 
the elements in question are subdivided into smaller elements or, if the demand 

'Therefore, in principle, it is merely necessary to dip into those parts of the book where the 
necessary information may be found. 
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concerns vertices, the elements sharing such a vertex are processed similarly. Then, 
if h stands for the element size, the refined elements will have a size smaller than 
their initial h (for instance, $ if we consider the edge lengths. This leads to  a ratio 
of 4 (or 8) in terms of surface (volume) variation). This means that a subdivision 
is made if h is too long but irrespective of the initial range of h. In this way, we 
go from a value h to a value $ (for example) while this new value, closer to the 
desired value, may be still too large. 

On the other hand, if a size map is specified (generally a t  the vertices of a mesh 
serving as a background mesh), then the affected elements must conform to this 
map, meaning that the hs of the adapted elements must be as close as possible 
to the specifications. In this way, the adaptation method allows the creation not 
only of smaller elements (in the case of a refinement as above) but also of elements 
with a prespecified h. 

As seen in Chapter 1, a general control space comprises two kinds of data 
including a spatial description of the domain and metric information provided 
in some way based on this spatial description. Thus, a control space is a pair 
(background mesh-metric specification) and, for the sake of simplicity, we may use 
the term background mesh with the same meaning. 

Definition of a background mesh 

A background mesh serves as a control space for the mesh modification or gener- 
ation method. 

Background mesh: spatial aspect. As already mentioned, a background 
mesh, in terms of its spatial aspect, can follow various types. 

Let us consider that the current mesh (under modification or construction) is 
a simplicial mesh3 (triangular or tetrahedral mesh according to the spatial dimen- 
sion). Then, following Chapter 1, the background mesh could be: 

0 a simple (uniform or not) grid ( type  I), 

0 a tree-type structure (such as a quadtree or an octree) ( type  Z), 

0 an arbitrary mesh ( type  3), for instance, a simplicial mesh in our case. 

The point is that the background mesh encloses the domain where the adapted 
mesh will be established. As will be seen, this property, which is a source of 
simplicity, does not always hold (see the discussion about localization problems 
below). 

Isotropic background mesh: metric aspect. Based on the type of back- 
ground mesh and related to the adaptation method, the metric aspect could be 
defined in various ways. The most popular methods consist of the following: 

3We mainly consider the case of simplicial meshes as they offer great flexibility in terms 
Nevertheless, obviously, non-simplicia1 meshes can also be used for adaptive of adaptation. 

purposes. 
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0 a refinement (derefinement) demand at the element level, 

0 a refinement (derefinement) demand at the vertex level, 

0 a adaptation demand expressed in terms of sizes at the vertex4 level. 

The first two cases are mostly those found in adaptation methods based on the 
local modification of a given mesh, while the third case is generally that used when 
the adaptation method consists of completely reconstructing the mesh. 

For a local modification based method, the background mesh is, in general, 
the current mesh. The mesh elements contain the adaptation requests and are 
processed accordingly (see below). 

For a global adaptive method, the background mesh could follow one of the 
three above types. For a type 1 background mesh, the cells of the grid contain the 
adaptation requests. These could be related to the cells themselves (for instance, 
their sizes or a scalar value associated with the cells which indicates the desired 
h in the corresponding regions or again a scalar value defined at the cell vertices 
which is furthermore used to define the desired h in the related regions). For 
a type 2 background mesh, we return to the same discussion. Either the cells 
(quadrants or octants) have been constructed so as to have a size conforming to 
the desired sizing specification and these sizes govern the adaptation process or a 
point representative of the cell (its centroid for instance) or the cell corners support 
the metric information (a scalar value). In the case of a type 3 background mesh, 
the most popular method consists of associating a scalar value with the element 
vertices. Then, in this case and for an adaptive loop of computation consisting 
of several iteration steps, the background mesh at iteration step a could be the 
current mesh of iteration a - 1 enriched with the sizing (directional) specifications, 
these values resulting from an a posteriori analysis of the solution in the current 
mesh. 

Anisotropic background mesh: metric aspect. Unlike the isotropic situa- 
tion, a background mesh for anisotropic mesh control contains information with 
both directional and sizing aspects. In this respect, a type 3 background mesh 
appears to be a suitable solution to define the adaptation directives. Each ele- 
ment vertex of the background mesh is associated with a t ensor  value representing 
both the desired directions and the related edge sizes in the neighborhood of the 
vertices. 

Such a specification consists of d x d matrices provided at some points. Such 
a matrix is denoted, given a point P,  as 

4Actually, a demand for element refinement or coarsening can be expressed at the element 
level (for instance, it can be demanded to refine twice a given element). Nevertheless, it appears 
to be simpler to have the refinement demand expressed at the element vertex level, i.e., it can 
be demanded to refine twice around a given vertex. However, these two kinds of formulation are 
closely related. 
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if we consider a two dimensional problem (i.e., d the spatial dimension is 2). Above 
point P could be a mesh vertex when the background mesh is itself a mesh or a 
cell corner (or again a point representative of a cell) when the background mesh 
is a grid or a tree structure. From the metric point of view, the reader is referred 
to Chapter 10 for the meaning of the coefficients involved in the above matrix. 

Remark 21.1 The isotropic case is  a peculiar occurrence of the anisotropic situ- 
ation where a matrix M ( P )  reduces to  & where Z stands f o r  the identity matrix 

h ,  
and hp i s  the size which is desired around point P.  

Remark 21.2 In essence, the sizing (directional) information contained in a back- 
ground mesh is of a discrete nature5 which means that attention mus t  be paid o n  
how to  obtain consistent continuous information (see below). 

Alternative to a background mesh. Analytical definition of the metric as- 
pect by means of an analytical function is a solution where there is no need for 
a background mesh to  specify the desired metrics. However, in terms of com- 
puter implementation, the mesh generation method must be coupled with the 
corresponding procedure which changes for every new problem. 

Defining simple boxes encoding the desired metrics can be (and was) used in 
some governed mesh adaptation (generation or optimization) methods. 

Finally and more flexible is the use of various types of source where a source is a 
topological entity (point, line, surface) to which is associated a metric information. 
Then, the metric for an arbitrary location is defined as a (linear or more complex) 
function of the distance from it to the closest source. Combination of several 
sources can be envisaged in some location close to several such sources. 

Needless to say that, while proved in various papers, these methods which, in 
some sense, emulate what a background mesh is, are less flexible or general than 
those making use of a “true” background mesh. 

Use of a background mesh 

Whatever the nature of the background mesh, the actual mesh modification or 
(re)construction is governed by this structure to which a series of queries is made 
so as to  collect the required information. 

Various problems must be carefully addressed including mainly localization 
problems and, the localization problems being completed, interpolation problems 
must also be addressed so as to  extract the metric information related to the region 
under consideration. 

Localization problem. We face a localization (or searching or point-location) 
problem since a frequently demanded operation is to find which element (cell) of 
the background mesh contains a given point of the current mesh. 

’Except for rapid testing purposes where analytical sizing (directional) functions can be used 
for the sake of simplicity and thus where an “ideal” control space is used. 
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An adaptive method based on the local modification of the current mesh does 
not lead to difficulties since there is no localization problem (indeed, the localiza- 
tion is implicit). In contrast to  this method, a global adaptive method strictly 
requires the localization of points in the background mesh. As mentioned earlier, 
the background mesh could be a grid, a quadtree-octree type mesh or an arbitrary 
simplicia16 mesh. 

The localization of a point in a cell of a grid or a quadtree-octree type back- 
ground mesh has been discussed in Chapters 2 and 5 and does not lead to  serious 
difficulties. 

On the other hand, a simplicial background mesh must be considered in a more 
subtle way. We can face cases where the current mesh, as well as the background 
mesh, are not convex, include holes and are not even strictly coincident while 
they approach the same domain (i.e., the (approximate) domain covered by the 
background mesh is not exactly that covered by the current mesh due to the fact 
that the boundary of the current mesh is not meshed in the same way). Thus 
regions of the current mesh may fall outside the background mesh and vice versa. 

Therefore, depending on the (global) mesh generation method, localization or 
searching problems may be of greater or lesser difficulty. As a first remark, it could 
be observed that a (uniform or not) grid (or a quadtreeoctree structure, see for 
instance [Krause, Rank-19961) can be constructed to  help the searching operation 
in a given (arbitrary) mesh. Using such a structure, it is easy and fast to find the 
cell within which a given point falls. 

Then, the point is to find the element(s) of the background mesh corresponding 
to this box which is an easy task. Actually, each background vertex is associated 
with a background element. Then, a background point in the box within which the 
current point falls is found and thus an element is found as well which can serve 
as initial element for the searching procedure. Given this background element, the 
searching problem, in general, becomes a very local problem that can be success- 
fully solved using a classical searching method (see Chapter 2). Nevertheless, for 
non-convex domains, an element in a given box (enclosing the point under con- 
sideration) is not necessarily close (topologically speaking) to this point, meaning 
that a searching procedure initialized with this element may lead to  meeting the 
boundary of the domain. Figure 21.1 illustrates three possible situations that can 
be encountered in such a localization process. 

A natural idea to overcome a difficulty due to  a non-convex local situation is 
to visit the boxes neighboring the initial box in order to reach the right part of 
the domain, then a classical searching method easily finds the solution. Note that 
this solution could demand more effort in terms of CPU time. 

Remark 21.3 For a Delaunay-type method, a different solution can be envisaged 
as it is  possible to take advantage of the current mesh which is necessarily convex 
(return to Chapter 7 where a method based on  an enclosing box is discussed for 
which a convex situation always holds). Thus, the background mesh is convex or 

6A non-simplicia1 mesh can be used as well which results in the same analysis but requires a 
more precise process. Indeed, splitting the non-simplicia1 elements in terms of simplices allows 
us to return to the simplicia1 case (see Chapter 18) for the searching problem. 
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Figure 21.1: Localization in a two-dimensional domain. W e  can see one box of 
the gr id  associated with the mesh and the mesh elements included or near this box. 
Three local patterns are visible: i )  the local context is  convex, i i)  a hole exists while 
point P and element KO, from which the localization search starts, are separated 
by this hole, iii) it is  demanded to pass through the boundary to reach the element 
containing point P.  

not but the mesh under construction is convex and a subtle writing of the searching 
procedure easily results in the desired solution. 

Localization problem in a surface mesh. Searching on a surface could be a 
more tedious problem. Actually, two cases can be considered. 

First the surface is the boundary of a domain and a mesh of the latter can be 
helpful to  find the location of a point. In this case, in principle, we return to the 
previous paragraph where a d-dimensional entity (a point in EX3) must be located 
in a d-dimensional entity (the background mesh). 

In contrast to  the previous case, if only a surface mesh is given, we face a 
localization problem where a d + 1-dimensional entity (point P )  must be located 
on a d-dimensional domain entity (the surface mesh being seen as a topological 
entity). It is then easy to construct a grid (or an octree) which encloses the surface 
mesh. Then, given a point, the cell within which it falls is found7, after which an 
element in this cell is selected and a classical searching procedure is used. In this 
way we return to  the same difficulties as in the previous paragraph and the same 
solutions apply. 

Interpolation problem. Once a point of the current mesh has been properly 
localized in the background mesh, we have to  collect the sizing (directional) in- 
formation related to  this point (say, related to  a “small” region surrounding the 
point in question). Since the sizing is known in a discrete way, we have to  define an 
interpolation scheme about discrete values so as to extract consistent information 
at  the considered point (region). 

Recall that the sizing information is assumed to be defined at the background 
mesh vertices, then several interpolation problems are encountered based on the 

7For the sake of simplicity, we consider that point P lies on a triangle in the surface. If not, 
the projection of P onto the plane of the triangles must be used in this search. 
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type of background mesh and the entity within which the point under investiga- 
tion falls (background vertex, background edge, background face or element or 
background cell). 

First, let us consider an isotropic problem. We assume that the background 
mesh is a simplicia1 mesh and that point P has been located in a given element 
(a triangle in the example figure), then using the available metric data (the hs  at 
the element vertices) and the way in which the h function varies, we want to  find 
hp the corresponding h at P. Then the first case is obvious, point P is coincident 
with a background point. The second case can be successfully dealt with using the 
material discussed in Chapter 10 where various interpolation schemes can be found 
that interpolate h along an edge from the hs  at its two endpoints. Indeed, given 
the hs  at  the edge endpoints, the desired h at  the given point is obtained based on 
one of these interpolation functions. The two other cases are more tedious. Using a 
classical interpolation scheme (between two points) leads to splitting the problem 
into two parts as can be seen in Figure 21.2 (parts ii) and iii)). First, point P12 is 
found in edge P1P2 and the h of this point is obtained by interpolation from those 
at  PI and P2. Then, using segment P3P12, a solution can be found based on the 
same type of interpolation. Hence, the scheme is not necessarily commutative and 
thus the resulting h may depend on the way the known hs  are used. To overcome 
this, see part i) of the same figure, a classical interpolation scheme can be used 
(for instance, a Pl-type interpolation) and the solution depends on what type of 
variation is desired. We can use a scheme like: 

with evident notations or something like: 

In the case of quad elements, tet elements or other classical elements, the same 
approach can be retained provided the corresponding interpolation function is 
used. 

Remark 21.4 Note that a grid or tree-type background mesh  can be considered in 
a similar way. Point P i s  located o n  this structure and the h s  associated with the 
box (the cell) including P are interpolated as above (for instance, using a Q1-type 
interpolant in the case of a quadrilateral cell; see Chapter 5). 

Obviously, the same problem when an anisotropic context is desired leads to  
the same kind of discussion. Now, we need to interpolate both the sizing values 
(the hs )  and the corresponding directions. The material in Chapter 10 allows 
solution when the interpolation is based on two points (as when P belongs to an 
edge). However, when the interpolation scheme must use three (or more) points 
(point P falls within a triangle or within a cell), the above scheme is no longer 
valid. 

Heuristics can be used to  complete the solution. Let us consider the case where 
point P falls within a triangle for which the metric information is known at  the 
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ii) iii) 

Figure 21.2: Interpolation in a two-dimensional domain. The three interpolations 
are equivalent in the case of a linear function while cases i i)  and iii) result in a 
different solution at point P depending on  whether P 1 2 ,  constructed using PI and 
P 2 ,  or P23, related to P z  and P3, is  used in the interpolation scheme. 

three vertices. If Mi, i = 1,3, are the three corresponding metric matrices, then 
a possible interpolation scheme could be as follows: 

3 

i=l 
0 compute M = C w i ( P )  Mi where w i ( P )  is a weight function (that of a 

Pl-interpolation in this case), 

0 find the eigenvectors of matrix M ,  i.e., e l ,  ..., ed (d being the spatial dimen- 
sion, i.e., d = 2 in this example) 

0 finally, compute hi = C w i ( P )  ha, for j = 1, d , 
i 

then the matrix at P is the matrix whose eigenvectors are the above ejs while the 
size hj,  related to direction ej, is that obtained by the above interpolation scheme. 

Remark 21.5 Other interpolation schemes can be developed leading to a different 
variation in both the directions and the sizes. I n  this way, emphasis can be placed 
on a particular entity depending on what is  expected. 

21.2 Adaptation by local modifications 

In this adaptive strategy, the current mesh is locally modified in order to  construct 
an adapted mesh. Thus, the background mesh is naturally the current mesh and 
the directives for refinement or coarsening are known at the vertices of this mesh. 

Local modification of the elements, the basic ingredient of this adaptive strat- 
egy, is mainly based on the general tools discussed in Chapters 17 and 18. Two 
categories of local modifications can be demanded. One corresponds to  element 
refinement so as to  increase the density of the mesh in a given region, while the 
other corresponds to  element coarsening leading to  a coarser mesh in a specified 
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region. In the following discussion, we recall some tools that ensure the level of 
refinement (coarsening) which is demanded while maintaining a conforming mesh. 

Due to the local tools involved in this type of adaptive approach, it could 
be noted that local modification based methods are mainly suitable for isotropic 
adaptation. 

0 Element refinement or coarsening 

Element refinement 

Element refinement demands can be expressed either a t  the element level or at 
the element vertex level. 

Refinement around vertices. In this section, we assume that the refinement 
demand is expressed at  the element vertex level (and not at the element level). In 
this way, it will be easy to maintain a conforming mesh as will be seen below. 

Figure 21.3: The element must be refined around one, two or three of its vertices. 
Possible partitions are depicted where only triangles exist. 

Let P be a vertex in the mesh, if a refinement is prescribed around P,  then 
all the edges emanating from P are subdivided into two edges using the edge 
midpoint. Based on this subdivision, the element is partitioned into sub-elements. 
The case of a triangular element is shown in Figure 21.3 where, on the left-hand 
side, the refinement demand concerns one, two or three vertices. On the right- 
hand side of the figure, the corresponding partitions of the initial triangle can be 
seen. 

Obviously all the elements sharing a point where a refinement is required are 
subdivided in such a way that a conforming refined mesh is automatically obtained. 

Remark 21.6 When a boundary edge must be subdivided, it is necessary to return 
to the boundary geometry so as to properly locate the midpoint involved in the 
process. 

The same procedure for a quad element leads to five cases (Figure 21.4) de- 
pending on both the number of affected vertices and their relative locations. Note 
that this local procedure leads to  dividing an affected edge twice, the process is 
a %level process. A variation, proposed by [Schneiders-l996b], considers different 
templates as depicted in Figure 21.5. In this case, three subdivisions can be em- 
ployed based on the number of vertices where a refinement is demanded. Thus, 
the procedure is a 3-level procedure. As before, conformity is automatically main- 
tained', as can be easily observed in the figure (just consider the cases of adjacent 

8Given an adequate definition of the templates used to refine a triangle in the case of a mesh 
comprising triangular and quad elements. 
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Figure 21.4: The element mus t  be refined around one, two, three or four  of its 
vertices leading to  the partitions depicted. The refinement procedure i s  a 2-level 
procedure. Note that a triangle i s  formed in case two (when this i s  undesirable, 
the pattern defined for  three or four  vertices can be used). 

elements and apply the corresponding templates to them). 

Figure 21.5: The refinement procedure is now a 3-level procedure. Note that n o  
triangles are formed, whatever the case. 

Three-dimensional elements can be dealt with in the same vein. Nevertheless, 
subdivision procedures are not so obvious. Some examples of possible partitions 
are given in Figures 21.6 and 21.7. 

The templates of Figure 21.6 are now fully described. Let i and j be two vertex 
indices, we note ij the index of the midpoint of points i and j. With this concise 
notation, for a given element [I,  2 ,3 ,4] ,  the four series of templates depicted in the 
figure correspond to  the following vertex enumeration: 

0 [l, 2,3,4]  gives [12,2,23,24], [l, 12,3,4],  [12,23,3,4] and [12,23,24,4] when 
we refine around vertex 2. Indeed, we define a “small” tet around vertex 2 
and, removing this tet, the remaining polyhedron is a pentahedron which, 
in turn, is split into 3 tets. 

0 [I,  2 ,3 ,4]  gives [I,  2,3,24] and [I,  3,24,4] when the edge [2,4] is subdivided. 

0 [I,  2 ,3 ,4]  gives [13,1,12,14], [12,2,23,24], [23,3,13,34], three “small” tets, 
along with [12,23,13,4], [12,13,14,4], [12,24,23,4] and [23,34,13,4] when 
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we refine around vertices 1, 2 and 3 meaning that the 6 mid-edges are intro- 
duced in the partition. 

0 [l, 2,3,4] gives, introducing again the 6 mid-edges, [13,1,12,14], [12,2,23,24], 
[23,3,13,34], [34,4,14,24], four “small” tets at the corners and [13,23,14,12], 
[12,14,24,23], [23,14,34,13] and finally [34,23,24,14]. 

Figure 21.6: Selected examples of three-dimensional partitions for tetrahedral ele- 
ments. 

Exercise 21.1 Show that the first refinement scheme admits an alternate a priori 
valid subdivision. Hint: examine the remaining prism (on the fly, retrieve and 
discard the Schonhart case which is  no longer valid). 

Exercise 21.2 Show that the last refinement scheme is  only one of the three pos- 
sible subdivisions of a given tet. Hint: examine the polyhedron formed when the 
four corner based tets are removed. Look at the six possible diagonals based on the 
six remaining vertices. 

Exercise 21.3 Examine how the tet subdivision patterns interact with mesh con- 
formity. 

The templates, as depicted in Figure 21.7, concern the case of a 2-level subdivi- 
sion. More complex and flexible templates can be found when a 3-level procedure 
is used. In this case, we return to  Figure 21.5 for the patterns corresponding to the 
face subdivision. Using these templates, no conformity problems may be expected. 

Local refinements can be coupled with classical mesh optimization tools (such 
as node balancing, (generalized) edge swapping, etc.) in order to  increase (or to  
preserve) the mesh quality. 

Remark 21.7 I n  many of the above examples, it could be noted that i f  the edge 
lengths of the initial element are about 1 then the edge lengths of the refined ele- 
ments range from 1 to (or from 1 to a i). Thus, it is not so easy to achieve a 
size variation following a different variation for two adjacent elements. 

Remark 21.8 Multiple refinements can be easily obtained by  repeating the above 
element partitioning. Nevertheless, a repeated series of refinements may alter the 
angles in the elements i f  some care is not taken thus resulting in ill-shaped ele- 
ments. 
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Figure 21.7: Two examples of three-dimensional partitions for  hexahedral elements. 

With regard to what an optimal mesh is (see Chapter 18) and following the 
two above remarks, it appears that local adaptation methods necessarily induce 
some extent of rigidity. 

Element refinement. In this section, we assume that the refinement demand 
is expressed at  the element level. Thus, maintaining mesh conformity must be 
made explicitly. Indeed, when an element is refined, it is necessary to propagate 
the refinement to  some neighboring elements if the interfaces (edges or faces) be- 
tween the refined element and some of its neighbors are affected by the refinement 
procedure. 

Basically, we return to the above templates. However, simplicial elements offer 
alternative solutions. In this respect, a triangular element can be subdivided by 
the so-called longest-side subdivision method or one of its variations. Advocated in 
numerous papers including, in a recent issue, [Rivara-19971, the basic idea of this 
method is to split a triangle by introducing the midpoint of its longest edge and 
then to  propagate (for conformity reasons) the subdivision to some of its neighbors. 
Nice theoretical issues indicate that the path of propagation is finite and thus mesh 
conformity is easily obtained and the number of elements still remains reasonable. 
In addition, this strategy results in a refined mesh where the angles are bounded. 

Exercise 21.4 I n  two dimensions, show that i f  a triangle is split by introducing 
the midpoint of its longest edge, then the two resulting triangles are such that 
the minimum angle is  greater than or equal to the minimum angle in the initial 
configuration. Therefore, the angles do not alter even when repeating this splitting 
procedure. 

Also, many variations have been investigated including coupling with the De- 
launay criterion. The three-dimensional extension of this idea to tet elements can 
be found in [Rivara, Levin-19921 and, more generally, there are numerous papers 
by the same author(s) discussing simplicial mesh refinement. 

Remark 21.9 It  could be of interest to store the history of a refinement procedure. 
This can be achieved by storing the i tem genealogy. Such information could be 
useful for  the inverse process, i.e., a derefinement procedure, as will be seen below. 
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Figure 21.8: Some occurrences for the longest-side subdivision refinement method 
in two dimensions. Left: triangle KO is  candidate for refinement and the edge 
common to KO and its neighbor K1 is the longest edge of both of these triangles, 
then the refinement is  confined in this pair of elements. Right: triangles KO and 
K1 are candidates for refinement and the refinement path also propagates to some 
other (not depicted) elements. 

Element coarsening 

Constructing a coarser mesh, based on local modifications of a given mesh, is more 
tedious. Actually, two approaches can be envisaged that address the derefinement 
problem in a rather different way. First, the coarsening procedure is seen as an 
inverse algorithm based on a previously applied refinement algorithm. Second, the 
coarsening of a mesh is seen as a autonomous procedure that applies for arbitrary 
meshes however they may have been created. 

Derefinement as the inverse of refinement. As it is based on the inverse of 
a refinement procedure, such an approach is only suitable in regions of the mesh 
where a refinement has been applied in a previous stage of the computational pro- 
cess. Given a list of candidate nodes for the derefinement procedure, we have to  
check whether or not they can be removed from the mesh. This point concerns 
both maintaining mesh conformity and the fact that the genealogy of the investi- 
gated node allows the procedure. The genealogy mainly depicts relationships like 
children-parent for the mesh entities (vertices, edges, faces and elements). Based 
on this history, derefinement consists of rolling backward the refinement procedure 
which led to  the current mesh. 

This inverse process either has an immediate effect or otherwise is more subtle 
to be processed as it must consider not only a transformation (to be processed 
backward) but also a series of transformations whose inverse implies several oper- 
ations. 

Arbitrary derefinement method. Such a method considers an arbitrary mesh 
and ignores the way in which it was created. Thus, this derefinement method is 
based on classical optimization tools (see Chapter 18) that lead to  vertex removal 
(and, consequently, edge, face and element removal). Apart from some peculiar 
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local pathologies (for instance, a vertex in a triangular mesh only shared by three 
triangles) where an obvious solution can be obtained, the basic tool for mesh 
coarsening is the edge collapsing operator. Due to  this, simplicia1 meshes are 
more flexible than other types of meshes as they are more readily candidates for 
successful edge collapsing. 

0 R-method 

A r-method is a method which adapts the sizes (the hs) while maintaining the 
connections between the mesh vertices, thus this connectivity remains unchanged. 
The principle lies in moving the mesh vertices, in such a way as to  increase or 
decrease the vertex density in certain regions in the domain in accordance with 
the behavior of the physical phenomenon in question. This can be seen as a mesh 
deformation. 

While well suited to some classes of problems, this method suffers from a certain 
degree of rigidity. From a numerical point of view, it must be carefully checked 
that the deformed elements (once their vertices are moved) remain valid and have 
an acceptable quality. The deformation process (by attracting the vertices in a 
given region or by repulsing them) is in general an iterative process, the vertex 
shifts being processed step by step. 

Remark 21.10 I t  is  often very eficient to combine an r-method with some of the 
previous methods for  mesh enrichment or coarsening. 

Note that this method is a local processing (based on vertex moving) but has 
a global effect on the mesh. 

Comments about local methods 

Local modification-based adaptive methods are one solution for completing adapted 
meshes. Nevertheless, a precise examination of the different points discussed in 
this section leads to  some comments. Indeed, this adaptive approach offers both 
a series of positive aspects and some weaknesses. 

Let us mention first some apparent weaknesses of a local method. Nevertheless, 
note that a tricky implementation could be, in some cases, one way to  overcome 
some of these weaknesses: 

0 In essence, local methods appear to  be a solution for isotropic adaptive 
problems and seem unlikely to  be suitable when anisotropic features are 
expected. 

0 The mesh conformity is more or less automatically insured. 

0 Mesh derefinement is not so obvious. 

0 Continuous variation in size is not easy to obtain (indeed, we start with an 
edge length h and obtain a length $ and thus obtaining another type of 
gradation is not so simple. In other words, such an approach is far from 
optimal when the desired size is not in a ratio 2. or 0.5). 
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On the other hand, positive features of a local method include the following: 

0 Localization problems are not an issue as the background mesh is, in general, 
the mesh itself. 

0 The use of predefined templates allows an easy implementation. 

0 Also, templates lead, in principle, to a reduced effort in terms of CPU. 

Note that other computer issues, such as boundary management, are common to 
both the local approach and the global method discussed in the next section and, 
thus, do not influence the appreciation of the local approach. 

Thus, based on these observations, the user must decide whether or not a local 
method is a suitable solution to a particular problem. 

21.3 Global isotropic adaptation method 

Automatic mesh generation methods, as discussed in the previous chapters, are 
natural candidates for completing adapted meshes. Thus, we now discuss how to 
use or to  modify these methods to  fulfill this objective. 

In Chapters 5, 6 and 7, we have described quadtree-octree, advancing-front 
and Delaunay-type methods. In what follows, we successively return to  each of 
these methods to  see if they can be suitably used for the construction of meshes 
conforming to  a metric map specified in advance. 

Quadtree-octree based methods can be used to  obtain graded (isotropic) meshes 
as the quadtree-octree structure can be constructed in such a way as to conform 
to some sizing properties. In this case, the control space could be the quadtree- 
octree structure itself provided a suitable criterion has been used to complete this 
structure. 

Advancing-front type methods can result in the same kind of meshes by locating 
the created point properly (for example, a t  a location such that the resulting edges 
are of the desired size). 

A Delaunay-type method as previously described is also a possible solution 
that can be used to  obtain governed meshes. 

In the following sections, we give some details about these three classes of auto- 
matic mesh generation methods when an isotropic adaptive problem is considered 
(the case of an anisotropic situation will be discussed in subsequent sections). 

Remark 21.11 To make the discussion of each method independent, some ma- 
terials, common to several methods, may, to some extent, be repeated in what 
follows. Note also that a good knowledge of the methods an their classical version 
is  assumed. 

OH-method and quadtree-octree approach 

A quadtree-octree type mesh generation method (Chapter 5) allows for some flex- 
ibility in the mesh creation process leading to  the creation of meshes conforming 
to pre-specified isotropic requests. 
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A quadtree-octree type mesh generation method can be decomposed into sev- 
eral steps where the first concerns the construction of the underlying quadtree- 
octree structure. Then, based on this spatial structure, field points are inserted 
and elements are constructed prior to  some degree of optimization. 

Underlying tree construction. The tree construction is the basis of the mesh 
construction. In the classical meshing method, the tree is constructed based on 
the domain boundary discretization provided as data. Recall that this tree con- 
struction is a recursive process in which several criteria are used to  decide whether 
or not the current tree is fine enough or must be refined again. 

In the context of a h-method, the same idea can be retained but now the tree 
is constructed based on the boundary discretization of the domain and the sizing 
function which is desired. Let h(P)  be the size at point P where P is a vertex 
of the background mesh serving as control space, then the tree must take into 
account this information. Thus, a reasonable method resulting in an adequate 
tree structure could be as follows: 

a construct the tree structure based on the domain boundary discretization 
(which is assumed to  conform to the size map), 

a refine, if necessary, the above tree, by checking if it conforms to  the hs 
included in the background mesh which means that the size of a terminal 
cell corresponds to  the desired element size. To this end, for each cell of 
the tree, we can find the vertices of the background mesh which fall within 
this cell. Then, examine if the cell size conforms to the sizing values. If 
not, pursue the tree decomposition until a satisfactory matching has been 
reached, while applying classical rules (such as the 2:l rule) to balance the 
tree. Figure 21.9 depicts how the h’s data interact with the tree construction. 

B 

Figure 21.9: Tree decomposition using a prescribed size. The size at point A forces 
the initial tree box containing A (left-hand side) constructed without explicit sizing 
prescription to be decomposed two levels deeper (right-hand side) to adjust to the 
size hA represented by the dashed circle. 

Remark 21.12 The tree level 1 is then related to the size of a mesh edge, h, as 
1 = log,(b/h) where b is  the length of a side of the root cell. 
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Remark 21.13 Note that, in this method, the distance between two connected 
mesh vertices (i.e., an edge length) is  controlled by the cell sizes. Hence, the edge 
size control is  not obtained explicitly but results from the tree decomposition. 

Remark 21.14 Also, using the [2:1] rule results in a ratio of one, one half or two 
between two adjacent cells ( in terms of size). 

Element construction. Once the tree has been completed, the element cre- 
ation follows the same aspect as in a classical quadtree-octree type method (see 
Chapter 5). 

Mesh optimization. Mesh optimization, taking place at  the end of the meshing 
process, is slightly different than in the classical meshing problem. Unlike this 
case where only the element shapes were considered, we now have to take into 
account two (possibly antagonistic) aspects. Actually, what is needed are well- 
shaped elements conforming to  a specified size. Thus, these two aspects must be 
the objective of the optimization stage. We refer the reader to  a further section 
on this point as optimization purposes in this quadtree-octree based method are 
similar to  those of the two other meshing techniques described below. 

In conclusion, adaptation using a quadtree-octree method, such as that pro- 
posed above, is essentially based on a particular construction of the tree structure 
so that the cells in this tree reflect through their sizes the desired metric specifi- 
cations. Therefore, the control is achieved by means of the tree. 

OH-method and advancing-front approach 

An advancing-front type mesh generation method (see Chapter 6) allows for some 
flexibility in the mesh creation process leading to the creation of meshes conforming 
to pre-specified isotropic requests. 

An advancing-front type mesh generation method includes the construction of 
the field points and their connection with the current front and a final step that 
corresponds to some extent of optimization. 

Point creation and point connection. One way to control the mesh creation 
with regard to a given sizing map is to  analyze the length of the mesh edges. 
Let us assume a three-dimensional case. Then, given a front face, say ABC, we 
examine the context to  decide whether an existing point or a new point must be 
created that can be combined with face ABC in order to  form an element. In the 
case where this candidate element is indeed formed, we will have introduced one, 
two or three new edges depending on the situation. As a consequence, a control 
on this (these) new edge(s) allows us in principle to complete what is needed. 

Thus, let us examine a (potentially new) edge of this candidate element, say 
AP (we assume that P is known, see below regarding a way to find such a point). 
If h(t)  stands for a sizing function defined for this edge (with h ( 0 )  = h(A) and 
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h(1) = h(P)) ,  then the length of edge AP with respect to h(t)  is: 

(21.1) 

where d A p  is the usual (Euclidean) distance. 
Actually, h(t)  is only known in a discrete way (thanks to  the background mesh). 

So, if only h(A) and h(P) are provided, we have (using an approximation based 
on a rather simple quadrature formula): 

2 LAP = dAP (21.2) 

while if edge AP intersects a series of elements in the background mesh and if Mi 
stands for the ith intersection point, then we can define the length of AP as: 

i=n 

i = O  

where (using the same quadrature formula) 

1 1 

(21.3) 

(21.4) 

In this relationship, h(Mi) is obtaine by interpolation on the background mesh. 
Using these definitions, the (potentially new) edges of the analyzed element are 
examined. This means (see Figure 21.10) that we may be interested in computing 
the lengths of edges AP, BP and CP, given the face ABC. Based on these 
values, as compared with the unity, point P is moved towards or away from the face 
(see Chapter 6) and the same analysis is repeated until (a satisfactory) convergence 
is obtained. 

In theory, we need to  find a point, P,  the solution of: 

LAPI = lgp j  = 1Cp' = 1,  

which is, in practice, unrealistic. Therefore, the above approximate method (based 
on iterations) is a reasonable solution. 

The above discussion assumed that P was found in some neighborhood of face 
ABC meaning that an existing point can be used or, on the other hand, that P 
is constructed somewhere. This being done, point P is easily adjusted using the 
previous material. The point is then to find an initial (and not too bad) candidate 
point. One method could be, based on face ABC, to  define point Popt such that 
element K is well-shaped. Then, among the three edges PoptA, PoptB and Pop&', 
the one or those which will be added in the mesh in the case where element K 
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Figure 21.10: Optimal point P cre- 
ation, given a front face ABC the 
resulting tetrahedron K is  considered 
optimal as it has edge lengths con- 
forming to the desired sizing map. 
Popt is  first constructed, then PA, PA 
and P& are defined and an adequate 
combination of these (virtual) points 
is  used to define PLpt. Finally, the 
new location of P is  prescribed to be 
this PLpt. 

B 

is retained, are examined based on the metric map. If Popt is a free-point, its 
location is adjusted to meet as closely as possible a unit length for the edges of 
element K .  Then P is assigned to be the resulting adjusted point. Note that all 
these operations are coupled with the classical validity checks as performed in a 
classical advancing front type method. 

Remark 21.15 Note that the radii used for the searching operations for the can- 
didate points must take into account the desired element sizes. 

Remark 21.16 I n  [Rassineux-l995], the internal points are constructed using an 
octree, in three dimensions. Thus, provided this tree structure is developed in 
accordance with the size map (cf. the previous approach), we obtain a priori a 
mesh which is reasonably satisfactory with regard to this size map. 

Mesh optimization. As above, we refer the reader to a later section on the 
optimization step of the method. 

In conclusion, adaptation using an advancing-front method, such as that pro- 
posed here, basically relies on an appropriate location of the points with regard 
to the front faces. The global control, each point being well located for its face, 
is due to the fact that the candidate points are selected in a neighborhood of the 
faces in question and thus these points are globally well located. 

0 H-method and Delaunay-type method 

A Delaunay-type mesh generation method also appears to be flexible enough to 
carry out the creation of meshes conforming to pre-specified isotropic requests. 

As we saw in Chapter 7, a Delaunay-type mesh generation method can be 
decomposed into several steps that concern the insertion of the boundary vertices, 
the boundary enforcement, the creation of a suitable set of field points prior to 
their insertion and some extent of optimization. 
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Delaunay kernel. Recall that, under appropriate assumptions, the Delaunay 
kernel is the basic ingredient that makes it possible to insert a point in a given 
triangulation. This Delaunay kernel is simply expressed by the relationship 

Z + 1 = Z - C p + B p ,  (21.5) 

where the cavity and the ball of P are involved. Then, whatever the size map, 
this basic algorithm remains valid. 

Boundary enforcement. Obviously, the a posteriori enforcement of the bound- 
ary entities when the boundary vertices have been inserted, remains unchanged in 
this adaptive context. 

Internal point creation. Following the classical point creation method (Chap- 
ter 7) using as a support the edges of the current mesh, we have to  examine how 
this method could be used in the present adaptive context. 

Note initially that the proposed method is fairly similar to  that used in the 
above advancing-front approach since it is based on a control related to  the edge 
lengths. 

Thus, let us examine an edge, say AB. If h(t)  stands for a sizing function 
defined for this edge (where h(0) = h(A) and h(1) = h(B) hold), then the length 
of edge AB with respect to h(t)  is 

(21.6) 

where dAB is the usual (Euclidean) distance. 
Actually, h(t)  is only known in a discrete way (thanks to  the background mesh). 

So, if only h(A) and h(B) are provided, we have (using an approximation based 
on a rather simple quadrature formula): 

1 1 
h(A)+h(B) 

2 L A B  = ~ A B  7 (21.7) 

while if edge AB intersects a series of elements in the background mesh and if Mi 
stands for the ith intersection point, then we can define the length of AB as: 

7.=n. 

(21.8) 
i = O  

where ~ M ~ M , + ~  is approached using Relationship (21.4). Using these definitions, 
the edges of the current mesh are analyzed to create some points along them. 

This can be done using the very simple algorithm that follows (where n is the 
number of the Mis): 
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1 = 0. (where 1 stands for  a length) 
DO FOR i = O,n 

1 = 1 + ~ M ~ M , + ~  

(A) - I F  1 > 1 
create one point between Mi and Mi+l at  a unit distance from the 
previously created point (Mo = A  at  the f i r s t  s tep) ,  
1 = 1 -  1 and return t o  ( A ) .  

END FOR i. 

This process is repeated for all the edges of the current mesh leading to the 
creation of a series of points. These are inserted using the Delaunay kernel, result- 
ing in a new mesh. The process is then repeated until all the edges are satisfactory 
(in terms of length). Actually, the unit value is replaced by an appropriate value 
close to  one (as it is for all of these length based methods). 

Mesh optimization. As above, we refer the reader to the next section about 
the optimization step of the method. 

In conclusion, adaptation for a Delaunay-type method mostly relies (in the 
proposed approach) on the proper position of the points in the mesh edges. The 
global control, every point being well located on its supporting edge, is due to the 
fact that the points are filtered before insertion, this leading to  a global consistence. 

0 Mesh optimization tools (isotropic case) 

The optimization stage met in all automatic mesh generation methods (for simpli- 
cia1 meshes) is, in practice, the same for all of them (quadtree-octree, advancing- 
front or Delaunay). As already seen, this stage is the last in the mesh construction 
process. The optimization is governed by a quality objective (at the element level) 
with includes two criteria, a shape criterion and, a t  the same time, a size criterion. 
The point is what mesh quality is expected and, based on this objective, what 
tools can be used and how to combine them (i.e., how to define a mesh optimiza- 
tion strategy) so as to  improve the mesh resulting from the first steps of the mesh 
generation (modification) method. 

Mesh evaluation. Provided with a metric map, the mesh quality analysis must 
naturally take into account this map to  examine whether or not the mesh elements 
conform to it. In addition, as we are considering an isotropic situation, the element 
shapes (aspect ratios) must be as good as possible. Indeed, we have discussed 
all these aspects in Chapter 18 where aspect ratio measures as well as length 
efficiency index have been introduced and which form the basic ingredients we 
need to evaluate a mesh quality. 

However, the above appreciation is not directly related to the main reason 
for constructing the presumably adapted mesh and thus, this appreciation is only 
formal. In fact, in the context of an adaptive loop of finite element computation 
(our purpose), the right tool to analyze the mesh quality is the error estimate which 
analyzes the quality of the solution of the PDE problem under consideration. Since 
the error estimate is not known in the meshing process, we assume that the above 
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formal appreciation is valid (and consistent). Thus, at the meshing stage of the 
entire process, we still use this kind of appreciation. 

As detailed in Chapter 18, various local tools can be used to  optimize a given 
mesh. In our context, the same tools are used in the optimization step included 
in the mesh generation methods. 

Shape optimization. 
such as node relocation, edge swapping, generalized swapping, etc. 

Classical optimization tools (Chapter 18) can be used 

Size optimization. Edge collapsing or edge splitting can be performed when a 
given edge is too short (in terms of 1 measured according to the discrete metric 
map) or too long. Prior to actually apply such an operator, it is necessary to check 
whether or not it results in a better solution. For instance, an edge that is too 
long could be retained if splitting it into two shorter edges results in two violations 
of the sizing criterion (instead of only one violation in the initial configuration). 
Apart from these two processes, node relocation proves to  be useful. A free vertex, 
namely P,  can be moved as follows: 

- PjP - 
Pj = Pj + - 

IIp,PII hi 
(21.9) 

where hj is such that lp,p = 1 in the metric. Then, the new position of point P 
can be the centroid of the pjs. 

Optimization strategy. First, it could be observed that respecting a size map 
while maintaining well-shaped elements could be two conflicting objectives, based 
on what the size map is. Thus, the optimization strategy must take into account 
this possible conflict. Following our experience, we suggest firstly optimizing the 
length criterion and then, this objective being satisfied, optimizing the element 
shapes (although this may alter the length criterion to  some degree). 

Comments about global methods (isotropic) 

As for the local approach, we give some preliminary observations about global 
adaptive methods. The aim is not to  pass judgment on the various mesh genera- 
tion methods that may be employed but to  give a general impression of a global 
approach. 

Indeed, this adaptive approach offers both a series of positive aspects and some 
weaknesses. Let us mention first some apparent weaknesses of a (isotropic) global 
method: 

0 Localization problems could be an issue and could be time consuming. 

0 CPU requirements could be large, particularly when the difference between 
the initial mesh and the adapted mesh concerns only a small part of the 
computational domain. 
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Now, positive features of a global method are briefly indicated. 

a Essentially, global methods appear to  be a good solution for isotropic adap- 
tive problems. 

a Mesh conformity is not an issue. 

a Mesh derefinement is obvious since it is no different from a refinement prob- 
lem. 

a Continuous variation in size is easy to  obtain. 

Note that other computer issues, such as boundary management, are common to 
the local method discussed in a previous section and, thus, do not count in the 
appreciation of the approach. 

Thus, based on these observations, we have to  decide whether or not a global 
method is a suitable solution to carry out a given problem. 

21.4 Global anisotropic adaptation method 

Anisotropic meshes or meshes with anisotropic meshed regions are of great interest 
for some numerical simulations (we can consider the construction of boundary 
layers or the case where the problem induces some shocks). 

As for the previous meshing problem, anisotropic mesh generation can a priori 
be based on any of the classical mesh generation methods. Nevertheless, each of 
them must be precisely examined in order to see if it can be easily extended to  
this particular meshing problem. In what follows, we review the quadtree-octree, 
the advancing-front and the Delaunay-type methods with this precise objective. 

OH-method and quadtree-octree approach 

Basically, the mesh elements resulting from a quadtree-octree type method, are 
strongly related, in terms of size as well as in terms of shape, to the underlying 
tree structure. More precisely, the mesh elements are created based on the cells of 
the tree structure. Thus, since the cells are in essence isotropic, it is not so easy 
to find a method resulting in the construction of anisotropic elements. Up to  now 
and as far as we know, there is no available literature about this point and no 
attempts to  construct an anisotropic quadtree-octree structure. 

Remark 21.17 Nevertheless, it could be observed that a global anisotropy (i.e., 
where the anisotropy i s  globally defined and aligned with the usual coordinate axis 
and also does not vary from regions to  regions) can be obtained by constructing the 
tree structure accordingly. 

Despite the above observations, it could be of interest to examine how it is 
possible to  construct a quadtree (octree) structure using a repeated subdivision of 
the root cell not aligned with the sides of this cell. This being completed, we could 
examine whether or not such a spatial partition can be exploited for anisotropic 
mesh construction. 
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0 H-method and advancing-front approach 

An advancing-front type mesh generation method is more flexible than the previous 
type of method since point connection as well as point placement can be guided 
by anisotropic criteria. 

In an anisotropic context, directional features and sizes varying in these direc- 
tions are expected at  the mesh element level. This leads to introducing what the 
length of an edge is, with respect to a given metric map. 

Length of an edge. In Chapter 10, we have seen that computing a length con- 
sists of using the dot product related to a quadratic form. Here we are concerned 
with the curve r joining two points A and B. If y ( t )  is a parameterization of r of 
class Ck (k 2 1) such that $0) = A and y(1) = B ,  the length L ( y )  of the arc r 
in the metric M ,  is defined by the expression: 

Therefore, the restriction of the parameterized arc r to the vector a (i.e., the 
edge under examination) with the parameterization y ( t )  = A + ta, t E [0,1] and 
y(0) = A, y(1) = B enables us to write the length L ( y )  of the line segment AB as: 

1 

(21.11) 

where M, is the metric specification in y. Once the metric does not vary with the 
position ( M ,  = M ) ,  we obtain: 

L ( y )  = d t a  M a. 
Having this definition, it becomes possible to  compute the lengths of the mesh 

edges is the case where an anisotropic metric is given. 

Internal point creation. As for the isotropic case above, creating an adapted 
mesh is based on the edge length control with respect to  the metric map. Given 
a front face ABC, we want to  know whether a point P in the current mesh exists 
which is suitable for the construction of elements whose edge lengths are compat- 
ible with the sizing and directional specifications. If such a point is found, it is 
used to create a mesh element, otherwise, the above method is used to  find the 
location of an optimal  point. A point Popt is first constructed in such a way that 
the element ABCP has a nice shape quality. The position of Popt is then adjusted 
in order to meet unit edge lengths in the metric. 

The element constructed based on ABC and Popt is an element whose size 
conforms to the size specification and whose stretching and orientation follow the 
directional features included in the anisotropic metric map. 
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Metric interpolation. In practice, the metric a t  a vertex is known in a discrete 
manner (in fact a t  the background mesh vertices). Therefore, it is necessary to  
use a metric interpolation procedure to obtain the metric value(s) a t  a vertex 
P in the current mesh. To this end, the element K in the background mesh in 
which point P falls is identified (this point is that resulting in an optimal element). 
Using the metric information at  the vertices in K ,  the metric at P is obtained by 
interpolation and then serves to adjust the position of P,  in order to obtain unit 
length for the edges AP, BP and CP. 

Remark 21.18 The advancing-front approach also makes it possible to construct 
some boundary layers in the vicinity of a given boundary. This boundary forms a 
front which is  then ‘$pushed” in order to define the first layer, this then forms a 
new front and the same method is  repeated [Kallinderis et al. 19951. 

Figure 21.11: One can guess an aircraft and two close views where boundary layers 
can be seen. This example, courtesy of Dassault-Aviation, is a case where and 
advancing-front method is  used to obtain a number of boundary layers after which 
a Delaunay-type method is used to f i l l  the remaining domain. 

Remark 21.19 A combination with a Delaunay-type method is also a solution 
for completing anisotropic elements. The optimal points are created using an 
advancing-front strategy and are then connected using a Delaunay method (see 
[Mavriplis-I992], for instance). 

0 H-method and Delaunay-type method 

Given the final theoretical remark of Chapter 7, the Delaunay-based method as 
described in this chapter is probably also a possible answer for anisotropic mesh 
generation. As previously seen, a Delaunay-type method is mainly based on the 
notion of a distance between two points. Indeed, the Delaunay kernel, the field 
point creation phase and the optimization phase all make extensive use of this 
kind of informationg. 

gWhile the other phase (boundary enforcement), part of the whole method, is, in principle, 
not affected by the present meshing context. 
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Edge length. Before going further, we recall how the necessary lengths are 
defined. Given a curve I?, joining two points A and B,  we consider y(t) a parame- 
terization of I?, at least of class C1 (t ranging from 0 to 1) such that y(0) = A and 
$1) = B. Then, IM(A,B) ,  the distance, following the metric map characterized 
by the matrices Ms,  between A and B is l(r), the length of I? defined as follows: 

1 

L ( y )  = ZM(A, B )  = (21.12) 

0 

or, if metric M does not depend on the position: 

L ( y )  = ~ M ( A , B )  = d t B M  
Now, using this length definition, we can return to  the scheme of the isotropic 
case and compute the length of AB using metric information, the M matrices, 
collected on the background mesh. 

Point insertion method (Delaunay kernel). Actually, the classical Delau- 
nay point insertion algorithm is no longer suitable. Indeed, following the method 
proposed in the isotropic case while modifying the way in which the points are 
located (i.e., by computing the unit lengths using Relation (21.12) instead of Re- 
lation (21.6)) results in a priori well located internal points. Inserting these points 
via the classical Delaunay kernel is possible, but the underlying proximity notion 
(based on a Euclidean distance) does not match the way in which the distances 
from point to point have been evaluated. Thus, the local procedure (already de- 
scribed elsewhere): 

enabling us to insert point P in triangulation z so as to  complete z+1 must be 
extended to the present context. 

Note that B p  is the set of elements formed by joining P with the external 
edges (faces) of Cp, these being the series of elements in z whose circumcircle 
(circumsphere) encloses P. Thus, now, this notion of a circle (sphere) is defined 
according to  the metric associated with the problem. 

The key-issue is to  construct a proper cavity, i.e., the set Cp. To this end, 
we consider a two-dimensional meshing problem and, a t  first, we return to  the 
classical case. Let K be an element of x, let OK be its circumcenter and let rK 
be its circumradius. Then, element K will be a member of Cp if 

z + l = z - c P + B P ,  

(21.13) 

where d is the usual distance. To take into account a metric map, this classical 
characterization is replaced by: 

(21.14) 

where, now, 
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OK stands for the point equidistant to the vertices of K .  This means that 
this point is the center of the circumcircle of K according to the metric 
defined by M (in general, this circle is an ellipse in the usual Euclidean 
space) and, 

T K  is the radius of this circle according to the Euclidean space defined by 
M ,  i.e., rK is the length between the point equidistant to the three vertices 
of K ,  the above O K ,  and one of these points. 

Computing OK as well as rK is not, in general, possible, as M varies from one 
point to another. Thus, approximate solutions must be involved leading back to a 
Euclidean problem. The simplest one consists of approaching M by the value of 
M at point P. This approximation results in a possible construction of C p  (after 
a correction step) and the point insertion method applies in an anisotropic context 
(see Chapter 7). 

Figure 21.12: The circumcircle asso- 
ciated with element K once the met- 
ric is fixed. The construction of the 
cavity of P by means of adjacencies 
relies, starting from one triangle in 
this set (dotted line), in examining its 
neighboring triangles, here that share 
the edge denoted by a ,  i.e., element 
K .  

It has been proved (thanks to the correction step) that the resulting cavity has 
the desired properties and thus that replacing it by the ball of P results in what 
is expected: an anisotropic point insertion method. 

Remark about the boundary enforcement. 
manipulation can be strongly anisotropic, numerical problems" may arise. 

In practice, as the elements in 

Internal point creation. This step is similar to the isotropic case previously 
discussed while the lengths are evaluated using the above (anisotropic) formula. 
We return to the isotropic scheme where queries about the background mesh to- 
gether with interpolation of the collected information are used to compute the 
length of a given edge. As for the Delaunay kernel, an approximation is used in 
this length computation. 

'OWhile in principle, this stage is similar to how it was in a classical case. 
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0 Mesh optimization t 001s (anisotropic case) 

Common to all automatic methods resulting in simplicia1 elements, an optimization 
phase forms part of the meshing process. The optimization here is based on a shape 
quality criterion coupled with a size (directional) quality criterion. The delicate 
issue is, as in the isotropic case, to define a optimization strategy that produces 
what is desired. 

Mesh evaluation. The analysis of the resulting mesh must take into account the 
specified metric map. The aspects about optimization itself have been discussed 
in Chapter 18. It should just be borne in mind that the efficiency index allows 
for a global appreciation of the lengths of the mesh edges. Moreover, using an 
error estimate may provide information (in the form of a metric map) that makes 
the mesh analysis possible. The tools for optimization as described in Chapter 18 
apply here with no restriction. 

Shape optimization. 
improvement, we have edge swaps, point moves (with a unit length), etc. 

Among the classical optimization tools for element shape 

Length optimization. The edge lengths having been computed in the given 
metric, the collapsing (resp. splitting) operators deal with the edges that are too 
small (resp. too long). The point relocation procedure consists of trying to  obtain 
unit length edges (in the metric at the considered vertex P) .  

Optimization strategy. As in the isotropic governed case, an efficient strategy 
leads to optimizing the mesh by firstly considering the size criterion. A quality 
(shape) criterion is then considered. 

Comments about global methods (anisotropic) 

In this section, we give some remarks about anisotropic global mesh adaptation 
methods. As in the isotropic case, a series of (relative) weaknesses can be found: 

0 localization problems may be tedious, 

0 the time required for a remeshing may be relatively great, specifically when 
the adaptation is rather local, 

0 numerical problems may arise due to  the stretching of the elements (when 
computing surface areas or volumes, for instance). 

Nevertheless, a certain number of positive features can be mentioned: 

0 the global remeshing approach is a likely solution for anisotropic adaptive 
problems, 

0 a mesh gradation is, in general, relatively easy to achieve (or to maintain). 
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As in the isotropic case, mesh derefinement (coarsening) is a trivial task since it 
does not differ from a refinement method. Note that it is always the user’s re- 
sponsibility to decide whether the problem at  hand requires the global anisotropic 
approach. 

21.5 Adaptation 

Adaptation is a key issue for automatic simulations where the purpose is to  insure 
a given accuracy of the solution. Given a tolerance threshold, the problem is to  
compute, for a given PDE problem, a solution whose accuracy conforms, in some 
way, to this threshold. 

There are several approaches suitable for adaptation purposes. As discussed 
up to now in this chapter, these include the h-method where the mesh, the support 
for the computational step, is adapted in terms of element size (density) or sizes 
and directions. In an isotropic meshing problem, the desired mesh must be coarser 
or finer in a particular region as specified by an error estimate that analyzes the 
quality of the solution computed using the current mesh as a spatial support. In 
an anisotropic context, the elements must be aligned in the directions specified by 
such an error estimate which is assumed to  have a directional aspect and, a t  the 
same time, these elements (indeed their edges) must have the required lengths. 

Following the previous discussion, the mesh generation aspect can be envisaged 
in two ways in order to  design a h-method. The first is based on local modifications 
of the current mesh while the other involves a entire mesh (re)construction at each 
step of the process (or after a few iteration steps). 

The ingredients needed in this context include local mesh modification tools 
(local approach) or fully automatic mesh generation processes (global approach) 
resulting in adapted meshes along with solution methods coupled with a posteriori 
error estimates able to provide mesh specifications used, in turn, to repeat the full 
process until the tolerance threshold has been achieved. 

In what follows, we indicate what a global computational scheme could be for 
both a local and a global meshing approach in the case of an adaptive loop of FEM 
style computation. The example concerns a three-dimensional case from which it 
is easy to infer what a two-dimensional case could be. 

21.5.1 

The general framework of a h-method adaptive loop of computation when the 
adaptation is based on local mesh modifications at  each step is illustrated in Fig- 
ure 21.13 (in three dimensions). 

The general scheme includes two parts. Left, we find a scheme similar to  that 
in a classical mesh generation method. Right, we see the part directly related to  
the adaptation phase. 

More precisely, for the classical part, we start from a CAD system (box “CAD” 
in the figure), to define a first surface mesh ( j  = 0), then a 3D mesh generator 

General framework of a local adaptation method 
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generator 

Governed 3D mesh 

. , 
( Domain mesh )H 

Computation 

error estimate 

end 

Figure 21.13: General framework fo r  a local adaptation method. 

creates the mesh of the domain and this part (left-hand side of the figure) is 
nothing other than a classical mesh  generation problem. Then the solution of the 
PDE problem is computed and analyzed using an ad-hoc error estimate. The latter 
provides a metric map (box “Metric”). Based on this metric map, the process is 
iterated ( j  = j + l), thus consisting in the second part of the figure (right-hand 
side) and corresponding to  the governed mesh  modification problem. Note that the 
geometry of the surface (box “Geometry definition”) is now strictly necessary as 
will be discussed below. The local mesh modification step consists of modifying 
the mesh so as to  complete a mesh conforming to  the data included in the metric 
map. 

The metric map is indeed a simple request associated with each element of the 
type element t o  be subdivided or, conversely, element to  be coarsened. In practice, 
the same type of requests may be given at the vertices of the current mesh (for 
example, refine (once or several times) around a given vertex). 
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Figure 21.14: General framework for  a global adaptive method. 

21.5.2 General framework of a global adaptation method 

The general framework of a h-method adaptive loop of computation when the 
adaptation is based on the entire mesh (re)construction at each step is depicted 
in Figure 21.14. 

As for the previous approach, we can see two parts as shown in the previous 
figure. Indeed, the first part (left-hand side, the classical mesh generation problem) 
remains unchanged while the second part (right-hand side, the governed mesh 
creation problem) is rather different. 

The classical part in the scheme is similar to  that in the previous case and 
completes an initial mesh of the domain using an initial mesh of its surface as data. 
In contrast, the adaptive part in the scheme differs slightly from that included in 
the previous scheme. Now this part comprises two steps. One concerns the surface 
mesh processing while the other, based on an automatic mesh generation method, 
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considers as input the above surface mesh (assumed to be conform to the metric 
specifications) and completes the domain mesh accordingly. 

Remarks about an adaptive scheme 

The two above general frameworks include a series of processes which, in turn, 
involve various types of input and data flows. In what follows, we give some ideas 
and comments about these aspects. 

Geometry definition. The precise definition (in an analytical way, for instance) 
of the geometry of the domain surface to be meshed is not strictly required in a 
classical meshing process". In fact, the domain mesh is generally obtained using 
a discretization of its boundary as input data. Therefore, this boundary mesh is 
assumed to  be known and is sufficient for the definition of the domain in question. 

In contrast, in an adaptive meshing process, the discretization (the mesh) of 
the domain surface may vary during the iterations, depending on the metric spec- 
ifications. It is then necessary to  have access to a definition of the geometry (the 
boundaries) of the domain. In practice, there are two ways to  obtain the informa- 
tion related to  the geometry: 

0 using a direct access to  a geometric modeler (a CAD system) to  which queries 
are made by the mesher in order to  know the geometrical or topological infor- 
mation which is needed (corners, ridges, curve definitions, surface definitions, 
normals, tangents, curvatures, etc.); 

0 using an indirect access, which means using a mesh, the so-called geometric 
mesh which serves as the geometric definition of the domain (Chapter 19). 

When a geometric mesh serves as a support for the geometry definition, the 
properties of the boundary curve (resp. surface) are obtained using this discretiza- 
tion. In principle, such a mesh is constructed by the CAD system and the geo- 
metric approximation it forms is assumed to accurately reflect the geometry of the 
curve (resp. surface) it models. Therefore, a mesh whose element density indicates 
the curvature well is a suitable candidate. On the other hand, it must be noted 
that such a mesh is not generally a suitable mesh for a finite element computation 
(in particular, the mesh gradation is not necessarily controlled). 

Given such a geometric support, we return to the previous case in which queries 
are addressed to the geometry in order to obtain the required information. 

The boundary mesh construction. A mesh of the domain boundary is the 
natural data input12 of a mesh construction or a mesh modification procedure. In 
practice, there are two types of problem regarding surface meshes. 

"This is strictly the case for an advancing-front or a Delaunay-type method but this is not 
necessarily the case for a classical octree method where the surface mesh and the volume mesh 
can be constructed at the same time. 

12See the previous note. 
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The classical part of the adaptive mesh construction scheme consists of con- 
structing an initial mesh of the domain. This is done with no special knowledge, 
i.e., of a metric nature related to the physical behavior of the problem. The sole 
properties used are those related to  the geometry. The surface mesh results from 
a geometric modeler or by using an appropriate surface mesh method. However, 
this mesh must be reasonable (meaning that it is representative of the underly- 
ing geometry, see Chapter 19), but it is probably not ideal with regard to  the 
physics included in the PDE problem in hand, which therefore justifies the use of 
an adaptive approach. 

In a local approach, the surface is remeshed so as to  take into account the given 
metrics and the geometric metric. The basic idea is always the same, and aims at 
constructing unit length edges. The remeshing process, discussed in Chapter 19, 
makes use of geometrical operations (point relocations) or topological operations 
(edge swaps, edge collapsing, point insertion, etc.). In brief, remeshing a surface 
is seen as an optimization procedure. The information which is then pertinent 
concerns: 

0 the proper location of a point on the surface, 

0 the access to  the properties of the surface (normals, tangents, principal radii 
of curvature, etc.). 

Note that the local surface remeshing can be made at the same time that the local 
remeshing of the volume is made. 

In a global approach, the surface mesh is constructed in a stand-alone step 
with no connections with the volume mesh. See Chapters 14 and 15 for a detailed 
discussion on mesh generation methods for curves and surfaces. 

The mesh construction. Using an initial surface mesh as data, the volume 
mesher constructs an initial mesh in the domain. It is clear (following the mesh 
generation methods described in this book) that the quality of this three-dimensional 
mesh is strongly related to  the quality of this surface mesh. If a metric map (ob- 
tained using an error estimate after the solution analysis) is available, it is possible 
to numerically evaluate whether the current mesh is satisfactory or not. If it is 
not judged to  be good enough, the mesh generation process is iterated, thus lead- 
ing to  the construction of a new mesh, taking into account the geometric metric 
map together with the physical metric map. The current mesh then becomes the 
background mesh for the next iteration step. 

As for the surface meshing case, two types of methods can be envisaged to  
obtain adapted volume meshes. A local approach makes use of the optimization 
operators, as we have already seen. In a global approach, the new mesh is entirely 
recreated using the metric map defined at the vertices in the background mesh. 
The mesh generation is then governed, meaning that we aim to construct a mesh 
with unit length edges. 

The solution step. The solution step comprises a solution method (the method 
used to  solve the resulting matrix system) and an error estimate to access the 
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mesh - iter 

part - 0 
part - 1 
part - 3 
part - 10 

quality of the solution that is computed. This estimate also serves to  translate 
this analysis in terms of directives that are directly usable by the mesh generation 
method. 

In a global adaptation scheme, it is advisable to  use an iterative solution 
method in which the solution which is sought is initialized by the solution ob- 
tained at  the previous iteration step. Therefore, interpolation methods must be 
used to  interpolate the solutions from mesh to mesh. This raises the problem 
of how to transport the solution from the background mesh to the current mesh. 
These methods involve finding the position of a vertex in the current mesh in the 
background mesh and are thus based on localization procedures (Chapter 18). 

np ne  QT Q lmin 1maz L u g  7- 

2,204 3,794 2.9 1.29 0.24 8.33 0.75 0.88 
2,808 4,975 2.9 1.28 0.21 21.13 0.77 0.89 
5,090 9,502 3.64 1.27 0.24 29.9 0.75 0.90 
7,772 14,847 2.9 1.27 0.24 1.78 0.74 0.92 

The metric map. As previously indicated, the metric map is a discrete set of 
values (tensors) which are usually known at  the vertices in the background mesh. 
When several metrics are specified at  these vertices, an intersection procedure 
(Chapter 10) is used to  find a unique metric. A continuous map is then obtained 
by (linear) interpolation using the vertex values. 

2 1.6 Application examples 

In this section, we show some examples of adapted meshes corresponding to various 
iteration steps in an adaptive process. In all these examples, the approach is a 
global one for the domain meshing (planar or volume domain) and a local approach 
(by remeshing) for the boundary (curves or surfaces) meshing. 

The first series of examples (Figure 21.15) corresponds to a mechanical device 
in two dimensions. The mesh generation method is a quadtree type method. In this 
example, the metric map is isotropic, the sizing function is defined in an analytic 
manner using two real valued functions: 

Table 21.1 gives the results of the adaptation for this example. The values np 
and ne  are the number of vertices and the number of elements in the mesh, while 
QT and a note the worst and the mean qualities of the triangles. The minimum, 
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maximum and mean edge lengths are respectively denoted by lmin, l,,, and l a v g ,  
while I- is the efficiency index. 

Remark 21.20 Note that this type of method (based on  a tree) favors the creation 
of small edges (in the metric) and, more specifically, in this analytic example in 
which the mesh gradation (by means of the [2:1] rule) is not really compatible with 
the given metric map. Nevertheless, the spatial tree decomposition has captured 
the required map, as can be seen by observing the value of index I-. 

Figure 21.15: Adapted meshes of a mechanical device using a quadtree-type method 
(iteration steps 0, 1, 3 and 10) for an analytical isotropic metric map. 

The second example concerns a CFD. case, in two dimensions. The problem 
deals with a viscous calculus around a NACA012 type profile a t  Mach 0.95 with 
a Reynolds 5,000. A characteristic configuration of the fish tail is sought with an 
instationarity due to  shocks wakes interactions. The mesh adaptations allow the 
shock regions, the boundary layers and the wake to be captured. Figure 21.16) 
shows the adapted meshes and the corresponding density iso-contours at iterations 
0, 3 and 6 (six adaptation steps were necessary to capture the physics). A type 
method (with a point insertion scheme using the edges of the current mesh; see 
Chapter 7) was used for the global remeshing at  each iteration step and a Navier- 
Stokes solution method was used. 
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Figure 21.16: Original mesh (top left-hand side) and adapted meshes using a 
(anisotropic) Delaunay-type method around a wing profile (NACAO12) at iteration 
steps 0, 3 and 6 for a Navier-Stokes computation in CFD with the corresponding 
density iso- contours. 

To conclude, we give examples of adapted meshes in three dimensions. In the 
first example, the shape of the domain is deliberately simple13, a sphere with a 
unit radius centered at  the origin and an analytic isotropic metric map14 is used. 
Figure 21.17 shows the surface meshes at steps 0, 1 and 7 in the adaptation. 
Figure 21.18 shows the volume meshes (and some cuts by various planes) a t  the 
corresponding steps. 

An isotropic mesh optimization procedure was used for the surface remesh- 
ing [F'rey, Borouchaki-19981. A Delaunay method was employed to  adaptively 
remesh the volume [George, Borouchaki-19981. 

Table 21.2 gives the main figures for the different iteration steps. The values 

13Note that the visualization of map in three dimensions is delicate or even not really possible 
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Initial mesh 
Iteration 1 
Iteration 3 

nP ne r 1% QT 1 - 2  2 - 3  

23,023 124,362 0.814 37 47. 81 11 
115.215 647.119 0.944 78 12. 78 20 

277 1,200 0.515 7 1.8 100 

I I I 

Iteration 7 I 253,068 I 1,416,617 I 0.961 I 86 I 8. I 74 I 24 

Table 21.2: Statistics about the different iteration steps. 

Figure 21.18: Adaptat ion examples in three dimensions. Isotropic adapted volume 
meshes at iteration steps 0, 1 and 7, cuts  by the plane z = 0 ( top)  and by the plane 
z = 0.5 (bottom). 

in the case of arbitrary complex geometries. 
14While used as a discrete data in order to emulate what a concrete case is. 
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1% denote the percentage of edges whose lengths are compatible with the size map 
(i.e., such that f i / 2  5 1 5 fi), QT,  1 - 2 and 2 - 3 denote the worst quality in 
the mesh and the number of elements with a quality between 1 and 2 and between 
2 and 3, respectively). 

The next examples, [Frey, Alauzet-20051 and [Dobrzynski et al. 20051, show 
concrete cases of isotropic or anisotropic mesh adaptation. 

Figure 21.19: Anisotropic adapted surface and volume meshes (iteration 0 and 9) 
for  a transonic Euler case (data courtesy of F. Alauzet). 

The first concrete example concerns a classic numerical simulation of transonic 
air flow around the ONERA M6 wing. A Euler solution is computed for a Mach 
number equal to  0.8395 with an angle of attack of 3.06 degrees. This transonic 
simulation case gives raise to  a well- known lambda-shock. The initial mesh is 
a relatively coarse mesh containing 7,815 vertices, 5,848 boundary triangles and 
37,922 tetrahedra. The variable used to adapt the mesh is the Mach number. 
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Figure 21.20: Isotropic versus anisotropic adapted volume meshes for a transonic 
Euler case (data courtesy of F. Alauzet). 

The mesh has been adapted 9 times, every 250 time steps. Figure 21.19 shows 
the adaptation in the anisotropic case. In this example, the maximal aspect ratio 
achieved for the anisotropic elements is about 10. Nevertheless, the anisotropic 
metric leads to a drastic reduction of the number of degrees of freedom, roughly 
one order less than in the isotropic case (for the same error level). 

Figure 21.20 compares the final isotropic mesh (iteration 9) containing 231,113 
vertices and 1,316,631 tetrahedra and the above final anisotropic mesh containing 
23,516 vertices and 132,676 tetrahedra. 

Figure 21.21: Anisotropic adapted mesh and density values for the air cooling 
simulation (data courtesy of CEA, Cadarache, and C. Dobrzynski). 

Figure 21.21 demonstrates the use of local anisotropic adaptation for air-cooling 
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problem for the design of a nuclear spent fuel. This simulation involves a weak 
coupling between the Navier-Stokes and an advection-diffusion equations. The 
inflow velocity, under the canister is 2m.s - l .  There is free flow at  the top of 
the chimney and all walls are considered viscous walls. The Reynolds number is 
18 000. The flow is displayed at  time t = 52,5 see. The cylinder which represents 
the nuclear waste canister has been considered as a heat source (the temperature 
of the waste is about 500 degrees) and the input air represented a cold source (the 
temperature of this source is the external temperature that is about 20 degrees). 
Neumann conditions have been prescribed on the remaining part of the domain. 



Chapter 22 

Mesh Adaptation and P or Hp-methods 

P-methods and hp-methods represent solutions to  mesh adaptation which provide, 
in some way, an alternative to  h-methods. In brief, a p-method, in contrast to  a h- 
method (Chapter 21), consists of varying the degree p in the approximation while 
keeping the mesh sizes h unchanged. In this way, the quality (the richness) of the 
approximation is adapted to  the way in which the solution varies. 

Well established for some model problems, particularly when the geometry of 
the domain is relatively simple, pmethods are somewhat delicate to implement 
when the geometry is really complex. The fact that the size is constant while the 
degree of the approximation is the sole parameter results in a strong constraint 
which is not simple to overcome. Therefore, hp-methods have been introduced 
which combine a p-adaptation with a h-adaptation and thus offer the advantages 
of both methods while avoiding the unflexibility mentioned above. 

This chapter is organized in two distinct non-symmetric parts. The first part 
concerns the construction of finite elements other than straight (linear) elements 
(P' type elements) which are naturally obtained by using automatic mesh gener- 
ation methods. The second part discusses p and hpmethods, mainly with regard 
to an adaptive process. 

This last aspect will only be dealt with briefly. In contrast, we discuss in greater 
detail some possible approaches for the construction of finite elements other than 
Pl ,  which are used in pmethods (where p varies) and also in all calculus with 
finite elements with a (constant) degree p other than 1. This type of construction, 
mostly seen in the case of P2 triangles, leads us firstly to consider how to mesh a 
curve (assumed to  be planar for the sake of simplicity) by means of parabola arcs. 
We then turn to the creation of P2 elements using this curve mesh as input data. 
In this context, we present several approaches which essentially involve adequate 
post-processing a P1 type mesh. As will be seen, various technical difficulties can 
be expected. Some examples of such problems are given in three dimensions. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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Let us recall that we are mostly concerned with the impact of the solution 
methods on mesh generation techniques. Therefore, we mainly focus on this par- 
ticular aspect and less on using pmethods for solution control from an adaptive 
point of view. 

22.1 P2 mesh 

We consider here a mesh where the elements are P2. For the sake of simplicity, 
we limit ourselves to a problem in two dimensions. First, we discuss how to mesh 
a curve (a domain boundary in this case). In other words, our concern is to show 
how to obtain a polygonal approximation where the elements (the segments) are 
parabola arcs. We then show how to construct P2 elements. 

Meshing a curve (review) 

Let us consider a parametric curve r whose equation is y(s), where s is the curvi- 
linear abscissa. In addition, we assume that the curve has the required regularity 
when needed. In Chapter 14, we saw how to discretize such a curve by means of 
line segments (a P1 mesh), in such a way as to control the gap between the curve 
and its discretization. Now, we return to  the same problem in the case of a P2 
discretization, say one composed of parabola arcs. 

Local behavior of a curve. We give again, with the same notations, the ex- 
pansion of Relation (14.4), for example, in some vicinity of y(s0) and for small 
enough As: 

The curve can be approximated using the first three terms in its expansion at E ,  

if we take As = a p ( s 0 )  such that (Relationship (14.7)): 

Also in Chapter 14, we saw that replacing the parabola for approximation (of the 
expansion) by means of a line segment discretization leads to a gap between this 
discretization and the curve in the order of: 

In this estimate, the first term controls the gap related to  the approximation by 
the expansion while the second term controls the discretization gap. 
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An approximation of type P2 consists of discretizing the parabola' by means 
of of parabola arcs, thus by itself. The mesh element in the discretization is then 
the portion of parabola passing through the three points y(so), y(s0 + %) and 
y(so + As). The above relation is then: 

and therefore the total gap has the order of the first terms (as the gap in dis- 
cretization is now zero). This gap is then: 

Thus, for a given relative tolerance of E ,  the result obtained in this way is much 
more precise than in the case of a P1 approximation. As a consequence, the 
analysis may be based on a coarser approximation of the expansion. Indeed, we 
can look for a value of E' such that: 

E l m  & 

4 J i G q G p  4 J i G q G p '  

which means: 
E l m  M & 

An easy computation gives: 

(22.1) 

To give an idea, a tolerance value E = 0.01 leads to E' = 0.025 while E = 

0.001 leads to E' = 0.0055. Therefore, we can take a larger tolerance value while 
obtaining a nice control. In the case of a circle, for E = 0.025 we find a = 0.391, 
this shows that about 16 mesh entities are necessary to obtain a control in 0.01 (in 
fact, somewhat better), while in comparison, such a control in P1 requires using 
26 mesh elements (Chapter 14). 

Exercise 22.1 Let us  consider the circle of radius p (centered at the origin, for 
simplicity). Discretize it by means of 16 P2 mesh elements such that each of these 
parabola arcs has i ts  endpoints A and B and its midpoint M in the circle. Then, 
compute: 

0 the gap between the chord AB and the circle, 

0 the gap between the chord AM and the circle, 

'A method could be conceived, where the expansion is pushed one order higher, in order to 
construct as a discretization parabola arcs lying on the curve defined by the first four terms 
in the expansion. In this case, it would be necessary to return to the entire discussion, as in 
Chapter 14. 
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a the gap between the parabola arc and the circle (thus, this value at the mid- 
point of the mid-arc, the arc related to AM).  

Conclusions? (Hints: find the value a associated with the mesh element AB,  
deduce the value of E giving the gap as a ratio of p, repeat this for  the mesh entity 
AM and perform the explicit calculus for the arc). Observe what is  obtained by  
changing the number of mesh entities, for  example, for  a number like 8 or 32. 

Remark 22.1 I n  terms of continuity, the P2 discretization thus-obtained is rather 
good. 

Remark 22.2 The above reasoning analyzes the behavior of the curve using an 
expansion between SO and SO + As. I t  is clear that a similar study can be made 
between SO and SO - As, thus leading to the same conclusion about the resulting 
gap. As  a consequence, for  the same gap, it is possible to create a mesh entity 
twice as large (2ap (so ) )  by centering it at the point y(s0). As  previously seen, 
the accuracy remains in E .  Nevertheless, the continuity from mesh entity to mesh 
entity is slightly modified. 

Geometric mesh of a curve. 
ric mesh can be defined as follows. 

Definition 22.1 A P2 type geometric mesh at a given E of a curve r is  a parabolic 
piecewise discretization of this curve whose relative gap is in the order of E at any 
point. If As is  the length of an arc of the curve and i f  h is  the length of the 
corresponding parabola arc, then, h tends towards As with As. 

By analogy with Definition (14.1), a P2 geomet- 

Hence, we return to the same definition as for P1 meshes and thus the same 
characterization of this property. 

As seen for Definition (14.1), notice that this is a reasonable definition, i.e., 
related to the difference in lengths or, similarly, related to the relative gap to  
the curve. This definition is only one possible formulation of the notion of a P2 
geometric mesh. Indeed, another definition may be, for example, to  observe the 
value if the surface area comprised between the arc of curve the the arc of parabola 
which approaches this curve. 

After the previous discussion and with regard to  the proposed definition, con- 
structing a geometric mesh of a smooth curve is made by computing the length 
of the curve using the metric of the main radii of curvature weighted by adequate 
coefficients a. As a corollary, meshing a curve leads to: 

finding the inflection points in this curve together with the singular points 
(corners), 

imposing these points as mesh vertices, 

a splitting the curve into parts, each of which is bounded by to such consecutive 
points, 
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a meshing each part by using the previous principle. 

Remark 22.3 Identifying the points with a maximal curvature and prescribing 
them as arc midpoints enables us  to  have a nice regularity in these points. Nev- 
ertheless, a reasonable result i s  also obtained when the points of inflection are not 
explicitly considered. 

A s  a conclusion, we have briefly described a method that allows the analysis of 
P2 meshes for curve meshing (in R2). This analysis can be followed to  give idea 
about how to conceive a mesh generation method. Here is only one of the possible 
approaches and clearly other methods may be envisaged. Moreover, the actual 
implementation of the above principles is not necessarily obvious. Nevertheless, 
the remarks given in Chapter 14 may serve as a source of inspiration. 

Meshing a curve. For this problem, the mesh construction of a curve with or 
without a metric map (not necessarily of a geometric nature), we refer the reader 
to Chapter 14. When no metric specifications are known, a smooth variation in 
size for two neighboring mesh elements is a natural target. On the other hand, 
when a specification of a physical nature (i.e., related to the physics of the problem 
in question) is given, it is important to  make sure that the sizes specified by the 
physics remain compatible with those related to  the geometry. 

P2 finite elements 

For the sake of simplicity, we consider a planar case (in two dimensions) and 
we consider the construction of P2 type triangles. We assume the domain to  
be meshed to  have a curve (a series or a number of curve parts) as a boundary. 
The question is then to  define, specifically for the triangles having at least one 
boundary edge, the nodes of these triangles together with their edges (other than 
the boundary edge(s)). In terms of mesh construction method and a priori, there 
are two ways of addressing this type of problem: 

a a type P1 mesh with step hl (see the remark below) is available which is 
then transformed in a P2 type mesh with step h2 where h2 = hl; 

a type P2 mesh is constructed directly. This approach initially requires 
meshing the domain boundaries by means of P2 mesh elements, as above, 
and then creating the P2 triangles which form the final mesh of the domain. 

The second approach implies the construction method to be P2. The problem 
is no longer, for a given edge, to  find the point suitable for the construction of a 
P1 triangle (thus with a purely geometric nature) but to  deduce from a P2 edge, 
the three points and the two other edges required to define a P2 triangle. 

Keeping in mind the discussions about the main mesh generation methods, it 
is then clear that the corresponding algorithms (quadtree-octree, advancing-front 
or Delaunay, for example) are in essence purely of a geometric nature. Develop- 
ing methods directly resulting in P2 type elements is then probably possible but 
presumably not so obvious. 
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Following these remarks, the first approach is more reasonable in practice. 
Thus, we ask the mesh generation method to produce a geometric mesh (thus, 
a P1 mesh) and then this mesh is modified into a P2 type mesh by means of 
post-processing. 

This way of processing merits some comments, the first regarding the sizes of 
the mesh elements that are to  be taken into account. 

Remark 22.4 Let hl be the size of a P1 mesh element and let h2 be that of a 
P2 mesh entity, then fixing h2 = hl implies that the number of P2 nodes (the 
element vertices and the edge midpoints) is the same as the number of P1 nodes 
(the element vertices) in the P1 mesh obtained by subdividing into four the P2 
triangles. Following what we saw about the geometric approximation of a curved 
boundary, it is then possible to take, for a similar accuracy, a step h2 twice as large 
as step hl .  Therefore, in this approach, it is  possible to take, when constructing 
the P1 mesh, a relatively large step and, in particular, start from a mesh which is 
a relatively coarse approximation of the boundary geometries. 

Doing so, a P1 mesh is available whose steps may be large. It is easy to  see, for 
a boundary edge, that if the difference with the geometry is relatively small, there 
is no major difficulty in finding the mid-node required to transform this segment 
into a parabola arc. After which, in such a case, the difficulty when constructing 
the other edges is related to the local configurations. 

A second remark must be made about this approach based on the modification 
of a P1 mesh so as to complete a P2 mesh. The local aspect of the approach 
implies that it is not strictly identical to a curve mesh construction method. 

Remark 22.5 Processing by means of transformation considers the boundary edges 
element by  element while the curve meshing problem considers the entire curve. 
Therefore, the processing by  element approach does not a priori see what happens 
in some vicinity of the element in treatment. This may result in a possible lack of 
smoothness of the curve thus-obtained. To overcome this trouble, it is  necessary to 
have access to some global information such as tangents, normals, etc. Moreover, 
the two endpoints of the edge under examination are prescribed while these points 
are not necessarily optimal with regard to the meshing problem applied to the entire 
boundary curve. 

Despite this, up to  now, it remains realistic to follow the local approach. In- 
deed, if the useful geometric information is known at  each point (by means of 
queries to  a geometric modeler or to a mesh assumed to give a suitable geometric 
definition, the geometric support, to some extent, it is possible to give a global 
aspect to  the local process. The only negative feature nevertheless remains the 
constraint regarding the two edge endpoints that are imposed at  the extremities 
of the arc of the curve to  be constructed. 

Nevertheless, in the following, we follow this principle, i.e., the construction 
of P2 elements by local transformation of P1 elements. However, before going 
further, we make some comments on the second approach, i.e., what a P2 type 
mesh generation method could be. 
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Figure 22.1: Construction of a P2 finite element. Top: the P1 element as con- 
structed by using a mesher is  such that the construction of the corresponding P2 
element is  (‘immediate”. Note that the gap in P1 is  relatively poor while the gap 
in P2 is rather better. Bottom: the constructed elements must be processed by  a 
more sophisticated process i f  we wish to transform them into P2 elements. 

Remarks about direct construction of a P2 mesh. For simplicity, we focus 
on a triangular mesh and we assume that the boundaries of the domain to be 
meshed have been previously discretized using the curve meshing method described 
above. 

Therefore, the vertices of the boundary meshing entities are assumed to be 
adequately located. In other words, the domain boundaries are suitably approxi- 
mated. 

The problem in question is then the direct construction of P2 triangles using 
this discrete data input as information. The immediate question is the following: 

(‘What is  the pertinent quality criterion that must be used to govern the P2 
mesh construction?” 

For “classical” mesh generation methods (from Chapter 4 to  Chapter 8), while 
limiting ourselves to  a isotropic situation, we know that the optimality criterion 
is the fact that the triangles are equilateral. What becomes this criterion in the 
present case? Before giving some ideas about this, let us mention that the litera- 
ture is rather weak on this point. Since abstract results (about convergence and 
error estimates) make use of the fact that parameter h, the element size, tends 
towards zero, they fail to  give particular indications about realistic cases where 
this value is not necessarily small. 

It seems evident (and intuitive) that if the gap between the boundary edge (lin- 
ear approximation of the boundary curve) and the boundary itself is small enough, 
then the reasoning used in P1 can be followed and the optimality criterion remains 
unchanged. The case of interest is when this gap, for a linear approximation, is 
relatively large and when this gap, in P2,  is judged to  be good enough (the geom- 
etry is suitably approximated). This implies that the optimal point related to  the 
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P1 edge which allows the creation of an equilateral P1 triangle is not necessarily 
optimal when a P2 triangle must be defined. This depends on the curvature of 
the boundary in the region of interest. In other words, given that a curved edge 
suitably meshed is not sufficient, some other conditions must be considered. 

By analogy with the equilaterality criterion held in P', we can say that a P2 
triangle is satisfactory if the angle bounded by the two tangents in its three vertices 
is close to 60 degrees. If the edge is a curved edge, the tangent in question is the 
tangent to the curve, if the edge is a line segment, the tangent is the edge itself. 

It is easy to  see that this criterion results in a restriction on the length of the 
curved edge and makes it possible to find a reasonable position for the third vertex 
whatever the local concavity may be. 

This being satisfied, the vertex we are seeking can be located at  the intersection 
of the two line segments which form the above angle with the tangents to the curve. 
Then, the two other edges are defined using these line segments. Either the edge 
in construction belongs to the adequate line segment or it must be curved and 
this line segment is only its tangent. In such a case, it is necessary to  construct a 
portion of a parabola using as the input data one of its endpoints, the tangent at 
this point and the length. 

The example in Figure 22.2 shows, in comparison with a classical P1 mesh 
(left-hand side), the P2 mesh obtained by a direct construction method (see the 
curved boundaries). 

Figure 22.2: P1 and P2 planar meshes. O n  the left, a P1 triangular mesh with 
a uniform element size and, on the right, the P2 mesh resulting from a direct 
construction with twice the element size. 

22.2 P-compat ibility 

The above discussion and the simple examples in Figure 22.1 allow us to  make 
the notion of p-compatibility more precise. In the following and for the sake of 
simplicity, we only consider the case where p = 2. 

Definition 22.2 A geometric element (a P1 element) is  said to be 2-compatible 
i f  the distance between its boundary edge(s) and the boundary curve is  such that 
there exists a point in the boundary for  each of this(these) edge(s) that makes it 
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possible to construct a valid P2 element by  a simple post-processing of the given 
P’ element. 

This is a naive definition (somehow a tautology) which indicates that the sim- 
plest construction (find a point on the curve and construct a portion of parabola 
joining the two edge endpoints and passing through this point) results in a valid 
element. This means that there is no interference in the various edges (curved or 
straight sided). This implicitly implies that the new points (the “midpoints”) re- 
main close to  the initial straight-sided segment and thus do not create any problem 
for the elements neighboring the element under consideration. 

Note that the theory about error estimates and convergence issues (Chap- 
ter 20), deliberately considers a situation of this type. From a practical point of 
view, a 2-compatible (straight sided) element is easy to transform into an element 
of degree 2. Nevertheless, this does not mean that an element not in this case 
cannot be transformed into an element of degree 2 (as will be seen below). 

P-compatibility a priori  

Such a case is ideal. The mesh generation method completes P’ elements which 
are 2-compatible. Then, it is sufficient to find the edge “midpoint” and to  define 
the corresponding parabola arc. If the straight edge-boundary edge distance is 
small and if the curve is close to  a parabola (or enjoys a certain symmetry with 
respect to the perpendicular bisector of the straight segment), the point we are 
seeking can be simply chosen as the projection of the edge midpoint onto the 
boundary. 

In the case where the boundary curve does not satisfy this property regarding 
regularity and symmetry, the sought point is not the projection of the edge mid- 
point (return to the section about how to mesh a curve by means of parabola arcs 
while minimizing the gap). 

Keeping this in mind, how can we ensure that a P1 mesh satisfies a priori all 
the underlying requisites? The simplest idea is to construct a mesh whose elements 
having a boundary edge(s) are such that this(these) edge(s) is(are) close to  the 
boundary and, moreover, are such that the third vertex leads to an element which 
is almost equilateral. This is exactly the objective of classical mesh generation 
methods. Most of the elements must be equilateral. The immediate question that 
occurs is to  know if any geometry can be approached with such triangles? The 
answer is probably yes when a fine enough mesh is used, and probably no if not. 

Remark 22.6 Imposing a rather small size in order to obtain such a mesh is, as 
previously seen, not strictly necessary. The resulting P2 mesh is, in general, too 
fine and thus dealing with such a mesh requires an unnecessarily high cost. 

Following these remarks, it is possible to replace the criterion about equilat- 
erality by a similar criterion related to the angles formed by the tangents to the 
edges. Thus, given a boundary edge (a straight sided segment as we are in P’), 
its angle with the next edge in the triangle is measured by taking into account 
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the underlying boundary curve. Note that this criterion is not one of the criteria 
usually considered in classical mesh generation methods. 

In conclusion, it is far from certain that this approach is the most suitable in all 
cases. In the following section, we propose another way to address this problem. 

P-compatibility a posteriori 

We consider here that we have an arbitrary P1 mesh and we want to transform it 
into a P2 mesh. The simplest idea consists of returning to the previous case. All 
edges (all situations) leading to a difficulty in the desired construction are modified 
so to suppress this difficulty. The possible modifications (here in two dimensions) 
that can be used are those described in Chapter 18. Thus they are based on an 
adequate combination of tools for mesh optimization such as point relocations and 
edge swaps. 

The local configuration (an element and its neighboring elements with regard 
to the boundary edge under examination) to be dealt with is analyzed. Several 
situations may be found: 

0 the point in the curved edge to be added remains close enough to the cor- 
responding straight sided edge and falls within the triangle having this edge 
or, again, falls outside this triangle (based on the local concavity) but has 
no influence with any of the neighboring elements, 

0 this point falls very close to one of the other edges in the triangle dealt with 
or again falls within a triangle other than the current triangle (one of its 
neighbors or, more tedious, an element that is not directly a neighbor of the 
triangle under examination). 

In the first case, constructing a P2 element is obvious. In the second case, we 
propose modifying the local neighborhood so as to return to a standard situation 
while observing that the present situation is related to the fact that a P1 mesh 
too coarsely “violates” the geometry. Figure 22.3 depicts three examples of such 
situations. 

Regarding how the local context must be modified so as to remove the difficulty 
during the construction, first, notice that in case i) and, to some extent, in case ii) 
an operation like an edge swap is not useful. In the first case, the resulting situation 
is similar to the initial configuration. In the second case, the new situation leads 
to having the node to be created very close to one of the other edges in the triangle 
(which results in a bad quality P2 element or even a negative Jacobian for a very 
close configuration). A small change in the node position (by means of a moving 
point process) is then one possible way to move the new node away (by increasing 
the distance between this node and the edge). For the configuration shown in case 
iii), it is also possible to find a local strategy that suppresses the problem. First, it 
must be observed that using a local modification (point relocation or edge swap) 
does not allow us to remove the parasite point located outside the P2 domain while 
being inside the P1 domain. Thus, we propose (Figure 22.4), after [Dey-19971: 

0 constructing the desired node M ,  
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ii) iii) 

Figure 22.3: Three local configurations where the transformation of a P1 mesh 
in to  a P2 mesh  is not immediate because the geometrical approximation is too 
poor. In i )  and ii),  the point to  be created falls outside the initial triangle, in 
iii) the situation i s  f a r  more dramatic as the point t o  be defined is outside the 
triangle and, moreover, there are several ‘$parasite” triangles (and even a point) 
which certainly impede the process. 

a constraining the two edges aM and PM in the P1 mesh, 

a classifying the resulting triangles according to their positions with respect 
to boundary r and classifying the mesh entities (points and edges) in in- 
ternal entities and boundary entities. This classification is made using the 
inheritance based on the classification of the entities in the initial mesh while 
preserving a coherent result, 

deleting the exterior triangles (in this way, the parasite point disappears), 

a analyzing the new context again. 

ii) iii) 

Figure 22.4: The initial configuration and the predicted point M .  This point is  
located in an  element other than the triangle supposed t o  be a boundary element. 
The two boundary edges formed after inserting M are enforced. Consequently, the 
mesh is modified and the resulting elements are classified so as to  find the new 
triangles that have a boundary edge. 

Notice that we encounter here an edge enforcement problem (as described 
in Chapter 7) and that the proposed method leads to what is expected while 
the resulting situation is not optimal. Indeed, if iterating this process, it could 
be necessary to subdivide the presumed boundary edges several times and, as a 
consequence, obtain an unnecessarily fine P2 mesh. Note also that applying this 
heuristic is not trivial in three dimensions (as also seen in Chapter 7). 
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An example of a temporary pathology. When there are thick regions or 
when several boundary portions are close to one another (Figure 22.5), which are 
frequent situations in realistic cases, a difficulty may arise, which may be only 
temporary (this is not known a priori). 

ii) iii) 

Figure 22.5: Two local configurations where there is  a thick region. The P1 mesh 
is  correct but, when constructing the P2 mesh, auto-intersections at the boundary 
level are created, which may only be temporary. I n  fact, dealing with edge (up leads 
to an intersection with edge 67, whereas i f  this edge is  processed first, dealing with 
the other edge becomes possible. 

As the boundary is assumed to  be correct (not self-intersecting), there is nec- 
essarily a suitable geometric mesh of this boundary. The problem is then to  find 
the value of the threshold E which ensures an accurate approximation and avoids 
self-intersections. The difficulty in finding the proper value of this threshold re- 
sults from the fact that the points or the elements which are geometrically close 
to each other are not necessarily close in terms of the topology. One way to  detect 
such a situation is to  make use of a global structure like a neighborhood space (see 
Chapter 1) previously constructed in a proper way. Indeed, in this structure, it is 
demanded to store the mesh entities so as to, for a given entity, retrieve at  a low 
cost the set of mesh entities falling in some neighborhood. 

Given such a tool, the data structure is queried when constructing an element 
and the possible conflicts are detected. The strategy that may be used is then of 
a purely heuristic nature. Indeed, it is possible: 

a to  accept a temporary collapsing while maintaining the list of the entities 
concerned, prior to  re-processing (i.e., subdividing) these entities. As the 
solution exists, it will be found (at least, we hope so); 

not to  construct such a situation (which means we temporarily ignore the 
entity concerned) in the hope that the pathology will disappear when dealing 
with some other entities. 

As a conclusion, obtaining p-compatibility a priori or a posteriori makes sense 
only in cases which are already relatively close to the solutions and, in practice, 
the interesting cases are precisely those which are pathologic and, due to this, are 
bad candidates for such processing. Also, we have seen that looking for proper 
compatibility may lead (after some heuristics) to  a valid result but one which is 
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probably not optimal (in terms of the number of mesh entities). Therefore, other 
methods must be investigated (see below). 

22.3 Construction of P2 elements 

We first restrict ourselves to a planar situation. 

Element 2-compatible 

Following the definition of the notion of compatibility, the transformation of a P1 
mesh into a P2 mesh reduces to  locally modifying the initial mesh, i.e., element 
by element. 

Other elements 

In such a case, a purely local processing, since the processing only of the boundary 
edge is not sufficient, does not lead to a solution. In particular, it is necessary, 
for “curving” the boundary edge under treatment, to curve one or several other 
presumably internal edges. Intuitively, this consists of “defining” the empty region 
necessary to obtain a suitable construction. In practice, this approach can be seen 
as an optimization method in which a certain propagation (a deformation between 
the neighboring entities) from entity to  entity is necessary so as to  achieve the 
desired result. 

Y 

ii) 

Figure 22.6: A local Configuration where it is  necessary to  curve a n  a priori straight- 
sided edge so as t o  have enough space for the boundary edge which i s  to  be processed. 

This meshing problem is a problem with constraints (Figure 22.6). Edge (up 
(parabola arc) having been constructed, it is necessary to construct a curved 
edge,aP, as far as possible (in accordance with the local configuration) so as 
to obtain a P2 element of reasonable quality. It should be noted that this mesh 
deformation may lead to  processing some other edges in the neighboring elements. 
Here, we can also use the tangents to  the relevant edges. 
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Dealing with a surface element 

We turn now to the same problem for a surface mesh. The targeted application is 
clearly the construction of surface meshes but also the construction of the "curved" 
faces in three-dimensional meshes of type P2. 

Following an observation already given, meshing a surface or transforming 
a (planar) triangular face into a curved triangular face (belonging to the same 
surface) are not, strict0 sensu, identical problems. In the first case, the surface is 
globally considered, in the second case, the process is a local one. 

Figure 22.7: Anisotropic meshes of a molecule of cyclohexane. Left-hand side, 
mesh with P1 triangles controlled by an  angular tolerance of 8"; right-hand side, 
a P2 mesh for a tolerance of 32". 

Meshing a surface by means of P2 triangles. In this case, the principles 
of mesh construction described in Chapter 15 may be used. The method involves 
finding the (curved) edges of the triangles that ensure that the surface mesh such- 
created is a suitable approximation of the real surface. We have seen that this 
problem does not reduce to ensuring that the curved edges are adequately close 
to the surface. Indeed, controlling the gap between such an edge and the surface 
does not automatically imply that a triangle with these edges as sides is adequately 
close to the surface, for the same given threshold value. In addition, the inter- 
face between two adjacent triangles must have, in some cases, a certain extent 
of smoothness thus implying, at least, that the edge discretization must not only 
take into account the gaps (in terms of distance) to the surface but must also 
consider a control regarding the gaps related to the variation of the tangent planes 
or even consider some other geometric properties (variation in the curvature, radii 
of curvature, etc.). 
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As for a planar P2 triangle, it is vital to control the size and the direction of 
the edges using the tangent plane at each vertex (the effect of the tangent in a 
planar case is now replaced by these various tangent planes). 

An example of a P2 surface mesh is depicted in Figure 22.7, right-hand side 
(BLSURF software). 

Transforming a P1 surface mesh into a P2 mesh. In such a case, the 
geometry is assumed to be known (via a modeler, a mathematical description or a 
representative mesh) and, in addition, that a P1 mesh is available. The question 
is then to transform this mesh into a P2 mesh. 

Figure 22.8: P1 and P2 meshes of a Boeing 747. The mesh on  the left results from 
a mesh simplification at 85% of a very fine surface mesh (original data provided 
by  Boeing). The mesh on  the right is the transformation of the P1 triangles into 
P2 triangles. 

Figure 22.9: Enlargement of part of the P1 and P2 meshes of the previous figure. 
I t  is easy to see the quality of the geometric approximation of the surface in the 
P2 mesh as compared to the linear approximation seen in the P1 mesh. 

We return to the above discussion. If the P1 mesh follows the right properties 
(control by the tangent planes) then the transformation is of the same nature. 
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The construction is indeed relatively easy to do. The examples in Figures 22.8 
and 22.9 are courtesy of H. Borouchaki. Otherwise, it may be necessary to refine 
the P1 mesh based on the local curvatures in order to  obtain a mesh that is easy 
to transform. 

Volumic case, example of the P2 tetrahedron 

We now give some indications on the construction of tetrahedra of degree 2. We 
only focus on elements having one or several entities (edge or face) lying on the 
boundary. Obviously, the most interesting case is when this portion of the bound- 
ary is a curved region. 

Element 2-compatible. As in two dimensions, a 2-compatible tetrahedron is 
relatively easy to  transform into a curved tetrahedron with 10 nodes (see Chap- 
ter 20). The boundary face is curved (let us assume that there is only one such 
face) and, for the position of the three nodes to be defined, we return to a curve 
meshing problem, now in three dimensions. Note that meshing these curves, edges 
shared by several elements, must be such that the curved face and its neighboring 
faces form as regular as possible a discretization of the real surface (when this lat- 
ter is regular). In other words, meshing a curve in this context requires considering 
the underlying surface. 

It must be noticed that obtaining a 2-compatible mesh for a straight sided tet 
mesh forming a not necessarily close approximation of the real geometry is a non 
trivial problem and, in particular, may lead to  unnecessarily small elements. On 
the other hand, the technique based on edge or face enforcement, local modification 
of the resulting mesh and classification of the new mesh entities (vertices, edges 
and faces) with respect to the boundary is in this case rather delicate (Chapter 7). 
The alternative approach, based on the control via the various tangent planes to  
the faces, gives better results (specifically, it is not necessary to  refine too much the 
initial mesh and thus the number of elements remains reduced while the quality 
of the approximation is still within the desired range). 

Other elements. An element (resulting from an automatic mesh generation 
method) which is a coarse approximation of the real geometry may, as in two 
dimensions, not be suitable for such an immediate construction. In particular, 
this may lead to  curving some face a priori  not in the boundary in order to obtain 
a region which is large enough to allow the construction of an element of adequate 
quality. 

22.4 Elements of higher degree 

The pmethods basically lead to modifying the degree p of the underlying polyno- 
mials until some values rather larger than 2 are obtained. In this respect, we find 
some examples where the value of p could be 5, 6, or more. Therefore, for example 
if p = 3,4,  ..., it is of interest to  discuss, for the curves, how to construct arcs of 



MESH ADAPTATION AND P OR Hp-METHODS 751 

cubics, quartics, etc. and, for the faces, how to construct some surfaces with the 
corresponding degree. 

Let us just mention a few remarks about the case of a P3 mesh entity, an arc 
of cubic, for a curve meshing case in the plane. We start again from a limited 
expansion until the term of degree 3. Then, assuming adequate hypotheses about 
As, the error due to  stopping this expansion at this order can be appreciated by 
looking at  the following term (at the order 4). This being done, we can follow 
the method described in Chapter 14 and we construct an arc of cubic in order to  
approximate the curve defined by the three first terms in the expansion, namely: 

For a P3 triangle, we find a construction similar to that used for a P2 triangle 
while now controlling the tangents at the endpoints of the edges of the elements. 
In particular, one condition that must be verified is to ensure that the arc of cubic, 
the P3 edge which approximates the curve, retains the same concavity between 
these two endpoints (thus implying a restriction on the length in the case where 
this concavity changes). 

As a conclusion about these ideas of methods able to  construct elements of 
an order higher than 1, it is clear that this topic is still a topic of interest which 
remains to  be really well addressed (apart from the case where the curves or the 
surfaces remain smooth enough). 

22.5 P-methods and hp-methods 

In this short section, we briefly return to  mesh adaptation methods based on a p 
or an hp approach. 

P and hp-methods 

Essentially, a pmethod allows us, according to a criterion (resulting from an ade- 
quate error estimate), to predict the degree of the approximation which is appro- 
priate with regard to the way in which the solution varies. Note that this degree 
changes during the computational process and also may vary from one element 
to another in the mesh. The literature on pmethods is extensive and, in par- 
ticular, see [Babuska, Guo-19881, [Babuska et d. 19891, [Babuska, Suri-19901 and 
[Dey et al. 19971, (among many others). 

Constructing a finite element of order p is not done as in the classical case. 
In other words, when p varies, we do not consider the set of finite elements (their 
basis polynomials) with the corresponding order p, but a finite element which is 
hierarchically defined. This being assumed, changing the degree involves adding 
the contributions of some shape functions whose degree is less than or equal to  
the chosen value and ignoring the contributions related to  higher degrees. 



752 MESH GENERATION 

An adapt at ion scheme 

A possible (reasonable) scheme for an adaptation loop in terms of h or p comprises 
several steps, as for an adaptation in h only (as seen in the previous chapter). 
First, an initial mesh is completed using a classical method, while trying to obtain 
a mesh that is reasonably suitable for further use while, at this time, no precise 
information can be used regarding the order or the size of the elements (an error 
estimate a priori  or some knowledge about the physical behavior may nevertheless 
be helpful in this construction). An initial solution is then computed using this 
mesh as a spatial support and an error estimate a posteriori  analyzes its quality so 
as to  estimate the sizes (h) or the degrees ( p )  adequate for the elements in the mesh 
of the next iteration step. The adaptation process then consists of constructing 
this mesh by taking these requests into account. Note, as for an h-method, that 
this adaptive process may be a local or a global process (nevertheless, the available 
examples are mostly local). 

The new spatial support then serves to  compute a new solution and a new 
error estimation is made and, until a given stopping criterion has been achieved, 
the iteration steps are continued. 

The actual implementation of such a process includes two aspects which are 
slightly different. First, if the size parameter is affected, we return to  the discussion 
in the chapter devoted to  h-methods which describes various approaches that allow 
the construction (or the modification) of a mesh while following a given size map. 
Then, if the size remains unchanged, changing the order in the solution method 
results in two new problems: 

0 the construction of the “curved” entities in the mesh that are affected by the 
current step, 

0 the construction of the finite elements with the desired order p .  

The latter aspect is out of the scope of this book, thus we advise the reader to  
return to the brief comment previously given and to  the ad hoc literature (includ- 
ing the above references), while the first aspect leads us back to the preliminary 
discussion given in this chapter. Note that only the elements having a boundary 
entity located in a portion of the boundary which is curved are delicate to  handle 
and that this may lead to  processing some other a priori  internal elements, in some 
neighborhood. 



Chapter 23 

Moving or Deformable Meshing 
Techniques 

Nowadays, adaptive methods are widely used to  solve partial differential equa- 
tions which involve large solution variations like shock waves, boundary layers, 
etc. These techniques can now be considered as fully mature. Indeed, they have 
successfully demonstrated their ability in significantly reducing the computational 
cost of computer simulations while simultaneously preserving or even improving 
the accuracy of the numerical solutions. The main idea is to adapt the mesh 
points locally in order to concentrate them in the regions where the gradient of 
the solution rapidly varies (see Chapters 21 and 22). However, if the regions of 
interest are moving or evolving in time, such as fronts or shocks in hyperbolic 
equations, these techniques need to be modified to adapt the mesh with respect 
to time [Alauzet et al. 20071. 

Regarding the numerical simulation of time-dependent PDE problems, mesh 
adaptation methods can be split into two categories, static or dynamic. The first 
class, corresponding basically to h-refinement techniques, consists of adapting the 
mesh by possibly adding nodes and updating node positions and interpolating 
variables from the old mesh to  the new mesh, all these operations being performed 
at  discrete time levels. Obviously, the principal attraction of these methods lies in 
their simplicity and, to some extent, their robustness in dealing with an arbitrary 
number of phenomena concurrently. However, a well known artifact is often no- 
ticed when dealing for instance with hyperbolic PDEs, the numerical dispersion. 
In addition, in order to preserve the time stepping accuracy, small steps are usually 
required. This class of methods has been thoroughly described in Chapter 21. 

For dynamic methods, often called mowing mesh  methods or r-methods, the 
nodes are moved according to the solution of an equation involving velocities of 
nodes in order to  preserve the concentration of nodes in regions of high variation of 
the gradient of the numerical solution. Typically, in arbitrary-Lagrangian-Eulerian 
(ALE in short) flow simulations, a boundary (or a part of the boundary) of a 
mesh follows a deformed feature. As the number of nodes is kept fixed during 
the simulation, problems may arise due to the excessive distorsion of the mesh, a 
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phenomenon usually referred to  as mesh tangling. Therefore, a mesh optimization 
stage is often required or a regularization term must be added in the movement 
equations to help, prevent or fix this situation. 

In this chapter, we will focus on meshing problems for physical or artificial phe- 
nomena for which time evolution and (topological and geometrical) shape mod- 
ification are intrinsic features. For instance, when external domain boundaries 
remain fixed in shape while relative motion arises for internal objects, such as that 
undergone around pistons, pumps or jet engines. Examples in which the domain 
boundaries are also transformed often occur in crash simulation, metal forging, 
aeroelasticity as well as in many biomedical simulations. In such applications, the 
computational domain changes dramatically in shape, geometry and topology. 

First, we deal with the motion of rigid bodies embedded in a computational 
domain, in two and three dimensions. In particular, we mention a practical solution 
to the problem of computing an admissible field of displacements at mesh vertices. 
Next, we briefly describe two methods to regularize a distorded or invalid (tangled) 
mesh in the context of ALE methods. Then, we turn to  the problem of handling 
large mesh deformations of the boundary of a domain during a simulation and 
finally, we address the tedious problem of interface tracking in unsteady (flow) 
simulations. Examples of mesh adaptation are provided to  show that the same 
set of local mesh modification techniques can be used to deal successfully with 
different types of applications. 

23.1 Rigid body motion 

Many phenomena in physical simulations can be represented as unsteady prob- 
lems for which time evolution is the key feature. In some of these problems, the 
evolution does not concern the shape (this term stands here for both the geometry 
and the topology) of the different parts of the domain that remains unchanged 
during the simulation, but affects their relative position and motion. Classical 
examples arise in combustion simulations around multibody aircraft engines or 
pistons (Figure 23.1). 

This area of study has received much attention in finite element simulations 
and in computer graphics. In these two fields, the common approximation of the 
computational domain is produced using tetrahedral meshes, or triangular meshes 
for surface boundaries. Classically, the motion of bodies assumed to remain rigid 
can be described by a combination of translations and rotations, from a reference 
(initial) position. Typically, a reference frame is chosen connected to  and evolving 
with the body. Thus, the position of a rigid body can be described using two 
components, each represented by a vector: an orientation and a linear position. 
Computing mesh motion (i.e., the displacement of each mesh vertex) from object 
motion can be formulated as a discrete problem. It consists of solving a suitable 
elliptic partial differential equation to obtain the displacement vector u at  all mesh 
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vertices. Obviously, the main concern during such simulation is maintaining the 
overall mesh quality. 

Figure 23.1: Value motion: initial position of the piston (left) and translatory 
moved piston with deformed mesh (reprinted from Int. J .  Fluid Power). 

Mesh movement 

We suppose that the boundary of the computational domain remains invariant 
in shape and that only the relative positions of the different parts may change 
in time. Many methods for defining mesh motion have been proposed in the 
past. Examples include the most popular spring analogy technique [Batina-19901 
and [Zeng, Ethier 20051. In this approach, vertex connections (edges) are replaced 
by linear springs and point motion is obtained as a response to the boundary 
loading. A review of the advantages and drawbacks of spring analogy is given 
by [Blom-20001. To overcome the robustness problem, the addition of torsional 
springs to  control and prevent invalidating any tetrahedral mesh element was sug- 
gested by [Farhat et al. 19981. 

Several other approaches to providing a robust mesh motion solver involve the 
use of Laplacian smoothing [Lohner, Yang 19961, of a least-squares finite element 
formulation of the Navier-Stokes equations [Masud, Hughes 19971, or of a bihar- 
monic equation [Helenbrook-20031. In the following section, we will introduce a 
linear elasticity solver to  help solve this motion problem. 

Conceptually, the numerical solution is strongly influenced by the domain evo- 
lution in time to  the point that the boundary geometry may be part of the solution. 
Thus, we must deal with boundary motion in a different way from internal ver- 
tex motion. In the applications we have in mind (pistons, valve motion, etc.), 
boundary motion is prescribed, for instance using a single displacement vector. 
The unknown of the problem is then the displacement field prescribed at  internal 
mesh vertices. Internal mesh motion must cope with the changes in the domain 
shape as well as preserving the mesh quality and validity as it has an influence 
on the solution. It seems obvious to try reducing as much as possible the user 
intervention at this stage. 

Spring analogy. As pointed out, in this approach, the mesh is considered a 
network of springs connecting vertices through edges. A force is induced in the 
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spring assigned to an edge when a rigid body motion is applied. The strain energy 
in the spring system is given by the formula: 

where E denotes the set of mesh edges, Kij represents the spring stiffness (that 
can be simply assigned to  be the length of edge ij) and ui is the displacement 
vector at node i [Batina-19901. The minimum of the energy corresponds to a mesh 
where the strain, caused by the boundary displacement, is equidistributed. The 
model can be solved using a preconditioned conjugate gradient algorithm. 

Mesh validity and quality. Preserving a valid mesh is an essential requisite 
for numerical simulations and this check is a critical step in mesh motion. Mesh 
validity, that corresponds to  a conforming mesh without invalid elements, can be 
checked and enforced using topological and geometrical tests. Note that topo- 
logical checks can be performed on the current mesh and do not involve mesh 
coordinates. Geometrical checks will check whether invalid elements may be pro- 
duced by the displacement field, thus dealing with positivity of volumes and with 
orientation and convexity requirements (see Chapter 18 for more details). 

Another concern during mesh motion, is that point locations are modified and 
will affect the element quality. Therefore, additional geometric tests must be used 
to preserve mesh quality during the motion. Once convexity and positivity of the 
mesh have been checked, quality checks are rather inexpensive to carry out. 

The linear elasticity problem 

Finding an admissible displacement field can be obtained by solving a simple 
Laplace (or Poisson) equation for each component or solving a modified version of 
the form: 

v . (TVUi) = 0 vi = 1 ,2 ,3  (23.2) 

7 V ( K )  
Vmax - Vmin 

V ( K )  
where function T represents a variable diffusivity, T ( K )  = 1 + 
being the volume of mesh element K and Vmin (resp. Vmax) denotes the minimal 
(resp. maximal) element volume. Solving Equation (23.2) provides an r-refinement 
scheme allowing for greater deformation in regions where elements have larger 
volume, [Baker-20011. 

However, a drawback of this type of equation is that it lacks any dependence 
between the components of the displacement. For instance, if a domain region is 
moving along a fixed direction, all mesh vertices will be moving along this same 
direction. Hence, if the moving region is traversing a domain, say from the left 
to the right side, it tends to  compress the mesh elements in the rightmost region 
while elements in the leftmost part become highly strechted. Therefore, a more 
versatile mesh motion scheme involves solving an elasticity problem. 

It is well known that the equations of linear elasticity govern small displace- 
ments of an object subjected to internal body forces and surface traction. Here, 
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we consider an elastic non-homogenous material filling a domain R E Rd. The 
problem consists in seeking some apparent properties of this material. Here, the 
unknown u represents a field of elementary small displacements modelled by the 
linear elasticity equation. We will now present the governing equations and the 
weak formulation for finite element approximations of this problem. 

Governing equations. Let consider R an open bounded domain with a Lips- 
chitz boundary denoted as r = rOUr1. The isotropic linear elasticity phenomenon 
is commonly described by the following system, where p represents the material 
density, aij is the stress tensor and f E L2(0,T,L2(a))  is called a body force 
measured by unit volume of R: 

a 2 u  
p ( x , t ) a z , ( x , t )  - V.a(u(x , t ) )  = f ( x , t ) ,  VX E R ,  V t  E [O,T] . (23.3) 

For an homogenous isotropic media, the stress tensor a is defined by means of 
Hooke's law as: 

a(u)  = Xtr&(U) I d  + 2p&E(U), (23.4) 

where E ( U )  = ~ ( V U  + V u t )  is the Green-Lagrange strain tensor, and X and p 
are the Lam6 coefficients. This system is supplemented with the following set of 
boundary conditions: 

(23.5) 

where uo E L2(0,T,H1/2(I '0))  and g E H1(0,T,H-1/2(I'1)) corresponds to a 
surface traction measured by unit area of r. In addition, a set of initial conditions 
is prescribed: 

u ( x , t )  = uo(x,t) vx E ro ,vt E [O,T] 
vx E rl ,vt E [O,TI { 4 u ( x , t ) ) . n ( x )  = g(x , t )  

0 au 0 

at 
u(x , t  = 0 )  = u (x) and -(x, t = 0 )  = w (x) Vx E R , (23.6) 

where uo E H1(R) and wo E L2(R). As such, given Hooke's law, the problem is 
well-posed. 

If we consider a steady-state elasticity model, the model can be reduced to the 
simple equation: 

V.a(u(x) )  = f(x) , vx E R .  (23.7) 

Finite element discretization. Equation (23.7) is then discretized on a sim- 
plicial mesh Th using a Galerkin formulation. The related weak formulation of 
this problem can be written as: find u E V + U O ,  such that for all u E V 

s, U ( U )  : E(U) dx = (23.8) 

where the space V = {u E H1(R) ,u = 0 on ro}. 
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Then, the corresponding discrete problem becomes: Find U h  E vh + U O ,  such 
that for all ?& E vh 

(23.9) 

where vh represents a suitable approximation function space. 

of this approach. 
We refer the reader to Chapter 20 for all the details about the implementation 

Moving mesh technique 

Once a solution has been computed for the elasticity problem, a discrete field of 
displacement is defined at  all mesh vertices. The meshing stage corresponds to  
moving each vertex to  its new location provided the mesh elements do not become 
invalid or degenerated. Practically, mesh vertices are moved step by step toward 
their objective position, with the assumption that the mesh remains valid at each 
step. This iterative r-method is completed when all mesh vertices have reached 
their final position or when no mesh vertex can move without invalidating the 
mesh elements. A simple dichotomy scheme can be used to carry out this mesh 
modification procedure (Figure 23.2). 

Other approaches involving topological and geometrical mesh modification op- 
erations can be used (see Chapter 18) to  avoid creating tangled or invalid elements. 
However, such operations do not preserve the mesh cardinality (same number of 
vertices and elements). 

Moreover, to optimize the numerical scheme, the elasticity problem can be 
resolved in a part of the domain only. This will significantly reduce the size of 
the linear system (the number of degrees of freedom) and dramatically speed up 
the overall procedure. Figure 23.3 shows an example of a rotating body where the 
active computational domain is notably reduced to a small region surrounding the 
blade. 

Figure 23.4 illustrates the application of rigid body motion to an application 
where the local mesh density must be preserved. When the moving part of the 
domain crosses an area of anisotropic elements, the local anisotropic metric is 
kept and possibly intersected with the adaptive metric (for instance provided by 
an error estimate). To this end, a metric intersection procedure is employed (see 
Chapter 10). 

23.2 ALE methods 

Obviously, a chapter devoted to r-method would not be complete without a section 
devoted to  arbitrary- Lagr angian- Euler ian methods . 

Arbitrary-Lagrangian-Eulerian (ALE) methods were introduced by Hirt et al. 
to optimize the accuracy, robustness and efficiency of both the Lagrangian and 
Eulerian schemes [Hirt et al. 19741. Classically, motion can be described in Eule- 
rian or Lagrangian coordinates in continuum mechanics. In the Eulerian schemes, 
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\ 

Figure 23.2: Example of r ig id  body motion for a rotational three-dimensional do- 
main (courtesy of C. Dobrzynski). 

. 

Figure 23.3: Example of the restriction of the computational domain for a rota- 
tional three-dimensional domain (courtesy of C. Dobrzynski). 
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Figure 23.4: Application of rigid body m o t i o n  wi th  densi ty  constraints (courtesy of 
C. Do brzynski). 

largely used in computational fluid dynamics, the computational discretization of 
the domain (i.e., the mesh) remains fixed during the whole simulation; the medium 
moves with respect to  the mesh. Hence, there is no real problem with large defor- 
mations in the motion, although the interface and boundaries must be accurately 
described to resolve flow details. On the other hand, in Lagrangian schemes, each 
mesh vertex is associated with a particle of material and follows the displacement 
of this particle during the time. As a consequence, large deformations of the mesh 
structure may be encountered and, in some peculiar cases, tangled or inverted el- 
ements may occur. With the ALE methods, the mesh vertices can move with the 
medium in the Lagrangian manner or can remain fixed in Eulerian manner or be 
moved freely in the domain. This gives the flexibility of handling much larger de- 
formations than with any other approach while preserving the interfaces between 
materials or domains. Classically, the process consists of the following steps: 

1. a classical Lagrangian step, in which the mesh moves along with the material 

2. a rezoning step, in which the mesh is modified so as to preserve good element 

particles, 

quality, and 

the current mesh. 
3. a projection step, in which the solution is transferred from the old mesh to  

During the rezoning stage, care must be taken to avoid over-smoothing of the mesh 
leading to a loss of information (a dilution of the numerical solution). Moreover, 
due to  the existence of invalid elements in the mesh, the regularization method 
must be robust enough to handle these situations and result in a valid mesh with 
convex untangled elements. Popular methods to  regularize a mesh include Lapla- 
cian smoothings based on geometric criteria or methods based on a functional 
minimization (like the Winslow functional), usually more expensive and suffering 
from the existence of local minima and energy barriers [Winslow-19671. 
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Figure 23.5 shows an example of the computation of a cross-flow and rota- 
tional oscillations of a rectangular profile. The flow has been modelled using the 
incompressible Navier-Stokes equations and the numerical scheme uses an ALE 
formulation for fluid-structure interaction. The circle makes it possible to define 
two regions: the outer region where the mesh is Eulerian (no distortion) and the 
inner region where the mesh is prescribed to  move rigidly attached to the rectangle. 

I I I I I I I I I I I I I I I  

Figure 23.5: Detail of a f ini te  e lement  m e s h  around a domain  rotating in t i m e  in 
a f luid flow simulat ion (reprinted f r o m  [Donea et al. 20041). 

The ALE technique requires the formulation of a procedure to  update the mesh 
vertices velocities at each time step of a computation. Consequently, the remeshing 
strategy strongly impacts on the efficiency of the ALE method and may be time 
consuming and error prone. Two choices are possible: mesh regularization (r- 
adaptation) or mesh adaptation. Regularization aims at preserving the regularity 
of the mesh as long as possible as well as to  avoid the creation of tangled elements. 
On the other hand, if ALE is used as a mesh adaptation technique, it requires a 
suitable error estimate to concentrate the vertices in the regions of steep solution 
gradients. 

Mesh regularization is a geometric operation and its objectives are purely of a 
geometric nature. It consists of keeping the mesh regular (as far as possible) during 
the computation, avoiding distorted or tangled elements. As mentioned in Chap- 
ter 18, it requires the update of the vertex coordinates a t  each time step through 
a displacement field (see the previous section) or from the current mesh velocities. 
Once the boundary motion has been computed, interpolation techniques are used 
to determine the mesh rezoning in the interior domain. As in mesh optimization, 
the rezoning of the mesh vertices consists of solving a Laplace (Poisson) equation 
for each component of the node velocity or position so that mesh edges coincide 
with lines of equipotential. It is close to  what was described in Chapter 4 as elliptic 
mesh generation. 
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Laplacian smoothing 

Discrete Laplacian operators have a long history in the context of mesh smoothing, 
although they were originally introduced for curve and surface denoising purposes 
[Field-19881. Indeed, they can be seen as filters on the highest frequencies that are 
able to remove the noise. 

The Laplacian smoothing, also called barycentric regularization (see Chap- 
ter 18) is easy to implement and its complexity is linear in the number of mesh 
edges. It consists of relaxing the position of a mesh vertex Pi in the direction APi 
of the weighted barycenter of its neighbors (the set B(Pi), i.e, the ball of Pi): 

where the W i j  are positive weights and such that c 
j €  B (Pi ) 

W i j  = 1. All 

(23.10) 

displacements 

being computed, the new positions of the mesh vertices are updated by adding the 
corresponding displacement vector to each vertex position: 

P,! = Pi +aAPi 

where 0 < Q < 1 is a relaxation parameter, locally or globally specified. Obviously, 
if the wij are all equal, each mesh vertex is moved towards the isobarycenter of its 
neighbors. 

Figure 23.6: Weighted Laplacian smoothing: initial tangled mesh, meshes 
after 9 and 900 iterations with a parameter Q = 0.5 (reprinted from 
[DeBuhan et al. 2008]). 

As pointed out, too many iterations of Laplacian smoothing may lead to un- 
desirable artifacts such as volume shrinkage or a loss of the mesh structure. To 
overcome this problem, Taubin [Taubin-19951, [Taubin et al. 19961 proposed com- 
bining two consecutive steps of Laplacian smoothing: 

P,! = Pi + XAPi and P[ = P,! - PAP,!. 

A first Laplacian step is carried on with a positive scale factor X on all mesh 
vertices and then, a second Laplacian step is applied to all mesh vertices, but with 
a negative scale factor -p slightly greater in magnitude 0 < X < p. The Laplacian 
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smoothing effect is obtained by repeating this alternate combination of positive 
and negative scale factors a number of times. Indeed, this method corresponds 
to a low pass filter, the scaling factors X and p determining the pass-band and 
stop-band limits [Taubin et al. 19961. 

Note that the same procedure can be applied on surface meshes to remove 
undesirable artifacts related to implicit surface reconstruction methods (see Chap- 
ter 16). 

Figure 23.7: Effect of bi-Laplacian smoothing o n  surface meshes: initial mesh  and 
mesh after 100 iterations with a parameter X = 0.33, p = 0.34. 

Area and Winslow functionals 

There are obviously numerous parameters for measuring mesh quality (see Chap- 
ter 18). As far as numerical simulations are concerned, the orthogonality of the 
mesh lines and the mesh density in the region of large solution gradients are among 
the main criteria to be taken into account. Variational methods aim at optimizing 
the quality of a mesh using a mesh-based functional. Many functionals have been 
proposed that enjoy different properties such as mesh line orthogonality, equally 
sized elements, untangled elements, etc. (see [Tinoco et a1 20011 for a description 
of area functionals). 

For instance, the integral form of an area functional on a quadrilateral mesh is 
given by [Castillo-19911: 

(23.11) 

where J = [g1 921 represents the Jacobian matrix based on the two covariants 
vectors g1 and g2 at the node considered (i.e., the columns of this matrix are the 
two vectors). In order to adapt a quadrilateral mesh, the author suggests using 
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the following variation of the area functional: 

(23.12) 

where J(ki) is the Jacobian matrix a t  vertex k and for quadrilateral i ,  IJ(ki)l is 
the determinant and '$'(ki) > 0 is the value of an adaptive function at the center 
of the cell i around vertex k. Indeed, the Jacobian is a measure of the area. The 
optimization of this functional will result in the equidistribution of the product of 
the cell area and the adaptive function. The critical feature of the functional is a 
mesh for which the product is the same for every element. 

In the same spirit, the two-dimensional Winslow functional on quadrilaterals 
can be written as: 

(23.13) 

where the numerator is the Froebenius norm of the Jacobian matrix. Hence, the 
minimization of this functional is equivalent to  the minimization of the condition 
number of the Jacobian matrix. A detailed description of the above analysis can 
also be found in [Knupp-20071. 

Figure 23.8: Initial tangled mesh by  transfinite interpolation (left) and final regu- 
larized mesh obtained using Winslow functional (right). 

23.3 Mesh deformation 

In many applications, meshes undergo large or severe deformations during un- 
steady simulations. As a discretization tool, the finite element method has been 
largely employed to  solve manufacturing problems and notably metal forming 
problems such as forging, extrusion, rolling, etc. In all these application fields, the 
spatial discretization, i.e., the mesh, evolves to  represent and follow the material 
flow. When the distortion becomes too severe or when the topology of the domain 
changes, such a process requires the mesh to be enriched or coarsened to account 
for these modifications and to  remain valid. Simultaneously, state variables must 
be transferred from the old mesh to the current mesh. 
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In contrast to the previous approaches, here the geometry of the domain is 
severely affected by the process and a geometric model is no longer available during 
the simulation. Figure 23.9 shows an example of an orthogonal cutting by chip 
formation. The material, similar to  aluminium, is supposed isotropic elastoplastic, 
isothermal with non-linear isotropic hardening and isotropic ductile damage. 

Figure 23.9: Two dimensional example of orthogonal cutting by  chip formation 
(reprinted from [Borouchaki et al. ZOOZ]). 

Many procedures have been devised to update the mesh, usually based on 
automatic mesh adaptation techniques including the following sequence: 

1. update boundary discretization; 

2. create a new mesh (or modify the old mesh); 

3. project the state variables from the old mesh to the new mesh. 

The new mesh can be obtained using global or local mesh generation or mesh 
modification procedures in a similar manner mesh adaptation is performed (see 
Chapter 21). Similarly, the amount of modifications can be decreased by employing 
local mesh modifications. 

Geometry update 

Obviously, the difficult part when considering the remeshing of a mechanical struc- 
ture subjected to  large plastic deformations, possibly with damage, is to follow the 
geometrical and topological changes of the domain shape. If remeshing is applied 
after each deformation increment (in a discrete time scheme), then the following 
steps are required: 

0 definition of the new geometry (after deformation), 

0 discretization of the boundary based on a geometric error estimation, 
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0 internal mesh discretization based on a physical error estimate, 

0 adaptation of the current mesh to the deformed geometry. 

The geometry evolution of the domain is concerned by different types of de- 
formations leading to changes of the geometry and/or of the topology. Hence, all 
these deformations are related to  topological and geometrical mesh modifications. 

Local mesh modifications 

Mesh modifications typically include the following operations: 

0 splitting of mesh edges, 

0 collapsing of mesh edge endpoints, 

0 swapping of mesh edges or faces, and 

0 vertex relocation. 

In the case of simplicia1 (triangular or tetrahedral) elements, edge splitting or edge 
swapping are straightforward operations to implement. It is sufficient to define 
patterns to account for the introduction of a new vertex and to  take into account 
node reconnections (in this case, a combinatorial problem). Edge collapsing is 
precluded if it results in inverting elements. If the edge to be collapsed is on the 
boundary, additional geometric constraints may be applied to  control the accuracy 
of the geometric approximation. 

Figure 23.10: Simulation of the crushing of an  empty can using a template-based 
mesh adaptation (reprinted f rom [Giraud-Moreau et al. 20051). 

In some peculiar cases, it proved useful to  use patterns (templates) to refine 
mesh elements when mesh distortion becomes too important. In such cases, re- 
finement schemes such as those suggested by [Rivara-19971 are employed to ensure 
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mesh conformity and validity. Figure 23.10 shows an example of an adaptive 
template-based refinement for simulating the crushing of an empty can. 

Many of the known mesh coarsening procedures are usually restricted to  the 
reversal of previous refinement procedures. However, more general procedures are 
required to  handle the large variety of configurations that may arise. To this end, a 
general purpose mesh collapsing procedure is carried out, based on edge collapsing 
(see Chapter 18 for a description of this operation). 

The next example concerns a fluid-structure interaction during an injection 
process. It deals with injection of a polymer in a cavity containing an elastic part 
in its centre. It is assumed that there are two injection surfaces and that the initial 
distribution of polymer is not homogenous. As the fluid polymer fills the cavity, 
the solid part moves under the fluid constraints as shown in Figure 23.11. 

Figure 23.11: Filling of a cavity containing a solid part inside (reprinted from 
[Coupez et al. 20041). 

A back extrusion problem is shown in Figure 23.12. The plastic behavior of 
the material is specified with a material flow stress function. The initial mesh of 
workpiece consists of 906 mesh vertices and 5,433 mesh elements. The simulation 
required 9 mesh enrichment steps. From the figure, it can be seen that the contact 
surface between the moving die and the workpiece is well captured by controlling 
the workpiece-die geometric interference. 

23.4 Interface tracking 

The numerical tracking of interfaces is an important part in simulations of many 
physical processes. In these applications, interfaces move according to physical 
laws. The key challenge is to  keep updated with the arbitrary evolution of the 
interfaces, including changes of topology. For instance, in multiphase flows, an 
interface is a separation between two immiscible fluids. The interface is thus char- 
acterized by a discontinuity of physical quantities such as densities and viscosities. 
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1 

1 4 

* 

Figure 23.12: Interior workpiece mesh produced by an automatic remeshing proce- 
dure (reprinted from [Wan et al. 2003]). 
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The law of motion may be directly connected to  the shape of the interface as in 
flow motions by mean curvature. In the Lagrangian approach, markers or par- 
ticles are used to define interfaces. A different challenge is offered by levelsets 
approaches which are based on a fixed Eulerian mesh. In this method, pioneered 
by Osher and Sethian [Osher, Sethian 19881, the interface is described by a zero 
levelset of a continuous function q5 that is advected in time to  follow the interface 
evolution. 

General principle 

Levelset methods are numerical techniques conceived and developed for track- 
ing the evolution of interfaces for instance between two fluids. These interfaces 
can develop sharp corners, break apart, and merge together. As pointed out by 
[Sethian-19871, these techniques have a wide range of applications, including prob- 
lems in computational fluid mechanics, combustion, manufacturing of computer 
chips, computer animation, image processing and the shape of soap bubbles. While 
most techniques attempted to follow moving boundaries by using a set of markers 
on the evolving front and then changing their positions to correspond to the mov- 
ing front, levelset methods use a strong relationship between moving interfaces 
and equations from CFD. 

By embedding the interfaces as a levelset of a higher dimensional function, the 
dimension of the advection problem is augmented by one. But, even if they are 
computationally more expensive than other methods, levelsets offer a convenient 
manner to handle topological changes. 

Problem statement. Let consider the displacement of a surface at any point 
z ( t )  according to  a prescribed velocity field v. This problem can be related to  
the dynamics of an implicit surface. As mentioned before, a classical solution is 
offered by the Lagrangian schemes that consists of solving an ordinary differential 
equation with inital conditions to prescribe a mesh displacement field. From an 
Eulerian point of view, the dynamics revals two aspects: 

i) if the velocity is independent of the surface, we have to  resolve the PDE: 

ax 
- + v .  vx = 0 ,  
at 

(23.14) 

where x represents the characteristic function of one of the problem phases. 
This is usually solved by Volume of Fluids methods [Hirt-Nichols, 19811. 

ii) if v depends on the surface geometry and if the domain n ( t )  evolves in time 
at a speed v ( t , z ) ,  for instance v = (a - PH)n  (with n the normal to  the 
surface and H the mean curvature), then q5(t,z(t)) = 0 ,  Vz E a(R(t)) .  
Using the derivation rule will lead to the equation: 
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and as we can write: 

we finally obtain an Eikonal equation posed in Rn: 

Levelset equation. In our problem, function 4 is used 

(23.15) 

(23.16) 

both for representing 
the interface and to govern the evolution of the interface in time. From a practical 
point of view, the evolution of function 4 is gouverned by the following convection 
equation: 

- 84 + v. vqh = 0 ,  (23.17) 
at 

the velocity field v can be prescribed in several ways. For instance, if 4(x) = 0 
represents the isosurface between two fluids, the speed of the interface is computed 
using Navier-Stokes equations (see below). 

As n and Vq5 are colinear vectors then T .  V4 = 0 for all tangent vectors T .  In 
two dimensions, v = v, n + vt T ,  the equation qht + (v, n + vt T )  . Vq5 = 0 gives: 

$t+v,n.Vqh=O. 

From Equation (23.15), we obtain the characteristic equation of levelsets: 

(23.18) 

Equation (23.16) is a Hamilton-Jacobi equation posed in all Rn. From the 
mathematical point of view, viscosity solutions have been proposed to this problem 
by [Crandall-Lions, 19841 to  find a physically meaningful1 solution to this problem. 
From the numerical point of view, this equation can be solved on unstructured 
meshes using high-order weighted schemes as suggested by [Abgrall, 20041. One 
important point is to control the discretization of the interface and the mesh 
density in the vicinity of the interface. 

Control of the geometric approximat ion 

It is possible to control the construction of an accurate piecewise linear approxi- 
mation r h  of the isocurve (isosurface) r describing an interface. In practice, in two 
dimensions, this control consists of defining a discrete anisotropic metric tensor 
field based on the intrinsic properties of the interface [Ducrot, Frey 20071. To this 
end, the Hessian matrix of 4 is decomposed as follows: 

R ( A: ) Rt with R = (Vq5 04') 

with 
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where K is the local curvature of the interface, 6 1  = minr K and 6 2  = maxr K .  The 
metric tensor is then defined as follows: 

From a practical point of view, the metric is defined at the vertices of a mesh of the 
domain. More precisely, it is prescribed at the vertices of the elements intersected 
by the isoline q5 = 0 and a matrix XI,, X E EX+ is prescribed at any other vertex of 
the mesh. This is sufficient to  ensure that Vx E r h :  

Mesh adaptation is based on iterative local modifications (see Chapters 16 and 18) 
in order to generate a unit mesh with respect to this Riemannian metric. 

Figure 23.13: Anisotropic control of a mesh in the vicinity of a time evolving 
interface (reprinted from [Ducrot, Frey 20071). 

Figure 23.13 shows an example of an anisotropic mesh in the vicinity of an 
interface defined by the parametrized curve defined on fd = [0,1] x [0,1] by: 

x(t) = 0.5 + ~ 0 ~ ( t ) ( 0 . 2 7  + 0 .18~0~(6 t ) )  
y(t) = 0.5 + sin(t)(0.27 + 0.18cos(6t)) 

' 
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The resulting mesh has a mesh size of the order of lop3 and contains 11,916 
vertices. The L ,  norm of the error between the curve and its discetization is 
1.7 A regular constant size mesh 
for this accuracy would contain about lo6 vertices. 

for a theoretical gap smaller than 5 

A similar control is possible in three dimensions as emphasized in Figure 23.14. 
Here, an anisotropic mesh has been generated near an interface corresponding to  
the following surface C defined on R = 

where 6 E [O; 2x1 and q5 E [--. -1. 7 r 7 r  

2 '  2 

- 
[-1; lI3 by T = cos(68) cos(3qh) cos(6$), 

Figure 23.14: Anisotropic control of interface approximation. Left: cut 
tetrahedral meshes, right: corresponding levelset isosurfaces. 

A toy model for bifluid flows 

through 

As mentioned, the levelset method has been successfully applied to fluid dynamics 
simulations. As an example, we consider the following model based upon the 
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levelset method for incompressible flows described by the Navier-Stokes equations: 

p ($ + u . V u )  = -Vp+ V .  (p(Vu + Vut))  + pg  V ( t ,  x) E E%+ x R (23.20) 

v .  11 = 0 V ( t , x )  E E%+ x a (23.21) 

a4 
- + u . v4 = 0 V ( t ,  x) E E%+ x R at 

(23.22) 

where is the computational domain, the density p is assumed constant and p 
is the variable viscosity. Dirichlet (u = ug)  or Neumann (CT . n = S N ,  where the 
stress tensor CT corresponds to  p(Vu + Vtu)  - p l )  boundary conditions and the 
following boundary conditions on the velocity u close the system: 

(23.23) 

where the right-hand side term y K n corresponds to a surface tension force involv- 
ing the local curvature n of the interface. The interface r is advected by the flow 
field u(x, t )  and, hence, changes in time. 

The discretization of this problem shall account for the inf-sup condition and 
involves Lagrange P1 elements for the pressure p and augmented P1 elements for 
the velocity u. In this problem, the mass is assumed constant in each subdomain: 

In practice, the characteristic function x is replaced by a more regular function 4 
such as the distance function to  interface r. The resulting equation can then be 
solved using a method of characteristics [Pironneau-19881. 

Figure 23.15 shows an example of a circular bubble of viscous fluid A is im- 
mersed in a less viscous fluid B. In this sequence, the time stepping has been split 
between the computation of the velocity field and the subsequent advection of the 
interface represented by a levelset function 4. Initially, the velocity is zero u = 0 
at  time t = 0. The simulation has been run up to time t = 2, where the bubble 
has moved more than a diameter and the mesh (the interface) has been largely 
deformed. The sequence shows the adapted meshes at  iteration 1, 5, 10 and 20, 
for a time step dt = 0.1. The adaptation was based on a geometric error estimate 
related to  the local curvature of the interface as well as to the interpolation error 
on the velocity field. 
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Figure 23.15: A sequence of meshes adapted t o  the crvature of the interface in the 
Stokes  problem. 

The methods presented within this chapter do not claim to be exhaustive. 
However, most of the techniques employed to  handle large changes or deformations 
in meshes can be attached to  one of the previous categories. As it appears, mesh 
deformation is a hot topic, boosted by applications such as medical simulations 
(e.g. blood flows), chemical reaction simulations (where various species interact 
together), nuclear reactions (requiring a high level of accuracy), etc. Undoubtedly, 
this will be an active area of research for the next decade, possibly leading to the 
emergence of new meshing techniques. 



Chapter 24 

Parallel Computing and Meshing Issues 

Parallel computing is a key issue for various categories of numerical problems. In 
practice, a numerical simulation may require a very fine mesh (i.e., one containing 
a large number of elements) and/or may be costly in terms of CPU time (when the 
computation is done in a serial way). Parallel computing' is an efficient solution 
for large size problems (i.e., with a large number of unknowns) that are impossible 
to carry out using classical facilities due to  size requirements and/or CPU cost. 
In fact, parallelism consists of spreading (distributing) the computational effort 
and/or the memory requirements over the different computers available. 

The notion of a parallel computing process can be conceived at various levels 
but, here, we will mainly focus on two of these levels. Obviously, the computational 
stage is concerned with parallelism. In such cases, a preliminary stage consists of 
partitioning the domain by means of sub-domains prior to  dispatching these to  
different processors (each of them taking charge of one sub-domain). On the other 
hand, it could be of interest to  see what degree of parallelism could be required at 
the mesh generation step itself. 

At the solution step, a domain decomposition method requires a partition of 
the domain into several sub-domains. In these, the mesh that must be constructed 
must have certain properties. The solution method makes use of communication 
processes from one sub-domain to  the others. At the meshing step, a parallel com- 
putational process consists of partitioning the domain into different sub-meshes in 
order to  distribute the computation effort over several processors, each of them 
being responsible for computing the solution for one sub-domain. The global solu- 
tion is then achieved, when all the sub-solutions have been completed, by merging 
all of these partial solutions. 

Constructing a suitable domain partition, as well as constructing each of the 
corresponding sub-meshes, can be achieved in many different ways. These ap- 
proaches can be broadly classified into two categories. Either a posteriori or a 
priori partitioning methods can be considered. A posteriori processing starts from 
a mesh of the entire domain while a priori processing uses the domain itself and 

'For the sake of clarity, we are concerned here with a multi-processor architecture using a 
distributed memory system. 

Mesh Generation : Application to Finite Elenzents 
Pascal Jean Frcy & Paul-Louis Gcorgc 

Copyright 0 2008, ISTE Ltd. 
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not a mesh of it. Note that a posteriori methods have received considerable at- 
tention and are widely used in practice whereas a priori methods are still a field 
of intensive research (particularly in order to  automate the partitioning process). 

When concerned with the mesh construction aspect, it is not easy to  decide 
where precisely the parallel aspect should be included. In particular, a question 
could be: is it necessary to include parallel concepts in the mesh generation method 
or should the construction method remain serial and used in parallel? The fol- 
lowing remark may throw some light on this. There are a t  present various mesh 
generation methods which are reliable, fast and able to  complete several million 
elements within only a few minutes. Therefore, it might be thought that construct- 
ing2 several million or a hundred million elements can be done in an indirect way 
by using a classical method (for constructing, say, one million elements) included in 
a parallel process. In other words, the global generation process is parallel but the 
construction method remains serial. This leads to distributing the computational 
effort over different processors and, this being done, sequentially considering one 
distinct task in one processor. Thus, following this approach, the parallel aspect 
acts at the global meshing level and not at the mesh generation method level. 

Nevertheless, there have been a number of papers on parallel mesh generation 
methods. The aim here is to  construct the mesh in parallel, usually using a classical 
meshing method which has been modified in order to  incorporate some degree of 
parallelism. Despite the above remark, it should be noted that although this type 
of approach is possible, its interest seems more theoretical or academic. 

* * *  
This chapter is subdivided into three parts. It successively discusses the differ- 

ent issues mentioned in the above introduction. Hence, a t  first, we recall the main 
domain partitioning methods. Several a posteriori methods are presented and then 
some a priori methods are described. We then turn to a parallel meshing process 
and, in particular, we discuss how to conceive a parallel loop of computation. To 
end, we give some indications about the possibility of mesh generation method 
parallelization. 

24.1 Partition of a domain 

Constructing a partition of a given domain consists of subdividing it into several 
disjoint sub-domains whose union forms a covering-up of the entire domain. In 
fact, we are not so much concerned with the domain or the above sub-domains but 
more with the meshes of these domains. First, we give some general indications 
about the question under investigation, then we discuss the different partitioning 
methods in greater detail. 

21f this is strictly necessary. In fact, the concern is not necessarily to construct a “large” mesh 
but more probably to have such a mesh available. 
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Overview of partitioning methods 

Partitioning or mesh splitting methods fall into two categories. A posteriori meth- 
ods split a fine mesh (i.e., a large size mesh) into sub-meshes of a reduced size, 
and a priori methods construct the meshes related to sub-domains that are di- 
rectly obtained (i.e., without having to  construct a global fine mesh, but directly 
using the domain geometry or even a rather coarse mesh, which is easy and fast 
to complete and requires little memory). 

A posteriori partitioning. In such approaches, we are given a mesh of the 
entire domain and the partition method involves splitting this mesh into sub- 
meshes which define the partition. Several types of methods allow such a task. 
For details, the reader is referred to  the ad-hoc literature (see [Simon-19911 or 
[Farhat, Lesoinne-19931, among many others) and, in what follows, we simply 
outline some of these methods. 

It is obvious that the weak point in such a direct way of addressing the prob- 
lem is the problem of memory requirement. In fact, the required memory size 
is about the sum of the resources needed to store the complete mesh plus the 
resources required to store at least one of the sub-meshes. Moreover, classical 
problems inherent to the partition process must be considered (as they will be 
present whatever the chosen method). Among these, we find: 

a the issue of regularity or smoothness. This mainly concerns the shape of 
the sub-meshes and thus includes the shape of the sub-mesh interfaces. A 
certain degree of smoothness is indeed required to guarantee a relative nu- 
merical accuracy (convergence) for the partial solutions with regard to the 
global solution. Indeed, some methods, such those using the Schur comple- 
ment, lead to the solution of local problems coupled with a problem at the 
interface level. These methods require well conditioned local problems in 
order to guarantee the proper global convergence. Connexity or not of the 
sub-domains is therefore an important factor for this local convergence, 

a the question of interface size. The size of the interface between two sub- 
domains directly influences the amount of data that must be exchanged and 
thus on the degree of saturation (bottleneck) in the network used to  carry 
these messages. This size also affects the number of potentially redundant 
operations, 

concern about the number of connections from sub-domain to  sub-domain, 

a concern of balancing between the sub-meshes. The size of these meshes must 
be distributed in such a way as to  balance the effort of each processor a t  the 
solution step, 

a concern about the interface sizes (the number of nodes on these interfaces), 
etc. 
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Also, we do not consider the memory resources necessary to  construct the initial 
mesh and those needed to  store it (not to mention the CPU time required in the 
i/o). 

Different classes of partition method are encountered. Among these, some are 
based on graph partitions and some are purely geometric methods directly based 
on mesh partitions. All these methods apply to finite element type meshes since a 
vicinity graph can be constructed based on the connections between the elements 
in a given mesh. 

Before presenting some of the most frequently used algorithms, it is useful to  
consider the type of entities (vertices (nodes) or elements) on which the decompo- 
sition is applied. This point is of importance since it is related to the numerical 
software or the solution method that will use this decomposition. This choice may 
also have some effect on the splitting algorithms. Nevertheless, we do not go into 
more detail about the positive features or the weaknesses of these two approaches. 

0 Element based decomposition 

This is the most frequent case. The mesh is partitioned by distributing the 
elements among the sub-domains. In other words, one element is logically associ- 
ated with one and only one sub-domain. An example of such a decomposition can 
be seen in Figure 24.1, left-hand side. This partition has an interface consisting of 
vertices (nodes), edges and faces. 

0 Node based decomposition 

In this case, the mesh is partitioned by distributing its vertices among the 
sub-domains. In other words, one vertex is logically associated with one and only 
one sub-domain. An example of such a decomposition is shown in Figure 24.1, 
right-hand side. This partition has an interface consisting now of elements (nodes, 
faces and segments), which are shared by the sub-domains while maintaining the 
initial connections. 

Before describing these methods in greater detail, it may be noticed that this 
approach is probably the worst way to  go about mesh parallelism. Indeed, for a 
large-scale problem, the construction of an initial mesh of the entire domain3 may 
even be impossible. Nevertheless, this type of method, when suitable, gives nice 
results and is probably the most pragmatic (in fact, simply the only possible) way 
to address the parallel problem. To conclude, note that the creation of the initial 
mesh does not take benefit from the assumed advantages of parallelism. 

A priori partitioning. To avoid this memory requirement problem, it is natural 
to examine the a pr ior i  approaches, when they exist and can actually be imple- 
mented. In this case, it is not necessary to construct a large mesh, thus limiting the 

31n earlier experiences (say at the turn of the century), we were limited to 10 million tets 
constructed by a Delaunay-type method, mainly due to the memory resources available in a 
classical workstation. Right now, this limit is not clearly different and no significative change is 
expected leading to favor a priori  methods where the limit applies, in principle, to each processor 
(e.g. one at a time). 
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Figure 24.1: Element based decomposition (EOD, element oriented decomposition), 
left-hand side and node based decomposition (VOD, vertex oriented decomposition), 
right-hand side. 

amount of memory available and, moreover, the parallel aspect directly appears 
in the construction, thus avoiding the main weakness of the previous methods. 

Thus, we first create a partition of the domain. This step may start from 
a reasonable mesh (i.e., a relatively coarse mesh) of the entire domain. Several 
sub-domains are then identified and meshed, each on one processor. As such, 
parallelism plays a part from the mesh generation step. Another strategy consists 
of extracting the various sub-domains (their boundaries) starting from a mesh of 
the boundary (the surface) of the entire domain. The same method then applies. 

Actually, the balancing between the sub-domains together with the smoothness 
of the interfaces may be considered by using the information now available (the 
coarse mesh in the first case or the surface mesh in the other approach). 

In the first strategy, there are two ways of obtaining a coarse mesh: either 
an empty mesh (i.e., without any internal vertices) as defined in a Delaunay- 
based method (Chapter 7) or a mesh with a limited number of internal vertices 
constructed by one or other of the possible methods. 

In the second strategy, the meshes are constructed using the meshes of the 
surfaces that constitute the interfaces between the sub-domains extracted from 
the given boundary mesh. 

Interface regularity. Whatever the approach, interfaces are created and some 
degree of regularity or smoothness is expected. We saw that smooth interfaces 
avoid artefacts or indesirable behaviors in the further processing. Using local 
optimization tools as seen in Chapters 18 and 19. In the case of a purely internal 
interface, its geometry is not a constraint and its entities (vertices, edges, faces) can 
be freely modified (for instance, using swaps, point relocations, etc.). Conversely, 
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a part of an interface member of a boundary must consider geometric constraints 
when applying any type of modification tool. 

A posteriori partitioning 

In this section, we describe some a posteriori  partitioning methods. Specifically, 
there are four types of methods and some approaches based on the combination, 
to some degree, of two or more of these methods. 

Greedy method. This approach makes use of a graph partition algorithm and 
is both very simple and quite intuitive. Its principle is similar to those of the 
node renumbering methods developed to limit the bandwidth of a finite element 
matrix (such as the Cuthill-McKee [Cuthill, McKee-19691 method, for instance, 
Chapter 17). 

Given a neighborhood graph G, a starting entity nl ,  a number of expected 
sub-domains ndsd together with a targeted distribution (the number of expected 
entities in each sub-domain), the algorithm takes the following form: 

s e t  t h e  parent e n t i t y  t o  nl ,  
WHILE t h e  number of sub-domain i s  l e s s  than n d s d ,  DO 

(A) i n i t i a l i z e  t h e  f r o n t  l i n e  t o  be one element, t h e  parent e n t i t y  
FOR ALL e n t i t i e s  i n  t h e  cur ren t  f r o n t  l i n e  

FOR ALL neighbors of t h e  e n t i t y  
I f  t h e  e n t i t y  has not been previously marked, THEN 

put it i n t o  t h e  cur ren t  sub-domain 
add it t o  t h e  l ist  of t h e  e n t i t i e s  i n  t h e  new f r o n t  l i n e  
under construction 
increment t h e  number 

END IF  
END FOR 

END FOR 
I f  no e n t i t y  i s  detected 

search f o r  a new parent 
go t o  (A) 

IF t h e  sub-domain i s  t h e  las t ,  END 
ELSE 

IF t h e  ta rge ted  number i s  t h a t  of t h e  sub-domain 

construct a new number 1 
re tu rn  t o  WHILE 

END IF  
t h e  cur ren t  l i n e  i s  t h e  thus-constructed l i n e  
r e tu rn  t o  FOR ALL 

END WHILE 

This algorithm is very fast but its main drawback is the generation of non- 
connected sub-domains. Various variations exist, for instance, based on a recursive 
bisection, with adequate parents. This algorithm may also serve to construct a 
pre-partition used at  a later time as the entry point of another partitioning method. 
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Partition by a spectral method. This graph partition method, described 
for example in [Simon-19911, [Gervasio et al. 19971 or in [Natarajan-19971 also 
referred to  as the Recursive Spectral Bisection (RSB) is based on the properties of 
the eigenvalues and eigenvectors of a positive definite symmetric matrix. 

For instance, let us consider the Laplace matrix associated with the graph dual 
of the mesh; then the matrix coefficients ai,j are defined as: 

-1 if (ni,nj) are connected 
ai . = deg(n i )  if i = j 

' j  { 0 otherwise 

This matrix is useful when computing a separator between the nodes, as explained 
in [Donath, Hoffman-19721, [Donath-19731 or [Pothen et al. 19901. We can prove 
that the eigenvector related to the second smaller eigenvalue of A (the so-called 
Fielder vector [Fielder-19751) corresponds to minimizing a constraint about the 
number of connections. 

If the vector components are partitioned in increasing order and if the graph 
is partitioned in this order, two sub-graphs with a close size are obtained in which 
the number of connections from one to  the other is minimal. The corresponding 
algorithm may be written as follows: 

j = 1  
WHILE the number of sub-domains j is less than the target 

construct the Laplace matrix of the dual graph 
compute the second smallest eigenvalue and the corresponding 
eigenvector (the Fielder vector) 
sort the graph according to the components of the Fielder vector 
distribute the entities between the two graphs 
j = 2 j  

END WHILE 

This method is time-consuming. Indeed, it requires the solution of numer- 
ous eigenvalue problem for sparse matrices. Iterative methods are generally cho- 
sen as being better adapted to such problems (for instance, the Lanczos method 
[Cullum, Willoughby-19851, [Chatelin- 19931). 

Nevertheless, this algorithm has two drawbacks related to  memory require- 
ments and the necessary CPU cost. A number of variations can be developed, for 
instance, based on a multi-level approach, which allows an improvement in costs. 

Recursive partition using the inertia axis. The approach for partitioning 
is here related to  the domain geometry. It is based on an analogy of the initial 
mesh with a mechanical system consisting of discrete points (i.e., the vertices) with 
which mass is associated. This mechanical device has various inertia components 
including a main component that corresponds to  minimizing the rotation energies. 

Intuitively, the main component gives the axis along which the set is the thick- 
est. This idea, as applied in a partitioning problem, simply leads to  trying to  
split the set of entities into two parts along this axis. Indeed, this is the place 
where the interface will be minimal. This algorithm is more efficient if the mesh 
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is homogenous (in terms of element sizes) (and, a contrario, is less efficient when 
there is large variation in these sizes). 

Computing the main inertia component involves finding the eigenvector associ- 
ated with the largest eigenvalue of matrix Z = tU where A has as its coefficients 
the ai,js4 by: 

with xj (a) the coordinate of index j of the node of index a and gj the j-coordinate 
of the centroid G defined by: 

ai,j = Xj(i) - 9 ’  3 ,  

1 
gj  = ; c Xj(i), 

l=l ,n  

n being the number of entities under consideration (the nodes, for instance). Then 
Z is a d x d matrix where d is the spatial dimension. This matrix, in three 
dimensions. takes the form: 

(24.1) 

4T0 establish what the coefficients are, we turn to a minimization problem. If X(i) stands 
for vector P( i )  - G, where G is the centroid of the P(i)s  and if V is an unknown unity vector, 
we consider the problem of minimizing the square of the distances between the P(i)s  and G to 
a line segment aligned with V passing through G. This corresponds to the following problem: 

under the constraint: 

The solution corresponds to the case where the gradients of these two expressions are aligned. 
Then, we look for a coefficient A such that: 

( V , V ) - l = O .  

C X ( i )  (X(i), V) = xv 
2 

In terms of the coordinates x j ( i ) s  of the X(i)s and wjs of V, this leads to: 
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with: 

ZXj,Xk = c (4) - S j )  ( Z k ( 4  - g k )  7 

2 

thus, in particular, we have as diagonal coefficients: 

Zx, ,zj = c (Zj (2)  - g j ) 2  
2 

In three dimensions, the problem reduces to computing the largest eigenvalue 
of a 3 x 3 matrix and then computing the corresponding eigenvector. This task 
is easy for instance, by means of the power method. The partitioning algorithm 
then takes the form: 

set j = 1  (initialization of the number of members in the partition) 
WHILE j is less than the target 

FOR i = l , j  where i denotes a sub-domain 
compute the centroid G of sub-domain a 
compute the main inertia component of sub-domain i. 
(This involves computing Z for the entities in i and then 
picking the largest eigenvalue and eigenvector) 
project the entities in i following this eigenvector 
sort the projected entities 
partition into two the sub-domain i according to the 
sorted projected entities 

END FOR 2 

j = 2 j  
END WHILE 

This algorithm can be easily adapted to  obtain an arbitrary number of sub- 
domains. To do so, it is sufficient to  modify the way in which the partition into 
two sub-domains is made by partitioning not in a homogenous way but following 
a distribution which is proportional to  the number of sub-domains expected when 
dealing with the current sub-domain, on one side or the other of the partition. 

Remark about the inertia matrix. The above method makes use of the ma- 
trix defined in Relationship (24.1) which is not the inertia matrix widely used in 
mechanical engineering. The latter is written as follows: 

Z X l X ,  ZXlX, ZXIX, 

Z =  ZX,X, Zx,x, Zx,x3 (24.2) 
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with obvious notations about the indices j + 1 and j + 2, for a given j. 
Clearly, in two dimensions, the eigen-elements of matrices (24.1) and (24.2) are 

the same. The same is true in three dimensions (or for higher dimensions). To be 
certain of this, just note that the sum of these two matrices (in three dimensions) 
is: 

in other words a diagonal matrix. A simple examination of the eigen elements of 
the two matrices (while using this relationship) allows for the proof. 

K-means method. Initially developed in a different context (classification prob- 
lems, [Celeux et al. 1989]), the aim is still the same, we try to  balance in a certain 
number of classes the entities in a given set, here a mesh. 

Let us consider S a cloud of points (the mesh points, in a vertex based algorithm 
or the element centroids, in an element based algorithm). An outline of the K- 
means method is as follows: 

choosing, using one method or another (random choice, inertia axis, octree 
type structure, etc.), k seeds (or kernels) where k is the number of classes to  
be constructed, 

(A) - associating the points in S with a seed based on a given criterion (for 
instance, a proximity criterion). This points-seeds relationship then defines 
k classes, 

computing, for every class, a new seed (for example, its centroid), then 
returning to (A). 

The interesting feature in this method is, after some adequate assumptions, 
its convergence. Indeed, it builds a set of k stable classes. In addition, these 
classes satisfy (maximize) a criterion meaning that the classes and their seeds are 
in adequation and that the classes are well aggregated and well separated from 
one another. 

Convergence results from observing that a series associated with the process 
is a decreasing series and thus the algorithm implies that a criterion decreases at 
each step until stability which, in turn, ensures that the solution is completed. 

A few examples of partitioning output. We now give (Figures 24.2 to 24.5) 
some application examples resulting from the above methods. More precisely, 
Figure 24.2(i-iv) shows the partitioning of two dimensional domains as obtained 
by a greedy method with VOD or EOD choices. 

Figure 24.3 depicts two partitions of a domain, in two dimensions, using Recur- 
sive Spectral Bisection methods, one vertex based (VOD), the other element based 
(EOD). We can see in this example that the (greedy) bisection method produces 
a fairly similar result. 
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Figure 24.4 (i-iv) shows, for the same case, some partitions into two, four and 
eight sub-domains as completed by an inertia axis method. 

iii) iv) 

Figure 24.2: Part i t ion of a sub-domain in two dimensions using a VOD greedy 
method into,  respectively, two a),  f o u r  ii) and eight i i i )  sub-domains. Part i t ion by 
a multigrid-greedy EOD method iv). 

The case of a three-dimensional domain is then depicted in Figure 24.5. The 
domain has been split into eight sub-domains using a VOD spectral method and 
an inertia axis EOD method. 

A priori part it ioning. 

In what follows we discuss two particular a priori partitioning methods. After- 
wards, some remarks about other methods will be given. 

Method 1. In this approach the entry point is a relatively (or a really) coarse 
mesh of the entire domain. The technique may be classified as an a priori method 
in the sense that it is not necessary to mesh the domain with the fine mesh that 
will be the support of the envisaged computation in order to  define the partition. 

The coarse mesh, the basis of the partition, may be easily obtained using a 
Delaunay type method (Chapter 7), based on the discretization of the boundary 
of the entire domain. The meshing process is then stopped when the domain 
is covered, i.e., once the boundary points have been inserted and the boundary 
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Figure 24.3: Partition of a sub-domain into eight sub-domains, using a V O D  RSB 
type method (left-hand side) and a EOD RSB method (right-hand side). 

iii) iv) 

Figure 24.4: Partition of a sub-domain by  an inertia axis method ( in  the V O D  
case) into two i) ,  four iii) and eight i i )  sub-domains and in the EOD case in the 
case where four sub-domains are desired, iv). 



PARALLEL COMPUTING AND MESHING ISSUES 787 

Figure 24.5: Partition into eight sub-domains by a Recursive Spectral Bisection 
VOD type method (left-hand side) and by a n  inertia axis EOD method (right-hand 
side) (data courtesy of Renault). 

integrity step has been completed. In other words, no (or a few) internal vertices 
exist inside the domain. 

We use a splitting algorithm based on this mesh, for instance, by a greedy 
type method (see above). This results in a partition of the domain into several 
sub-domains. However, it is tedious to balance this partition. In particular, two 
questions must be carefully addressed that concern the well-balancing aspect and, 
on the other hand, the shape and the smoothness of the interfaces. 

A simple idea to  obtain a nice balancing (say an equidistribution of the ele- 
ments) is to introduce a weight to the vertices such as the average of the volumes 
(surfaces in two dimensions) of the elements sharing these vertices. In this way, 
we implicitly assume that the number of elements in the final mesh is proportional 
to the size of the initial elements. This choice is a reasonable idea when a uniform 
density is expected, but less reasonable in other situations. Thus, in such cases, 
it is necessary to  adjust the weights with information of a metric nature. In other 
words, two initial elements of identical size do not necessarily lead to the same 
number of elements after meshing. 

For a domain in two dimensions, the interface between sub-domains is basically 
formed by line segments which separate the domain from one side to the other. 
In three dimensions, the interfaces are composed of a series of triangular facets 
and the angles between two such facets may be arbitrary: thus, the geometry is 
likely to  be badly-shaped (disturbed), resulting in a rather peculiar aspect at the 
interface levels. 

Then, the method includes the following: 

a interface meshing, 

a sub-domain definitions and balancing these over the different processors, 

a serial meshing for each sub-domain (one sub-domain in one processor). 

Relationships between the different meshes are established at the end of the process 
in order to allow the transfer of data a t  a later stage. 

Method 2. Following this approach, a mesh of the domain is not required and 
only a mesh of the domain boundary is used. The idea is then to directly build 
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one or several separators (lines or curves, planes or surfaces) so as to define several 
sub-domains based on these boundaries. 

The method primarily proposed by [Galtier, George-19961, [Galtier-19971 is 
based on the inductive Delaunay triangulation notion (termed projective Delaunay 
triangulation in the above references). To introduce this notion, let us recall that: 

v, = { P  such that d(P, Pi) 5 d(P, Pj), V j  # i }  

allows us to define the Voronoi' cell associated with point Pi, a member of a given 
cloud of points (Chapter 7). The dual of these cells (which constitute the so-called 
Voronoi diagram) is the Delaunay triangulation of the convex hull of the points in 
the cloud. This triangulation satisfies the empty ball criterion. 

By analogy, we now consider a plane II and we define the set: 

V,'") = { P  E II such that d(P, Pi) 5 d(P, Pj), V j  # i } ,  (24.3) 

which is a polygon in R3. The dual of the different cells defined in this way is a 
set of triangular facets in R3 obtained by joining the points whose cells share a 
common edge. This set of facets (triangles) satisfies a criterion similar to that of 
the empty ball, referred to as the inductive criterion hereafter. This set of facets 
is denoted by 3". 

Figure 24.6: The inductive empty ball criterion. The ball centered in the plane II 
passing through the three vertices of facet Pi Pj Pr, is empty. 

In [Galtier-19971 it is proved that the facets constructed in this way form a 
separator in the domain (here, the convex hull of the cloud). Thanks to this 
result, it is possible to split this particular domain into two parts. The principle 
of this partitioning is to use this idea and to apply it to a domain in R3 (and not 
only to the convex hull of a set of points). 

The proof is based on some assumptions that simplify the problem (for instance, 
about the point positions). First, we show that the set of facets 3n is a planar 
graph. Then, we notice that a triangle PiPjPk is a facet in 3n if and only if the 
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three Voronoi' cells, after Definition (24.3), are not empty and share a vertex. We 
then establish that these faces are Delaunay-admissible (following the definition 
in Chapter 9) and therefore will be formed in every Delaunay triangulation. We 
deduce in addition that the facets in .Fn define a separator in the convex hull of 
the domain. 

The principle of the partitioning method is then to  apply these issues to  an 
arbitrary domain in R3 (and not only in a convex hull problem) and, in particular, 
to remove the above assumptions, which were made for the sake of simplification 
(the points are now assumed to  be in an arbitrary position and not in a general 
position). The main steps of the splitting method are as follows (in the case where 
the separator entity is constructed from a plane): 

0 a polygonal line (a set of edges among the triangle edges in the mesh of 
the domain surface) is found such that this set of segments is Delaunay 
admissible for the inductive empty ball criterion, 

0 the points on this line are inserted using a Delaunay-type algorithm, thus 
providing a mesh of a surface whose boundary is this line. 

In this way, an initial mesh of a surface that separates the domain into two parts 
is obtained. Then: 

0 some points are created on this surface (for instance, as in Chapter 7, by 
using the edges as a spatial support), 

0 these points are inserted. 

On completion, we have a mesh of the separator surface. Thus, it is possible 
to define two sub-domains (through their boundary meshes) whose boundaries are 
composed of the union of the separator mesh with the adequate parts of the surface 
mesh of the entire domain. 

By repeating this process, it is possible, step by step, to cut the initial domain 
into several sub-domains. As the interface between two sub-domains is defined in 
a unique way, a classical mesh construction algorithm (i.e., such that boundary 
integrity is maintained) can be suitably applied in each sub-domain5. 

Notice, and here is our concern, that the serial mesher is used in parallel 
meaning that the global meshing effort has been distributed over several processors 
(one per sub-domain). 

A few remarks may be given. In specific, questions arise about the way in 
which plane II mentioned above must be chosen and, this being done (a separator 
surface being available), about how to discretize this surface so as to obtain a 
mesh whose density reflects the desired element sizes. The recurrent problem of 
well-balancing the task must also be addressed. 

Regarding this last question, notice that if it is possible to  evaluate, even in 
a rough way, the volume of the sub-domains (with regard to  the density of the 
points in their boundaries, which is the only data available a t  this time), then it 

'Thus, due to the required properties, it seems natural to use a Delaunay-type meshing 
method. 
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is possible to predict the number of elements (its order of magnitude) that will 
be constructed within each sub-domain. For more details about this method, we 
refer the reader to  the already-mentioned references. 

Other methods. Multi-block type methods (Chapter 4) as well as methods 
based on a space decomposition (Chapter 5) are also essentially decomposition 
methods. Other methods can also be considered, for example, at the level of the 
CAD system (thus, before any meshing concerns). 

The most favorable and automated method is most probably the quadtree- 
octree type method which is based on a recursive decomposition of a box enclosing 
the domain of interest. The decomposition here is directly connected with the 
underlying tree structure. 

This approach will be discussed below, seen as a parallel meshing method, in 
the sense where the same principle applies even if some modifications are made. 

24.2 Parallel meshing process 

Throughout this section, we will consider two cases. First, we are concerned with 
the design of a static process of parallel meshing, i.e., used once, then, we will see 
the case of a computation loop. The computational process is then a dynamic task 
where at each iteration step of the loop, the issue of parallelism must be examined. 

One-step process 

The load balancing between the members in the partition must be ensured at the 
beginning (i.e., when constructing the partition) or, this having been constructed 
as well as possible, before using the resulting meshes (i.e., before any actual compu- 
tation). Thus, we can distinguish between two types of load balancing approaches, 
a priori load balancing and a posteriori load balancing. 

A priori  load balancing. When the processors used at a later stage for the 
computation have comparable speed-up, the effort balancing can be done a pri-  
or i  by distributing identical numbers of vertices (elements) to  each processor. In 
contrast, when the speed-up varies (from processor to  processor) or when some 
processors are busy with other tasks, an equidistribution is not the optimal solu- 
tion. It is then necessary to  re-balance the loads during the computation. 

As a general rule, such a load balancing is tedious to  obtain. To realize this, it 
is only necessary to keep in mind the different partitioning approaches previously 
discussed. Hence, for example, the key idea to ensure a good load balancing is to  
introduce some weights during the partitioning stage. This idea implicitly assumes 
that the number of elements in the final mesh is proportional to  the size of the 
initial mesh. When the element density is not uniform (which, in practice, is 
frequent), such an assumption is obviously wrong. Then, the weights have to  be 
adjusted to  take into account metric specifications, which makes the load balancing 
stage more delicate. 
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A posteriori load balancing. The load balancing per processor is basically 
obtained by migration. The migration step consists of moving one element or a 
set of elements from one processor to another (or to several processors), if the load 
from one processor to the others is rather different [Coupez-19961. Moreover, the 
migration step may serve some other purposes such as obtaining a nice smoothness 
at the sub-domain interfaces and can also be used as a way to deal with non- 
connected sub-domains. 

The goal of the partitioning algorithms is to minimize data exchange between 
the processors and to balance the computational effort in each processor. The data 
migration actually consists of collecting and updating the links between the mesh 
entities and the processors when some entities are assigned to one (or several) 
different processors. This is generally done in three steps: 

a a source processor sends some data items to a target processor, 

a the source and target processors update the information related to the trans- 
ferred data items, 

a the source and target processors indicate this change to all the processors 
with access to the data items that are exchanged (see below). 

The efficiency of the migration procedure then greatly depends on the volume of 
the data items exchanged as well as on the data structure used in this task. 

Data structures. (Adaptive) mesh generation methods for unstructured mesh 
construction when used in distributed memory architecture require specific data 
structures suitable for efficiency queries and data item exchanges from processor 
to processor. In particular, information about adjacency relationships must be 
considered. 

At a given mesh entity level, it is necessary to know all the relationships (links) 
between this entity and the different processors. In principle, only a single proces- 
sor really possesses this entity but several other processors may have some links 
to it (thus, this information is not duplicated in each processor). The edges and 
faces of the sub-domain boundaries are then shared by several processors. 

It is clear that in the first step of the migration process the amount of data 
item exchange is proportional to the number of entities exchanged (thus, to n p  
the number of vertices). On the other hand, the two other steps depend on the 
number of entities in the sub-domain boundaries (thus, typically in O ( n p i ) ) .  

Parallel adapt at ion loop 

Here, load balancing is a dynamic task that must be adapted at each new iteration 
step (or, at least, when the sizes of the members in the partition become rather 
different). This load balancing is a fundamental issue since a physical problem 
with a solution that has a large variation may, during the iteration in an adaptive 
computational process, lead to a large variation in the number of elements in a 
given region (thus, in a given processor). However, in contrast to the previous 
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case, it is possible to collect some information from the current partition and the 
behavior of the solution related to it in order to deduce the next partition in the 
iterative process in progress. 

Without mentioning here the probabilist style methods, some algorithms may 
use a defect function that reflects the difference in the load balancing between 
neighboring elements [Lohner, Ramamurti-19931, in order to govern data exchanges 
between processors. We may also use some variations of the partitioning algo- 
rithms previously described that operate on distributed data. Typically, the par- 
titioning algorithms are either of a geometrical nature (inertia axis based method 
for instance) or of a topological nature (using the adjacency relationships of a tree 
structure; see below). 

24.3 Parallel meshing techniques 

First, it could be observed that the parallel aspect can be present a t  the input 
data level, the data being distributed between the processors, or a t  the level of the 
tasks (which are then distributed) or, again, in a combination of these two levels. 

Distributing the data (without task exchange) involves making the task in each 
processor independent of the others. Distributing the tasks leads to  sending some 
requests from processor to processor when dealing with an entity (located in one 
processor), and implies some processing from the proprietary processor, but also 
from some neighboring processors. 

Various classical techniques for mesh generation may be performed in parallel. 
Among these, the Delaunay method is a potentially interesting candidate. Indeed, 
this method widely uses a proximity criterion, namely the empty ball criterion. 
Given a set of points, we may consider separating these points into several disjoint 
sub-sets and thus make the point insertion procedure uncoupled. In other words, 
the mesh can be completed in parallel. 

In practice, this point separation could either be decided a priori, which is in 
general a tedious issue, or prescribed by means of a constraint about edges (resp. 
faces) in a coarse triangulation used as a separator. Once this separator has been 
defined, the problem turns to meshing with consistency the sub-domains identified 
in this way, while their interface (i.e., the separator) could be meshed: 

a before constructing the mesh of the sub-domains, 

a at the same time as the sub-domains, 

a after constructing the mesh of the sub-domains, 

which, in fact, leads to three classes of parallel meshing methods. 

Another class of methods for parallel use is based on the spatial decomposi- 
tion of a box enclosing the computational domain. Methods like quadtree-octree 
(Chapter 5) are then natural candidates since they make use of a hierarchical tree 
structure and thus could be used for domain partitioning purposes. 
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Are any other meshing methods candidates for parallelism ? The answer is not 
so trivial. In particular, it is of interest to  examine whether an advancing-front 
type method (Chapter 6) may include some degree of parallelism. 

Within this section, we give some indications about these various approaches 
and briefly examine their ability to  include some parallel aspect. 

Remark 24.1 Note that the concern here is to construct a mesh in parallel and 
not to define a parallel mesh construction or computational process. I n  the present 
context, the wish is to have a complete mesh available (after merging together the 
sub-meshes) while in the other case, it is  not strictly necessary (see the previous 
sections) or we do not want to have, at a given time, the complete mesh of the 
domain. 

~Delaunay-type method 

Let us recall that the key point of a Delaunay-style method is the point insertion 
process, the Delaunay kernel, as introduced in Chapter 7. This process is a local 
one in the sense that it involves the cavity of the point to be inserted. Depending on 
whether the elements in this cavity all belong to  the same processor or are common 
to two or more processors, it is easy to  imagine that the degree of parallelism could 
be different. Simply remark, in addition, that finding this locality could be a non- 
trivial problem (or, at least, a time consuming task). 

Various ways to implement the Delaunay kernel have been proposed based on 
the various possible configurations (in this respect, see [Okusanya, Peraire-19961, 
[Chrisochoides, Sukupp-19961 or [Chew et al. 19971, for example). 

General principle. For the sake of simplicity, let us consider a domain R in 
two dimensions, provided through a discretization r ( R )  of its boundary. Using 
this sole data, an initial mesh is constructed by inserting, one at a time, the points 
in r(0), and then by enforcing the boundary entities that are missing, if any6. 

In this way, an empty mesh is obtained (i.e., without any internal points) whose 
internal edges join one domain side to another. We pick one of these edges, say 
AB, which separates R into two sub-domains, R1 and R2, of approximately the 
same size. Each of these two domains is then assigned to one processor. Now, let 
us look at  a condition to  ensure the independence of a point with respect to  the 
sub-domains: 

every point P inside R1 is independent of R2 if the cavity C p  is entirely 
included in R1: C p  c R1 and C p  @ Rz, 

on the other hand, if C p  n R2 # 0, point P depends on R1 and R2 and its 
insertion affects the mesh both in 01 and in 0 2 .  

Note that a (sufficient) condition for independence is that the circle of diameter 
AB is empty (Chapter 9). After this assumption, the mesh is carried out in parallel 
without any exchange of tasks. 

6Thus, the cme of a constrained Delaunay mesh (Chapter 7). 
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Meshing the separator. It is easy to see that, in general, the output completed 
using the previous algorithm will be rather poor because the constraint implies 
that there is no point in some vicinity of AB (i.e., its open ball) and only some 
post-processing may be able to  fill up this region (and thus to split AB).  

Using a constrained Delaunay algorithm by prescribing AB as a constraint 
leads to  the same issue and the global process remains “processor-independent” . 
The presence of points in some vicinity of AB necessarily gives a bad quality mesh 
and some post-processing is again required in order to  enhance this result (and, 
in particular, to  split AB).  

At last, a “classical” meshing is possible, while using data and task exchanges. 
This can be done in two ways. On the one hand, we maintain AB as a constraint 
but we may even split this segment (by means of point insertion) in such a way 
as to preserve the global quality of the mesh. In such a situation, the processor 
responsible for this point creation indicates this request to  the other processor in 
order to make the mesh construction synchronous at  the interface level (then a 
delay must be expected for the simultaneous updating of the two meshes because 
the interface must remain coherent). 

The other way to proceed is more tedious. Edge AB (or any interface edge) 
is no longer a constraint and may disappear. The interface is then modified dur- 
ing the processing which impedes the global process in terms of data and task 
organization. 

After this discussion about the principles, we may observe that there are only a 
few examples of implementations of these ideas in two dimensions, for architectures 
with a limited number of processors (actually, from 2 to  16). The extension of these 
approaches to three dimensions remains a relatively open problem. In particular, 
constraining a mesh (Chapter 7) is a tedious problem which, in practice, is widely 
based on heuristics. Moreover, identifying a separator is not obvious because even 
a face joining two “opposite” sides of the domain does not in general separate this 
domain into two parts. 

0 Quadtree-octree-type method 

Here two approaches will be discussed. The first, which is mainly of academic in- 
terest, assumes the tree structure to  be known and, using this information, simply 
seeks to  balance the terminal cells (the leaves) in the available processors. The 
second one, which is more interesting from a practical point of view, considers the 
tree structure construction in parallel. 

Distribution of the nodes in a given tree. For the sake of simplicity, we 
assume the tree to be balanced by means of the [2:1] rule (Chapter 5), thus every 
cell edge is shared by at most three cells, in two dimensions, while a cell facet 
is shared by five cells a t  most in three dimensions. Following on from this, the 
natural link between the number of terminal cells and the number of elements in 
the resulting mesh7 could be observed. 

71n fact, we saw in Chapter 5 that the cell sizes are locally compatible with the element size 
distribution function. 
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Therefore, obtaining a nice load balancing in the processors involves partition- 
ing the tree in such a way that the number of leaves assigned to each processor leads 
to the same number of elements. Meshing each sub-domain is then performed in 
parallel, with no communication between the processors. Since a quadrant bound- 
ary edge (resp. face) may belong to  several processors, special care is necessary 
regarding the meshing algorithm used to  mesh these interfaces (as the resulting 
meshes must be conformal). On the other hand, if the leaves in the interface are 
inside the domain, predefined patterns (or templates) can be used. The adjacency 
relationships between the tree cells must be enriched with information about the 
processor to  which the cell belongs [Saxena, Perucchio-19921. 

simply consists of the following: 
Following these remarks, the general scheme of a tree partitioning method 

ne t 0 
FOR each leaf c in the tree 

compute the number of elements that must be created ne(c)  
ne  t ne + n e ( c ) ,  (increment the total number of elements) 

END FOR 
ne 

cpp= ~ nbproc 
compute the load per processor: 

traverse the tree 
nep t 0 

FOR each leaf c 
IF nep < cpp 

P t l  

nep t nep + ne(c)  
assign the ne(c)  elements to processor p 

OTHERWISE 

END I F  
P + P + l  

END FOR 

To take advantage of the adjacency relationships in the tree (and thus obtain 
sub-domains that are as connected as possible), one may traverse the tree at first 
(using a pre-order, as seen in Chapter 2). 

Distributed construction of the tree. A more interesting problem is the 
design in parallel of the whole meshing process, i.e., the tree construction and its 
use to  form the mesh elements. 

The method proposed in [deCougny e t  al. 19961 constructs an octree which is 
balanced in parallel. The entry data in this algorithm is a discretization of the 
domain surface. With each vertex in this triangulation is associated a size (that 
corresponds to the average of the lengths of the incident edges), thus defining a 
discrete size map. This scalar value h is then modified in an integer value related 
to a level 1 in the tree (i.e., the level of the cell within which the vertex falls), by 
means of the formula (Chapter 5): 
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where b is the length of a side of the enclosing box. 
Conceptually, the tree construction includes two stages: the construction of 

local sub-trees and the refinement of these sub-trees. The four (resp. eight) initial 
cells are assigned to four (eight) different processors. Then, all the terminal cells 
are iteratively subdivided once or more (if necessary) and the cells resulting from 
the decomposition are assigned to the different processors according to the load 
they imply. This effort approximatively corresponds to  the number of vertices to  
be inserted (i.e., this is the stopping criterion of the process, Chapter 5) inside the 
volume related to one cell. Notice that the non-terminal cells are then replaced by 
the leaves. In this way, on completion of the construction (once all the processors 
have been assigned an equivalent load), each terminal cell corresponds to the root 
of a sub-tree and exists in only one processor. The sub-tree construction is in 
this way balanced in a natural way, each processor having approximately the same 
number of vertices to  be inserted. 

Then sub-trees are then constructed independently in each processor by subdi- 
viding their terminal cells until a level related to the desired local size is achieved. 

The meshes of the sub-trees are then completed in parallel (with no commu- 
nication between the processors) by using in each sub-tree a technique similar to  
that described in Chapter 5. 

Remark 24.2 I n  three dimensions, a tree re-balancing step may be made after 
the mesh of the terminal cells inside the sub-domains has been completed. This is 
due to the fact that an advancing-front type algorithm is  often used to mesh the 
boundary leaves (the number of elements in these cells being tedious to evaluate a 
priori). 

Complexity. The complexity in time of the construction process is of the order 
of O(np/nproclog(nproc)),  where nplnproc is the load per processor and where 
the term in log(np) corresponds to  the number of iteration steps in the algorithm 
(and thus to  the number of refinement levels in the tree). While the sub-tree 

refinement is of a complexity o (6 log (6)). 

.Other methods? 

The third category of automated mesh generation methods not yet discussed is 
that of the advancing-front type methods. At present, we have no knowledge 
of developments or specific issues for this type of approach. We may just men- 
tion that the advancing front strategy may be used for a parallel mesh construc- 
tion of sub-domains while the underlying decomposition is completed using a tree 
structure or a Delaunay-type empty mesh (with no internal point); see, for in- 
stance, [Shostko, Lohner-19951 or [Lohner-19981). 

* 
* A  
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Parallelism appears to be a practical solution to handle systems with several 
million (or dozens of millions of) unknownss. 

The impact on meshing technologies seems to  be, as we have seen, more about 
the parallelization of the meshing processes (partitioning, load balancing and com- 
munication) than the parallelization of the meshing methods themselves. It is 
likely that such parallel methods will be subjected to important developments in 
the coming future and, as a consequence, significant advances are expected. Thus 
this subject appears to be both open and very promising. 

8Such systems are nowadays used in computational fluid dynamics where the order of mag- 
nitude of the physics varies greatly. 
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a priori, a posteriori 
error estimate, 128 
partitioning, 131 

adaptation, 32, 128, 198, 233, 360, 693, 

adjacency 
735 

graph, matrix, 74 
relationship, 46 

advancing-front, 109, 201 
combined approaches, 227 
convergence issues, 113, 215 
general scheme, 204 
surface meshing, 231 

AITKEN’S algorithm, 401 
ALE method, 758 
algebraic degree of a problem, 79 
algebraic method, 98, 133, 497 
anisotropic diagram, 272 
anisotropic mesh, 230, 268, 468 
approximation of a curve, 479 
arc (rectifiable), 363 
area (surface), 379 
arithmetic filter, 80 
array, see data structure 

B-Rep, see boundary representation 
B-spline, 446 

curve, NURBS, 415, 416, 424, 443 
patch, 446 

background mesh, 40, 220, 265 
balancing rule, see quadtree, octree 
ball (of a point), 83, 607 
barycentrage, 647 
barycentric coordinates, 20 
basis function, 667 
behavior 

of a curve, 369, 374, 473 
of a surface, 378 
of an algorithm, 47 

BERNSTEIN polynomial(s), 410, 443, 448 

BOZIER 
curve, 409, 412 
patch, 443, 447 
triangle, quad, 444, 447 

binormal of a curve, 368 
block definition, see multiblock method 
boolean matrix (assembly), 690 
boundary 

condition(s), 30 
integrity, 105, 202, 254 
layer, 718 

boundary representation (B-Rep), 164, 
556 

BST, see data structure 
bucket sort, see sorting algorithm 

cache default, 81 
Cartesian parameterization, 376 
CATALAN number, 611 
CAUCHY identity, 407, 443 
CAUCHY-SCHWARTZ inequality, 334 
CBA’S lemma, 674 
cell(s) 

adjacent, 164 
level, size, 164, 166 
quadrant, octant, 166 

CGM, see interchange format 
CLOUGH-TOCHER patch, 451 
coloring scheme, 88, 184 
comparison, see sorting algorithm 
complexity (of an algorithm), 53, 54 
composite curve, surface, 404, 414, 452 
computational geometry, 78 
computational model (paradigm), 61 
conforming finite element, 674 
conformity (of a mesh), 25, 641 
connectivity, 25, 27 
constrained 

entity (Delaunay), 245, 246, 248 
triangulation, 23, 245 
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control polygon, polyhedron (curve and 

control space, 39, 174, 189, 220, 265 
convergent family (of approximations) , 

6 73 
convex hull, 20, 25, 115 

surface modeling) , 396,407,442 

COONS 
cubic basis, 403 
patch, 147, 440 

corner, 523, 642 
covering-up, 20 
crack, 571, 587 
critical node(s), value(s), 321, 529 
CSG (Constructive Solid Geometry), 556 
curvature(s), 365 

center, radius of, 366, 372, 634 
Gauss, 384 
geodesic, normal, 382 
principal, 633 

geometric support, 484 
curve definition, 395 

curve meshing, 195, 471, 492, 736, 739 
curved element, 670, 675 
curvilinear abscissa, 364 
cylindrical topology, 276, 279 

dangling curve(s), 488 
Darboux (frame or formula), 382 
data structure, 31, 45, 46, 642 

array, 48 
Binary Search Tree (BST), 63 
dictionary, 62 
grid, 26, 69 
linked list, 49 
mesh, 31, 689 
objects, pointers, 51 
priority queue, 68 
quadtree, octree, 69 
queue, 51 
stack, 50 
table, 48 
tree, 166, 169 
tree (AVL), 65 
winged-edge, 76 

DE BOOR spline curve, 415 
DE CASTELJAU 

algorithm, 412, 422, 445, 448 
form of a BBzier curve, 412, 424 

deformable mesh, 764 

deformation technique (algebraic method), 

degradation (of an element), 596, 625 
degree (valence) of a vertex, 612, 654 
degree elevation (BBzier curve, surface) , 

413 , 446 , 449 
degree of freedom, 30, 668 
DEHN-SOMMERVILLE relation, 21 
DELAUNAY 

147 

anisotropic meshing, 268 
boundary enforcement , 249, 254 
boundary integrity, 254 
combined approaches, 263 
general lemma, 238 
general scheme, 251 
surface meshing, 273 
triangulation, 22, 114, 236 
weighted triangulation, 268 

boundary discretization, 303, 310 
set , 304 

DELAuNAY-admissible 

deviation of a surface, 629 
diagonal swapping, see edge swapping 
diameter (of an element), 25, 675 
dichotomy, see searching algorithm 
dihedral angle, 598 
dimensional reduction, 303, 329 
direct method (quads), 296 
direct surface meshing, 125, 232 
DIRICHLET tessellation, 23 
discrete surface, 523 
distance, 335, 338 
divide and conquer 

algorithm, 393, 548 
paradigm, 61 

domain partitioning, 130, 154, 297, 326 
dot product, 336, 337, 362 
DUPIN’S indicatrix, 386, 637 
dynamic coloring, 92 

edge 
collapsing, 612 
splitting, 648 
swapping, flipping, 610, 649 

efficiency index, 602, 625, 721 
element 2-compatib1el 742 
element P-compatible, 742 
element quality, 596 
element renumbering, 582 
enumerating (a set), 87 
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Euclidean norm, 336 
EULER 

characteristics, 21 
relation, 386 

explicit curve, surface, 395, 435 
extruded surface, 437 
extrusion method, 279 

family of finite elements, 670 
field (of metrics), 465 
FIELDER’S vector, 781 
finite differences, 39 
finite element 

definition, 668 
mesh, 29 

finite octree, see quadtree, octree 
form 

linear and bilinear, 332 
polar, quadratic, 333, 334 

formulae, 368, 372, 530 
frame, 368 

function (behavior of a), 53 
function representation (F-Rep) , 556 
fundamental quadratic forms, 378, 383 

8-mesh, 641 
GAUSS curvature, 384 
generalized edge swapping, 248 
genus (of a surface), 22 
geodesic, 338, 382 

geometric 

FRBNET 

normal, 387 

attribute, 30 
mesh, 471, 738 

geometric support, see curve/surface def- 

geometry simplification, 330 
global numbering, 567 
global smoothing, 609 
governed advancing-front method, 220 
gradation (of a mesh), 514 
gradient (approximation), 349 
GREEN’S formula, 358 
GREGORY’S patch, 451, 524, 644 
grid, 26, 501 
grid superposition, 297 
grid-based method, 280 

h-adaptive method, 693 
h-method, 693 

inition 

h-variation, h-shock, 349 
hash function, 66 
hash table, 75 
hat function, 668 
HERMITE 

cubic form, 403 
finite element, 669 
interpolation, 403, 440 
method, 147 
polynomial, 441 

hex meshing, 298, 329 
hexahedral 

analogy, 144 
topology, 279 

hexahedron, 29 
hierarchy of uniform grids, 71 
homogenous projection, 423 
hpmethod, 735 
hybrid 

mesh, 26 
methods, 119 

ideal control space, 39 

IGES, see interchange format 
image encoding, 198 
implicit 

IEEE-754 (standard), 77 

curve, surface, 124, 377, 395, 435, 

function (for modeling), 556 
function theorem, 529 
size map, 190 

in-circle (predicate), 79 
in-circle criterion, 114 
infinite precision, 244 
inscribed circle, sphere, 675 
interchange format, 77 

527, 528 

CGM, 77 
IGES, 77 
SET, 77 
STEP, 77 
VDI, 77 

interface curve (between patches), 493, 
514 

interface tracking, 767 
interpolation error, 674 
interpolation-based 

methods, 398 
surface, 437, 439 

intrinsic size (at a vertex), 641 
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isoparametric element, 670, 675 

KUHN’S tetrahedron, 547 

LAGRANGE 
finite element, 669 
form, 402 
interpolation, 400, 439 

recursive form, 400 
Laguerre diagram, 268 
LANCZOS method, 781 
Laplacian 

operator, 150 
smoothing, 608 

a curve, an arc, 363, 380 
length of 

levelsets, 769 
linear regression, 399 
linked list, see data structure 
load balancing, 791 
local frame, 381 
local numbering, 27 
localization process, 595 
logical mesh, 135 

manifold (surface) , 26 
matrix 

of a bilinear (quadratic) form, 333, 

of adjacency, 74 
336 

medial axis, 120, 297, 303, 318 
medial surface (mid-surface), 303, 325 
memory handling, 81 
merge sort, see sorting algorithm 
merging (of two meshes), 567 
mesh 

conformity, 25 
connectivity, 26 
gradation, 514 
modification, optimization, 121, 292, 

559 
quality, optimality, 41, 105, 596 
simplification, 482 

mesh adaptation, see adaptation 
meshing process, 472 
meshing techniques (classification), 96 
metric, 231, 331, 337 

correction, smoothing, 348, 483 
interpolation, intersection, 344, 346 
of the tangent plane, 379 

MEUSNIER’S circle, 385, 633 

mid-point subdivision, 297 
mid-surface, see medial surface 
migration ( a  posteriori load-balancing), 

MINKOWSKI’S inequality, 334 
mixed mesh, 26 
molecular surface, 519 
moving frame, 382 
moving mesh, 754 
multiblock method, 101, 153, 790 

multiple-digit, see representation (of a 

79 1 

block definition, 157 

number) 

neighborhood relationship , 75 , 91 
neighborhood space, 41, 174, 746 
neutral fiber, 303 
NEWTON-RAPHSON’S algorithm, 393 
node (finite element), 30 
node relocation, 610, 646 
non-obtuse mesh, 614 
norm, 335 
normal (of a curve), 365 
normal (of a surface), 381 
normal parameterization of a curve, 364 
normal section, 382 
NURBS, see B-spline curve 

objects, pointers, see data structure 
octant, see cell(s) 
octree, see quadtree, octree 
optimal mesh, 605 
optimality (of an implementation), 80 
optimization (of a mesh), 606, 610 
optimization-based met hod, 283 
orientation convention (for a surface) , 

osculating circle, sphere, 370, 376, 473 
over-connected entity, 613, 614 

pmethod, 735 
paradigm, 61 
parallel meshing, parallelism, 129, 130, 

775 
parametric 

206 

curve, surface, 195, 232, 273, 296, 

space, 122, 232 
partitioning (a priori, a posteriori), 131 
partitioning met hods , 1 19 
PASCAL’S triangle, 411 

377, 395,435 
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patch-dependent surface, 513 
patch-independent surface, 515 
pattern-based method, 280 
PDE-based method, 100, 133, 149 

elliptic method, 100 
generation system, 149 
hyperbolic method, 101, 152 
parabolic method, 101, 152 
property of invariance, 137 
relaxation technique, 151 

pentahedral analogy, 145 
pentahedron, 28 
periodic mesh, 38 
physical attribute (w/r mesh entity), 30 
point (s) 

co-circular, co-spherical, 23 
control, 407 
critical, 529 
in general position, 22, 238 
inflection, 529 
singular, 486, 629, 642 

point-, PR-quadtree, 71, 72 
pointer(s), see data structure 
polygonal line, segment, 484 
polyline, 397, 404, 430 
power diagram, 268 
predicate, 79 
principal direction(s), 633 
priority queue, see data structure 
product method, 103, 276, 329 
progression method, 539 
protecting ball, 306 
pyramid, 29 
PYTHAGORUS’S theorem, 336 

quad analogy, 135 
quadrant, see cell(s) 
quadratic form, 333, 342 
quadrilateral mesh, 120, 290, 328 
quadtree, octree, 39, 71, 163, 499 

balancing, see rule [2:1] 
boundary integrity, 188 
classical approach, 171 
combined approaches, 194 
finite octree, 197 
rule [2:1], 108, 167, 178 
surface meshing, 195 

queue, see data structure 
quicksort, see sorting algorithm 

r-method, 707 

radial mesh, 300 
randomization, 62 
rational curve, patch, 423, 424, 450 
recursive 

bisection, 780 
partition, 301 

reference element (finite element), 669 
relation of adjacency, 46, 74 
relaxation, see degree (valence) of a ver- 

tex 
remeshing process, 726 
representation 

explicit, implicit, 527 
hierarchical, 76 
of a mesh, 74 
of a number, 77 
parametric, 527 

ridge, 523, 642 
robustness (of an algorithm), 77 
root 

of a tree, 166 
of an implicit function, 536 

roughness (of a surface), 629 
roundoff error, 60, 174, 241 
rule [2:1], see quadtree, octree 
ruled surface, 436 
running time profiling, 81 

sampling, 536 
SCHONHARDT’S polyhedron, 213 
searching algorithm, 60, 85 
segment meshing, 464 
self-centered triangle, 616 
separating power, 243 
separation power, 245 
SERRET-FRONET’S frame, 371 
SET, see interchange format 
set membership, 91 
shape 

function, 668 
optimization, 721 

shell (of an edge), 611 
simplex, 20 
size 

distribution function, 40 
optimization, 721 
quality, 630 

skeleton, 303, 319 
sliver, 267, 605 
smoothing technique, 399, 608, 609, 647 
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solid angle, 598 
sorting algorithm, 56 

bucket sort, 58, 218 
hash function, 66 
merge sort, 62 
quicksort, 57 

source, 41, 697 
spatial decomposition, 106, 499, 790 
special node, 321 
spline, 415 
stack, see data structure 
static coloring, 92 
STC, 297 
STEINER point, 248, 249, 325 
STEP, see interchange format 
stiffness matrix, 677, 678 
structured mesh, 26, 97 
surface 

intrinsic properties, 195 
surface definition 

geometric support, 643 
surface mesh, 122, 143, 153, 273 
surface meshing, 126, 153, 195, 231 
surface of revolution, 436 
surface reconstruction, 521 
sweeping surface, 437, 497 

table, see data structure 
tangent 

indicatrix of the -, 374 
plane, 444 

tangent (of a curve), 364 
tangling, 754 
TAYLOR’S formula, 353, 369 
tensor product, 437 
tet combination, 298 
tetrahedral analogy, 146 
tetrahedron, 28 
theorem 

Delaunay’s, 238 
Pythagorus’s, 336 

topology (of a mesh element), 27 
torsion, 372 

geodesic, 382, 384 
radius of, 372 

transfinite interpolation, 99, 138, 440 
transport of solution, 727 
tree, see data structure 
tree based method, 106 
triangle combination, 290 

triangular analogy, 141 
triangulation, 20 

conforming, 20 
Delaunay, see Delaunay triangula- 

tion 
trimmed surface, 436 

under-connected point, 613 
uniform grid, 280 
uniform parameterization (of a set of points), 

unit length, 339 
unit mesh, 42, 222, 266, 605, 631 
unstructured mesh, 26, 104 

valence, see degree of a vertex 
valid (element, mesh), 212 
variational formulation, 665 
variogram, 262 
VDI, see interchange format 
vector computer, 586 
vertex numbering, 567 
vertex renumbering, 578 
visualization, 620 
VORONOI 

cell, 236, 306 
diagram, 22, 236 

voxel(s), 70, 501, 558 

WALTON’S patch, 451, 524, 644 
weighted smoothing, 608 
widthless region, 587 
winged-edge, see data structure 
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